WO2017017770A1 - 治療用多機能シリンダー - Google Patents

治療用多機能シリンダー Download PDF

Info

Publication number
WO2017017770A1
WO2017017770A1 PCT/JP2015/071289 JP2015071289W WO2017017770A1 WO 2017017770 A1 WO2017017770 A1 WO 2017017770A1 JP 2015071289 W JP2015071289 W JP 2015071289W WO 2017017770 A1 WO2017017770 A1 WO 2017017770A1
Authority
WO
WIPO (PCT)
Prior art keywords
therapeutic
cylinder
hollow pipe
treatment
multifunction
Prior art date
Application number
PCT/JP2015/071289
Other languages
English (en)
French (fr)
Inventor
義治 幸田
耕二郎 幸田
Original Assignee
コデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コデン株式会社 filed Critical コデン株式会社
Priority to PCT/JP2015/071289 priority Critical patent/WO2017017770A1/ja
Publication of WO2017017770A1 publication Critical patent/WO2017017770A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a therapeutic multifunction cylinder used by being attached to an endoscope.
  • an endoscope has a light guide that transmits light emitted from a light source to an affected area.
  • a light distribution lens is provided at the tip of the light guide, and the light distribution lens diffuses the light transmitted by the light guide toward the affected area.
  • the affected area can be irradiated with light from a light source, but for example, heat is applied to the affected area, a drug is injected into the affected area, or the affected area is washed. Because it does not have a function such as, it is difficult to perform treatment only with an endoscope.
  • an object of the present invention is to provide the endoscope with various functions as described above, can be easily attached to the endoscope, can be disposable after the operation, It is an object of the present invention to provide a therapeutic multifunction cylinder that can be left in the body.
  • the therapeutic multifunction cylinder is a therapeutic multifunction cylinder attached to the endoscope body via a gripping portion.
  • the multifunctional cylinder for treatment has a hollow pipe, a light source for illuminating the affected part in the living body is arranged on one end of the hollow pipe sealed, and one end of the hollow pipe is fixed to the other end of the hollow pipe A grip portion to be gripped by an operator is provided, the grip portion has an engaging protrusion that is engaged with a lock portion provided on the endoscope body, and the light source is electrically connected to the engaging protrusion, When the joint protrusion is engaged with the lock portion, the therapeutic multifunction cylinder is mounted on the endoscope body, and the engagement protrusion and the lock portion are electrically connected.
  • the therapeutic multi-functional cylinder has a hollow pipe, a light emitting element for treatment that irradiates the affected area with light having a wavelength suitable for treatment is disposed on one end of the hollow pipe sealed, and a hollow is formed on the other end of the hollow pipe.
  • a gripping portion is provided that fixes one end of the pipe and is gripped by an operator.
  • the gripping portion has an engagement protrusion that is engaged with a lock portion provided on the endoscope body, and the engagement protrusion is locked to the lock portion. When this is engaged, the multi-functional cylinder for treatment is mounted on the endoscope body, and the therapeutic light-emitting element is connected to an external therapeutic power source through a power line.
  • Still another multifunctional cylinder for treatment according to the present invention for achieving the above object is a multifunctional cylinder for treatment that is attached to the endoscope body via a grip portion.
  • the therapeutic multi-functional cylinder has a hollow pipe, a light emitting element for treatment that irradiates the affected area with light having a wavelength suitable for treatment is disposed on one end of the hollow pipe sealed, and a hollow is formed on the other end of the hollow pipe.
  • a gripping portion is provided that fixes one end of the pipe and is gripped by an operator.
  • the gripping portion has an engagement protrusion that is engaged with a lock portion provided on the endoscope body, and the engagement protrusion is locked to the lock portion. When this is engaged, the multi-functional cylinder for treatment is mounted on the endoscope body, and the therapeutic light-emitting element is connected to an external therapeutic power source through a power line.
  • the multifunctional cylinder for treatment according to the present invention can be easily attached to the endoscope body. Further, the light source incorporated in the therapeutic multifunction cylinder can be turned on when the therapeutic multifunction cylinder is mounted on the endoscope body, which is easy to use. In addition, the multifunctional cylinder for treatment can be disposable, does not require disinfection, and is hygienic. Furthermore, since the therapeutic multifunction cylinder according to the present invention can be left in the patient's body, the state of the affected area can be observed or treated when necessary.
  • Embodiments 1 to 9 It is an external view as an endoscope common to Embodiments 1 to 9. It is sectional drawing of the endoscope with which the multifunctional cylinder for treatment which concerns on Embodiment 1 was mounted
  • 1 is a cross-sectional view of a therapeutic multifunction cylinder according to Embodiment 1.
  • FIG. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the lid
  • FIG. 1 It is a figure which shows the state which attached the cover to the multifunctional cylinder for a treatment which concerns on Embodiment 2, and was made to indwell in the patient's body. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 3. FIG. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 4. FIG. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 5. FIG. It is sectional drawing of the endoscope with which the multifunctional cylinder for treatment which concerns on Embodiment 6 was mounted
  • FIG. 10 is a cross-sectional view of a part of a therapeutic multifunction cylinder and an endoscope according to a seventh embodiment. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 7. FIG. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 8. FIG. It is sectional drawing of the multifunctional cylinder for a treatment which concerns on Embodiment 9. FIG.
  • FIG. 1 is an external view as an endoscope common to the first to ninth embodiments.
  • the therapeutic multifunction cylinder 100 is attached to an endoscope body 200.
  • the therapeutic multifunction cylinder 100 is integrated with the endoscope body 200 and can be used as the endoscope 300.
  • the multifunctional cylinder 100 for treatment has a long hollow pipe 110 to be inserted into the body, and can be attached to and detached from the endoscope main body 200 via the cylinder grip 120.
  • an LED as a light source for illuminating the affected area in the body is incorporated.
  • the LED can emit light when the therapeutic multifunction cylinder 100 is attached to the endoscope body 200.
  • a rod-like camera lens is inserted into the hollow pipe 110.
  • the endoscope main body 200 has a built-in camera for imaging the affected area and an image processing circuit for processing the image of the camera. An image of the affected area is taken through a rod-like camera lens inserted into the hollow pipe 110 of the therapeutic multifunction cylinder 100.
  • FIG. 2 is a cross-sectional view of the endoscope 300 to which the therapeutic multifunction cylinder 100 according to the first embodiment is mounted.
  • FIG. 3 is a cross-sectional view of the therapeutic multifunction cylinder 100 according to the first embodiment.
  • the therapeutic multifunction cylinder 100 includes a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end side of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the cylinder grip 120 is gripped by the operator.
  • a rod-like camera lens 112 having an outer diameter substantially the same as the inner diameter is inserted.
  • the outer diameter of the hollow pipe 110 is about 3 mm, and the length of the rod-like camera lens 112 is about 120 mm as a standard.
  • the rod-like camera lens 112 provides an image of the affected area to the camera (light receiving element) of the endoscope body 200.
  • a light source 114 for illuminating the affected area in the living body is disposed on one end side of the hollow pipe 110. Further, a sealing lid 116 for protecting the rod-shaped camera lens 112 and the LED 114 is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. Therefore, the liquid in the body does not enter the hollow pipe 110 during the treatment.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100 to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114 are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • the endoscope main body 200 includes a light receiving element (CCD sensor or CMOS sensor) 202 that functions as a camera and an image processing circuit 204 that processes an image captured by the light receiving element 202.
  • the light receiving element 202 and the image processing circuit 204 are connected by a ribbon cord 206.
  • the image processing circuit 204 is connected to a computer (not shown) via a signal line 210.
  • a support base 208 that supports the end of the rod-like camera lens 112 is attached to the inside of the case 220 of the endoscope body 200.
  • the tip of the rod-shaped camera lens 112 is firmly supported by the support base 208 in contact with the light receiving element 202.
  • a lock portion 212 that engages with the engagement protrusion 122 provided on the cylinder grip portion 120 is provided.
  • the lock portion 212 is configured to be able to supply power to the LED 114 provided in the therapeutic multifunction cylinder 100 via the engagement protrusion 122.
  • the therapeutic multifunction cylinder 100 is mounted on the endoscope body 200 and the engagement protrusion 122 and the lock portion 212 are electrically connected.
  • the lock unit 212 and the signal line 210 are connected via a power supply line (not shown) provided in the endoscope main body 200.
  • the cylinder grip 120 of the therapeutic multifunction cylinder 100 is pushed toward the case 220 of the endoscope body 200, and the engagement protrusion 122 is fitted into the lock portion 212.
  • the engagement protrusion 122 is engaged with the lock portion 212, the therapeutic multifunction cylinder 100 is firmly fixed to the endoscope body 200.
  • the engagement protrusion 122 and the lock portion 212 are electrically connected, so that the LED 114 and the signal line 210 are viewed internally.
  • the LED 114 can be made to emit light by being connected to the mirror body 200 via a power supply line (not shown) provided in the therapeutic multifunction cylinder 100.
  • the state of the affected part in the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112.
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can project an image of the affected area via the display, and the operator can proceed with the procedure while viewing the image.
  • the engaging protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100 is detachably attached to the endoscope main body 200. After removing the therapeutic multifunction cylinder 100, the rod-shaped camera lens 112 is pulled out of the hollow pipe 110, and the therapeutic multifunction cylinder 100 is discarded.
  • the endoscope 300 is small and light, and the total weight of the endoscope body 200 and the therapeutic multifunction cylinder 100 is about 150 g.
  • the therapeutic multifunction cylinder 100 is configured to be very inexpensive.
  • FIG. 4 is a cross-sectional view of the therapeutic multifunction cylinder according to the second embodiment.
  • the configuration of the therapeutic multifunction cylinder is different from the configuration of the therapeutic multifunction cylinder of FIG. 3 in that a therapeutic light emitting element is incorporated.
  • the therapeutic multifunction cylinder 100 ⁇ / b> A includes a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the grip part 120 is gripped by the operator.
  • a rod-like camera lens 112 having an outer diameter substantially the same as the inner diameter is inserted.
  • the rod-shaped camera lens 112 provides an image of the affected area to the camera (light receiving element 202) of the endoscope body 200 (see FIG. 2).
  • the LED 114 is disposed on one end side of the hollow pipe 110. Further, on the upper side of the LED 114, treatment light emitting elements 115A, 115B, and 115C that can emit light having different wavelengths depending on the type of treatment are disposed.
  • the therapeutic light emitting element 115A irradiates the affected area with light having a wavelength effective for destroying or killing a specific tumor in the body (a specific therapeutic infrared ray or ultraviolet ray) and heat.
  • the therapeutic light emitting element 115B irradiates the affected area with light and heat having a wavelength effective for destroying or killing cancer cells in the body.
  • the therapeutic light emitting element 115C irradiates the affected area with light and heat having a wavelength effective for destroying or killing other types of tumors in the body.
  • the treatment light emitting elements 115A, 115B, and 115C are electrically connected to the engagement protrusion 122. Further, the engagement protrusion 122 and the therapeutic light emitting elements 115A, 115B, and 115C are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • a sealing lid 116 that protects the rod-shaped camera lens 112, the LED 114, and the therapeutic light emitting elements 115A, 115B, and 115C is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. Therefore, the liquid in the body does not enter the hollow pipe 110 during the treatment.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100A to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Further, the engagement protrusion 122 is configured to receive power for selectively lighting the therapeutic light emitting elements 115A, 115B, and 115C from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114, and the engagement protrusion 122 and the therapeutic light emitting elements 115 ⁇ / b> A, 115 ⁇ / b> B, and 115 ⁇ / b> C are connected via the power line provided in the hollow pipe 110. Which therapeutic light emitting element emits light is selected by the aforementioned external computer.
  • the therapeutic multifunction cylinder 100A When using the therapeutic multifunction cylinder 100A of FIG. 4, the therapeutic multifunction cylinder 100A is attached to the endoscope body 200 of FIG.
  • the engagement protrusion 122 and the lock portion 212 are electrically connected.
  • the LED main body 200 is connected to the therapeutic multifunction cylinder 100A through a power supply line, and the LED 114 can emit light.
  • the therapeutic light emitting elements 115A, 115B, and 115C and the signal line 210 are connected via the power supply line provided in the endoscope main body 200 and the therapeutic multifunction cylinder 100A, and are selected by an external computer.
  • the affected part can be irradiated with light and heat from the therapeutic light emitting elements 115A, 115B, and 115C.
  • the inside of the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112 (see FIGS. 2 and 3).
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can display an image of the affected area via the display, and the operator irradiates light and heat from the selected therapeutic light emitting elements 115A, 115B, and 115C while viewing the image, thereby performing an operation on the affected area. Can proceed.
  • the endoscope 300 to which the therapeutic multifunction cylinder 100A of FIG. 4 is attached can be moved freely because of its small size and light weight, and the therapeutic multifunction cylinder 100A is inexpensive and can be disposable. Therefore, as in the first embodiment, it is not necessary to sterilize the therapeutic multifunction cylinder 100A each time treatment is performed with the endoscope 300, and for example, home visits can be continuously performed. Further, in the mass examination, the therapeutic multifunction cylinder 100A can be disposable, so the medical work becomes efficient.
