WO2017016006A1 - 一种聚丙烯尾气回收装置及回收方法 - Google Patents

一种聚丙烯尾气回收装置及回收方法 Download PDF

Info

Publication number
WO2017016006A1
WO2017016006A1 PCT/CN2015/087629 CN2015087629W WO2017016006A1 WO 2017016006 A1 WO2017016006 A1 WO 2017016006A1 CN 2015087629 W CN2015087629 W CN 2015087629W WO 2017016006 A1 WO2017016006 A1 WO 2017016006A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
propylene
membrane
liquid
Prior art date
Application number
PCT/CN2015/087629
Other languages
English (en)
French (fr)
Inventor
马艳勋
杜国栋
栗广勇
李恕广
Original Assignee
大连欧科膜技术工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510460366.1A external-priority patent/CN105004140A/zh
Priority claimed from CN201520563229.6U external-priority patent/CN204830683U/zh
Application filed by 大连欧科膜技术工程有限公司 filed Critical 大连欧科膜技术工程有限公司
Publication of WO2017016006A1 publication Critical patent/WO2017016006A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the invention relates to the field of polyolefins, in particular to a propylene and nitrogen recovery device and a recovery method for discharging tail gas in a polypropylene production process.
  • exhaust gas containing a large amount of propylene monomer is discharged.
  • a small fraction of light component stream desorbed from the top of the degassing tower during the propylene refining process, a reaction gas for controlling the inert gas content in the polymerization process, and a nitrogen/steam mixture gas are fed from the bottom of the degassing tank to Degassing off gas generated by deactivating hydrocarbons and deactivating residual catalyst.
  • These gases are collectively referred to as polypropylene tail gas.
  • the main components are nitrogen, propylene and a small amount of propane, ethane, ethylene, water, etc.
  • concentration of propylene is about 6 to 50% (V)
  • the scale is 300,000 tons/year.
  • the exhaust gas contains up to 3,000 tons of propylene per year and more than 5,000 tons of nitrogen. Therefore, the recovery of hydrocarbons and nitrogen in the tail gas has very high economic benefits.
  • U.S. Patent No. 5,769,927 discloses a process for the treatment of polypropylene off-gas by a combination of compression, condensation and membrane separation.
  • the process is as follows. First, the polypropylene tail gas is pressurized, and then the temperature of the gas is lowered to below the dew point through the condenser, a part of the propylene is turned into a liquid, and separated; and another part of the propylene in the gas phase enters the membrane separation part, and the membrane is preferentially infiltrated with propylene. The separation of propylene and nitrogen is effected, and the obtained propylene-rich gas is returned to the compressed condensed portion to further recover propylene.
  • This process can realize the recovery of propylene and nitrogen, but since the propylene-rich gas of the membrane is returned to the compressed condensing part, the amount of compressed and condensed gas after the cycle is 1.5 to 3 times that of the initial exhaust gas, making the investment of the compression and refrigeration equipment Significantly increased energy consumption and reduced economics of the process.
  • Chinese patent CN101357291B discloses that a high-purity product nitrogen gas is adsorbed under normal temperature and normal pressure, desorbed under a negative pressure, and the desorbed gas is compressed and condensed to obtain a high-purity product propylene liquid.
  • this method requires the use of a vacuum pump to analyze the adsorption tower. At least two compressors are required to separately pressurize the recovered hydrocarbon gas and nitrogen, and there are many moving equipments, and the operation is complicated. The vacuum analysis process easily causes air to infiltrate into the recovery system, and there is safety.
  • the present invention aims to provide a polypropylene tail gas recovery device and method which have high propylene recovery rate, simple process of nitrogen gas recycling, low energy consumption, low investment, and small floor space.
  • It is an object of the present invention to provide a polypropylene tail gas recovery apparatus comprising:
  • the compression unit includes at least one compressor, one heat exchanger, and one gas-liquid separator. It is used to increase the pressure of the polypropylene tail gas, meet the operating pressure requirements of expansion refrigeration, cryogenic separation and membrane separation, and simultaneously cool the compressed gas to normal temperature, and separate the condensed high boiling liquid in the gas-liquid separator. Condensate flow and compressed air at normal temperature.
  • the drying unit comprises at least two adsorption towers, and the tower is provided with a desiccant for treating the normal temperature compressed gas outputted from the compression unit, and removing moisture in the gas to obtain a dry airflow.
  • the membrane separation unit includes a membrane separator and a hydrogen separation membrane for treating the gas stream output from the drying unit, and separating the hydrogen in the gas to obtain a hydrogen-depleted gas stream.
  • Cryogenic separation unit comprising at least one high efficiency multi-channel heat exchanger, at least one cryogenic gas-liquid separator, at least one gas expansion device, and at least one liquid expansion device.
  • the membrane separator outlet is sequentially connected to the heat medium passage CC of the high-efficiency multi-channel heat exchanger and the inlet of the low-temperature gas-liquid separator; the bottom outlet of the low-temperature gas-liquid separator is sequentially connected with the liquid expansion device and the cold medium passage of the high-efficiency multi-channel heat exchanger.
  • the top outlet of the low-temperature gas-liquid separator is connected to the cold medium passage AA of the high-efficiency multi-channel heat exchanger, the gas expansion device, the cold medium passage BB of the high-efficiency multi-channel heat exchanger, and the pipeline o;
  • the hydrogen-depleted gas stream output from the membrane separation unit is further reduced by the expansion refrigeration and multi-fluid heat exchange to achieve liquefaction of propylene, and gas-liquid separation is performed to obtain a recovered propylene stream and a nitrogen stream.
  • the desiccant is selected from the group consisting of activated alumina, silica gel, and molecular sieve.
  • the hydrogen separation membrane refers to various separation membranes capable of preferentially permeating hydrogen gas, such as polyimide, polysulfone, polyaramid, acetate, relative to hydrocarbons and nitrogen.
  • a polymer material separation membrane such as polyphenylene ether or a metal film such as a palladium membrane.
  • the expansion device refers to a refrigeration device that converts the pressure energy of the fluid into a cold amount, and the liquid expansion device is selected from a throttle expansion valve.
  • the gas expansion device is selected from the group consisting of a turboexpander and a gas wave refrigerator.
  • the high efficiency multi-channel heat exchanger refers to a plate fin heat exchanger or a coil heat exchanger.
  • the device of the present invention passes through an organic combination of a compression unit, a drying unit, a membrane separation unit, and a cryogenic separation unit.
  • the propylene and nitrogen in the exhaust gas can be efficiently recovered, the recovery rate of propylene is 98% or more, and the purity of the recovered nitrogen is 97.5% or more.
