WO2017015858A1 - 功率放大器、功率放大方法、功率放大控制装置及方法 - Google Patents

功率放大器、功率放大方法、功率放大控制装置及方法 Download PDF

Info

Publication number
WO2017015858A1
WO2017015858A1 PCT/CN2015/085314 CN2015085314W WO2017015858A1 WO 2017015858 A1 WO2017015858 A1 WO 2017015858A1 CN 2015085314 W CN2015085314 W CN 2015085314W WO 2017015858 A1 WO2017015858 A1 WO 2017015858A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power amplifier
input signals
doherty
input
Prior art date
Application number
PCT/CN2015/085314
Other languages
English (en)
French (fr)
Inventor
孙捷
曾志雄
武胜波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22198613.6A priority Critical patent/EP4199350A1/en
Priority to EP15899210.7A priority patent/EP3316479B1/en
Priority to KR1020187004362A priority patent/KR102093658B1/ko
Priority to JP2018502204A priority patent/JP6611394B2/ja
Priority to CN201580072230.1A priority patent/CN107112956B/zh
Priority to PCT/CN2015/085314 priority patent/WO2017015858A1/zh
Publication of WO2017015858A1 publication Critical patent/WO2017015858A1/zh
Priority to US15/881,272 priority patent/US10432146B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/62Two-way amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/405Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising more than three power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of power amplifiers, and in particular, to a power amplifier, a power amplification method, a power amplification control device, and a method.
  • the radio base station is used to amplify an input signal through a power amplifier (English: Power Amplifier, PA for short), and the transmitter transmits the amplified input signal.
  • a power amplifier International: Power Amplifier, PA for short
  • the power amplifier directly affects the power consumption of the entire wireless base station.
  • the existing wireless base station usually adopts a Doherty power amplifier.
  • the Doherty power amplifier includes a main power amplifier and at least one peak power amplifier, and the main power amplifier is connected in parallel with each peak power amplifier.
  • the working principle is that the active power traction technology enables the main power amplifier and each peak power amplifier to operate in their respective saturation regions, thus ensuring that the entire Doherty power amplifier maintains high efficiency in the largest possible input power range.
  • the corresponding input power variation range is small when maintaining high efficiency.
  • the power consumption will increase, and the power consumption requirements of the wireless base station cannot be met.
  • the embodiment of the present invention provides a A power amplifier, a power amplification method, a power amplification control method and device.
  • the technical solution is as follows:
  • a power amplifier comprising:
  • Each of the Doherty power amplifier units includes an input end and an output end;
  • the n-way Outphasing combiner includes n inputs and an output
  • the outputs of each of the Doherty power amplifier units are respectively connected to the input terminals of the n-way Outphasing combiner.
  • the Doherty power amplifier unit is an m-channel Doherty power amplifier unit, and the m-channel Doherty power amplifier unit includes a main power amplifier and (m-1) peak power amplifiers.
  • M ⁇ 2 and m is an integer, and the number of paths of each of the Doherty power amplifier units is the same or different;
  • the main power amplifier is connected in parallel with each of the peak power amplifiers, and each of the peak power amplifiers is connected in parallel.
  • the m-channel Doherty power amplifier unit is a two-way symmetric Doherty power amplifier unit, and the two-way symmetric Doherty power amplifier unit Included in the main power amplifier and one of the peak power amplifiers; the main power amplifier and the peak power amplifier use the same power transistor;
  • the m-channel Doherty power amplifier unit is a two-way asymmetric Doherty power amplifier unit, and the two-way asymmetric Doherty power amplifier unit includes one of the main power amplifier and one of the peak power amplifiers; the main power amplifier and the peak Power amplifiers use transistors of different powers.
  • the device is out of phase (English: Chireix) combiner.
  • a power amplification method for the power amplifier according to the first aspect above, the method comprising:
  • the triggering according to the power of the input signal, triggering all or a part of the Doherty power amplifier unit and the n-way Outphasing combiner to be in an active state, including:
  • the power of the input signal received by the Doherty power amplifier unit is less than a first power threshold, and the input signals respectively received by each of the Doherty power amplifier units are not out of phase, triggering in each of the Doherty power amplifier units
  • the main power amplifier and each of the peak power amplifiers are in an active state, and trigger the n-way Outphasing combiner to be in a non-out-of-phase operating state; wherein the first power threshold is greater than each of the Doherty power amplifier units The initial operating power of the peak power amplifier;
  • the Doherty power amplifier unit When the power of the input signal received by the Doherty power amplifier unit is greater than the first power threshold and the input signals respectively received by each of the Doherty power amplifier units are out of phase, triggering in the Doherty power amplifier unit
  • the main power amplifier and each of the peak power amplifiers are in an active state, and trigger the n-way Outphasing combiner to be in an out-of-phase operating state;
  • the non-out-of-phase operating state is an operating state in which the n-way Outphasing combiner directly combines signals received by the respective input terminals;
  • the out-of-phase operating state is an operating state in which the n-way Outphasing combiner performs phase adjustment on the signals received by the respective input terminals.
  • the triggering according to the power of the input signal, triggering all or a part of the Doherty power amplifier unit and the n-way Outphasing combiner to be in an active state, including :
  • the Doherty power amplifier unit when the power of the input signal received by the Doherty power amplifier unit is less than a second power threshold, and the input signals respectively received by each of the Doherty power amplifier units are out of phase
  • the main power amplifier is in an active state, and triggers the n-way Outphasing combiner to be in an out-of-phase operating state; wherein the second power threshold is less than an initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit;
  • the main power amplifier and each of the peak power amplifiers are in an active state, and trigger the n-way Outphasing combiner to be in a non-out-of-phase operating state;
  • the non-out-of-phase operating state is an operating state in which the n-way Outphasing combiner directly combines signals received by the respective input terminals;
  • the out-of-phase operating state is an operating state in which the n-way Outphasing combiner performs phase adjustment on the signals received by the respective input terminals.
  • a power amplification control apparatus for use in a signal control system, the letter The number control system is for providing n power input signals for the power amplifier of the first aspect, n ⁇ 2 and n is an integer, the device comprising:
  • a processing module configured to determine, according to an operating mode of the power amplifier, a power threshold corresponding to the power amplifier; the power threshold is used to indicate that the power of the signal input system of the signal input system reaches the power threshold Adjusting the n input signals to n non-heterogeneous input signals or n-way out-of-phase input signals;
  • the processing module is further configured to: when the power of the n input signals reaches the power threshold, adjust the n input signals to the n non-heterogeneous input signals or the n non-inverted input signals ;
  • a sending module configured to separately send the adjusted n input signals to an input end of the Doherty power amplifier unit.
  • the working mode of the power amplifier is a first working mode
  • the corresponding power threshold is a first power threshold, where the first power threshold is greater than The initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit
  • the processing module is further configured to adjust the n input signals to the n-channel out-of-phase input signals when the power of the n input signals reaches the first power threshold.
  • the processing module is further configured to: when the power of the n input signals does not reach the first At the power threshold, the n input signals are adjusted to the n non-heterogeneous input signals.
  • the working mode of the power amplifier is a second working mode
  • the corresponding power threshold is a second power threshold, where the second power threshold is less than The initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit;
  • the processing module is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals reaches the second power threshold.
  • the processing module is further configured to: when the power of the n input signals does not reach the When the power threshold is two, the n input signals are adjusted to the n-way out-of-phase input signals.
  • a power amplification control apparatus for use in a signal control system, the signal control system for providing n input signals for the power amplifier of the first aspect, n ⁇ 2 and n being an integer,
  • the device includes:
  • a processor configured to determine, according to an operating mode of the power amplifier, a power threshold corresponding to the power amplifier; the power threshold is used to indicate that the signal control system is in the n input signal When the power reaches the power threshold, adjusting the n input signals to be n non-heterogeneous input signals or n non-phase input signals;
  • the processor is further configured to: when the power of the n input signals reaches the power threshold, adjust the n input signals to the n non-heterogeneous input signals or the n non-inverted input signals ;
  • the processor is further configured to control the transceiver to separately send the adjusted n input signals to an input end of the Doherty power amplifier unit.
  • the working mode of the power amplifier is a first working mode
  • the corresponding power threshold is a first power threshold, where the first power threshold is greater than The initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit
  • the processor is further configured to adjust the n input signals to the n out-of-phase input signals when the power of the n input signals reaches the first power threshold.