  • the therapeutic multifunction cylinder 110A When performing treatment using the therapeutic multifunction cylinder 100A of FIG. 4, the therapeutic multifunction cylinder 110A is attached to the endoscope body 200 of FIG. 2, the LED 114 is turned on, and the therapeutic multifunction cylinder 110A is placed inside the body. Go ahead and look for an affected area such as a tumor while looking at the display on an external computer.
  • the position of the affected area is specified, in order to irradiate the position of the affected area with the therapeutic light, for example, light and heat are irradiated from the therapeutic light emitting element 115C toward the affected area.
  • the image while it is being irradiated with light and heat is displayed on an external computer display. The operator performs appropriate treatment while viewing the image displayed on the display.
  • the therapeutic multifunction cylinder 100A is removed from the endoscope body 200, and the cylinder grip 120 is covered.
  • FIG. 5 is a cross-sectional view of a lid attached to the cylinder grip 120 when the therapeutic multifunction cylinder 100A of FIG. 4 is placed in the patient's body.
  • FIG. 6 is a diagram showing a state in which the therapeutic multifunction cylinder 100A of FIG.
  • the lid 130 has a flange holding groove 134 that holds the flange portion 121 of the cylinder grip portion 120, and an engagement protrusion lock holding portion 138 that holds the engagement protrusion lock portion 123 of the cylinder grip portion 120. Each is formed.
  • the opening side of the lid 130 and the cylinder grip 120 are opposed to each other, and the engaging protrusion 122 is inserted into the opening of the lid 130.
  • FIG. 7 is a cross-sectional view of the therapeutic multifunction cylinder according to the third embodiment.
  • the configuration of the multifunctional cylinder for treatment includes a built-in temperature sensor for measuring the temperature of the affected area, and the temperature sensor and the light emitting element for treatment are respectively provided. It is different in that it can be connected to the outside with a dedicated signal line or power line.
  • the multifunctional cylinder 100B for treatment is constituted by a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end side of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the cylinder grip 120 is gripped by the operator.
  • a rod-like camera lens 112 (see FIG. 2) having an outer diameter substantially the same as the inner diameter is inserted.
  • the rod-shaped camera lens 112 sends an image of the affected area to the camera (light receiving element 202) of the endoscope body 200 (see FIG. 2).
  • the LED 114 is disposed at the tip of the hollow pipe 110. Further, on the upper side of the LED 114, treatment light emitting elements 115A, 115B, and 115C that can emit light having different wavelengths depending on the type of treatment are disposed. Which therapeutic light emitting element emits light can be selected by the above-mentioned external computer. Further, a temperature sensor 117 for detecting the temperature of the affected area is disposed on the therapeutic light emitting elements 115A, 115B, and 115C.
  • the temperature sensor 117 is connected to the signal line 124, and the therapeutic light emitting elements 115A, 115B, and 115C are individually connected to the power line 126. Therefore, the temperature of the affected part detected by the temperature sensor 117 is output to an external computer via the signal line 124.
  • the therapeutic light emitting elements 115A, 115B, and 115C are supplied with power from an external computer via the power line 126.
  • a sealing lid 116 for protecting the rod-shaped camera lens 112, the LED 114, the therapeutic light emitting elements 115A, 115B, 115C, and the temperature sensor 117 is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. The Therefore, the liquid in the body does not enter the hollow pipe 110 during the treatment.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100B to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114 are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • electric power for causing the LED 114 to emit light is supplied via the engagement protrusion 122, and electric power for causing the therapeutic light emitting elements 115A, 115B, and 115C to emit light is supplied from the power line 126.
  • the temperature of the affected area detected by the temperature sensor 117 is output to the outside via the signal line 124.
  • the endoscope 300 to which the therapeutic multifunction cylinder 100B of FIG. 7 is attached can be moved freely because of its small size and light weight, and the therapeutic multifunction cylinder 100B is inexpensive and can be disposable. Therefore, as in the first embodiment, it is not necessary to sterilize the therapeutic multifunction cylinder 100B each time the treatment is performed with the endoscope 300, and for example, home visits can be continuously performed.
  • the therapeutic multifunction cylinder 110B When performing treatment using the therapeutic multifunction cylinder 100B of FIG. 7, the therapeutic multifunction cylinder 110B is attached to the endoscope body 200 of FIG. 2, the LED 114 is turned on, and the therapeutic multifunction cylinder 110B is placed inside the body. Go ahead and look for an affected area such as a tumor while looking at the display on an external computer.
  • the position of the affected area is specified, in order to irradiate the position of the affected area with the therapeutic light, for example, light and heat are irradiated from the therapeutic light emitting element 115C toward the affected area through the power line 126. Further, the temperature of the affected area during the treatment is detected by the temperature sensor 117 and output via the signal line 124. While the affected area is irradiated with light and heat, the temperature and image of the affected area are displayed on an external computer display. The operator adjusts the power supplied to the therapeutic light emitting element 115C while watching the image displayed on the display, and performs appropriate treatment.
  • the treatment can be continued with the multifunction cylinder 100B inserted into the body. This is because the temperature detected by the temperature sensor 117 can be obtained from the signal line 124 and the power of the therapeutic light emitting elements 115A, 115B, and 115C can be supplied from the power line 126.
  • the signal line 124 and the power line 126 are connected to an external computer.
  • the operator adjusts the power supplied to the signal line 124 while observing the temperature of the affected part detected by the temperature sensor 117, and operates the affected part.
  • FIG. 8 is a cross-sectional view of the therapeutic multifunction cylinder according to the fourth embodiment.
  • the configuration of this multifunctional cylinder for treatment is different from that of the multifunctional cylinder 100A for treatment in FIG. 3 in that a drug injection passage is provided.
  • the therapeutic multifunction cylinder 100 ⁇ / b> C includes a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end side of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the cylinder grip 120 is gripped by the operator.
  • a rod-like camera lens 112 is inserted into the hollow pipe 110.
  • the rod-shaped camera lens 112 sends an image of the affected area to the camera (light receiving element 202) of the endoscope body 200 (see FIG. 2).
  • the LED 114 is disposed at the tip of the hollow pipe 110.
  • the hollow pipe 110 is provided with a drug injection passage 118 for supplying a drug from the outside to the affected part in the body.
  • the drug is injected from the drug injection port 118A during the treatment and supplied from the drug supply port 118B inserted into the body.
  • the drug injection port 118A can be opened and closed with a soft tube.
  • a sealing lid 116 for protecting the rod-shaped camera lens 112 and the LED 114 is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. Therefore, the liquid in the body does not enter the hollow pipe 110 during the treatment.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100C to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114 are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • the therapeutic multifunction cylinder 100C of FIG. 8 When using the therapeutic multifunction cylinder 100C of FIG. 8, the therapeutic multifunction cylinder 100C is attached to the endoscope body 200 of FIG.
  • the engagement protrusion 122 and the lock portion 212 are electrically connected to each other.
  • the LED main body 200 is connected to the therapeutic multifunction cylinder 100C via a power supply line, and the LED 114 can emit light.
  • the inside of the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112.
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can project an image of the affected area via the display.
  • the engaging protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100 ⁇ / b> C is detachable from the endoscope main body 200.
  • the rod-shaped camera lens 112 is pulled out of the hollow pipe 110, and the therapeutic multifunction cylinder 100C is discarded.
  • the endoscope 300 attached with the therapeutic multifunction cylinder 100C in FIG. 8 can be moved freely because of its small size and light weight, and the therapeutic multifunction cylinder 100C can be disposable because it is inexpensive. Therefore, it is not necessary to sterilize the therapeutic multifunction cylinder 100C every time treatment is performed with the endoscope 300, and for example, home visits can be continuously performed.
  • the therapeutic multifunction cylinder 100C When performing treatment using the therapeutic multifunction cylinder 100C of FIG. 8, the therapeutic multifunction cylinder 100C is attached to the endoscope body 200 of FIG. 2, the LED 114 is turned on, and the therapeutic multifunction cylinder 110A is placed inside the body. Go ahead and look for an affected area such as a tumor while looking at the display on an external computer.
  • the operator injects the drug at the position of the affected area while viewing the image displayed on the display.
  • the therapeutic multifunction cylinder 100C In the case of the therapeutic multifunction cylinder 100C according to the fourth embodiment, even if the endoscope main body 200 (see FIG. 2) is not attached to the therapeutic multifunction cylinder 100C, as shown in FIG. With the multifunction cylinder 100C inserted into the body, it is possible to continue the treatment such as removing the lid 130 and periodically administering the medicine.
  • FIG. 9 is a cross-sectional view of the therapeutic multifunction cylinder according to the fifth embodiment.
  • the configuration of this multifunctional cylinder for treatment is different from the configuration of the multifunctional cylinder 100A for treatment in FIG. 3 in that a washing water injection passage and a sewage discharge passage are provided.
  • the multifunctional cylinder 100D for treatment is constituted by a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end side of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the cylinder grip 120 is gripped by the operator.
  • a rod-like camera lens 112 is inserted into the hollow pipe 110.
  • the rod-shaped camera lens 112 provides an image of the affected area to the camera (light receiving element 202) of the endoscope body 200 (see FIG. 2).
  • the LED 114 is disposed at the tip of the hollow pipe 110.
  • the hollow pipe 110 is provided with a washing water injection passage 111 for supplying washing water from the outside to the affected part in the body. The cleaning water is injected from the cleaning water inlet 111A during the treatment and supplied from the cleaning water supply port 111B inserted into the body. Further, the hollow pipe 110 is provided with a sewage discharge passage 113 for discharging the sewage after cleaning inside the body to the outside. The sewage is inhaled from the contaminated water inlet 113A inserted into the body during the treatment, and discharged to the outside from the contaminated water outlet 113B.
  • a sealing lid 116 for protecting the rod-shaped camera lens 112 and the LED 114 is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. Therefore, liquid does not enter the hollow pipe 110 during the treatment.
  • a part of the sealing lid 116 forms a cleaning water supply port 111B and a contaminated water suction port 113A.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100D to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114 are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • the therapeutic multifunction cylinder 100D of FIG. 9 When using the therapeutic multifunction cylinder 100D of FIG. 9, the therapeutic multifunction cylinder 100D is attached to the endoscope body 200 of FIG.
  • the engagement protrusion 122 and the lock portion 212 are electrically connected.
  • the LED main body 200 and the therapeutic multifunction cylinder 100D are connected via a power supply line, and the LED 114 can emit light.
  • the inside of the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112.
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can project an image of the affected area via the display.
  • the engaging protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100D is detachable from the endoscope body 200.
  • the rod-shaped camera lens 112 is pulled out of the hollow pipe 110, and the therapeutic multifunction cylinder 100D is discarded.
  • the endoscope 300 attached with the therapeutic multifunction cylinder 100D of FIG. 9 can be moved freely because of its small size and light weight, and the therapeutic multifunction cylinder 100D can be disposable because it is inexpensive. Therefore, it is not necessary to sterilize the therapeutic multifunction cylinder 100D each time the treatment is performed with the endoscope 300. For example, home visits can be continuously performed.
  • the therapeutic multifunction cylinder 110D When performing treatment using the therapeutic multifunction cylinder 100D of FIG. 9, the therapeutic multifunction cylinder 110D is attached to the endoscope body 200 of FIG. 2, the LED 114 is turned on, and the therapeutic multifunction cylinder 110D is placed inside the body. Go ahead and look for the affected area while looking at the external computer display.
  • the operator injects cleaning water into the position of the affected part while viewing the image displayed on the display, and discharges the cleaned sewage to the outside.
  • FIG. 10 is a cross-sectional view of an endoscope equipped with a therapeutic multifunction cylinder according to a sixth embodiment.
  • FIG. 11 is a cross-sectional view of the therapeutic multifunction cylinder according to the sixth embodiment.
  • the therapeutic multifunction cylinder 100E includes a hollow pipe 110 and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end side of the hollow pipe 110 and firmly fixes one end of the hollow pipe 110.
  • the cylinder grip 120 is gripped by the operator.
  • a light receiving element 202 that functions as a camera is incorporated at the bottom.
  • the light receiving element 202 is connected to the ribbon cord 206 via the signal line 207.
  • the light receiving element 202 and the signal line 207 may be directly inserted into the hollow pipe 110, but may be inserted into another pipe having an outer diameter substantially the same as the inner diameter of the hollow pipe 110.
  • the LED 114 is disposed at the tip of the hollow pipe 110. Further, a sealing lid 116 for protecting the light receiving element 202 and the LED 114 is attached to the tip of the hollow pipe 110, and the tip of the hollow pipe 110 is completely sealed. Therefore, liquid does not enter the hollow pipe 110 during the treatment.
  • An engaging projection 122 for attaching the therapeutic multifunction cylinder 100E to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the engagement protrusion 122 is configured to receive power for turning on the LED 114 from the endoscope body 200. Therefore, the engagement protrusion 122 and the LED 114 are connected via a power supply line (not shown) provided in the hollow pipe 110.