  • Another object of the present invention is to provide a method for recovering propylene and nitrogen using the polypropylene tail gas recovery unit, comprising the steps of:
  • the polypropylene tail gas firstly increases the pressure of the gas to 0.6-3.0 MPaA through the compressor, and then the temperature of the compressed high-temperature gas is lowered to the normal temperature through the heat exchanger, and the cooling medium is made of circulating water, and the cooled gas is
  • the gas-liquid separation is carried out in a gas-liquid separator, and a high-boiling component such as water and heavy hydrocarbons in the exhaust gas is turned into a liquid phase, which is discharged as a condensate from the bottom of the gas-liquid separator.
  • the gas phase coming out of the gas-liquid separator enters the dehydration adsorption tower to remove the moisture in the exhaust gas, and the water dew point is lowered to below -30 to -130 °C.
  • the dehydrated and dried gas enters the membrane separator and contains a hydrogen separation membrane.
  • the membrane has the characteristics of preferentially permeating the hydrogen component, and the hydrogen in the tail gas can be separated, and the permeated hydrogen-rich gas is discharged to the torch.
  • the gas from which most of the hydrogen is removed enters the cryogenic separation step.
  • the cryogenic separation step removes most of the hydrogen gas into the high-efficiency multi-channel heat exchanger for stepwise cooling.
  • One or more heat medium channels and one or more cold medium channels are provided in the heat exchanger.
  • the temperature of the gas is lowered to -30 ⁇ -130 ° C, and then enters the low temperature gas-liquid separator for gas-liquid separation.
  • the obtained liquid propylene is depressurized by the liquid expansion device, and then returned to the high-efficiency multi-channel heat exchanger for exchange.
  • the propylene which is vaporized into a gas phase is a gas which is discharged from a low-temperature gas-liquid separator.
  • the composition of the gas is mainly nitrogen, and is returned to the high-efficiency multi-channel heat exchanger, and recovered after reheating and recovering the cold amount.
  • the nitrogen gas after reheating and recovering the cold amount enters the expansion device for expansion and cooling, and the expanded low temperature gas is returned to the high efficiency multi-channel heat exchanger to provide cooling capacity for the entire system, and the gas passes through After reheating, the recycled polypropylene unit was reused as recycled nitrogen.
  • the recovered propylene may be sent directly or pressurized to the ethylene device, and then the propylene is refined into a polymerization grade propylene; and the vapor phase propylene may be liquefied by compression condensation to form a liquid. Propylene.
  • the propylene in the polypropylene tail gas is liquefied to realize the recovery of propylene, and at the same time purify the nitrogen to meet the requirements of nitrogen circulation;
  • FIG. 1 is a system diagram of a polypropylene tail gas recovery apparatus and method of the present invention
  • a polypropylene tail gas recovery device provided by the present invention includes:
  • the compression unit 100 includes an exhaust gas compressor 110, a circulating water cooler 120, and a room temperature gas-liquid separator 130.
  • the tail gas in the polypropylene production process is connected to the inlet of the exhaust gas compressor 110 through a line a10.
  • the exhaust gas compressor 110 raises the pressure of the gas to 0.6 to 3.0 MPaA, which satisfies the operating pressure requirements of expansion refrigeration, cryogenic separation, and membrane separation.
  • the compressed gas is connected to the circulating water cooler 120 through a pipe b11, and the compressed gas is cooled to a normal temperature, and is connected to the normal temperature gas-liquid separator 130 through the pipe c12 for gas-liquid separation, and the condensate obtained at the bottom thereof passes.
  • the line p29 sends out the device; the normal temperature gas stream obtained at the top thereof enters the drying unit 200 through the line d13.
  • the drying unit 200 includes an adsorption tower 210 equipped with a dehydrating desiccant, and the number of the adsorption towers 201 is set to two, three or four depending on the amount of the treatment gas and the selected regeneration gas. After passing through the adsorption column 210, the water dew point of the gas is lowered to -30 to -130 ° C, and then enters the membrane separator unit 300 through the line e14.
  • the membrane separator unit 300 includes a membrane separator 310 equipped with a membrane module.
  • a membrane separator 310 equipped with a membrane module.
  • hydrogen preferentially permeates through the membrane, and a low-pressure hydrogen-rich stream is obtained on the permeate side of the membrane.
  • the path f24 is discharged to the torch, and the lean hydrogen stream enters the cryogenic separation unit 400 through the line g15.
  • the cryogenic separation unit 400 includes a high efficiency multi-channel heat exchanger 410, a cryogenic gas-liquid separator 420, a gas expansion device 440, and a liquid expansion device 430.
  • the hydrogen-depleted gas output from the membrane separation unit 300 flows through The pipeline g15 enters the high efficiency multi-channel heat exchanger 410.
  • the preferred plate-fin heat exchanger of the present invention passes through the heat medium passage CC, and the temperature of the gas gradually decreases to -30 to -130 ° C, and enters the low temperature gas through the pipeline h16.
  • the liquid separator 420 performs gas-liquid separation, and the recovered propylene is obtained at the bottom of the low-temperature gas-liquid separator 420.
  • the liquid propylene is connected to the liquid expansion device 430 via the pipe i17.
  • the throttling expansion valve of the present invention is preferably throttled. After expansion, the temperature and pressure are reduced, and then returned to the high-efficiency multi-channel heat exchanger 410 through the pipe j18 to exchange heat with the heat medium to provide a cooling capacity. After passing through the cold medium passage DD, the recovered propylene stream is obtained and transported through the pipeline k19.
  • the device can be sent directly or pressurized to the ethylene device, and the propylene is refined into polymer grade propylene.
  • the gas phase propylene can also be liquefied by compression condensation to form liquid propylene.
  • the non-condensable gas at the top of the low temperature gas-liquid separator 420 mainly nitrogen, is returned to the high-efficiency multi-channel heat exchanger 410 through the pipe l20, and exchanges heat with the heat medium to provide a cooling amount, which passes through the cold medium passage AA and passes through the pipe.
  • the road m21 enters the gas expansion device 440 for expansion and cooling.
  • the gas expansion device is preferably a turboexpander, and the low temperature gas obtained after the turbine expansion is returned to the high efficiency multi-channel heat exchanger 410 through the pipe n22, The heat medium exchanges heat to provide a cooling capacity.
  • a recovered nitrogen stream is obtained, which is sent out through the line o23 and returned to the polypropylene unit for reuse.