  • the processor is further configured to: when the power of the n input signals does not reach the first At the power threshold, the n input signals are adjusted to the n non-heterogeneous input signals.
  • the working mode of the power amplifier is a second working mode
  • the corresponding power threshold is a second power threshold, where The second power threshold is less than the initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit;
  • the processor is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals reaches the second power threshold.
  • the processor is further configured to: when the power of the n input signals does not reach the second At the power threshold, the n input signals are adjusted to the n out-of-phase input signals.
  • a power amplification control method for use in a signal control system, wherein the signal control system is configured to provide n input signals for the power amplifier of the first aspect, n ⁇ 2 and n is an integer.
  • the method includes:
  • n input signals are n non-heterogeneous input signals or n non-phase input signals;
  • the adjusted n input signals are respectively sent to the input end of the Doherty power amplifier unit.
  • the working mode of the power amplifier is a first working mode
  • the corresponding power threshold is a first power threshold, where the first power threshold is greater than The initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit
  • adjusting the n input signals to the n non-heterogeneous input signals or the n non-phase input signals including:
  • the n input signals are adjusted to the n out-of-phase input signals.
  • the method further includes:
  • the n input signals are adjusted to the n non-heterogeneous input signals.
  • the working mode of the power amplifier is a second working mode
  • the corresponding power threshold is a second power threshold, where the second power threshold is less than The initial operating power of each of the peak power amplifiers in the Doherty power amplifier unit;
  • adjusting the n input signals to the n non-heterogeneous input signals or the n non-phase input signals including:
  • the n input signals are adjusted to the n non-heterogeneous input signals.
  • the method further includes:
  • the n input signals are adjusted to the n out-of-phase input signals.
  • a power amplifier comprising n parallel Doherty power amplifier units and n-way Outphasing combiner structure, and by the power amplifier, trigger all of the Doherty power amplifier unit and the n-way Outphasing combiner according to the input power of the received signal. Or a part of the working state; the Doherty power amplifier adopting the current architecture is solved, and the corresponding input power variation range is small when maintaining high efficiency, and the power consumption is increased when the input power varies widely; the adoption of the structure is achieved. Power amplifier that maintains high efficiency over a wide range of input power variations, further reducing Low power consumption.
  • FIG. 1 is a block diagram showing the structure of a radio base station according to an embodiment of the present invention.
  • Figure 2 is a graph showing the efficiency of a Doherty power amplifier, an Outphasing power amplifier, and a conventional Class B power amplifier;
  • FIG. 3 is a schematic structural diagram of a power amplifier according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power amplifier according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for a power amplification method according to an embodiment of the present invention
  • 6A is a flowchart of a method for a power amplification method according to another embodiment of the present invention.
  • 6B is a graph showing the efficiency of the power amplifier in the first working mode according to an embodiment of the present invention.
  • FIG. 7A is a flowchart of a method for a power amplification method according to still another embodiment of the present invention.
  • 7B is a graph showing efficiency of a power amplifier in a second mode of operation according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a power amplification control apparatus according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a power method control apparatus according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for power amplification control according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for power amplification control according to another embodiment of the present invention.
  • the Outphasing Power Amplifier includes two parallel power amplifiers and two Outphasing combiners.
  • the working principle is that the two power amplifiers respectively amplify the received two-phase out-of-phase input signals, and the two-channel amplified input signals are used by the Outphasing combiner. The number is combined to increase the efficiency of the power amplifier.
  • the wireless base station serves as a radio frequency signal transceiver for providing radio frequency signals to mobile terminals within its signal coverage.
  • the radio base station 10 generally includes a control subsystem 11, a radio frequency subsystem 12, and an antenna subsystem 13.
  • the control subsystem 11 After receiving the baseband signal sent by the antenna subsystem 13, the control subsystem 11 passes the baseband processing unit 111 (English: Building Base Band Unit, BBU for short) to the unmodulated baseband. The signal is processed and the processed signal is sent to the radio frequency subsystem 12 via a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the radio frequency subsystem 12 In order to ensure the strength of the radio frequency signal received by the mobile terminal 14, the radio frequency subsystem 12 needs to amplify the received signal through the internal power amplifier 121.
  • the amplified signal is sent to the antenna subsystem 13, and the GSM antenna/tower control module 131 in the antenna subsystem 13 (English: GSM Antenna and TMA control Module, abbreviation: GATM)
  • the tower overhead amplifier 132 (English: Tower Mounted Amplifier, TMA for short) transmits the signal.
  • the efficiency of the power amplifier directly affects the energy consumption of the entire wireless base station.
  • the wireless base station in the prior art generally adopts a mainstream high-efficiency power amplifier such as a Doherty power amplifier.
  • Figure 2 shows the efficiency plots for a Doherty power amplifier, an Outphasing power amplifier, and a conventional Class B power amplifier.
  • the abscissa of the efficiency graph is the output voltage of the power amplifier after the normalization operation
  • the ordinate of the efficiency graph is the efficiency of the power amplifier.
  • the magnitude of the output voltage is proportional to the magnitude of the input power.
  • the Doherty power amplifier and the Outphasing power amplifier have significantly improved efficiency over a large input power range compared to conventional Class B power amplifiers.
  • FIG. 3 is a schematic structural diagram of a power amplifier according to an embodiment of the present invention.
  • the power amplifier includes two parallel Doherty power amplifier units and one two-way Outphasing combiner.
  • the first Doherty power amplifier unit 31 and the second Doherty power amplifier unit 32 are connected in parallel.
  • the first Doherty power amplifier unit 31 includes an input terminal 311 and an output terminal 312.
  • the second Doherty power amplifier unit 32 includes an input terminal 321 and an output terminal 322.
  • the two-way Outphasing combiner 33 includes two input ends and one output end, which are a first input end 331, a second input end 332 and an output end 333, respectively.
  • the two-way Outphasing combiner can be a Chireix combiner or the like.
  • the combiner with the Outphasing combine function does not limit the type of the Outphasing combiner.
  • the output end 312 of the first Doherty power amplifier unit 31 is electrically connected to the first input end 331 of the two-way Outphasing combiner 33, and the output end 322 of the second Doherty power amplifier unit 32 and the two-way Outphasing combiner 33
  • the two input terminals 332 are electrically connected.
  • the input end 311 of the first Doherty power amplifier unit 31 and the input end 321 of the second Doherty power amplifier unit 32 are both used to receive an input signal sent by the signal control system 34, the output end 312 of the first Doherty power amplifier unit 31 and the second Doherty power amplifier unit.
  • the output 332 of 32 is used to transmit the amplified input signal to the two Outphasing combiners 33.
  • the two-way Outphasing combiner 33 amplifies the signals received through the first input terminal 331 and the second input terminal 332, combines them, and transmits them to the transmitter (not shown) through the output terminal 333 for transmission.
  • the first Doherty power amplifier unit 31 and the second Doherty power amplifier unit 32 are two Doherty power amplifier units, that is, the first Doherty power amplifier unit 31 and the second Doherty power amplifier unit 32 each include a main power amplifier and a peak power. Amplifier. Among them, the main power amplifier is biased in class B or class AB, the peak power amplifier is biased in class C, and the main power amplifier is always in operation, and the peak power amplifier only starts to work when the input power reaches the initial working power.
  • the first Doherty power amplifier unit 31 includes a main power amplifier 313 and a peak power amplifier 314; and the second Doherty power amplifier unit 32 includes a main power amplifier 324 and a peak power amplifier 323.
  • the main power amplifier 313 is connected in parallel with the peak power amplifier 314; the main power amplifier 324 is connected in parallel with the peak power amplifier 323.
  • the main power amplifier 313 and the peak power amplifier 314 need to be connected through a Doherty combiner (not shown) for amplifying the main power amplifier 313 and the peak power amplifier 314. The subsequent signals are merged.
  • the main power amplifier 324 and the peak power amplifier 323 also need to be connected through a Doherty combiner.
  • a first microstrip line 315 is connected in series with the rear end of the main power amplifier 313 in the first Doherty power amplifier unit 31, and a second microstrip line 316 is connected in series with the front end of the peak power amplifier 314, wherein the first microstrip line 315 is used for impedance transformation and the second microstrip line 315 is used to balance the phase.