  • the endoscope main body 200 includes an image processing circuit 204 that processes an image captured by the light receiving element 202.
  • the light receiving element 202 and the image processing circuit 204 are connected by a signal line 207 and a ribbon cord 206.
  • the image processing circuit 204 is connected to a computer (not shown) via a signal line 210.
  • a support base 208 that supports the end of the hollow pipe 110 is attached to the inside of the case 220 of the endoscope main body 200.
  • the hollow pipe 110 is firmly supported by the support base 208.
  • a lock portion 212 that engages with the engagement protrusion 122 provided on the cylinder grip portion 120 is provided.
  • the lock part 212 is configured to supply power to the LED 114 provided in the therapeutic multifunction cylinder 100E.
  • the engagement protrusion 122 and the lock portion 212 are electrically connected.
  • the lock unit 212 and the signal line 210 are connected via a power supply line (not shown) provided in the endoscope main body 200.
  • the method of using the endoscope 300A is the same as that of the first embodiment.
  • FIG. 12 is a cross-sectional view of an endoscope to which the therapeutic multifunction cylinder according to the seventh embodiment is mounted.
  • FIG. 13 is a cross-sectional view of a portion of the therapeutic multifunction cylinder and endoscope according to the seventh embodiment.
  • FIG. 14 is a cross-sectional view of the therapeutic multifunction cylinder according to the seventh embodiment.
  • the therapeutic multifunction cylinder 100F includes a bottomed hollow pipe 110A and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end of the hollow pipe 110A, and firmly fixes one end of the hollow pipe 110A.
  • the cylinder grip 120 is gripped by the operator.
  • a therapeutic light emitting element 115 for irradiating the affected part with a therapeutic light beam having a wavelength suitable for treatment of a living body is disposed on one end side of the hollow pipe 110A that is sealed.
  • the therapeutic light emitting element 115 is electrically connected to a power line 121 drawn from the cylinder grip 120.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100F to the endoscope main body 200 is provided on one side of the cylinder grip 120.
  • the lock part 212 which engages with the engagement protrusion 122 provided in the cylinder holding part 120 is provided on the inner peripheral surface of the case 220.
  • the treatment multifunction cylinder 100 ⁇ / b> F is attached to the endoscope body 200.
  • the endoscope main body 200 includes a light receiving element (CCD sensor or CMOS sensor) 202 that functions as a camera and an image processing circuit 204 that processes an image captured by the light receiving element 202.
  • the light receiving element 202 and the image processing circuit 204 are connected by a ribbon cord 206.
  • the image processing circuit 204 is connected to a computer (not shown) via a signal line 210.
  • the hollow pipe 110B having an outer diameter smaller than the inner diameter of the hollow pipe 110A is disposed inside the hollow pipe 110A.
  • a rod-like camera lens 112 having an outer diameter substantially the same as the inner diameter and an LED 114 that illuminates the affected area are inserted.
  • a sealing lid 116 for protecting the rod-shaped camera lens 112 and the LED 114 is attached to the tip of the hollow pipe 110B, and the tip of the hollow pipe 110B is completely sealed.
  • a support base 208 that supports the end of the rod-like camera lens 112 is attached to the inside of the case 220 of the endoscope body 200.
  • the tip of the rod-shaped camera lens 112 is firmly supported by the support base 208 in contact with the light receiving element 202.
  • the hollow pipe 110B is fixed to the case 220.
  • the endoscope body 200 of the present embodiment includes components such as the light receiving element 202 accommodated in the case 220 and components such as the LED 114 accommodated in the hollow pipe 110B. Therefore, the therapeutic multifunction cylinder 100F according to the present embodiment includes a hollow pipe 110A, a cylinder grip 120, and a therapeutic light emitting element 115, as shown in FIG.
  • the cylinder holding portion 120 of the therapeutic multifunction cylinder 100F shown in FIG. 14 is pushed toward the case 220 of the endoscope main body 200, and the engagement protrusion 122 is locked to the lock portion shown in FIG. Fit into 212.
  • the engagement protrusion 122 is engaged with the lock portion 212, the therapeutic multifunction cylinder 100 ⁇ / b> F is firmly fixed to the endoscope body 200.
  • the state of the affected part in the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112.
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can project an image of the affected area via the display. The operator can proceed with the treatment by irradiating the affected area with therapeutic infrared light from the therapeutic light emitting element 115 while viewing the image.
  • the engagement protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100F is detachable from the endoscope body 200. After sliding along the hollow pipe 110B and removing the therapeutic multifunction cylinder 100F, the therapeutic multifunction cylinder 100F is discarded.
  • the endoscope 300A according to this embodiment can be moved freely because of its small size and light weight, and the multifunctional cylinder 100F for treatment can be disposable because it is inexpensive. Therefore, it is not necessary to sterilize the therapeutic multifunction cylinder 100F every time treatment is performed with the endoscope 300A, and for example, home visits can be continuously performed. Further, in the mass examination, the treatment multifunction cylinder 100F can be disposable, so the medical work becomes efficient.
  • FIG. 15 is a cross-sectional view of the therapeutic multifunction cylinder according to the eighth embodiment.
  • the configuration of this multifunctional cylinder for treatment is different from the configuration of the multifunctional cylinder 100F for treatment in FIG. 14 in that a drug injection passage is provided.
  • the therapeutic multifunction cylinder 100G includes a hollow pipe 110B and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end of the hollow pipe 110B, and firmly fixes one end of the hollow pipe 110B.
  • the cylinder grip 120 is gripped by the operator.
  • a therapeutic light emitting element 115 is disposed at the tip of the hollow pipe 110G.
  • the hollow pipe 110B is provided with a drug injection passage 118 for supplying a drug from the outside to the affected part in the body.
  • the drug is injected from the drug injection port 118A during the treatment and supplied from the drug supply port 118B inserted into the body.
  • the drug injection port 118A can be opened and closed with a soft tube.
  • An engagement protrusion 122 for attaching the therapeutic multifunction cylinder 100G to the endoscope main body 200 (see FIG. 12) is provided on one side of the cylinder grip 120.
  • the therapeutic multifunction cylinder 100G When using the therapeutic multifunction cylinder 100G of FIG. 15, the therapeutic multifunction cylinder 100G is attached to the endoscope body 200 of FIG.
  • the drug injection port 118A When a drug is injected from the drug injection port 118A, the drug is directly injected into the affected part from the drug supply port 118B through the drug injection passage 118. Since the drug is injected only into the affected area, there are few side effects. In addition, by attaching an injection needle instead of the medicine supply port 118B, it is possible to instill directly into the affected area.
  • the engaging protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100G is detachable from the endoscope main body 200. After removing the therapeutic multifunction cylinder 100G, the therapeutic multifunction cylinder 100G is discarded.
  • the endoscope 300B to which the therapeutic multifunction cylinder 100G of FIG. 15 is attached can be freely moved because of its small size and light weight, and the therapeutic multifunction cylinder 100G can be disposable because it is inexpensive. Therefore, it is not necessary to sterilize the therapeutic multifunction cylinder 100G every time treatment is performed with the endoscope 300B, and for example, home visits can be continuously performed.
  • the therapeutic multifunction cylinder 100G When performing treatment using the therapeutic multifunction cylinder 100G of FIG. 15, the therapeutic multifunction cylinder 100G is attached to the endoscope body 200 of FIG. 12, the LED 114 is turned on, and the therapeutic multifunction cylinder 110F is placed inside the body. Go ahead and look for an affected area such as a tumor while looking at the display on an external computer.
  • the operator injects the drug at the position of the affected area while viewing the image displayed on the display.
  • the therapeutic multifunction cylinder 100G In the case of the therapeutic multifunction cylinder 100G according to the eighth embodiment, even if the endoscope main body 200 (see FIG. 12) is not attached to the therapeutic multifunction cylinder 100G, as shown in FIG. With the multifunction cylinder 100G inserted into the body, it is possible to continue the treatment such as removing the lid 130 and periodically administering the medicine.
  • FIG. 16 is a cross-sectional view of the therapeutic multifunction cylinder according to the ninth embodiment.
  • the configuration of this multifunctional cylinder for treatment is different from the configuration of the multifunctional cylinder 100F for treatment in FIG. 14 in that a washing water injection passage and a sewage discharge passage are provided.
  • the therapeutic multifunction cylinder 100H includes a hollow pipe 110B and a cylinder grip 120.
  • the cylinder grip 120 is attached to the other end of the hollow pipe 110B, and firmly fixes one end of the hollow pipe 110B.
  • the cylinder grip 120 is gripped by the operator.
  • a therapeutic light emitting element 115 for treatment is disposed at the tip of the hollow pipe 110.
  • the hollow pipe 110B is provided with a washing water injection passage 111 for supplying washing water from the outside to the affected part in the body. The cleaning water is injected from the cleaning water inlet 111A during the treatment and supplied from the cleaning water supply port 111B inserted into the body. Further, the hollow pipe 110B is provided with a sewage discharge passage 118 for discharging the sewage after cleaning inside the body to the outside. Sewage is inhaled from the contaminated water inlet 118A inserted into the body during the treatment, and discharged outside through the contaminated water outlet 118B.
  • An engaging protrusion 122 for attaching the therapeutic multifunction cylinder 100H to the endoscope main body 200 (see FIG. 12) is provided on one side of the cylinder grip 120.
  • the therapeutic multifunction cylinder 100H When using the therapeutic multifunction cylinder 100H of FIG. 16, the therapeutic multifunction cylinder 100H is attached to the endoscope body 200 of FIG.
  • the multifunctional cylinder 100H for treatment is attached to the endoscope body 200, and the LED 114 is caused to emit light.
  • the inside of the body illuminated by the LED 114 is imaged by the light receiving element 202 via the rod-like camera lens 112.
  • the captured image is processed by the image processing circuit 204 and input to an external computer via the signal line 210.
  • An external computer can project an image of the affected area via the display.
  • the engaging protrusion 122 is pulled out from the lock portion 212.
  • the therapeutic multifunction cylinder 100H is detachable from the endoscope main body 200. After removing the therapeutic multifunction cylinder 100H, the therapeutic multifunction cylinder 100H is discarded.
  • the endoscope 300B attached with the therapeutic multifunction cylinder 100H in FIG. 16 can be moved freely because of its small size and light weight, and the therapeutic multifunction cylinder 100H is inexpensive and can be disposable. Therefore, it is not necessary to sterilize the therapeutic multifunction cylinder 100H each time the treatment is performed with the endoscope 300B, and for example, home visits can be continuously performed.
  • the therapeutic multifunction cylinder 110H is attached to the endoscope body 200 of FIG. Go ahead and look for the affected area while looking at the external computer display.
  • the operator injects cleaning water into the position of the affected part while viewing the image displayed on the display, and discharges the cleaned sewage to the outside.
  • the therapeutic multifunction cylinder 100H is installed as shown in FIG. It is possible to continue washing the body while it is inserted into the body.
  • Embodiments 1 to 9 have been described for the therapeutic multifunction cylinder according to the present invention.
  • the LED 114 is built in. Therefore, the therapeutic multifunction cylinder 100 can be used as the endoscope 300B simply by attaching the therapeutic multifunction cylinder 100 to the endoscope body 200.
  • the therapeutic light emitting elements 115A, 115B, and 115C are built in, so that the affected area can be reduced by the light and heat emitted from the therapeutic light emitting elements 115A, 115B, and 115C. It becomes possible to treat directly.
  • the therapeutic multifunction cylinder 100B includes therapeutic light emitting elements 115A, 115B, and 115C and a temperature sensor 117.
  • the therapeutic light emitting elements 115A, 115B, and 115C are supplied by a power line 126, and the temperature sensor 117 is a signal.
  • a line 124 allows connection to an external computer. For this reason, even if the endoscope main body 200 is not attached, the treatment can be performed by an external computer while the therapeutic multifunction cylinder 100B is left in the body.
  • the therapeutic multifunction cylinders 100C and 100G are provided with the drug injection passage 118, the drug can be directly administered to the affected part, and side effects can be minimized.
  • Low back pain is a symptom in which body tissues are stimulated for some reason and cause pain. This treatment is usually addressed by taking medications such as analgesics. In the case of such a symptom, the symptom is rapidly recovered by administering a drug to the affected area or irradiating with infrared light using the therapeutic multifunction cylinder 100C.
  • the treatment multifunction cylinders 100D and 100H according to the fifth and ninth embodiments are provided with the washing water supply passage 111 and the contaminated water discharge passage 113, the affected part can be washed directly.
  • the multifunctional cylinder 100E for treatment according to the sixth embodiment has the light receiving element that captures an image of the affected part disposed in the hollow pipe 110, a clear image of the affected part can be provided to the operator.
  • the hollow pipe 110B is disposed so as to cover the hollow pipe 110A on which parts such as the rod-shaped camera lens 112 are provided. Cost can be reduced.
  • 100, 100A-100H Multifunctional cylinder for treatment 110, 110A, 110B hollow pipe, 111 Washing water supply passage, 111A cleaning water inlet, 111B cleaning water supply port, 112 stick camera lens, 113 Contaminated water discharge passage, 113A Contaminated water inlet, 113B Polluted water outlet, 114 LEDs, 115A, 115B, 115C therapeutic light emitting device, 116 sealing lid, 117 temperature sensor, 118 drug injection passage, 118A drug inlet, 118B medicine supply port, 120 cylinder gripping part, 121 flange part, 122 engaging protrusion, 123 engagement protrusion lock part, 124 signal line, 126 power line, 134 flange retaining groove, 136 uneven part, 138 engagement protrusion lock holding portion, 140 detention stop, 200 endoscope body, 202 light receiving element, 204 image processing circuit, 206 Ribbon cord, 207 signal line, 208 support base, 210 signal line, 212 Lock part, 220 cases, 300, 300