  • the gas expansion device 440 may be operated in series or in parallel using one or more turboexpanders depending on the pressure and gas volume of the gas, thereby providing more for the cryogenic separation unit. More cold.
  • the present invention also provides a method for recovering propylene and nitrogen by using the polypropylene tail gas recovery device,
  • the pressure of the polypropylene tail gas is 0.05 MPa
  • the temperature is 50 ° C
  • the gas volume is 1000 Nm 3 /hr
  • the composition is as follows:
  • the exhaust gas first enters the compression unit 100, and the exhaust gas compressor 110 raises the pressure of the gas to 1.6 MPa, then enters the circulating water cooler 120, and cools the compressed gas to 40 °C.
  • the cooled gas enters the normal temperature gas-liquid separator 130 for gas-liquid separation, and the condensate discharge device obtained at the bottom thereof; the normal temperature gas stream obtained at the top thereof enters the drying unit 200.
  • the gas passes through the adsorption tower, and the adsorbent is a composite bed composed of activated alumina and molecular sieve, and the H 2 O content is reduced to below 1 ppmv to prevent ice plugging during subsequent cryogenic separation.
  • the dried gas enters the membrane separator unit 300.
  • the membrane separator is equipped with a membrane module, and the membrane material used is polyimide. After passing through the separation membrane, a permeate gas stream of the membrane is obtained, and the pressure is 0.05 MPa, and the temperature is At 40 ° C, the gas volume is 33 Nm 3 /hr, and the composition is as follows:
  • the permeate gas stream is discharged to the flare; the intercepted side of the membrane separation is a hydrogen-depleted stream entering the cryogenic separation unit 400.
  • the hydrogen-depleted stream first enters the plate-fin heat exchanger. After passing through the heat medium passage CC, the temperature of the gas gradually drops to -120 ° C. At this time, more than 99% of the propylene has been liquefied, and then in the low-temperature gas-liquid separator 420, The gas-liquid separation is performed, and the recovered propylene is obtained at the bottom of the low-temperature gas-liquid separator 420.
  • the liquid propylene is passed through a throttle expansion valve, and the temperature and pressure are lowered after expansion, and then returned to the plate-fin heat exchanger for heat exchange with the heat medium.
  • the cooling capacity is provided, and after passing through the cold medium passage DD, the recovered propylene stream is obtained, the pressure is 0.25 MPa, the temperature is 30 ° C, and the gas volume is 143 Nm 3 /hr, and the composition is as follows:
  • the stream is sent directly to the ethylene unit where it is refined to polymer grade propylene.
  • the non-condensable gas at the top of the low-temperature gas-liquid separator 420 mainly nitrogen, is returned to the plate-fin heat exchanger 410 to exchange heat with the heat medium to provide a cooling amount, which passes through the cold medium passage AA and enters the turboexpander.
  • an expansion machine is used, and a single-stage expansion is used.
  • the low-temperature gas obtained after the expansion of the turbine is returned to the plate-fin heat exchanger to exchange heat with the heat medium to provide a cold amount and pass the cold.
  • a recovered nitrogen stream having a pressure of 0.22 MPa, a temperature of 20 ° C, and a gas volume of 821 Nm 3 /hr was prepared as follows:
  • the pressure of the polypropylene tail gas is 0.02 MPa
  • the temperature is 51 ° C
  • the gas volume is 900 Nm 3 /hr
  • the composition is as follows:
  • the exhaust gas first enters the compression unit 100, and the exhaust gas compressor 110 raises the pressure of the gas to 1.7 MPa, then enters the circulating water cooler 120, and cools the compressed gas to 40 °C.
  • the cooled gas enters the normal temperature gas-liquid separator 130 for gas-liquid separation, and the condensate obtained at the bottom thereof passes through the delivery device; the normal temperature gas stream obtained at the top thereof enters the drying unit 200.
  • the gas passes through the adsorption tower, and the adsorbent is a composite bed composed of activated alumina and molecular sieve, and the H 2 O content is reduced to below 1 ppmv to prevent ice plugging during subsequent cryogenic separation.
  • the dried gas enters the membrane separator unit 300.
  • the membrane separator is equipped with a membrane module, and the membrane material used is polyimide. After passing through the separation membrane, a permeate gas stream of the membrane is obtained, and the pressure is 0.05 MPa, and the temperature is At 38 ° C, the gas volume is 38 Nm 3 /hr, and the composition is as follows:
  • the permeate gas stream is discharged to the flare; the intercepted side of the membrane separation is a hydrogen-depleted stream entering the cryogenic separation unit 400.
  • the hydrogen-depleted stream first enters the plate-fin heat exchanger. After passing through the heat medium passage CC, the temperature of the gas gradually drops to -110 ° C. At this time, more than 99% of the propylene has been liquefied, and then in the low-temperature gas-liquid separator 420, The gas-liquid separation is performed, and the recovered propylene is obtained at the bottom of the low-temperature gas-liquid separator 420.
  • the liquid propylene is passed through a throttle expansion valve, and the temperature and pressure are lowered after expansion, and then returned to the plate-fin heat exchanger for heat exchange with the heat medium.
  • the cooling capacity is provided, and after passing through the cold medium passage DD, the recovered propylene stream is obtained, the pressure is 0.05 MPa, the temperature is 25 ° C, and the gas volume is 314 Nm 3 /hr, and the composition is as follows:
  • the gas stream needs to be sent to the ethylene unit by further pressurization, and the propylene is refined into polymer grade propylene.
  • the non-condensable gas at the top of the low-temperature gas-liquid separator 420 mainly nitrogen, is returned to the plate-fin heat exchanger for heat exchange with the heat medium to provide a cooling capacity, which passes through the cold medium passage AA and enters the turboexpander.
  • two expanders are operated in series, and the low temperature gas obtained after turboexpansion is returned to the plate fin heat exchanger for heat exchange with the heat medium to provide cooling capacity through the cold medium passage BB.
  • a recovered nitrogen stream having a pressure of 0.25 MPa, a temperature of 15 ° C, and a gas volume of 5381 Nm 3 /hr was obtained, and the composition was as follows:
  • the nitrogen stream can be returned to the polypropylene unit for reuse, in whole or in part, depending on the actual conditions.
  • the method of the present invention can better recover propylene and nitrogen in the polypropylene tail gas, so that the recovery rate of propylene in the exhaust gas is greater than 98%, and the purity of nitrogen gas is 97.5% or more.
  • the method of the present invention also converts pressure energy into a low temperature cooling capacity through a turboexpansion device, has high energy utilization rate, low investment cost, and is easy to operate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