  • Both the first microstrip line 315 and the second microstrip line 316 may be quarter-wavelength microstrip lines or equivalent circuits.
  • a third microstrip line 325 is connected in series with the rear end of the main power amplifier 324 in the second Doherty power amplifier unit 32, and a fourth microstrip line 326 is connected in series with the front end of the peak power amplifier 323, and the third microstrip line 325 functions.
  • the fourth microstrip line 326 functions the same as the second microstrip line 316.
  • Both the third microstrip line 325 and the fourth microstrip line 326 may be quarter-wavelength microstrip lines or equivalent circuits.
  • the first Doherty power amplifier unit 31 is a two-way symmetric Doherty power amplifier unit; when the main power amplifier of the first Doherty power amplifier unit 31 When the 313 and the peak power amplifier 314 use transistors of different powers, the first Doherty power amplifier unit 31 is a two-way asymmetric Doherty power amplifier unit.
  • the first Doherty power amplifier unit 31 may be a two-way symmetric Doherty power amplifier unit, or may be a two-way asymmetric Doherty power amplifier unit.
  • the second Doherty power amplifier unit 32 may be a two-way symmetric Doherty power amplifier unit. It can be a two-way asymmetric Doherty power amplifier unit, which is not limited by the present invention.
  • the structure of the Doherty power amplifier unit in this embodiment is similar to that of the classic Doherty power amplifier.
  • the structure of the two-way Outphasing combiner is similar to that of the Outphasing combiner in the classic Outphasing power amplifier. It can be understood by those skilled in the art that other conventional components are also included in the Doherty power amplifier unit and the two-way Outphasing combiner in this embodiment, which will not be further described in this embodiment.
  • each Doherty power amplifier unit can be not only a two-way Doherty power amplifier unit, but the Doherty power amplifier unit can also be an m-channel Doherty power amplifier unit, that is, each Doherty power amplifier unit includes a main power amplifier and (m-1).
  • a peak power amplifier, m ⁇ 2 and m is an integer. The following is explained using another embodiment.
  • FIG. 4 is a schematic structural diagram of a power amplifier according to another embodiment of the present invention.
  • a Doherty power amplifier unit in the power amplifier is used as an example of a three-way Doherty power amplifier unit.
  • the power amplifier includes:
  • the first Doherty power amplifier unit 41 and the second Doherty power amplifier unit 42 are connected in parallel.
  • the first Doherty power amplifier unit 41 includes an input terminal 411 and an output terminal 412.
  • the second Doherty power amplifier unit 42 includes an input terminal 421 and an output terminal 422.
  • the two-way Outphasing combiner 43 includes two input ends and one output end, which are a first input end 431, a second input end 432, and an output end 433, respectively, and the two Outphasing combiners can be Chireix combiners or the like.
  • the combiner with Outphasing function does not limit the type of Outphasing combiner.
  • the output end 412 of the first Doherty power amplifier unit 41 is electrically connected to the first input end 431 of the two-way Outphasing combiner 43.
  • the output end 422 of the second Doherty power amplifier unit 42 and the two ends of the two-way Outphasing combiner 43 The two input terminals 432 are electrically connected.
  • the input end 411 of the first Doherty power amplifier unit 41 and the input end 421 of the second Doherty power amplifier unit 42 are both used to receive an input signal sent by the signal control system 44, the output end 412 of the first Doherty power amplifier unit 41, and the second Doherty power amplifier unit.
  • the output 432 of 42 is used to send the amplified input signal to the two Outphasing combiners 43.
  • the two-way Outphasing combiner 43 amplifies the signals received through the first input terminal 431 and the second input terminal 432, combines them, and transmits them to the transmitter (not shown) through the output terminal 433 for transmission.
  • the first Doherty power amplifier unit 41 and the second Doherty power amplifier unit 42 are three-way Doherty power amplifier units, that is, the first Doherty power amplifier unit 31 and the second Doherty power amplifier unit 32 each include a main power amplifier and two peaks. Power amplifier.
  • the main power amplifier is biased in class B or class AB
  • each peak power amplifier is biased in class C
  • the main power amplifier is always in operation, and each peak power amplifier only when the input power reaches the corresponding initial working power
  • the working power is started, and the initial working powers of the respective peak power amplifiers may be the same or different, which is not limited by the present invention.
  • the first Doherty power amplifier unit 41 includes a main power amplifier 413, a first peak power amplifier 414, and a second peak power amplifier 415.
  • the second Doherty power amplifier unit 42 includes a main power amplifier 425 and a first peak power. Amplifier 423 and a second peak power amplifier 424.
  • the main power amplifier is connected in parallel with each peak power amplifier, and each peak power amplifier is connected in parallel.
  • the main power amplifier and each of the peak power amplifiers may use transistors of the same or different power, which are not limited in the present invention.
  • the three-way Doherty power amplifier unit and the two-way Outphasing combiner in this embodiment also include other conventional components, which are not repeatedly described in this embodiment.
  • the Outphasing combination may include n input terminals, n ⁇ 2 and n is an integer. That is, the Outphasing combiner can be an n-way Outphasing combiner.
  • the power amplifier includes n Doherty power amplifier units, and the output ends of the respective Doherty power amplifier units are respectively connected to the input ends of the n-way Outphasing combiner.
  • the number of paths of each Doherty power amplifier unit may be the same or different, that is, the total number of power amplifiers included in each Doherty power amplifier unit may be the same or different.
  • the power amplifier includes a first Doherty power amplifier unit, a second Doherty power amplifier unit, and a third Doherty power amplifier unit, and the first Doherty power amplifier unit, the second Doherty power amplifier unit, and the third Doherty power amplifier unit each include a main power amplifier and a peak power amplifier;
  • the power amplifier includes a first Doherty power amplifier unit, a second Doherty power amplifier unit, and a third Doherty power amplifier unit.
  • the first Doherty power amplifier unit includes a main power amplifier and a peak power amplifier (ie, the first Doherty power amplifier unit is two Road Doherty unit)
  • the second Doherty power amplifier unit includes a main power amplifier and two peak power amplifiers (ie, the second Doherty power amplifier unit is a three-way Doherty unit)
  • the third Doherty power amplifier unit includes a main power amplifier and three Peak power amplifier (ie, the third Doherty power amplifier unit is a four-way Doherty unit).
  • the power amplifier provided by the various embodiments of the present invention needs to trigger all or a part of the Doherty power amplifier unit and the Outphasing combiner to be in an operating state according to the input power of the received signal, thereby improving the efficiency of the power amplifier. .
  • the power amplification method is used as an example of the power amplifier shown in the foregoing embodiment, and the power amplification method includes:
  • Step 501 Receive an input signal through an input of each Doherty power amplifier unit.
  • Step 502 triggering all or a part of the Doherty power amplifier unit and the n-way Outphasing combiner to be in an active state according to the power of the input signal.
  • the power amplification method provided in this embodiment adopts a power amplifier including n parallel Doherty power amplifier units and an n-channel Outphasing combiner structure, and according to the input power of the received signal by the power amplifier, Trigger all or part of the Doherty power amplifier unit and the n-channel Outphasing combiner are in working state; solve the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, when the input power varies widely This will lead to an increase in power consumption; a power amplifier using this structure can be made larger The efficiency of the input power varies over the range to further reduce power consumption.
  • the working mode of the power amplifier can be set to the first working mode or the second working mode according to actual working needs.
  • the power amplifier first triggers the Doherty power amplifier unit to be in a working state, and then the n-channel Outphasing combiner is in a working state; in the second working mode, the power amplifier first triggers the n-way Outphasing combiner to be in a working state. After that, the Doherty power amplifier unit is activated.
  • FIG. 6A shows a flowchart of a method of a power amplification method according to another embodiment of the present invention. This embodiment is described by taking the power amplification method for a power amplifier operating in the first operation mode as an example.
  • the power amplification method includes:
  • Step 601 Receive an input signal through an input of each Doherty power amplifier unit.
  • Each Doherty power amplifier unit in the power amplifier receives an input signal sent by the signal control system through the input terminal.
  • Step 602 When the power of the input signal received by the Doherty power amplifier unit is less than the first power threshold, and the input signals respectively received by the respective Doherty power amplifier units are not out of phase, the main power amplifier and each peak power in each Doherty power amplifier unit are triggered.