Abstract

【課題】施術後は使い捨てができ、患者の体内に留置させておくこともできる、治療用多機能シリンダーを提供する。 【解決手段】内視鏡本体200に装着される治療用多機能シリンダー100であって、治療用多機能シリンダー100は中空パイプ110を有し、中空パイプ110の封止された一端側に生体内の患部を照らすための光源114が配置され、中空パイプ110の他端側に中空パイプ100の一端を固定するとともに操作者によって把持される把持部120が設けられ、把持部120は内視鏡本体200に設けられたロック部212と係合される係合突起122を有し、光源114は係合突起122に電気的に接続され、係合突起122をロック部212に係合させると内視鏡本体200に治療用多機能シリンダー100が装着されるとともに係合突起122とロック部212とが電気的に接続される。

Description

治療用多機能シリンダー
 本発明は、内視鏡に装着して使用する治療用多機能シリンダーに関する。
 近年、多くの施術が内視鏡を用いて行われるようになってきた。通常、内視鏡は光源から放射された光を患部まで伝達させるライトガイドを有する。ライトガイドの先端には配光レンズが設けられ、配光レンズはライトガイドで伝達された光を患部に向けて拡散させる。
 上記のようにライトガイドを有する内視鏡としては、下記特許文献1及び2に示すようなものが知られている。
特表2007-515211号公報 特表2008-534237号公報
 上記のような、従来の内視鏡にあっては、光源からの光で患部を照射することはできるものの、たとえば、患部に熱を加えたり、患部に薬物を注入したり、患部を洗浄したりなどの機能を有していないために、内視鏡のみでの施術は困難であった。
 また、従来の内視鏡にあっては、定期的なまたは継続的な施術が必要な場合に、施術後に、内視鏡を胃瘻カテーテルのように、患者の体内に留置させておく機能は有していない。
 したがって、本発明の目的は、内視鏡に上記のような様々な機能を与えることができ、内視鏡に容易に装着することができ、また、施術後は使い捨てができ、さらに、患者の体内に留置させておくことができる、治療用多機能シリンダーを提供することにある。
 上記の目的を達成するための、本発明に係る治療用多機能シリンダーは、把持部を介して内視鏡本体に装着される治療用多機能シリンダーである。治療用多機能シリンダーは中空パイプを有し、中空パイプの封止された一端側に生体内の患部を照らすための光源が配置され、中空パイプの他端側に中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、把持部は内視鏡本体に設けられたロック部と係合される係合突起を有し、光源は係合突起に電気的に接続され、係合突起をロック部に係合させると内視鏡本体に治療用多機能シリンダーが装着されるとともに係合突起とロック部とが電気的に接続される。
 上記の目的を達成するための、本発明に係る他の治療用多機能シリンダーは、把持部を介して内視鏡本体に装着される治療用多機能シリンダーである。治療用多機能シリンダーは中空パイプを有し、中空パイプの封止された一端側に治療に適した波長の光を患部に照射する治療用発光素子が配置され、中空パイプの他端側に中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、把持部は内視鏡本体に設けられたロック部と係合される係合突起を有し、係合突起をロック部に係合させると内視鏡本体に治療用多機能シリンダーが装着され、治療用発光素子は電源線を通じて外部の治療用電源に接続されている。
 上記の目的を達成するための、本発明に係るさらに他の治療用多機能シリンダーは、把持部を介して内視鏡本体に装着される治療用多機能シリンダーである。治療用多機能シリンダーは中空パイプを有し、中空パイプの封止された一端側に治療に適した波長の光を患部に照射する治療用発光素子が配置され、中空パイプの他端側に中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、把持部は内視鏡本体に設けられたロック部と係合される係合突起を有し、係合突起をロック部に係合させると内視鏡本体に治療用多機能シリンダーが装着され、治療用発光素子は電源線を通じて外部の治療用電源に接続されている。
 本発明に係る治療用多機能シリンダーは、内視鏡本体に容易に装着することができる。また、治療用多機能シリンダーに内蔵されている光源は、治療用多機能シリンダーを内視鏡本体に装着したときに点灯可能となるので、使い勝手が良い。また、治療用多機能シリンダーは使い捨てが可能であり、消毒などの処理が不要であり、衛生的である。さらに、本発明に係る治療用多機能シリンダーは、患者の体内に留置させておくことができるので、必要なときに、患部の状態を観察したり、治療をしたりすることができる。
実施形態1から9に共通する内視鏡としての外観図である。 実施形態1に係る治療用多機能シリンダーが装着された内視鏡の断面図である。 実施形態1に係る治療用多機能シリンダーの断面図である。 実施形態2に係る治療用多機能シリンダーの断面図である。 実施形態2に係る治療用多機能シリンダーを患者の体内に留置させるときにシリンダー把持部に取り付ける蓋の断面図である。 実施形態2に係る治療用多機能シリンダーに蓋を付けて患者の体内に留置させた状態を示す図である。 実施形態3に係る治療用多機能シリンダーの断面図である。 実施形態4に係る治療用多機能シリンダーの断面図である。 実施形態5に係る治療用多機能シリンダーの断面図である。 実施形態6に係る治療用多機能シリンダーが装着された内視鏡の断面図である。 実施形態6に係る治療用多機能シリンダーの断面図である。 実施形態7に係る治療用多機能シリンダーが装着された内視鏡の断面図である。 実施形態7に係る治療用多機能シリンダーと内視鏡の一部の断面図である。 実施形態7に係る治療用多機能シリンダーの断面図である。 実施形態8に係る治療用多機能シリンダーの断面図である。 実施形態9に係る治療用多機能シリンダーの断面図である。
 以下に、本発明に係る治療用多機能シリンダーについて、図面を参照しながら詳細に説明する。図1は、実施形態1から9に共通する内視鏡としての外観図である。
[内視鏡の構成]
 図1に示すように、治療用多機能シリンダー100は内視鏡本体200に装着される。治療用多機能シリンダー100は内視鏡本体200と一体化され、内視鏡300として用いることができる。
 治療用多機能シリンダー100は、体内に挿入される長尺状の中空パイプ110を有し、シリンダー把持部120を介して内視鏡本体200に着脱できるようになっている。中空パイプ110内には、体内の患部を照らす光源としてのLEDが内蔵されている。LEDは、内視鏡本体200に治療用多機能シリンダー100が取り付けられたときに発光可能となる。また、中空パイプ110内には棒状カメラレンズが挿入されている。
 内視鏡本体200は、患部を撮像するカメラ及びカメラの画像を処理する画像処理回路が内蔵されている。患部の画像は、治療用多機能シリンダー100の中空パイプ110に挿入されている棒状のカメラレンズを介して撮像される。
 内視鏡300は、信号線210を介して図示されていない外部のコンピュータに接続され、そのコンピュータからの指令に基づいて、LEDの発光が制御され、カメラの撮像が制御される。外部のコンピュータはディスプレイを有し、カメラが捕えた画像を表示する。
[実施形態1]
 図2は、実施形態1に係る治療用多機能シリンダー100が装着された内視鏡300の断面図である。また、図3は、実施形態1に係る治療用多機能シリンダー100の断面図である。
 図2および図3に示すように、実施形態1に係る治療用多機能シリンダー100は、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110の一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110内には、その内径とほぼ同一の外径を有する棒状カメラレンズ112が挿入されている。中空パイプ110の外径は3mm程度であり、棒状カメラレンズ112の長さは標準で120mm程度である。棒状カメラレンズ112は、患部の画像を内視鏡本体200のカメラ(受光素子)に提供する。
 中空パイプ110の一端側には、生体内の患部を照らすための光源114が配置される。また、中空パイプ110の先端には、棒状カメラレンズ112とLED114とを保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、体内の液体が中空パイプ110内に入り込むようなことはない。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100を内視鏡本体200に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114とは、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 内視鏡本体200は、カメラとして機能する受光素子(CCDセンサまたはCMOSセンサ)202と受光素子202が撮像した画像を処理する画像処理回路204とを内蔵している。受光素子202と画像処理回路204とはリボンコード206で接続されている。画像処理回路204は信号線210を介して図示されていないコンピュータに接続されている。
 内視鏡本体200のケース220の内部には、棒状カメラレンズ112の端部を支持する支持台208が取り付けられている。棒状カメラレンズ112の先端は受光素子202に接触した状態で支持台208によって堅固に支持される。
 また、ケース220の内周面には、シリンダー把持部120に設けられている係合突起122と係合するロック部212が設けられている。ロック部212は、係合突起122を介して治療用多機能シリンダー100に設けられているLED114に電力を供給できるように構成されている。
 係合突起122をロック部212に係合させると内視鏡本体200に治療用多機能シリンダー100が装着されるとともに係合突起122とロック部212とが電気的に接続される。ロック部212と信号線210とは、内視鏡本体200内に設けられている電源ライン(図示せず)を介して接続されている。
 内視鏡300を使用する場合、内視鏡本体200のケース220に向けて、治療用多機能シリンダー100のシリンダー把持部120を押し進め、係合突起122をロック部212に嵌め込む。ロック部212に係合突起122が係合されると、治療用多機能シリンダー100が内視鏡本体200にしっかりと固定される。
 内視鏡本体200に治療用多機能シリンダー100が取り付けられると、係合突起122とロック部212とは電気的に接続される構成となっていることから、LED114と信号線210とが内視鏡本体200と治療用多機能シリンダー100に設けられている電源ライン(図示せず)を介して接続され、LED114を発光させることができる。
 LED114によって照らし出された体内の患部の様子は、棒状カメラレンズ112を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができ、操作者は、その画像を見ながら施術を進めることができる。
 内視鏡300を使用した後に、内視鏡本体200から治療用多機能シリンダー100を取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100は内視鏡本体200に着脱自在になっている。治療用多機能シリンダー100を取り外した後、棒状カメラレンズ112を中空パイプ110から引き抜き、治療用多機能シリンダー100を廃棄する。
 本実施形態に係る内視鏡300は、小型、軽量であり、内視鏡本体200と治療用多機能シリンダー100の合計重量は150g程度である。治療用多機能シリンダー100は非常に安価となるように構成してある。
 本実施形態に係る内視鏡300は、小型軽量のため移動が自在にでき、治療用多機能シリンダー100は安価であるため使い捨てができる。したがって、内視鏡300で施術する度に、治療用多機能シリンダー100の滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。また、集団検診では、治療用多機能シリンダー100の使い捨てができるため、診療作業は効率的になる。
[実施形態2]
 図4は、実施形態2に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図3の治療用多機能シリンダーの構成と比較すると、治療用の発光素子が内蔵されている点が異なる。
 図4に示すように、実施形態2に係る治療用多機能シリンダー100Aは、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110一端を堅固に固定する。把持部120は操作者によって把持される。