本发明公开了一种聚丙烯尾气回收装置,包括依次连接的压缩单元、干燥单元、膜分离单元和深冷分离单元;所述压缩单元,包括依次连接的至少一个压缩机、一个换热器和一个气液分离器;所述干燥单元,包括依次连接的至少两个吸附塔,所述吸附塔内装有干燥剂;所述膜分离单元,包括膜分离器;所述深冷分离单元,包括至少一个高效多通道换热器、至少一个低温气液分离器、至少一个气体膨胀设备和至少一个液体膨胀设备。本发明聚丙烯尾气回收通过膨胀制冷的方法,使得聚丙烯尾气中的丙烯液化,实现丙烯的回收,同时净化氮气,满足氮气循环使用的要求;结合膜分离技术,脱除聚丙烯尾气中的氢气;实现聚丙烯尾气中丙烯98%以上的回收率。

Description

一种聚丙烯尾气回收装置及回收方法 技术领域
本发明涉及聚烯烃领域,具体涉及一种在聚丙烯生产过程中排放尾气中丙烯和氮气回收装置及回收方法。
背景技术
在聚丙烯生产过程中,在丙烯单体的精制、聚合反应和聚丙烯树脂脱气过程中,都会有含大量丙烯单体的尾气排出。如丙烯精制过程中从脱气塔塔顶脱出的小股轻组分物流、为了控制聚合反应过程中惰性气体含量的反应驰放气、采用氮气+蒸汽混合气从脱气仓底部送入,以脱除碳氢化合物并使残留催化剂失活而产生的脱仓尾气等。这些气体统称为聚丙烯尾气,其主要成分为氮气、丙烯和少量的丙烷、乙烷、乙烯、水等,一般丙烯的浓度在6~50%(V)左右,规模为30万吨/年的聚丙烯装置,尾气中含有的丙烯多达每年3000吨,氮气5000多吨,所以回收尾气中的烃类和氮气有着非常高的经济效益。
美国专利US Patent5769927提出了采用压缩、冷凝和膜分离集成的方法处理聚丙烯尾气的工艺方法。流程如下所述。首先将聚丙烯尾气进行增压,然后经过冷凝器将气体温度降到露点以下,一部分丙烯变成液体,分离出来;另一部分处于气相的丙烯进入到膜分离部分,利用膜优先渗透丙烯的特点,使得丙烯和氮气实现分离,得到的富丙烯气体返回到压缩冷凝部分,进一步回收丙烯。该过程可以实现丙烯和氮气的回收利用,但是由于膜的富丙烯气体返回到压缩冷凝部分,造成循环后的压缩和冷凝的气量为初始排放气量的1.5~3倍,使得压缩和制冷设备的投资和能耗都显著增加,降低了该过程的经济性。
中国专利CN101357291B公开了,采用在常温常压下吸附得到高纯度产品氮气,在负压下脱附,再将脱附气压缩冷凝,得到高纯度的产品丙烯液体。但是该方法需要采用真空泵对吸附塔进行解析,至少需要两台压缩机分别对回收的烃类气体和氮气进行增压,动设备多,操作复杂,真空解析过程容易造成空气渗入回收系统,存在安全隐患,当排放气中含有一定浓度的氢气时,吸附过程不能实现氮气的氢气的分离,造成氮气不能循环利用,只能排放到火炬,造成资源浪费,以及环境污染,同时设备的占地面积大。
发明内容
鉴于现有技术所存在的上述问题,本发明旨在提供一种丙烯回收率高、氮气可以重复利用的过程简单、能耗低、投资少、占地面积小的聚丙烯尾气回收装置及方法。
本发明目的是提供一种聚丙烯尾气回收装置,所述装置包括:
压缩单元,包括至少一个压缩机、一个换热器和一个气液分离器。用于提高聚丙烯尾气的压力,满足膨胀制冷、深冷分离以及膜分离的操作压力要求,同时将压缩后的气体冷却到常温,并在气液分离器中分离冷凝出来的高沸点液体,得到凝液流和常温的压缩气流。
干燥单元,包括至少两个吸附塔,塔内装有干燥剂,用于处理从压缩单元输出的常温压缩气体,脱除气体中的水分,得到干燥的气流。
膜分离单元,包括膜分离器和氢气分离膜,用于处理从干燥单元输出的气流,分离出气体中的氢气,得到贫氢气流。
深冷分离单元:包括至少一个高效多通道换热器、至少一个低温气液分离器、至少一个气体膨胀设备和至少一个液体膨胀设备。所述膜分离器出口依次连接高效多通道换热器的热介质通道C-C、低温气液分离器入口;低温气液分离器底部出口依次连接液体膨胀设备、高效多通道换热器的冷介质通道D-D、管路k;低温气液分离器顶部出口依次连接高效多通道换热器的冷介质通道A-A、气体膨胀设备,高效多通道换热器的冷介质通道B-B、管路o;用于处理从膜分离单元输出的贫氢气流,通过膨胀制冷、多流体的换热,将气体的温度进一步降低,实现丙烯的液化,经过气液分离,得到回收的丙烯物流和氮气物流。
进一步地,在上述技术方案中,干燥单元中,所述干燥剂选自活性氧化铝、硅胶、分子筛。
进一步地,在上述技术方案中,所述的氢气分离膜是指相对于烃类、氮气,能够优先渗透氢气的各种分离膜,如聚酰亚胺、聚砜、聚芳酰胺、醋酸纤维、聚苯醚等高分子材料分离膜,或者是钯膜等金属膜。
进一步地,在上述技术方案中,所述的膨胀设备是指将流体的压力能转换为冷量的一种制冷设备,所述的液体膨胀设备选自节流膨胀阀。
所述的气体膨胀设备选自透平膨胀机、气波制冷机。
进一步地,在上述技术方案中,所述的高效多通道换热器是指板翅式换热器或者绕管换热器。
本发明的装置通过压缩单元、干燥单元、膜分离单元和深冷分离单元的有机组合, 能够有效的回收尾气中的丙烯和氮气,丙烯的回收率在98%以上,回收的氮气纯度为97.5%以上。
本发明的另一目的是提供了一种利用所述聚丙烯尾气回收装置回收丙烯和氮气的方法,其包括如下步骤:
压缩步骤,聚丙烯尾气首先经过压缩机将气体的压力升高到0.6~3.0MPaA,然后经过换热器将压缩后的高温气体的温度降到常温,冷却介质采用循环水,冷却后的气体在气液分离器中进行气液分离,尾气中高沸点的组分,如水和重烃会有一份变成液相,从气液分离器的底部作为凝液排放。
干燥步骤,从气液分离器中出来的气相进入脱水吸附塔,除去排放气中的水分,将水露点降到-30~-130℃以下。
膜分离步骤,脱水干燥后的气体进入膜分离器,内装有氢气分离膜,膜的特性为优先透过氢气组分,可以将尾气中的氢气分离出来,渗透的富氢气体排放到火炬。脱除大部分氢气的气体进入深冷分离步骤。
深冷分离步骤,脱除大部分氢气的气体进入到高效多通道换热器中逐级冷却,换热器中设有一条或者一条以上的热介质通道和一条或者一条以上的冷介质通道,经过换热器后气体的温度降低到-30~-130℃,然后进入低温气液分离器进行气液分离,得到的液体丙烯经液体膨胀设备减压后,返回到高效多通道换热器,交换冷量后蒸发成气相的丙烯由低温气液分离器出来的气体,其组成主要为氮气,返回到高效多通道换热器,经过复热回收冷量后回收。
进一步地,在上述技术方案中,经过复热回收冷量后的氮气进入膨胀设备进行膨胀制冷,膨胀后的低温气体再返回到高效多通道换热器,为整个系统提供冷量,该气体经过复热以后,作为回收的氮气,返回聚丙烯装置重复使用。
进一步地,在上述技术方案中,回收的丙烯可以直接送往或者增压后送往乙烯装置,再将丙烯精制为聚合级的丙烯;还可以采用压缩冷凝的办法将气相丙烯液化,制成液体丙烯。
发明有益效果
1)通过膨胀制冷的方法,使得聚丙烯尾气中的丙烯液化,实现丙烯的回收,同时净化氮气,满足氮气循环使用的要求;
2)结合膜分离技术,脱除聚丙烯尾气中的氢气;
3)实现聚丙烯尾气中丙烯98%以上的回收率,远高于现有技术的丙烯回收率,大大降低了聚丙烯装置的单耗;
4)设备投少,操作能耗低、占地面积小。
附图说明
图1是本发明聚丙烯尾气回收装置和方法的系统图;
图中,100、压缩单元;110、尾气压缩机;120、循环水冷却器;130、常温气液分离器;200、干燥单元;201、吸附塔;300、膜分离器单元;310、膜分离器;400、深冷分离单元;410、高效多通道换热器;420、低温气液分离器;430、液体膨胀设备;440、气体膨胀设备;10、管路a;11、管路b;12、管路c;13、管路d;14、管路e;15、管路j;16、管路h;17、管路i;18、管路j;19、管路k;20、管路l;21、管路m;22、管路n;23、管路o;24、管路f;29、管路p。
具体实施方式
现结合附图,对本发明作进一步的具体说明:
如附图1所示,本发明提供的一种聚丙烯尾气回收装置包括:
压缩单元100,包括一个尾气压缩机110、一个循环水冷却器120和常温气液分离器130。聚丙烯生产过程中的尾气,通过管路a10连接到尾气压缩机110的入口。尾气压缩机110将气体的压力升高到0.6~3.0MPaA,满足膨胀制冷、深冷分离以及膜分离的操作压力要求。压缩后的气体通过管路b11连接到循环水冷却器120,将压缩后的气体冷却到常温,通过管路c12连接到常温气液分离器130进行气液分离,在其底部得到的凝液通过管路p29送出装置;在其顶部得到的常温气流通过管路d13进入干燥单元200。
干燥单元200包括装有脱水干燥剂的吸附塔210,吸附塔201的数量根据处理气量的大小以及选择的再生气,设置为2个、3个或者4个。通过吸附塔210后,气体的水露点降低到-30~-130℃,然后通过管路e14进入膜分离器单元300。
膜分离器单元300包括装有膜组件的膜分离器310,干燥单元输出的气流通过膜分离器310时,氢气优先透过渗透通过膜,在膜的渗透侧得到低压的富氢气流,通过管路f24排放到火炬,贫氢气流通过管路g15进入深冷分离单元400。
深冷分离单元400包括一个高效多通道换热器410、一个低温气液分离器420、一个气体膨胀设备440和一个液体膨胀设备430。从膜分离单元300输出的贫氢气流经 管路g15,进入高效多通道换热器410,本发明优选板翅式换热器,通过热介质通道C-C后,气体的温度逐渐降到-30~-130℃,通过管路h16进入低温气液分离器420,进行气液分离,在低温气液分离器420底部得到回收的丙烯,该液体丙烯经过管路i17连接液体膨胀设备430,本发明优选节流膨胀阀,该股液体经过节流膨胀后温度和压力降低,然后通过管路j18返回高效多通道换热器410,与热介质进行热交换,提供冷量,通过冷介质通道D-D后,得到回收的丙烯物流,经过管路k19输送出装置,可以直接送往或者增压后送往乙烯装置,再将丙烯精制为聚合级的丙烯;还可以采用压缩冷凝的办法将气相丙烯液化,制成液体丙烯。低温气液分离器420顶部的不凝气体,主要是氮气,通过管路l20返回到高效多通道换热器410,与热介质进行热交换,提供冷量,通过冷介质通道A-A后,通过管路m21进入气体膨胀设备440,进行膨胀制冷,在本发明中气体膨胀设备优选透平膨胀机,经过透平膨胀后得到的低温气体,通过管路n22返回到高效多通道换热器410,与热介质进行热交换,提供冷量,通过冷介质通道B-B后,得到回收的氮气物流,通过管路o23送出装置,返回到聚丙烯装置重复利用。
在本发明的一个优选实施例中,根据气体的压力和气量的不同,气体膨胀设备440可以采用一台或者是一台以上的透平膨胀机串联或者并联操作,从而为深冷分离单元提供更多的冷量。