  • the amplifiers are all in operation and trigger the n-way Outphasing combiner to be in a non-out-of-phase operating state; wherein the first power threshold is greater than the initial operating power of each peak power amplifier in the Doherty power amplifier unit.
  • the first power threshold corresponding to the power amplifier needs to be greater than the initial operating power of each peak power amplifier in the Doherty power amplifier unit, thereby ensuring that the power of the input signal reaches the first Prior to a power threshold, the main power amplifier and each peak power amplifier in each Doherty power amplifier unit are in operation.
  • the input signal sent by the signal control system to each Doherty power amplifier unit is a non-heterogeneous input signal, and the power of the non-heterogeneous input signal is amplified by each Doherty power amplifier unit (it is still Is a non-heterogeneous input signal).
  • the purpose of the n-channel Outphasing combiner is to combine the n-channel out-of-phase input signals, and the power of the input signal is less than the first power threshold, the signal received by the n-channel Outphasing combiner is a non-heterogeneous input signal.
  • the non-way Outphasing combiner In the non-out-of-phase operating state is an operating state in which the n-channel Outphasing combiner directly combines the signals received by the respective inputs without phase adjustment.
  • Step 603 When the power of the input signal received by the Doherty power amplifier unit is greater than the first power threshold and the input signals respectively received by the respective Doherty power amplifier units are out of phase, the main power amplifier and each peak power amplifier in the Doherty power amplifier unit are triggered.
  • the working state and triggering the n-way Outphasing combiner is in an out-of-phase working state.
  • the main power amplifier and the peak power amplifier in each Doherty power amplifier unit are in operation, and as the power of the input signal increases, the main power amplifier and The peak power amplifiers are all saturated and operate at maximum efficiency.
  • the signal control system adjusts the input signal sent to each Doherty power amplifier unit to an out-of-phase input signal, and each of the Doherty power amplifier units performs power amplification on the out-of-phase input signal (it is still For the out-of-phase signal), at this time, when the input terminals of the n-channel Outphasing combiner receive the n-channel out-of-phase signal, the n-way Outphasing combiner is triggered to be in an out-of-phase working state, and the out-of-phase working state is n-way. The Outphasing combiner performs phase adjustment on the signals received by the respective inputs, and then performs the combined working state.
  • a power amplifier operating in the first mode of operation operates in Doherty mode when the input power is small, improving efficiency at low power, and operating in Outphasing mode when the input power is large, while maintaining high power. Efficient.
  • 6B is a graph showing the efficiency of the power amplifier provided by the present invention in the first mode of operation.
  • the efficiency curve is the efficiency curve of the Doherty power amplifier; when the input power is large, the power amplifier operates in the Outphasing mode, The efficiency curve is the efficiency curve of the Outphasing power amplifier.
  • this power amplifier maintains high efficiency over a wider input power range.
  • the power amplification method provided in this embodiment adopts a power amplifier including n parallel Doherty power amplifier units and an n-channel Outphasing combiner structure, and according to the input power of the received signal by the power amplifier, Trigger all or part of the Doherty power amplifier unit and the n-channel Outphasing combiner are in working state; solve the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, when the input power varies widely This will lead to an increase in power consumption; a power amplifier using this structure can be made larger The efficiency of the input power varies over the range to further reduce power consumption.
  • FIG. 7A shows a flowchart of a method for a power amplification method according to still another embodiment of the present invention. This embodiment is described by taking the power amplification method for a power amplifier operating in the second operation mode as an example.
  • the power amplification method includes:
  • Step 701 Receive an input signal sent by the signal control system through an input end of each Doherty power amplifier unit.
  • Each Doherty power amplifier unit in the power amplifier receives an input signal through an input.
  • Step 702 When the power of the input signal received by the Doherty power amplifier unit is less than the second power threshold, and the input signals respectively received by the respective Doherty power amplifier units are out of phase, the main power amplifier in the Doherty power amplifier unit is triggered to be in an active state, and triggered.
  • the n-way Outphasing combiner is in an out-of-phase operating state; wherein the second power threshold is less than the initial operating power of each peak power amplifier in the Doherty power amplifier unit.
  • the second power threshold corresponding to the power amplifier needs to be smaller than the initial operating power of each peak power amplifier in the Doherty power amplifier unit, thereby ensuring that the power of the input signal reaches the first Prior to the two power thresholds, each of the peak power amplifiers in each of the Doherty power amplifier units did not start operating.
  • the input signal sent by the signal control system to each Doherty power amplifier unit is an out-of-phase input signal, and since each peak power amplifier in each Doherty power amplifier unit does not start to work, only The out-of-phase input signal is power amplified by each of the main power amplifiers (the amplified signal is still an out-of-phase signal).
  • the n-way Outphasing combiner Since the purpose of the n-way Outphasing combiner is to combine the n-channel out-of-phase signals, when the respective inputs of the n-channel Outphasing combiner receive the n-way out-of-phase signals sent by the respective Doherty power amplifier units, the n-way Outphasing combines
  • the road device is in an out-of-phase working state, and the out-of-phase working state is a working state in which the n-channel Outphasing combiner performs phase adjustment on the signals received by the respective input terminals.
  • Step 703 When the power of the input signal received by the Doherty power amplifier unit is greater than the second power threshold, and the input signals respectively received by the respective Doherty power amplifier units are not out of phase, the main power amplifier and each peak power amplifier in the Doherty power amplifier unit are triggered. Are working and triggering n The Road Outphasing combiner is in a non-heterogeneous state.
  • the peak power amplifiers in the respective Doherty power amplifier units gradually enter the working state as the input signal power increases.
  • the signal control system adjusts the input signal sent to each Doherty power amplifier unit to a non-out-of-phase input signal, and the main power amplifier and each peak power in each Doherty power amplifier unit The amplifier power-amplifies the non-heterogeneous input signal (the amplified signal is still a non-heterogeneous signal).
  • the input signals of the n-channel Outphasing combiner receive n signals that are non-out-of-phase signals, the n-channel Outphasing combiner is triggered to be in a non-out-of-phase operation state, and the non-out-of-phase operation state is n-way.
  • the Outphasing combiner directly combines the signals received at each input without the need for phase adjustment.
  • 7B is a graph showing the efficiency of the power amplifier provided by the present invention in the second mode of operation.
  • the efficiency curve is the efficiency curve of the Outphasing power amplifier; when the input power is large, the power amplifier operates in the Doherty mode, The efficiency curve is the efficiency curve of the Doherty power amplifier.
  • this power amplifier maintains high efficiency over a wider input power range.
  • the power amplification method provided in this embodiment adopts a power amplifier including n parallel Doherty power amplifier units and an n-channel Outphasing combiner structure, and according to the input power of the received signal by the power amplifier, Trigger all or part of the Doherty power amplifier unit and the n-channel Outphasing combiner are in working state; solve the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, when the input power varies widely This leads to an increase in power consumption; a power amplifier using this structure is achieved, which is capable of maintaining high efficiency over a wide range of input power variations, thereby further reducing power consumption.
  • FIG. 8 is a structural block diagram of a power amplification control apparatus according to an embodiment of the present invention.
  • the power amplification control apparatus is used in a signal control system, and the signal control system is used in FIG. 3 or FIG. 4 .
  • the power amplifier provides an input signal.
  • the power amplification control device includes:
  • the processing module 810 is configured to determine, according to an operating mode of the power amplifier, a power threshold corresponding to the power amplifier, where the power threshold is used to indicate that the power of the signal input system reaches the power at the n input signals At the threshold, adjusting the n input signals to n non-heterogeneous input signals No. or n way out of phase input signal;
  • the processing module 810 is further configured to: when the power of the n input signals reaches the power threshold, adjust the n input signals to the n non-heterogeneous input signals or the n-way out-of-phase inputs signal;
  • the sending module 820 is configured to separately send the adjusted n input signals to an input end of the Doherty power amplifier unit.
  • the power amplification control apparatus determines the power threshold corresponding to the power amplifier according to the working mode of the power amplifier, and adjusts the input signal when the power of the input signal reaches the power threshold. It conforms to the working mode of the power amplifier; it solves the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, and the power consumption increases when the input power varies widely; A structured power amplifier that maintains high efficiency over a wide range of input power variations, further reducing power consumption.