 中空パイプ110内には、実施形態1と同様に、その内径とほぼ同一の外径を有する棒状カメラレンズ112が挿入される。棒状カメラレンズ112は、患部の画像を内視鏡本体200(図2参照)のカメラ(受光素子202)に提供する。
 中空パイプ110の一端側にはLED114が配置されている。また、LED114の上側には、治療の種別に応じて異なる波長の光を照射することができる治療用発光素子115A、115B、115Cが配置されている。たとえば、治療用発光素子115Aは、体内の特定の腫瘍を破壊または死滅させるために有効な波長の光(特定の赤外線または紫外線などの治療用光線)と熱を患部に照射する。また、治療用発光素子115Bは、体内の癌細胞を破壊または死滅させるために有効な波長の光と熱を患部に照射する。さらに、治療用発光素子115Cは、体内の他の種類の腫瘍を破壊または死滅させるために有効な波長の光と熱を患部に照射する。
 治療用発光素子115A、115B、115Cは、係合突起122に電気的に接続される。また、係合突起122と治療用発光素子115A、115B、115Cは、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 中空パイプ110の先端には、棒状カメラレンズ112、LED114、治療用発光素子115A、115B、115Cを保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、体内の液体が中空パイプ110内に入り込むようなことはない。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Aを内視鏡本体200(図2参照)に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。また、係合突起122は内視鏡本体200から選択的に治療用発光素子115A、115B、115Cを点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114、係合突起122と治療用発光素子115A、115B、115Cは、中空パイプ110内に設けられている電源ラインを介して接続されている。どの治療用発光素子を発光させるのかは、前述の外部のコンピュータによって選択される。
 図4の治療用多機能シリンダー100Aを用いるときには、治療用多機能シリンダー100Aを図2の内視鏡本体200に取り付ける。
 内視鏡本体200に治療用多機能シリンダー100Aが取り付けられると、係合突起122とロック部212とは電気的に接続される構成となっていることから、LED114と信号線210とが内視鏡本体200と治療用多機能シリンダー100Aに設けられている電源ラインを介して接続され、LED114を発光させることができる。また、治療用発光素子115A、115B、115Cと信号線210とが内視鏡本体200と治療用多機能シリンダー100Aに設けられている電源ラインを介して接続され、外部のコンピュータによって選択されたいずれかの治療用発光素子115A、115B、115Cから患部に光と熱を照射させることができる。
 また、LED114によって照らし出された体内の様子は、棒状カメラレンズ112(図2および図3参照)を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができ、操作者は、その画像を見ながら、選択した治療用発光素子115A、115B、115Cから光と熱を照射させ、患部の施術を進めることができる。
 図4の治療用多機能シリンダー100Aを取り付けた内視鏡300は、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Aは安価であるため使い捨てができる。したがって、実施形態1と同様に、内視鏡300で施術する度に、治療用多機能シリンダー100Aの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。また、集団検診では、治療用多機能シリンダー100Aの使い捨てができるため、診療作業は効率的になる。
 図4の治療用多機能シリンダー100Aを使用して施術するときには、治療用多機能シリンダー110Aを図2の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Aを体内に進め、外部のコンピュータのディスプレイを見ながら、腫瘍などの患部を探す。
 患部の位置が特定されると、その患部の位置に治療用光線を照射させるために、たとえば治療用発光素子115Cから患部に向けて光と熱を照射する。光と熱が照射されている間の画像は外部のコンピュータのディスプレイに映し出される。操作者は、ディスプレイに映し出される画像を見ながら適切な施術をする。
 図4の治療用多機能シリンダー100Aは、施術が終了した後に、中空パイプ110の先端部分を体内に差し込んだまま、長時間留置させることができる。その場合、治療用多機能シリンダー100Aを内視鏡本体200から取り外し、シリンダー把持部120に蓋をする。
 図5は、図4の治療用多機能シリンダー100Aを患者の体内に留置させるときにシリンダー把持部120に取り付ける蓋の断面図である。図6は、図4の治療用多機能シリンダー100Aに蓋を付けて患者の体内に留置させた状態を示す図である。
 図5に示すように、蓋130には、シリンダー把持部120のフランジ部121を保持させるフランジ保持溝134、シリンダー把持部120の係合突起ロック部123を保持させる係合突起ロック保持部138がそれぞれ形成されている。
 治療用多機能シリンダー100Aに蓋130を取り付ける場合、図5に示すように、蓋130の開口側とシリンダー把持部120とを対峙させ、蓋130の開口に係合突起122を差し込んでいく。
 治療用多機能シリンダー100Aに蓋130が取り付けられると、図6に示すように、治療用多機能シリンダー100Aのシリンダー把持部120側が蓋130によって完全に密封される。一方、体内に挿入されている治療用多機能シリンダー100Aの先端は封止蓋116によって密封される。したがって、蓋130を取り付ければ、図6に示すように、治療用多機能シリンダー100Aを体内に差し込み、留置止め具140で密封させて、治療用多機能シリンダー100Aを体内に長時間係留させておくことができる。
[実施形態3]
 図7は、実施形態3に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図4の治療用多機能シリンダーの構成と比較すると、患部の温度を測定する温度センサが内蔵されている点と、温度センサと治療用発光素子とがそれぞれ専用の信号線または電源線で外部と接続できるようになっている点が異なる。
 治療用多機能シリンダー100Bは、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110の一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110内には、その内径とほぼ同一の外径を有する棒状カメラレンズ112(図2参照)が挿入されている。棒状カメラレンズ112は、患部の画像を内視鏡本体200(図2参照)のカメラ(受光素子202)に送る。
 中空パイプ110の先端にはLED114が配置されている。また、LED114の上側には、治療の種別に応じて異なる波長の光を照射することができる治療用発光素子115A、115B、115Cが配置されている。どの治療用発光素子を発光させるのかは、前述の外部のコンピュータによって選択することができる。さらに、治療用発光素子115A、115B、115Cの上には、患部の温度を検出する温度センサ117が配置されている。
 温度センサ117は信号線124に接続され、治療用発光素子115A、115B、115Cは電源線126に個別に接続される。したがって、温度センサ117によって検出された患部の温度は信号線124を介して外部のコンピュータに出力される。また、治療用発光素子115A、115B、115Cは外部のコンピュータから電源線126を介して電力が供給される。
 中空パイプ110の先端には、棒状カメラレンズ112、LED114、治療用発光素子115A、115B、115C、温度センサ117を保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、体内の液体が中空パイプ110内に入り込むようなことはない。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Bを内視鏡本体200(図2参照)に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114は、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 実施形態3に係る治療用多機能シリンダー100Bは、LED114を発光させるための電力が係合突起122を介して供給され、治療用発光素子115A、115B、115Cを発光させるための電力が電源線126を介して選択的に供給され、温度センサ117が検出した患部の温度が信号線124を介して外部に出力される。
 図7の治療用多機能シリンダー100Bを取り付けた内視鏡300は、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Bは安価であるため使い捨てができる。したがって、実施形態1と同様に、内視鏡300で施術する度に、治療用多機能シリンダー100Bの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。
 図7の治療用多機能シリンダー100Bを使用して施術するときには、治療用多機能シリンダー110Bを図2の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Bを体内に進め、外部のコンピュータのディスプレイを見ながら、腫瘍などの患部を探す。
 患部の位置が特定されると、その患部の位置に治療用光線を照射させるために、電源線126を介してたとえば治療用発光素子115Cから患部に向けて光と熱を照射する。また、施術中の患部の温度は温度センサ117によって検出され、信号線124を介して出力される。患部に光と熱が照射されている間の患部の温度と画像は外部のコンピュータのディスプレイに映し出される。操作者は、ディスプレイに映し出される画像を見ながら治療用発光素子115Cに供給する電力を調整し、適切な施術をする。
 実施形態3に係る治療用多機能シリンダー100Bの場合、内視鏡本体200(図2参照)を治療用多機能シリンダー100Bに取り付けていなくとも、図6のように、蓋130を取り付けた治療用多機能シリンダー100Bを体内に挿入したまま、施術を続けることが可能である。これは、温度センサ117が検出した温度を信号線124から入手でき、治療用発光素子115A、115B、115Cの電力を電力線126から供給できるからである。
 治療用多機能シリンダー100Bを体内に挿入したまま施術するときには、外部のコンピュータに信号線124と電力線126とを接続する。操作者は、温度センサ117によって検出された患部の温度を見ながら、信号線124に供給する電力を調整し、患部を施術する。
 このようにして患部の施術を継続するときには、時々、治癒状態を観測する必要がある。この観測をするときには、治療用多機能シリンダー100Bから蓋130を取り外し、治療用多機能シリンダー100Bに棒状カメラレンズ112と内視鏡本体200(図2参照)を取り付ける。外部のコンピュータに患部の画像を映し、患部の治癒による変化と効果とを確認しながら、最適な治療法を選択する。
[実施形態4]
 図8は、実施形態4に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図3の治療用多機能シリンダー100Aの構成と比較すると、薬剤注入通路が設けられている点が異なる。
 治療用多機能シリンダー100Cは、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110の一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110内には棒状カメラレンズ112が挿入される。棒状カメラレンズ112は、患部の画像を内視鏡本体200(図2参照)のカメラ(受光素子202)に送る。
 中空パイプ110の先端にはLED114が配置されている。また、中空パイプ110には外部から薬剤を体内の患部に供給するための薬剤注入通路118が設けられている。薬剤は、施術中に薬剤注入口118Aから注入され、体内に挿入される薬剤供給口118Bから供給される。薬剤注入口118Aは軟質チューブで開閉できるようにしてある。