本发明还提供了一种利用所述聚丙烯尾气回收装置回收丙烯和氮气的方法,
下面结合附图与实施例对本发明作进一步详细描述,可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。文中所述的压力为表压。
实施例1
在图1所示的聚丙烯尾气中回收丙烯和氮气的工艺流程示意图中,聚丙烯尾气的压力为0.05MPa,温度为50℃,气量为1000Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 1.28 8.10 0.10 6.50 0.25 0.27 83.50
该尾气首先进入压缩单元100,尾气压缩机110将气体的压力升高到1.6MPa,然后进入循环水冷却器120,将压缩后的气体冷却到40℃。冷却后的气体进入常温气液分离器130进行气液分离,在其底部得到的凝液送出装置;在其顶部得到的常温气流 进入干燥单元200。在干燥单元,气体通过吸附塔,吸附剂为活性氧化铝和分子筛组成的复合床,将H2O含量降到1ppmv以下,防止在后续的深冷分离过程中发生冰堵。干燥后的气体进入膜分离器单元300,膜分离器装有膜组件,其使用的膜材料为聚酰亚胺,经过分离膜后,得到膜的渗透气物流,其压力为0.05MPa,温度为40℃,气量为33Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 14.82 3.23 0.02 4.94 0.04 0.00 76.95
该股渗透气物流排往火炬;膜分离的截留侧为贫氢气流进入深冷分离单元400。
贫氢气流首先进入板翅式换热器,通过热介质通道C-C后,气体的温度逐渐降到-120℃,此时99%以上的丙烯都已经液化了,接着在低温气液分离器420,进行气液分离,在低温气液分离器420底部得到回收的丙烯,该液体丙烯经过节流膨胀阀,膨胀后温度和压力降低,然后返回板翅式换热器,与热介质进行热交换,提供冷量,通过冷介质通道D-D后,得到回收的丙烯物流,其压力为0.25MPa,温度为30℃,气量为143Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 0.005 55.778 0.728 37.428 1.726 0.000 4.336
该股气流直接送往乙烯装置,再将丙烯精制为聚合级的丙烯。
低温气液分离器420顶部的不凝气体,主要是氮气,返回到板翅式换热器410,与热介质进行热交换,提供冷量,通过冷介质通道A-A后,进入透平膨胀机,进行膨胀制冷,本实施例中采用一台膨胀机,单级膨胀,经过透平膨胀后得到的低温气体,返回到板翅式换热器,与热介质进行热交换,提供冷量,通过冷介质通道B-B后,得到回收的氮气物流,其压力为0.22MPa,温度为20℃,气量为821Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 0.96 0.04 0.00 1.21 0.00 0.00 97.79
可以根据实际情况,将其全部或者部分返回到聚丙烯装置重复利用。
实施例2
在图1所示的聚丙烯尾气中回收丙烯和氮气的工艺流程示意图中,聚丙烯尾气的压力为0.02MPa,温度为51℃,气量为900Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 0.60 27.67 5.55 1.40 0.00 0.99 63.79
该尾气首先进入压缩单元100,尾气压缩机110将气体的压力升高到1.7MPa,然后进入循环水冷却器120,将压缩后的气体冷却到40℃。冷却后的气体进入常温气液分离器130进行气液分离,在其底部得到的凝液通过送出装置;在其顶部得到的常温气流进入干燥单元200。在干燥单元,气体通过吸附塔,吸附剂为活性氧化铝和分子筛组成的复合床,将H2O含量降到1ppmv以下,防止在后续的深冷分离过程中发生冰堵。干燥后的气体进入膜分离器单元300,膜分离器装有膜组件,其使用的膜材料为聚酰亚胺,经过分离膜后,得到膜的渗透气物流,其压力为0.05MPa,温度为38℃,气量为38Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 6.72 14.45 1.58 1.38 0.00 0.00 75.86
该股渗透气物流排往火炬;膜分离的截留侧为贫氢气流进入深冷分离单元400。
贫氢气流首先进入板翅式换热器,通过热介质通道C-C后,气体的温度逐渐降到-110℃,此时99%以上的丙烯都已经液化了,接着在低温气液分离器420,进行气液分离,在低温气液分离器420底部得到回收的丙烯,该液体丙烯经过节流膨胀阀,膨胀后温度和压力降低,然后返回板翅式换热器,与热介质进行热交换,提供冷量,通过冷介质通道D-D后,得到回收的丙烯物流,其压力为0.05MPa,温度为25℃,气量为314Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 0.00 77.27 15.66 3.50 0.00 0.00 3.57
该股气流需要通过进一步的增压送往乙烯装置,再将丙烯精制为聚合级的丙烯。