  • the working mode of the power amplifier is a first working mode
  • the corresponding power threshold is a first power threshold, where the first power threshold is greater than the Doherty The initial operating power of each of the peak power amplifiers in the power amplifier unit,
  • the processing module 810 is further configured to adjust the n input signals to the n-channel out-of-phase input signals when the power of the n input signals reaches the first power threshold.
  • the processing module 810 is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals does not reach the first power threshold.
  • the working mode of the power amplifier is a second working mode, and the corresponding power threshold is a second power threshold, where the second power threshold is smaller than each of the peaks in the Doherty power amplifier unit.
  • the initial operating power of the power amplifier is a second working mode, and the corresponding power threshold is a second power threshold, where the second power threshold is smaller than each of the peaks in the Doherty power amplifier unit.
  • the processing module 810 is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals reaches the second power threshold.
  • the processing module 810 is configured to adjust the n input signals to the n-channel out-of-phase input signals when the power of the n input signals does not reach the second power threshold.
  • FIG. 9 shows a block diagram of a power method control apparatus according to an embodiment of the present invention.
  • the power method control device 900 can include a bus 910, and a processor 920, a memory 930, and a transceiver 940 coupled by a bus 910.
  • the memory 1030 is used to store one or one The above instructions are configured to be executed by processor 920.
  • the processor 920 is configured to determine, according to an operating mode of the power amplifier, a power threshold corresponding to the power amplifier, where the power threshold is used to indicate that the signal control system when the power of the n input signals reaches the power threshold Adjusting the n input signals to be n non-heterogeneous input signals or n-way out-of-phase input signals;
  • the processor 920 is further configured to: when the power of the n input signals reaches the power threshold, adjust the n input signals to the n non-out-of-phase input signals or the n-way out-of-phase inputs signal;
  • the processor 920 is further configured to control the transceiver 1040 to separately send the adjusted n input signals to an input end of the Doherty power amplifier unit.
  • the working mode of the power amplifier is a first working mode
  • the corresponding power threshold is a first power threshold, where the first power threshold is greater than each of the peaks in the Doherty power amplifier unit.
  • the processor 920 is further configured to adjust the n input signals to the n-channel out-of-phase input signals when the power of the n input signals reaches the first power threshold.
  • the processor 920 is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals does not reach the first power threshold. .
  • the working mode of the power amplifier is a second working mode, and the corresponding power threshold is a second power threshold, where the second power threshold is smaller than each of the peaks in the Doherty power amplifier unit.
  • the initial operating power of the power amplifier is a second working mode, and the corresponding power threshold is a second power threshold, where the second power threshold is smaller than each of the peaks in the Doherty power amplifier unit.
  • the processor 920 is further configured to adjust the n input signals to the n non-heterogeneous input signals when the power of the n input signals reaches the second power threshold.
  • the processor 920 is further configured to adjust the n input signals to the n out-of-phase input signals when the power of the n input signals does not reach the second power threshold.
  • the power amplification control apparatus determines the power threshold corresponding to the power amplifier according to the working mode of the power amplifier, and adjusts the input signal when the power of the input signal reaches the power threshold. It conforms to the working mode of the power amplifier; it solves the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, and the power consumption increases when the input power varies widely; A structured power amplifier that maintains high efficiency over a wide range of input power variations, further reducing power consumption.
  • the signal control system that provides an input signal to the power amplifier needs to adjust the input signal in real time according to the power threshold corresponding to the operating mode of the power amplifier. The following is explained by an embodiment.
  • FIG. 10 shows a flowchart of a method for power amplification control provided by an embodiment of the present invention. This embodiment is described by taking the power amplification control method for the signal control system in each of the above embodiments as an example.
  • the method includes:
  • Step 1001 Determine, according to an operating mode of the power amplifier, a power threshold corresponding to the power amplifier; the power threshold is used to indicate that the signal control system adjusts the n input signals to n non-heterogeneous inputs when the power of the n input signals reaches a power threshold. Signal or n-way out-of-phase input signal.
  • the signal control system can further determine how to set the n input signals when the power of the n input signals does not reach the power threshold according to the power level of the signal to be amplified and the operating mode of the power amplifier.
  • Step 1002 When the power of the n input signals reaches the power threshold, adjust the n input signals to be n non-heterogeneous input signals or n non-inverted input signals.
  • the signal control system sets the n input signals according to the signal setting manner corresponding to the n input signals when the power is not reached in step 1001.
  • Step 1003 Send the adjusted n input signals to the input end of the Doherty power amplifier unit.
  • the power amplification control method determines the power threshold corresponding to the power amplifier according to the working mode of the power amplifier, and adjusts the input signal when the power of the input signal reaches the power threshold. It conforms to the working mode of the power amplifier; it solves the Doherty power amplifier adopting the current architecture, and the corresponding input power variation range is small when maintaining high efficiency, and the power consumption increases when the input power varies widely; A structured power amplifier that maintains high efficiency over a wide range of input power variations, further reducing power consumption.
  • FIG. 11 shows a flowchart of a method for power amplification control provided by another embodiment of the present invention.
  • This embodiment is described by taking the power amplification control method for the signal control system shown in FIG. 3 or FIG. 4 as an example.
  • the method includes:
  • Step 1101 Determine a power threshold corresponding to the power amplifier according to an operating mode of the power amplifier.
  • the power threshold is used to indicate that the signal control system adjusts the n input signals to n non-heterogeneous input signals or n-way out-of-phase input signals when the power of the n input signals reaches the power threshold.
  • the signal control system can pre-store the power threshold corresponding to the power amplifier in various working modes. When the worker selects the working mode of the power amplifier to be connected, the signal control system can obtain the power threshold corresponding to the working mode.
  • the power amplifier provided by the embodiment of the present invention includes two working modes, and the power thresholds corresponding to the two working modes are different, when the working mode of the power amplifier connected to the signal control system is the first working mode, the signal control system Determining that the power threshold corresponding to the power amplifier is the first power threshold; when the operating mode of the power amplifier connected to the signal control system is the second working mode, the signal control system determines that the power threshold corresponding to the power amplifier is the second power threshold.
  • the first power threshold is greater than the initial working power of each peak power amplifier in the Doherty power amplifier unit, so that when the input power reaches the first power threshold, each peak power amplifier in the Doherty power amplifier unit is in a working state; the second power threshold is less than The initial operating power of each peak power amplifier in the Doherty power amplifier unit ensures that each peak power amplifier in the Doherty power amplifier unit does not start operating when the input power reaches the second power threshold.
  • Step 1102 When the power of the n input signals does not reach the first power threshold, the n input signals are adjusted to n non-heterogeneous input signals.
  • the signal control system In the first mode of operation, in order to make the power amplifier operate in the Doherty mode when the power of the input signal is small, that is, each Doherty power amplifier unit in the power amplifier is in operation, and the Outphasing combiner is in a non-heterogeneous working state, the signal control system When the power of the n input signals does not reach the first power threshold, the n input signals need to be adjusted to n non-heterogeneous input signals.
  • the non-out-of-phase working state is an operation state in which the n-channel Outphasing combiner directly combines the signals received by the respective input terminals without performing phase adjustment.
  • step 1103 the n non-heterogeneous input signals are respectively sent to the input end of the Doherty power amplifier unit.
  • the n-channel Outphasing combiner Since the purpose of the n-channel Outphasing combiner is to combine the n-channel out-of-phase signals, the n-channel Outphasing combiner is in the non-out-of-phase signal when the input of the n-channel Outphasing combiner receives n non-out-of-phase signals.
  • the out-of-phase operating state combines the received non-out-of-phase signals.
  • Step 1104 When the power of the n input signals reaches the first power threshold, the n input signals are adjusted to n out-of-phase input signals.
  • the signal control system needs to adjust the n-way non-heterogeneous input signal to the n-way out-of-phase input signal when the power of the n-channel input signal reaches the first power threshold.
  • step 1108 After performing the above step 1104, the signal control system performs step 1108.
  • Step 1105 When the power of the n input signals does not reach the second power threshold, the n input signals are adjusted to the n-way out-of-phase input signals.
  • the signal control system needs to adjust the n input signals to n out-of-phase input signals, thereby triggering the n-way Outphasing combiner to enter the different Phase working state.