 中空パイプ110の先端には、棒状カメラレンズ112、LED114を保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、体内の液体が中空パイプ110内に入り込むようなことはない。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Cを内視鏡本体200(図2参照)に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114は、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 図8の治療用多機能シリンダー100Cを用いるときには、治療用多機能シリンダー100Cを図2の内視鏡本体200に取り付ける。
 内視鏡本体200に治療用多機能シリンダー100Cが取り付けられると、係合突起122とロック部212とは電気的に接続される構成となっていることから、LED114と信号線210とが内視鏡本体200と治療用多機能シリンダー100Cに設けられている電源ラインを介して接続され、LED114を発光させることができる。
 また、LED114によって照らし出された体内の様子は、棒状カメラレンズ112を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができる。薬剤注入口118Aから薬剤を注入すると、その薬剤は、薬剤注入通路118を通って、薬剤供給口118Bから患部に直に注入される。薬剤は患部にだけ注入されるので、副作用は少ない。なお、薬剤供給口118Bの代わりに注射針を取り付けておくことによって、患部に直接点滴をすることも可能になる。
 内視鏡300を使用した後に、内視鏡本体200から治療用多機能シリンダー100Cを取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100Cは内視鏡本体200に着脱自在になっている。治療用多機能シリンダー100Cを取り外した後、棒状カメラレンズ112を中空パイプ110から引き抜き、治療用多機能シリンダー100Cを廃棄する。
 図8の治療用多機能シリンダー100Cを取り付けた内視鏡300は、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Cは安価であるため使い捨てができる。したがって、内視鏡300で施術する度に、治療用多機能シリンダー100Cの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。
 図8の治療用多機能シリンダー100Cを使用して施術するときには、治療用多機能シリンダー100Cを図2の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Aを体内に進め、外部のコンピュータのディスプレイを見ながら、腫瘍などの患部を探す。
 患部の位置が特定されると、操作者は、ディスプレイに映し出される画像を見ながら、その患部の位置に薬剤を注入する。
 実施形態4に係る治療用多機能シリンダー100Cの場合、内視鏡本体200(図2参照)を治療用多機能シリンダー100Cに取り付けていなくとも、図6のように、蓋130を取り付けた治療用多機能シリンダー100Cを体内に挿入したまま、蓋130を取り外して定期的に薬剤を投与するなどの施術を続けることが可能である。
 このようにして患部の施術を継続するときには、時々、治癒状態を観測する必要がある。この観測をするときには、治療用多機能シリンダー100Cから蓋130を取り外し、治療用多機能シリンダー100Cに棒状カメラレンズ112と内視鏡本体200を取り付ける。外部のコンピュータに患部の画像を映し、患部の治癒による変化と効果とを確認しながら、最適な治療法を選択する。
[実施形態5]
 図9は、実施形態5に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図3の治療用多機能シリンダー100Aの構成と比較すると、洗浄水注入通路と汚水排出通路が設けられている点が異なる。
 治療用多機能シリンダー100Dは、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110の一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110内には棒状カメラレンズ112が挿入される。棒状カメラレンズ112は、患部の画像を内視鏡本体200(図2参照)のカメラ(受光素子202)に提供する。
 中空パイプ110の先端にはLED114が配置されている。また、中空パイプ110には外部から洗浄水を体内の患部に供給するための洗浄水注入通路111が設けられている。洗浄水は、施術中に洗浄水注入口111Aから注入され、体内に挿入される洗浄水供給口111Bから供給される。さらに、中空パイプ110には体内の洗浄後の汚水を外部に排出するための汚水排出通路113が設けられている。汚水は、施術中に体内に挿入される汚染水吸入口113Aから吸入され、汚染水排出口113Bから外部に排出される。
 中空パイプ110の先端には、棒状カメラレンズ112、LED114を保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、液体が中空パイプ110内に入り込むようなことはない。封止蓋116の一部は洗浄水供給口111Bと汚染水吸入口113Aを形成する。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Dを内視鏡本体200(図2参照)に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114は、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 図9の治療用多機能シリンダー100Dを用いるときには、治療用多機能シリンダー100Dを図2の内視鏡本体200に取り付ける。
 内視鏡本体200に治療用多機能シリンダー100Dが取り付けられると、係合突起122とロック部212とは電気的に接続される構成となっていることから、LED114と信号線210とが内視鏡本体200と治療用多機能シリンダー100Dに設けられている電源ラインを介して接続され、LED114を発光させることができる。
 また、LED114によって照らし出された体内の様子は、棒状カメラレンズ112を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができる。
 内視鏡300を使用した後に、内視鏡本体200から治療用多機能シリンダー100Dを取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100Dは内視鏡本体200に着脱自在になっている。治療用多機能シリンダー100Dを取り外した後、棒状カメラレンズ112を中空パイプ110から引き抜き、治療用多機能シリンダー100Dを廃棄する。
 図9の治療用多機能シリンダー100Dを取り付けた内視鏡300は、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Dは安価であるため使い捨てができる。したがって、内視鏡300で施術する度に、治療用多機能シリンダー100Dの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。
 図9の治療用多機能シリンダー100Dを使用して施術するときには、治療用多機能シリンダー110Dを図2の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Dを体内に進め、外部のコンピュータのディスプレイを見ながら、患部を探す。
 患部の位置が特定されると、操作者は、ディスプレイに映し出される画像を見ながら、その患部の位置に洗浄水を注入し、洗浄後の汚水を外部に排出する。
 実施形態5に係る治療用多機能シリンダー100Dの場合、内視鏡本体200(図2参照)を治療用多機能シリンダー100Dに取り付けていなくとも、図6のように、治療用多機能シリンダー100Dを体内に挿入したまま、体内洗浄を続けることが可能である。
[実施形態6]
 図10は、実施形態6に係る治療用多機能シリンダーが装着された内視鏡の断面図である。図11は、実施形態6に係る治療用多機能シリンダーの断面図である。
 実施形態6に係る治療用多機能シリンダー100Eは、図10および図11に示すように、中空パイプ110とシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110の他端側に取り付けられ、中空パイプ110の一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110内には、その底部にカメラとして機能する受光素子202が内蔵されている。受光素子202は、信号線207を介してリボンコード206に接続される。受光素子202と信号線207は中空パイプ110内に直接挿入しても良いが、中空パイプ110の内径とほぼ同じ外径を有する別のパイプ内に挿入するようにしても良い。
 中空パイプ110の先端にはLED114が配置される。また、中空パイプ110の先端には、受光素子202とLED114とを保護する封止蓋116が取り付けられ、中空パイプ110の先端は完全に封止される。したがって、施術中に、液体が中空パイプ110内に入り込むようなことはない。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Eを内視鏡本体200に取り付けるための、係合突起122が突設されている。係合突起122は内視鏡本体200からLED114を点灯させるための電力が受電できるように構成されている。したがって、係合突起122とLED114とは、中空パイプ110内に設けられている電源ライン(図示せず)を介して接続されている。
 内視鏡本体200は、受光素子202が撮像した画像を処理する画像処理回路204を内蔵している。受光素子202と画像処理回路204とは信号線207及びリボンコード206で接続されている。画像処理回路204は信号線210を介して図示されていないコンピュータに接続されている。
 内視鏡本体200のケース220の内部には、中空パイプ110の端部を支持する支持台208が取り付けられている。中空パイプ110は支持台208によって堅固に支持される。
 また、ケース220の内周面には、シリンダー把持部120に設けられている係合突起122と係合するロック部212が設けられている。ロック部212は、治療用多機能シリンダー100Eに設けられているLED114に電力を供給できるように構成されている。係合突起122がロック部212に係合すると係合突起122とロック部212は電気的に接続される。ロック部212と信号線210とは、内視鏡本体200内に設けられている電源ライン(図示せず)を介して接続されている。
 内視鏡300Aとしての使用方法は、実施形態1と同一である。
 [実施形態7]
 図12は、実施形態7に係る治療用多機能シリンダーが装着された内視鏡の断面図である。図13は、実施形態7に係る治療用多機能シリンダーと内視鏡の一部の断面図である。図14は、実施形態7に係る治療用多機能シリンダーの断面図である。
 図12から図14に示すように、実施形態7に係る治療用多機能シリンダー100Fは、有底状の中空パイプ110Aとシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110Aの他端側に取り付けられ、中空パイプ110Aの一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110Aの封止された一端側には、生体の治療に適した波長の治療用光線を患部に照射する治療用発光素子115が配置される。治療用発光素子115は、シリンダー把持部120から引き出される電源線121に電気的に接続される。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Fを内視鏡本体200に取り付けるための、係合突起122が突設されている。
 ケース220の内周面には、シリンダー把持部120に設けられている係合突起122と係合するロック部212が設けられている。係合突起122をロック部212に係合させると内視鏡本体200に治療用多機能シリンダー100Fが装着される。
 内視鏡本体200は、カメラとして機能する受光素子(CCDセンサまたはCMOSセンサ)202と受光素子202が撮像した画像を処理するは画像処理回路204とを内蔵している。受光素子202と画像処理回路204とはリボンコード206で接続されている。画像処理回路204は信号線210を介して図示されていないコンピュータに接続されている。
 中空パイプ110Aの内部には、中空パイプ110Aの内径よりも外径が小さい中空パイプ110Bが配置される。中空パイプ110B内には、その内径とほぼ同一の外径を有する棒状カメラレンズ112と患部を照らすLED114とが挿入されている。また、中空パイプ110Bの先端には、棒状カメラレンズ112とLED114とを保護する封止蓋116が取り付けられ、中空パイプ110Bの先端は完全に封止される。