低温气液分离器420顶部的不凝气体,主要是氮气,返回到板翅式换热器,与热 介质进行热交换,提供冷量,通过冷介质通道A-A后,进入透平膨胀机,进行膨胀制冷,本实施例中采用两台膨胀机串联操作,经过透平膨胀后得到的低温气体,返回到板翅式换热器,与热介质进行热交换,提供冷量,通过冷介质通道B-B后,得到回收的氮气物流,其压力为0.25MPa,温度为15℃,气量为5381Nm3/hr,组成如下:
组分 H2 丙烯 丙烷 乙烯 己烷 H2O N2
含量%V/V 0.52 0.14 0.02 0.21 0.00 0.00 99.11
氮气物流可以根据实际情况,将其全部或者部分返回到聚丙烯装置重复利用。
从本发明所提供的实施例可见,本发明的方法能够较好的回收聚丙烯尾气中的丙烯和氮气,使得尾气中丙烯的回收率大于98%,氮气纯度为97.5%以上。此外,本发明的方法还将压力能通过透平膨胀设备转化为低温冷量,能量利用率高、投资成本低、易于操作等优点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种聚丙烯尾气回收装置,其特征在于:
    包括依次连接的压缩单元、干燥单元、膜分离单元和深冷分离单元;
    所述压缩单元,包括依次连接的至少一个压缩机、一个换热器和一个气液分离器;
    所述干燥单元,包括依次连接的至少两个吸附塔,所述吸附塔内装有干燥剂;
    所述膜分离单元,包括膜分离器;
    所述深冷分离单元,包括至少一个高效多通道换热器、至少一个低温气液分离器、至少一个气体膨胀设备和至少一个液体膨胀设备;所述膜分离器出口依次连接高效多通道换热器的热介质通道C-C、低温气液分离器入口;低温气液分离器底部出口依次连接液体膨胀设备、高效多通道换热器的冷介质通道D-D、管路k;低温气液分离器顶部出口依次连接高效多通道换热器的冷介质通道A-A、气体膨胀设备,高效多通道换热器的冷介质通道B-B、管路o。
  2. 根据权利要求1所述聚丙烯尾气回收装置,其特征在于:干燥单元中,所述干燥剂选自活性氧化铝、硅胶、分子筛。
  3. 根据权利要求1所述聚丙烯尾气回收装置,其特征在于:膜分离单元中,所述膜分离器内设有氢气分离膜;
    所述氢气分离膜选自聚酰亚胺、聚砜、聚芳酰胺、醋酸纤维、聚苯醚、钯膜等金属膜中的一种。
  4. 根据权利要求1所述聚丙烯尾气回收装置,其特征在于:深冷分离单元中,所述的液体膨胀设备选自节流膨胀阀。
  5. 根据权利要求1所述聚丙烯尾气回收装置,其特征在于:深冷分离单元中,所述的气体膨胀设备选自透平膨胀机、气波制冷机。
  6. 根据权利要求1所述聚丙烯尾气回收装置,其特征在于:深冷分离单元中,所述的高效多通道换热器选自板翅式换热器或绕管换热器。
  7. 利用权利要求1-6任意一项所述聚丙烯尾气回收装置回收丙烯和氮气的方法,其特征在于包括如下步骤:
    压缩步骤:聚丙烯尾气首先经过压缩机将气体的压力升高到0.6~3.0MPaA,然后经过换热器将压缩后的高温气体的温度降到常温,冷却后的气体在气液分离器中进行气液分离,得到的液体从气液分离器的底部作为凝液排放;
    干燥步骤:从气液分离器中出来的气相进入脱水吸附塔,除去排放气中的水分;
    膜分离步骤:脱水干燥后的气体进入膜分离器,分离出的富氢气体排放到火炬; 脱除大部分氢气的气体进入深冷分离步骤;
    深冷分离步骤:脱除大部分氢气的气体进入到高效多通道换热器中逐级冷却,先经过高效多通道换热器热介质通道C-C后气体的温度降低到-30~-130℃,然后进入低温气液分离器进行气液分离,得到的液体丙烯经液体膨胀设备减压后,返回到高效多通道换热器冷介质通道D-D,交换冷量后蒸发成气相的丙烯回收;
    由低温气液分离器出来的气体,其组成主要为氮气,返回到高效多通道换热器冷介质通道A-A,经过复热回收冷量后回收。
  8. 根据权利要求7所述回收丙烯和氮气的方法,其特征在于:所述深冷分离步骤中,经过复热回收冷量后的氮气进入膨胀设备进行膨胀制冷,膨胀后的低温气体再返回到高效多通道换热器冷介质通道B-B,为整个系统提供冷量,该气体经过复热以后,作为回收的氮气,返回聚丙烯装置重复使用。
  9. 根据权利要求7或8所述回收丙烯和氮气的方法,其特征在于:所述深冷分离步骤中,回收的丙烯可以直接送往或者增压后送往乙烯装置,再将丙烯精制为聚合级的丙烯;还可以采用压缩冷凝的办法将气相丙烯液化,制成液体丙烯。
PCT/CN2015/087629 2015-07-30 2015-08-20 一种聚丙烯尾气回收装置及回收方法 WO2017016006A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520563229.6 2015-07-30
CN201510460366.1A CN105004140A (zh) 2015-07-30 2015-07-30 一种聚丙烯尾气回收装置及回收方法
CN201510460366.1 2015-07-30
CN201520563229.6U CN204830683U (zh) 2015-07-30 2015-07-30 一种聚丙烯尾气回收装置