  • step 1106 the n-channel out-of-phase input signals are respectively sent to the input terminals of the Doherty power amplifier unit.
  • the n-channel Outphasing combiner when the input terminals of the n-channel Outphasing combiner receive the n-channel out-of-phase input signals, the n-channel Outphasing combiner is triggered to enter the out-of-phase working state, and the phase adjustment of the received n-channel out-of-phase input signals is performed. Then combine the signals.
  • Step 1107 when the power of the n input signals reaches the second power threshold, the n input signals are adjusted to n non-heterogeneous input signals.
  • the power amplifier In the second mode of operation, in order to make the power amplifier operate in Doherty mode when the power of the input signal is large, that is, the main power amplifier and each peak power amplifier in each Doherty power amplifier unit of the power amplifier are in working state, and the Outphasing combined circuit The device is in a non-heterogeneous working state.
  • the signal control system needs to adjust the n-channel out-of-phase input signals to n non-heterogeneous input signals.
  • step 1107 After performing the above step 1107, the signal control system performs step 1108.
  • step 1108 the adjusted n input signals are respectively sent to the input end of the Doherty power amplifier unit.
  • each Doherty power amplifier unit receives the adjusted n input signals through respective input terminals, amplifies the input signal, and passes the amplified signals to the n-way Outphasing combiner for combining.
  • the n-channel out-of-phase input signal triggers the n-way Outphasing combiner to enter the out-of-phase working state; after performing the above step 1107, the n-way non-heterogeneous input signal triggers the n-way Outphasing combination The device enters a non-heterogeneous working state.
  • the power amplification control method provided by this embodiment passes the work according to the power amplifier.
  • the mode determines the power threshold corresponding to the power amplifier, and adjusts the input signal to conform to the working mode of the power amplifier when the power of the input signal reaches the power threshold; and solves the Doherty power amplifier adopting the current architecture to maintain high efficiency.
  • the corresponding input power variation range is small, and the power consumption increase problem when the input power variation range is large; the power amplifier adopting the structure can maintain high efficiency in a range of larger input power variation, thereby Further reduce the power consumption effect.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例提供了一种功率放大器、功率放大方法、功率放大控制装置及方法,涉及功率放大器领域,所述功率放大器包括:n个并联的Doherty功放单元和n路Outphasing合路器,n≥2且n为整数;各个Doherty功放单元包括一个输入端和一个输出端;n路Outphasing合路器包括n个输入端和一个输出端;所述Doherty功放单元的输出端分别与n路Outphasing合路器的输入端相连。本发明达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。

Description

功率放大器、功率放大方法、功率放大控制装置及方法 技术领域
本发明涉及功率放大器领域,特别涉及一种功率放大器、功率放大方法、功率放大控制装置及方法。
背景技术
无线基站作为一种射频信号收发装置,用于通过功率放大器(英文:Power Amplifier,简称:PA)对输入信号进行放大,并由发射器对放大后的输入信号进行发射。功率放大器作为无线基站中耗能最多的部件,其效率直接影响到整个无线基站的功耗。
为了降低无线基站的功耗,现有的无线基站通常采用杜赫尔蒂(英文:Doherty)功率放大器。
Doherty功率放大器中包括:一个主功率放大器和至少一个峰值功率放大器,且主功率放大器与各个峰值功率放大器之间并联。其工作原理是通过有源负载牵引技术,使主功率放大器和各个峰值功率放大器都工作在各自的饱和区中,从而保证整个Doherty功率放大器在尽量大的输入功率范围内都保持较高的效率。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加,无法满足无线基站对功耗的要求。
发明内容
为了解决现有技术中采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题,本发明实施例提供了一种功率放大器、功率放大方法、功率放大控制方法及装置。所述技术方案如下:
第一方面,提供了一种功率放大器,所述功率放大器包括:
n个并联的Doherty功放单元和n路异相(英文:Outphasing)合路器,n≥2且n为整数;
各个所述Doherty功放单元包括一个输入端和一个输出端;
所述n路Outphasing合路器包括n个输入端和一个输出端;
各个所述Doherty功放单元的输出端分别与所述n路Outphasing合路器的输入端相连。
在第一方面的第一种可能的实施方式中,所述Doherty功放单元是m路Doherty功放单元,所述m路Doherty功放单元中包括一个主功率放大器和(m-1)个峰值功率放大器,m≥2且m为整数,且各个所述Doherty功放单元的路数相同或不同;
对于每个所述m路Doherty功放单元,所述主功率放大器与各个所述峰值功率放大器之间并联,且各个所述峰值功率放大器之间并联。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述m路Doherty功放单元为两路对称Doherty功放单元,所述两路对称Doherty功放单元中包含一个所述主功率放大器和一个所述峰值功率放大器;所述主功率放大器与所述峰值功率放大器采用相同功率的晶体管;
或,
所述m路Doherty功放单元为两路非对称Doherty功放单元,所述两路非对称Doherty功放单元中包含一个所述主功率放大器和一个所述峰值功率放大器;所述主功率放大器与所述峰值功率放大器采用不同功率的晶体管。
结合第一方面、第一方面的第一种可能的实施方式、第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,所述n路Outphasing合路器是异相(英文:Chireix)合路器。
第二方面,提供了一种功率放大方法,用于如上述第一方面所述的功率放大器中,所述方法包括:
通过各个所述Doherty功放单元的输入端接收输入信号;
根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态。
在第二方面的第一种可能的实施方式中,所述根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态,包括:
当所述Doherty功放单元接收到的所述输入信号的功率小于第一功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号非异相时,触发各个所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于非异相工作状态;其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
当所述Doherty功放单元接收到的所述输入信号的功率大于所述第一功率阈值且各个所述Doherty功放单元各自接收到的所述输入信号异相时,触发所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于异相工作状态;
所述非异相工作状态是所述n路Outphasing合路器直接对各个输入端接收到的信号进行合并的工作状态;
所述异相工作状态是所述n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
在第二方面的的第二种可能的实施方式中,所述根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态,包括:
当所述Doherty功放单元接收到的所述输入信号的功率小于第二功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号异相时,触发所述Doherty功放单元中的所述主功率放大器处于工作状态,并触发所述n路Outphasing合路器处于异相工作状态;其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