 内視鏡本体200のケース220の内部には、棒状カメラレンズ112の端部を支持する支持台208が取り付けられている。棒状カメラレンズ112の先端は受光素子202に接触した状態で支持台208によって堅固に支持される。同時に、中空パイプ110Bがケース220に固定される。
 本実施形態の内視鏡本体200は、ケース220に収容されている受光素子202などの部品および中空パイプ110Bに収容されているLED114などの部品を含む。したがって、本実施形態に係る治療用多機能シリンダー100Fは、図14に示すように、中空パイプ110A、シリンダー把持部120および治療用発光素子115を含む。
 内視鏡300Aを使用する場合、内視鏡本体200のケース220に向けて、図14に示す治療用多機能シリンダー100Fのシリンダー把持部120を押し進め、係合突起122を図12に示すロック部212に嵌め込む。ロック部212に係合突起122が係合されると、治療用多機能シリンダー100Fが内視鏡本体200にしっかりと固定される。
 LED114によって照らし出された体内の患部の様子は、棒状カメラレンズ112を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができる。操作者は、その画像を見ながら治療用発光素子115から治療用の赤外光を患部に照射し、施術を進めることができる。
 内視鏡300Aを使用した後に、内視鏡本体200から治療用多機能シリンダー100Fを取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100Fは内視鏡本体200に着脱自在になっている。中空パイプ110Bに沿ってスライドさせ、治療用多機能シリンダー100Fを取り外した後、治療用多機能シリンダー100Fを廃棄する。
 本実施形態に係る内視鏡300Aは、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Fは安価であるため使い捨てができる。したがって、内視鏡300Aで施術する度に、治療用多機能シリンダー100Fの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。また、集団検診では、治療用多機能シリンダー100Fの使い捨てができるため、診療作業は効率的になる。
 [実施形態8]
 図15は、実施形態8に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図14の治療用多機能シリンダー100Fの構成と比較すると、薬剤注入通路が設けられている点が異なる。
 治療用多機能シリンダー100Gは、中空パイプ110Bとシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110Bの他端側に取り付けられ、中空パイプ110Bの一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110Gの先端には治療用発光素子115が配置されている。また、中空パイプ110Bには外部から薬剤を体内の患部に供給するための薬剤注入通路118が設けられている。薬剤は、施術中に薬剤注入口118Aから注入され、体内に挿入される薬剤供給口118Bから供給される。薬剤注入口118Aは軟質チューブで開閉できるようにしてある。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Gを内視鏡本体200(図12参照)に取り付けるための、係合突起122が突設されている。
 図15の治療用多機能シリンダー100Gを用いるときには、治療用多機能シリンダー100Gを図12の内視鏡本体200に取り付ける。
 薬剤注入口118Aから薬剤を注入すると、その薬剤は、薬剤注入通路118を通って、薬剤供給口118Bから患部に直に注入される。薬剤は患部にだけ注入されるので、副作用は少ない。なお、薬剤供給口118Bの代わりに注射針を取り付けておくことによって、患部に直接点滴をすることも可能になる。
 内視鏡300Bを使用した後に、内視鏡本体200から治療用多機能シリンダー100Gを取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100Gは内視鏡本体200に着脱自在になっている。治療用多機能シリンダー100Gを取り外した後、治療用多機能シリンダー100Gを廃棄する。
 図15の治療用多機能シリンダー100Gを取り付けた内視鏡300Bは、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Gは安価であるため使い捨てができる。したがって、内視鏡300Bで施術する度に、治療用多機能シリンダー100Gの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。
 図15の治療用多機能シリンダー100Gを使用して施術するときには、治療用多機能シリンダー100Gを図12の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Fを体内に進め、外部のコンピュータのディスプレイを見ながら、腫瘍などの患部を探す。
 患部の位置が特定されると、操作者は、ディスプレイに映し出される画像を見ながら、その患部の位置に薬剤を注入する。
 実施形態8に係る治療用多機能シリンダー100Gの場合、内視鏡本体200(図12参照)を治療用多機能シリンダー100Gに取り付けていなくとも、図6のように、蓋130を取り付けた治療用多機能シリンダー100Gを体内に挿入したまま、蓋130を取り外して定期的に薬剤を投与するなどの施術を続けることが可能である。
 このようにして患部の施術を継続するときには、時々、治癒状態を観測する必要がある。この観測をするときには、治療用多機能シリンダー100Gから蓋130を取り外し、治療用多機能シリンダー100Gに内視鏡本体200を取り付ける。外部のコンピュータに患部の画像を映し、患部の治癒による変化と効果とを確認しながら、最適な治療法を選択する。
[実施形態9]
 図16は、実施形態9に係る治療用多機能シリンダーの断面図である。この治療用多機能シリンダーの構成は、図14の治療用多機能シリンダー100Fの構成と比較すると、洗浄水注入通路と汚水排出通路が設けられている点が異なる。
 治療用多機能シリンダー100Hは、中空パイプ110Bとシリンダー把持部120とによって構成される。シリンダー把持部120は中空パイプ110Bの他端側に取り付けられ、中空パイプ110Bの一端を堅固に固定する。シリンダー把持部120は操作者によって把持される。
 中空パイプ110の先端には治療用の治療用発光素子115が配置されている。また、中空パイプ110Bには外部から洗浄水を体内の患部に供給するための洗浄水注入通路111が設けられている。洗浄水は、施術中に洗浄水注入口111Aから注入され、体内に挿入される洗浄水供給口111Bから供給される。さらに、中空パイプ110Bには体内の洗浄後の汚水を外部に排出するための汚水排出通路118が設けられている。汚水は、施術中に体内に挿入される汚染水吸入口118Aから吸入され、汚染水排出口118Bから外部に排出される。
 シリンダー把持部120の一方側には、治療用多機能シリンダー100Hを内視鏡本体200(図12参照)に取り付けるための、係合突起122が突設されている。
 図16の治療用多機能シリンダー100Hを用いるときには、治療用多機能シリンダー100Hを図12の内視鏡本体200に取り付ける。内視鏡本体200に治療用多機能シリンダー100Hが取り付けられ、LED114を発光させる。
 また、LED114によって照らし出された体内の様子は、棒状カメラレンズ112を介して受光素子202によって撮像される。撮像された画像は、画像処理回路204によって処理されて信号線210を介して外部のコンピュータに入力される。外部のコンピュータは、ディスプレイを介して患部の画像を映し出すことができる。
 内視鏡300Bを使用した後に、内視鏡本体200から治療用多機能シリンダー100Hを取り外すには、ロック部212から係合突起122を引き抜く。このように、治療用多機能シリンダー100Hは内視鏡本体200に着脱自在になっている。治療用多機能シリンダー100Hを取り外した後、治療用多機能シリンダー100Hを廃棄する。
 図16の治療用多機能シリンダー100Hを取り付けた内視鏡300Bは、小型軽量のため移動が自在にでき、治療用多機能シリンダー100Hは安価であるため使い捨てができる。したがって、内視鏡300Bで施術する度に、治療用多機能シリンダー100Hの滅菌処理をする必要はなく、たとえば、連続して在宅訪問ができる。
 図16の治療用多機能シリンダー100Hを使用して施術するときには、治療用多機能シリンダー110Hを図12の内視鏡本体200に取り付け、LED114を点灯させて、治療用多機能シリンダー110Hを体内に進め、外部のコンピュータのディスプレイを見ながら、患部を探す。
 患部の位置が特定されると、操作者は、ディスプレイに映し出される画像を見ながら、その患部の位置に洗浄水を注入し、洗浄後の汚水を外部に排出する。
 実施形態9に係る治療用多機能シリンダー100Hの場合、内視鏡本体200(図12参照)を治療用多機能シリンダー100Hに取り付けていなくとも、図6のように、治療用多機能シリンダー100Hを体内に挿入したまま、体内洗浄を続けることが可能である。
 以上、本発明に係る治療用多機能シリンダーについて、実施形態1から9について説明した。実施形態1に係る治療用多機能シリンダー100では、LED114が内蔵されているので、治療用多機能シリンダー100を内視鏡本体200に取り付けるだけで、内視鏡300Bとしての使用が可能になる。
 実施形態2に係る治療用多機能シリンダー100Aでは、治療用発光素子115A、115B、115Cが内蔵されているので、治療用発光素子115A、115B、115Cから照射される光と熱とによって、患部を直接治療することが可能となる。
 実施形態3に係る治療用多機能シリンダー100Bは、治療用発光素子115A、115B、115Cと温度センサ117が内蔵され、治療用発光素子115A、115B、115Cは電源線126によって、温度センサ117は信号線124によって、外部のコンピュータに接続できるようになっている。このため、内視鏡本体200を取り付けていなくとも、治療用多機能シリンダー100Bを体内に留置させたまま、外部のコンピュータによって治療ができる。
 実施形態4、8に係る治療用多機能シリンダー100C、100Gは、薬剤注入通路118が設けられているので、直接患部に薬剤を投与することができ、副作用を最小限に抑えることができる。近年、腰痛症疾患という言葉を良く耳にする。腰痛症疾患とは、体内組織が何らかの要因で刺激を受け、痛みを生じる症状である。この治療は、鎮痛剤などの薬剤を飲むことで対処することが一般的である。このような症状の場合には、治療用多機能シリンダー100Cを用いて患部に薬剤を投与したり、赤外光照射したりすることによって、症状は急速に回復する。
 実施形態5、9に係る治療用多機能シリンダー100D、100Hは、洗浄水供給通路111と汚染水排出通路113が設けられているので、直接患部を洗浄することができる。
 実施形態6に係る治療用多機能シリンダー100Eは、患部の画像を撮像する受光素子を中空パイプ110内に配置したため、患部の鮮明な画像を操作者に提供することができる。
 実施形態7に係る治療用多機能シリンダー100Fは、棒状カメラレンズ112などの部品が設けられている中空パイプ110Aを被うように中空パイプ110Bを配置しているので、使い捨てされる中空パイプ110Bのコストを抑えることができる。
 100、100A~100H 治療用多機能シリンダー、
 110,110A,110B 中空パイプ、
 111 洗浄水供給通路、
 111A 洗浄水注入口、
 111B 洗浄水供給口、
 112 棒状カメラレンズ、
 113 汚染水排出通路、
 113A 汚染水吸入口、
 113B 汚染水排出口、
 114 LED、
 115A、115B、115C 治療用発光素子、
 116 封止蓋、
 117 温度センサ、
 118 薬剤注入通路、
 118A 薬剤注入口、
 118B 薬剤供給口、
 120 シリンダー把持部、
 121 フランジ部、
 122 係合突起、
 123 係合突起ロック部、
 124 信号線、
 126 電源線、
 134 フランジ保持溝、
 136 凹凸部、
 138 係合突起ロック保持部、
 140留置止め具、
 200 内視鏡本体、
 202 受光素子、
 204 画像処理回路、
 206 リボンコード、
 207 信号線、
 208 支持台、
 210 信号線、
 212 ロック部、
 220 ケース、
 300、300A、300B 内視鏡。