Publications (1)

Publication Number Publication Date
WO2017016006A1 true WO2017016006A1 (zh) 2017-02-02

Family

ID=57885091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087629 WO2017016006A1 (zh) 2015-07-30 2015-08-20 一种聚丙烯尾气回收装置及回收方法

Country Status (1)

Country Link
WO (1) WO2017016006A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426170A (zh) * 2018-05-14 2018-08-21 南京金陵塑胶化工有限公司 一种聚丙烯生产过程中氮气回收系统及其回收工艺
CN108888982A (zh) * 2018-06-29 2018-11-27 合肥通用机械研究院有限公司 一种聚丙烯工艺气回收装备及回收工艺
CN110038486A (zh) * 2019-04-30 2019-07-23 江苏金通灵流体机械科技股份有限公司 一种石油工业尾气加压回收系统
CN110239852A (zh) * 2019-05-08 2019-09-17 江苏科威环保技术有限公司 储油罐顶自封或双封组合系统
CN112239390A (zh) * 2020-10-19 2021-01-19 中国石油化工股份有限公司 乙烯深冷回收系统
CN114322458A (zh) * 2022-01-20 2022-04-12 河南隆鑫高纯新材料科技有限公司 尾气充分环保处理工艺及装置
CN115746189A (zh) * 2022-11-09 2023-03-07 国家能源集团宁夏煤业有限责任公司 聚丙烯装置丙烯气流股的脱h2方法及装置
CN115746189B (zh) * 2022-11-09 2024-05-31 国家能源集团宁夏煤业有限责任公司 聚丙烯装置丙烯气流股的脱h2方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389643A (zh) * 2011-08-05 2012-03-28 浙江大学 一种烯烃聚合物生产中排放气回收的方法及装置
CN104792117A (zh) * 2015-03-15 2015-07-22 浙江大学 一种烯烃聚合物生产中排放气回收的装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102389643A (zh) * 2011-08-05 2012-03-28 浙江大学 一种烯烃聚合物生产中排放气回收的方法及装置
CN104792117A (zh) * 2015-03-15 2015-07-22 浙江大学 一种烯烃聚合物生产中排放气回收的装置及方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426170A (zh) * 2018-05-14 2018-08-21 南京金陵塑胶化工有限公司 一种聚丙烯生产过程中氮气回收系统及其回收工艺
CN108426170B (zh) * 2018-05-14 2023-10-20 南京金陵塑胶化工有限公司 一种聚丙烯生产过程中氮气回收系统及其回收工艺
CN108888982A (zh) * 2018-06-29 2018-11-27 合肥通用机械研究院有限公司 一种聚丙烯工艺气回收装备及回收工艺
CN110038486A (zh) * 2019-04-30 2019-07-23 江苏金通灵流体机械科技股份有限公司 一种石油工业尾气加压回收系统
CN110239852A (zh) * 2019-05-08 2019-09-17 江苏科威环保技术有限公司 储油罐顶自封或双封组合系统
CN110239852B (zh) * 2019-05-08 2023-11-14 江苏科威环保技术有限公司 储油罐顶自封和双封组合系统
CN112239390A (zh) * 2020-10-19 2021-01-19 中国石油化工股份有限公司 乙烯深冷回收系统
CN114322458A (zh) * 2022-01-20 2022-04-12 河南隆鑫高纯新材料科技有限公司 尾气充分环保处理工艺及装置
CN115746189A (zh) * 2022-11-09 2023-03-07 国家能源集团宁夏煤业有限责任公司 聚丙烯装置丙烯气流股的脱h2方法及装置
CN115746189B (zh) * 2022-11-09 2024-05-31 国家能源集团宁夏煤业有限责任公司 聚丙烯装置丙烯气流股的脱h2方法及装置

Similar Documents

Publication Publication Date Title
WO2017016006A1 (zh) 一种聚丙烯尾气回收装置及回收方法
JP4913733B2 (ja) 二酸化炭素の液化法及び装置
CN105004140A (zh) 一种聚丙烯尾气回收装置及回收方法
CN110420536B (zh) 罐顶VOCs回收及氮气再利用系统及方法
CN102660341B (zh) 利用天然气压力能部分液化天然气的工艺和装置
CN211302556U (zh) 一种聚烯烃排放气回收系统
US20120073441A1 (en) Configurations And Methods For High Pressure Acid Gas Removal
CN102538398A (zh) 一种含氮氧煤矿瓦斯提纯分离液化工艺及提纯分离液化系统
CN108826831B (zh) 氮循环制冷的深冷分离一氧化碳气体的装置和工艺
CN202595072U (zh) 利用天然气压力能部分液化天然气的装置
CN103123203A (zh) 利用含氮废气进行再低温精馏制取纯氮的方法
CN210728724U (zh) 罐顶VOCs回收及氮气再利用系统
CN115069057A (zh) 一种低温精馏提纯回收二氧化碳的方法
CN204830683U (zh) 一种聚丙烯尾气回收装置
EP3386609B1 (en) Process and system for the purification of a gas
CN214371298U (zh) 二氧化碳捕集液化回收装置
CN112410070B (zh) 一种从炼厂干气中回收碳二的节能工艺与装置
CN104190200B (zh) 一种合成氨废气回收利用装置
CN114518016A (zh) 二氧化碳捕集液化回收装置及方法
CN111811212A (zh) 一种聚烯烃装置尾气组分分离与回收的装置及方法
US20150300731A1 (en) Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
CN115790076A (zh) 一种回收烟道气中二氧化碳和氮气的装置及方法
US10456728B2 (en) Process for recovering valuables from vent gas in polyolefin production
CN106979665B (zh) 一种提纯合成气的方法及其设备
CN209917566U (zh) 一种聚烯烃排放气回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899358

Country of ref document: EP

Kind code of ref document: A1