当所述Doherty功放单元接收到的所述输入信号的功率大于所述第二功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号非异相时,触发所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于非异相工作状态;
所述非异相工作状态是所述n路Outphasing合路器直接对各个输入端接收到的信号进行合并的工作状态;
所述异相工作状态是所述n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
第三方面,提供了一种功率放大控制装置,用于信号控制系统中,所述信 号控制系统用于为第一方面所述的功率放大器提供n路输入信号,n≥2且n为整数,所述装置包括:
处理模块,用于根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
所述处理模块,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
发送模块,用于将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
在第三方面的第一种可能的实施方式中,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
所述处理模块,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
结合第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述处理模块,还用于当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
在第三方面的第三种可能的实施方式中,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
所述处理模块,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
结合在第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,所述处理模块,还用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
第四方面,提供了一种功率放大控制装置,用于信号控制系统中,所述信号控制系统用于为第一方面所述的功率放大器提供n路输入信号,n≥2且n为整数,所述装置包括:
处理器,用于根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的 功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
所述处理器,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
所述处理器,还用于控制收发器将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
在第四方面的第一种可能的实施方式中,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
所述处理器,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
结合第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述处理器,还用于当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
结合第四方面,在第四方面的第三种可能的实施方式中,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
所述处理器,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
结合第四方面的第三种可能的实施方式,在第四方面的第四种可能的实施方式中,所述处理器,还用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
第五方面,提供了一种功率放大控制方法,用于信号控制系统中,所述信号控制系统用于为第一方面所述的功率放大器提供n路输入信号,n≥2且n为整数,所述方法包括:
根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号 为所述n路非异相输入信号或所述n路异相输入信号;
将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
在第五方面的第一种可能的实施方式中,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
所述当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号,包括:
当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
结合第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述方法,还包括:
当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
在第五方面的第三种可能的实施方式中,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
所述当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号,包括:
当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
结合第五方面的第三种可能的实施方式,在第五方面的第四种可能的实施方式中,所述方法,还包括:
当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
本发明实施例提供的技术方案的有益效果是:
通过采用包含n个并联的Doherty功放单元和n路Outphasing合路器结构的功率放大器,并由该功率放大器根据接收到的信号的输入功率,触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降 低功耗的效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供无线基站的结构方框图;
图2是Doherty功率放大器、Outphasing功率放大器和传统B类功率放大器的效率曲线图;
图3是本发明一个实施例提供的功率放大器的结构示意图;
图4是本发明另一个实施例提供的功率放大器的结构示意图;
图5是本发明一个实施例提供的功率放大方法的方法流程图;
图6A是本发明另一个实施例提供的功率放大方法的方法流程图;
图6B是本发明实施例提供的功率放大器在第一工作模式下的效率曲线图;
图7A是本发明再一个实施例提供的功率放大方法的方法流程图;
图7B是本发明实施例提供的功率放大器在第二工作模式下的效率曲线图;
图8是本发明一个实施例提供的功率放大控制装置的结构方框图;
图9是本发明一个实施例提供的功率方法控制装置的框图;
图10是本发明一个实施例提供的功率放大控制的方法流程图;
图11是本发明另一个实施例提供的功率放大控制的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了方便理解,首先对本发明实施例中出现的一些名词进行解释:
Outphasing功率放大器:Outphasing功率放大器中包括两个并联的功率放大器和两路Outphasing合路器。其工作原理是两个功率放大器分别对接收到的两路异相的输入信号进行放大,并由Outphasing合路器对两路放大后的输入信 号进行合路,从而提高功率放大器的效率。
无线基站作为一种射频信号收发装置,用于为其信号覆盖范围内的移动终端提供射频信号。如图1所示,无线基站10中通常包括控制子系统11、射频子系统12和天线子系统13。
以无线基站10发射射频信号为例,控制子系统11接收到天线子系统13发送的基带信号后,通过基带处理单元111(英文:Building Base band Unit,简称:BBU)对该未经调制的基带信号进行处理,并通过通用公共无线电接口(英文:Common Public Radio Interface,简称:CPRI)将处理后的信号发送至射频子系统12。为了保证移动终端14接收到的射频信号的强度,射频子系统12需要通过内部的功率放大器121对接收到的信号进行放大。功率放大器121对信号进行放大后,即将放大后的信号发送至天线子系统13,由天线子系统13中的GSM天线/塔放控制模块131(英文:GSM Antenna and TMA control Module,简称:GATM)控制塔顶放大器132(英文:Tower Mounted Amplifier,简称TMA)对该信号进行发射。
需要说明的是,本领域技术人员可以了解的是,无线基站中还包括其他常规子系统,且控制子系统、射频子系统和天线子系统中还包括其他常规组件,在此不再一一赘述。
作为无线基站中耗能最多的组件,功率放大器的工作效率直接影响到整个无线基站的耗能。为了降低无线基站的功耗,现有技术中的无线基站通常采用Doherty功率放大器这种主流的高效率功率放大器。
图2示出了Doherty功率放大器、Outphasing功率放大器和传统B类功率放大器的效率曲线图。其中,该效率曲线图的横坐标为经过归一化操作后功率放大器的输出电压,该效率曲线图的纵坐标为功率放大器的效率。
其中,输出电压的大小与输入功率的大小成正比。显而易见的,相较于传统的B类功率放大器,Doherty功率放大器和Outphasing功率放大器在较大的输入功率范围内的效率均有明显的提升。
请参考图3,其示出了本发明一个实施例提供的功率放大器的结构示意图。该功率放大器包括2个并联的Doherty功放单元和1个两路Outphasing合路器。
第一Doherty功放单元31和第二Doherty功放单元32并联,第一Doherty功放单元31包括一个输入端311和一个输出端312,第二Doherty功放单元32包括一个输入端321和一个输出端322。
两路Outphasing合路器33包括两个输入端和一个输出端,分别为第一输入端331、第二输入端332和输出端333,该两路Outphasing合路器可以为Chireix合路器或其他具有Outphasing合路功能的合路器,本发明并不对Outphasing合路器的类型进行限定。
其中,第一Doherty功放单元31的输出端312与两路Outphasing合路器33的第一输入端331电性相连,第二Doherty功放单元32的输出端322与两路Outphasing合路器33的第二输入端332电性相连。
第一Doherty功放单元31的输入端311和第二Doherty功放单元32的输入端321均用于接收信号控制系统34发送的输入信号,第一Doherty功放单元31的输出端312以及第二Doherty功放单元32的输出端332均用于将放大后的输入信号发送给两路Outphasing合路器33。两路Outphasing合路器33将通过第一输入端331和第二输入端332接收到的信号放大后,进行合并,并通过输出端333发送给发射器(图中未示出)进行发射。
图3中,第一Doherty功放单元31和第二Doherty功放单元32均为两路Doherty功放单元,即第一Doherty功放单元31和第二Doherty功放单元32中均包含一个主功率放大器和一个峰值功率放大器。其中,主功率放大器偏置在B类或AB类,峰值功率放大器偏置在C类,且主功率放大器一直处于工作状态,峰值功率放大器仅在输入功率达到起始工作功率时才开始工作。
如图3所示,第一Doherty功放单元31中包括主功率放大器313和峰值功率放大器314;第二Doherty功放单元32中包括主功率放大器324和峰值功率放大器323。其中,主功率放大器313与峰值功率放大器314并联;主功率放大器324与峰值功率放大器323并联。需要说明的是,主功率放大器313与峰值功率放大器314之间还需要通过Doherty合路器(图中未示出)相连,该Doherty合路器用于将经过主功率放大器313和峰值功率放大器314放大后的信号进行合并。对应的,主功率放大器324与峰值功率放大器323也需要通过Doherty合路器相连。