Claims (15)

  1.  内視鏡本体に装着される治療用多機能シリンダーであって、
     前記治療用多機能シリンダーは中空パイプを有し、
     前記中空パイプの封止された一端側に生体内の患部を照らすための光源が配置され、
     前記中空パイプの他端側に前記中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、
     前記把持部は前記内視鏡本体に設けられたロック部と係合される係合突起を有し、
     前記光源は前記係合突起に電気的に接続され、
     前記係合突起を前記ロック部に係合させると前記内視鏡本体に前記治療用多機能シリンダーが装着されるとともに前記係合突起と前記ロック部とが電気的に接続されることを特徴とする治療用多機能シリンダー。
  2.  前記内視鏡本体に内蔵されたカメラに前記患部の画像を提供するための棒状のレンズが前記中空パイプ内に挿入されていることを特徴とする請求項1に記載の治療用多機能シリンダー。
  3.  さらに、治療に適した波長の光を前記患部に照射する治療用発光素子が前記中空パイプの一端側に配置されていることを特徴とする請求項1または2に記載の治療用多機能シリンダー。
  4.  前記治療用発光素子は、前記治療の種類に応じて複数設けられていることを特徴とする請求項3に記載の治療用多機能シリンダー。
  5.  前記内視鏡本体に設けられたロック部は外部の電源に接続されていることを特徴とする請求項1から4のいずれかに記載の治療用多機能シリンダー。
  6.  前記治療用発光素子は電源線を通じて外部の治療用電源に接続されていることを特徴とする請求項3から5のいずれかに記載の治療用多機能シリンダー。
  7.  さらに、前記患部の温度を検出する温度センサが前記中空パイプの封止された一端側に配置されていることを特徴とする請求項1から6のいずれかに記載の治療用多機能シリンダー。
  8.  前記温度センサは信号線を通じて外部のコンピュータに接続されていることを特徴とする請求項7に記載の治療用多機能シリンダー。
  9.  さらに、前記中空パイプは前記患部に薬剤を直接投与するための薬剤注入通路を有することを特徴とする請求項1から8のいずれかに記載の治療用多機能シリンダー。
  10.  さらに、前記中空パイプは前記患部を洗浄するための洗浄水を供給する洗浄水供給通路と、前記患部を洗浄した後の汚染水を排出する汚染水排出通路と、を有することを特徴とする請求項1から8のいずれかに記載の治療用多機能シリンダー。
  11.  さらに、前記治療用多機能シリンダーを体内に留置させておくときに前記把持部に取り付けて前記中空パイプの開放された他端を封止する蓋を備えることを特徴とする請求項1から10のいずれかに記載の治療用多機能シリンダー。
  12.  内視鏡本体に装着される治療用多機能シリンダーであって、
     前記治療用多機能シリンダーは中空パイプを有し、
     前記中空パイプの封止された一端側に生体内の患部を照らすための光源および前記患部を撮像するカメラが配置され、
     前記中空パイプの他端側に前記中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、
     前記把持部は前記内視鏡本体に設けられたロック部と係合される係合突起を有し、
     前記光源は前記係合突起に電気的に接続され、
     前記係合突起を前記ロック部に係合させると前記内視鏡本体に前記治療用多機能シリンダーが装着されるとともに前記係合突起と前記ロック部とが電気的に接続され、
     前記カメラは信号線を通じて外部のコンピュータに接続されていることを特徴とする治療用多機能シリンダー。
  13.  内視鏡本体に装着される治療用多機能シリンダーであって、
     前記治療用多機能シリンダーは中空パイプを有し、
     前記中空パイプの封止された一端側に治療に適した波長の光を前記患部に照射する治療用発光素子が配置され、
     前記中空パイプの他端側に前記中空パイプの一端を固定するとともに操作者によって把持される把持部が設けられ、
     前記把持部は前記内視鏡本体に設けられたロック部と係合される係合突起を有し、
     前記係合突起を前記ロック部に係合させると前記内視鏡本体に前記治療用多機能シリンダーが装着され、
     前記治療用発光素子は電源線を通じて外部の治療用電源に接続されていることを特徴とする治療用多機能シリンダー。
  14.  さらに、前記中空パイプは前記患部に薬剤を直接投与するための薬剤注入通路を有することを特徴とする請求項13に記載の治療用多機能シリンダー。
  15.  さらに、前記中空パイプは、前記患部を洗浄するための洗浄水を供給する洗浄水供給通路と、前記患部を洗浄した後の汚染水を排出する汚染水排出通路と、を有することを特徴とする請求項13に記載の治療用多機能シリンダー。
PCT/JP2015/071289 2015-07-27 2015-07-27 治療用多機能シリンダー WO2017017770A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071289 WO2017017770A1 (ja) 2015-07-27 2015-07-27 治療用多機能シリンダー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071289 WO2017017770A1 (ja) 2015-07-27 2015-07-27 治療用多機能シリンダー

Publications (1)

Publication Number Publication Date
WO2017017770A1 true WO2017017770A1 (ja) 2017-02-02

Family

ID=57885455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071289 WO2017017770A1 (ja) 2015-07-27 2015-07-27 治療用多機能シリンダー

Country Status (1)

Country Link
WO (1) WO2017017770A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065037B2 (en) 2016-05-19 2021-07-20 Auctus Surgical, Inc. Spinal curvature modulation systems and methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272728A (ja) * 1990-03-22 1991-12-04 Olympus Optical Co Ltd 内視鏡
JPH08280609A (ja) * 1995-04-20 1996-10-29 Olympus Optical Co Ltd 内視鏡装置
JP2001147381A (ja) * 1999-11-19 2001-05-29 Olympus Optical Co Ltd 内視鏡撮影システム及び内視鏡撮影装置
JP2003116783A (ja) * 2001-10-17 2003-04-22 Olympus Optical Co Ltd 内視鏡装置
JP2007244530A (ja) * 2006-03-14 2007-09-27 Pentax Corp 内視鏡操作部構造、内視鏡、及び、内視鏡操作部の組立方法
JP2009226196A (ja) * 2008-02-25 2009-10-08 Olympus Medical Systems Corp 流体供給装置及び内視鏡装置
JP2012065898A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 電子内視鏡システム
JP2014012043A (ja) * 2012-07-03 2014-01-23 Coden Co Ltd パイプ内視鏡
JP2015009031A (ja) * 2013-07-01 2015-01-19 飛鳥メディカル株式会社 レーザー治療器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272728A (ja) * 1990-03-22 1991-12-04 Olympus Optical Co Ltd 内視鏡
JPH08280609A (ja) * 1995-04-20 1996-10-29 Olympus Optical Co Ltd 内視鏡装置
JP2001147381A (ja) * 1999-11-19 2001-05-29 Olympus Optical Co Ltd 内視鏡撮影システム及び内視鏡撮影装置
JP2003116783A (ja) * 2001-10-17 2003-04-22 Olympus Optical Co Ltd 内視鏡装置
JP2007244530A (ja) * 2006-03-14 2007-09-27 Pentax Corp 内視鏡操作部構造、内視鏡、及び、内視鏡操作部の組立方法
JP2009226196A (ja) * 2008-02-25 2009-10-08 Olympus Medical Systems Corp 流体供給装置及び内視鏡装置
JP2012065898A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 電子内視鏡システム
JP2014012043A (ja) * 2012-07-03 2014-01-23 Coden Co Ltd パイプ内視鏡
JP2015009031A (ja) * 2013-07-01 2015-01-19 飛鳥メディカル株式会社 レーザー治療器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065037B2 (en) 2016-05-19 2021-07-20 Auctus Surgical, Inc. Spinal curvature modulation systems and methods

Similar Documents

Publication Publication Date Title
US7201767B2 (en) Device for ultraviolet radiation treatment of body tissues
KR20100036323A (ko) 가요성의 적외선 전달 장치 및 방법
JP2012505702A (ja) 唾液吸引機能を有する舌保護用ティップス、バイトブロックおよび口腔照明器
US20130345503A1 (en) Hand-Operated Endoscope For Medical Purposes
JP6076847B2 (ja) レーザー治療器
EP3858278A1 (en) Nephroscope with flexible and articulatable distal portion
KR20090050723A (ko) 초음파프로브를 살균할 수 있는 초음파 진단 장치
JP5679916B2 (ja) 歯科治療装置
WO2017017770A1 (ja) 治療用多機能シリンダー
JP6282554B2 (ja) レーザー治療器
KR20200025951A (ko) 카트리지 보관용 홀더 및 살균 기능을 구비하는 hifu 장치
KR20140004560A (ko) 파이프 내시경
JP2012050512A (ja) 内視鏡用フード及びフード付き内視鏡
KR20090004186U (ko) 의료기구용 소독장치
TWI477253B (zh) 即時影像處理之內視鏡裝置
KR101881226B1 (ko) 내시경용 카테터 조립체
KR20160036276A (ko) 수술용 세척장치
KR101762916B1 (ko) 휴대용 내시경 보관 장치
KR101824558B1 (ko) 이비인후과 유닛
KR101641675B1 (ko) 살균광원이 결합된 인스트루먼트 홀더 시스템 및 이에 사용되는 위생 커버
KR101592208B1 (ko) 자외선 살균치료유닛
JP2012050513A (ja) 内視鏡用フード
JP2012050511A (ja) 内視鏡用フード及びフード付き内視鏡
KR20200059556A (ko) 내시경 카테터 조립체
KR101487331B1 (ko) 내시경 피복체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 09.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15899603

Country of ref document: EP

Kind code of ref document: A1