第一Doherty功放单元31中主功率放大器313的后端串联有第一微带线315,峰值功率放大器314的前端串联有第二微带线316,其中,第一微带线 315用于阻抗变换,而第二微带线315用于平衡相位。第一微带线315和第二微带线316均可以为四分之一波长微带线或等效电路。
对应的,第二Doherty功放单元32中主功率放大器324的后端串联有第三微带线325,峰值功率放大器323的前端串联有第四微带线326,且第三微带线325的作用与第一微带线315相同,第四微带线326的作用与第二微带线316相同。第三微带线325和第四微带线326均可以为四分之一波长微带线或等效电路。
当第一Doherty功放单元31中主功率放大器313与峰值功率放大器314采用相同功率的晶体管时,第一Doherty功放单元31即为两路对称Doherty功放单元;当第一Doherty功放单元31中主功率放大器313与峰值功率放大器314采用不同功率的晶体管时,第一Doherty功放单元31即为两路非对称Doherty功放单元。本实施例中,第一Doherty功放单元31可以为两路对称Doherty功放单元,也可以为两路非对称Doherty功放单元;对应的,第二Doherty功放单元32可以为两路对称Doherty功放单元,也可以为两路非对称Doherty功放单元,本发明并不对此进行限定。
需要说明的是,本实施例中的Doherty功放单元的结构与经典的Doherty功率放大器的结构相似,两路Outphasing合路器的结构与经典的Outphasing功率放大器中Outphasing合路器的结构相似。本领域技术人员可以了解的是,本实施例中的Doherty功放单元和两路Outphasing合路器中还包括其他常规元件,本实施例不再一一赘述。
在可选的实施例中,各个Doherty功放单元不仅可以是两路Doherty功放单元,该Doherty功放单元还可以为m路Doherty功放单元,即各个Doherty功放单元中包括一个主功率放大器和(m-1)个峰值功率放大器,m≥2且m为整数。下面采用另一实施例进行说明。
请参考图4,其示出了本发明另一个实施例提供的功率放大器的结构示意图。本实施例以该功率放大器中的Doherty功放单元为三路Doherty功放单元为例进行说明。该功率放大器包括:
第一Doherty功放单元41和第二Doherty功放单元42并联,第一Doherty功放单元41包括一个输入端411和一个输出端412,第二Doherty功放单元42包括一个输入端421和一个输出端422。
两路Outphasing合路器43包括两个输入端和一个输出端,分别为第一输入端431、第二输入端432和输出端433,该两路Outphasing合路器可以为Chireix合路器或其他具有Outphasing功能的合路器,本发明并不对Outphasing合路器的类型进行限定。
其中,第一Doherty功放单元41的输出端412与两路Outphasing合路器43的第一输入端431电性相连,第二Doherty功放单元42的输出端422与两路Outphasing合路器43的第二输入端432电性相连。
第一Doherty功放单元41的输入端411和第二Doherty功放单元42的输入端421均用于接收信号控制系统44发送的输入信号,第一Doherty功放单元41的输出端412以及第二Doherty功放单元42的输出端432均用于将放大后的输入信号发送给两路Outphasing合路器43。两路Outphasing合路器43将通过第一输入端431和第二输入端432接收到的信号放大后,进行合并,并通过输出端433发送给发射器(图中未示出)进行发射。
图4中,第一Doherty功放单元41和第二Doherty功放单元42均为三路Doherty功放单元,即第一Doherty功放单元31和第二Doherty功放单元32中均包含一个主功率放大器和两个峰值功率放大器。其中,主功率放大器偏置在B类或AB类,各个峰值功率放大器偏置在C类,且主功率放大器一直处于工作状态,各个峰值功率放大器仅在输入功率达到各自对应的起始工作功率时才开始工作,且各个峰值功率放大器对应的起始工作功率可以相同或不同,本发明并不对此进行限定。
如图4所示,第一Doherty功放单元41中包括主功率放大器413、第一峰值功率放大器414和第二峰值功率放大器415;第二Doherty功放单元42中包括主功率放大器425、第一峰值功率放大器423和第二峰值功率放大器424。其中,主功率放大器与各个峰值功率放大器之间并联,各个峰值功率放大器之间并联。其中,主功率放大器和各个峰值功率放大器可以采用相同或不同功率的晶体管,本发明并不对此进行限定。
需要说明的是,本领域技术人员可以了解的是,本实施例中的三路Doherty功放单元和两路Outphasing合路器中还包括其他常规元件,本实施例不再一一赘述。
本发明实施例中,Outphasing合路可以包括n个输入端,n≥2且n为整数, 即Outphasing合路器可以为n路Outphasing合路器,对应的,功率放大器中包括n个Doherty功放单元,且各个Doherty功放单元的输出端分别与n路Outphasing合路器的输入端相连。
另外,各个Doherty功放单元的路数可以相同或不同,即各个Doherty功放单元中包括的功率放大器的总数可以相同或不同。
比如,功率放大器中包括第一Doherty功放单元、第二Doherty功放单元和第三Doherty功放单元,且第一Doherty功放单元、第二Doherty功放单元和第三Doherty功放单元中均包括一个主功率放大器和一个峰值功率放大器;
又比如,功率放大器中包括第一Doherty功放单元、第二Doherty功放单元和第三Doherty功放单元,第一Doherty功放单元中包括一个主功率放大器和一个峰值功率放大器(即第一Doherty功放单元为两路Doherty单元),第二Doherty功放单元中包括一个主功率放大器和两个峰值功率放大器(即第二Doherty功放单元为三路Doherty单元),第三Doherty功放单元中包括一个主功率放大器和三个峰值功率放大器(即第三Doherty功放单元为四路Doherty单元)。
本发明各个实施例提供的功率放大器在工作时,需要根据接收到的信号的输入功率,触发Doherty功放单元和Outphasing合路器中的全部或者一部分处于工作状态,从而起到提高功率放大器效率的效果。
请参考图5,其示出了本发明一个实施例提供的功率放大方法的方法流程图。本实施例以该功率放大方法用于上述实施例示出的功率放大器为例进行说明,该功率放大方法包括:
步骤501,通过各个Doherty功放单元的输入端接收输入信号。
步骤502,根据输入信号的功率,触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态。
综上所述,本实施例提供的功率放大方法,通过采用包含n个并联的Doherty功放单元和n路Outphasing合路器结构的功率放大器,并由该功率放大器根据接收到的信号的输入功率,触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大 的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
在设计功率放大器时,可以根据实际工作需要将功率放大器的工作模式设置为第一工作模式或第二工作模式。在第一工作模式下,功率放大器先触发Doherty功放单元处于工作状态,后触发n路Outphasing合路器处于工作状态;在第二工作模式下,功率放大器先触发n路Outphasing合路器处于工作状态,后触发Doherty功放单元处于工作状态。下面采用两个实施例进行说明。
请参考图6A,其示出了本发明另一个实施例提供的功率放大方法的方法流程图。本实施例以该功率放大方法用于以第一工作模式工作的功率放大器为例进行说明。该功率放大方法包括:
步骤601,通过各个Doherty功放单元的输入端接收输入信号。
功率放大器中的各个Doherty功放单元通过输入端接收信号控制系统发送的输入信号。
步骤602,当Doherty功放单元接收到的输入信号的功率小于第一功率阈值,且各个Doherty功放单元各自接收到的输入信号非异相时,触发各个Doherty功放单元中的主功率放大器和各个峰值功率放大器均处于工作状态,并触发n路Outphasing合路器处于非异相工作状态;其中,第一功率阈值大于Doherty功放单元中各个峰值功率放大器的起始工作功率。
在设计功率放大器时,需要预先为该功率放大器设计一个功率阈值,该功率阈值用于触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态。
对于被设置为以第一工作模式工作的功率放大器来说,该功率放大器对应的第一功率阈值需要大于Doherty功放单元中各个峰值功率放大器的起始工作功率,从而保证在输入信号的功率达到第一功率阈值之前,各个Doherty功放单元中的主功率放大器和各个峰值功率放大器均处于工作状态。
同时,在输入信号的功率小于第一功率阈值时,信号控制系统向各个Doherty功放单元发送的输入信号为非异相输入信号,由各个Doherty功放单元对非异相输入信号进行功率放大(其仍旧为非异相输入信号)。。由于n路Outphasing合路器的目的是对n路异相输入信号进行合并,且在输入信号的功率小于第一功率阈值时,n路Outphasing合路器接收到的信号为非异相输入信号,所以在输入信号的功率小于第一功率阈值时,该n路Outphasing合路器处 于非异相工作状态,非异相工作状态是n路Outphasing合路器直接对各个输入端接收到的信号进行合并,而不需要进行相位调整的工作状态。
步骤603,当Doherty功放单元接收到的输入信号的功率大于第一功率阈值且各个Doherty功放单元各自接收到的输入信号异相时,触发Doherty功放单元中的主功率放大器和各个峰值功率放大器均处于工作状态,并触发n路Outphasing合路器处于异相工作状态。
当Doherty功放单元接收到的输入信号的功率大于第一功率阈值时,各个Doherty功放单元中的主功率放大器和峰值功率放大器均处于工作状态,且随着输入信号的功率不断增加,主功率放大器和峰值功率放大器均处于饱和状态,以最大效率工作。
同时,在输入信号的功率大于第一功率阈值时,信号控制系统将向各个Doherty功放单元发送的输入信号调整为异相输入信号,由各个Doherty功放单元对异相输入信号进行功率放大(其仍旧为异相信号),此时,n路Outphasing合路器的各个输入端接收到n路异相信号时,即触发该n路Outphasing合路器处于异相工作状态,异相工作状态是n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
简单来说,采用第一工作模式工作的功率放大器,当输入功率较小时,以Doherty模式进行工作,提高低功率时的效率,当输入功率较大时,以Outphasing模式进行工作,保持高功率时的高效。
图6B是本发明提供的功率放大器在第一工作模式下的效率曲线图。显而易见的,在第一工作模式下,当输入功率较小时,功率放大器以Doherty模式工作,其效率曲线即为Doherty功率放大器的效率曲线;当输入功率较大时,功率放大器以Outphasing模式工作,其效率曲线即为Outphasing功率放大器的效率曲线。相较于传统的Doherty功率放大器,该功率放大器能够在更大的输入功率范围内保持高效率。
综上所述,本实施例提供的功率放大方法,通过采用包含n个并联的Doherty功放单元和n路Outphasing合路器结构的功率放大器,并由该功率放大器根据接收到的信号的输入功率,触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大 的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
请参考图7A,其示出了本发明再一个实施例提供的功率放大方法的方法流程图。本实施例以该功率放大方法用于以第二工作模式工作的功率放大器为例进行说明。该功率放大方法包括:
步骤701,通过各个Doherty功放单元的输入端接收信号控制系统发送的输入信号。
功率放大器中的各个Doherty功放单元通过输入端接收输入信号。
步骤702,当Doherty功放单元接收到的输入信号的功率小于第二功率阈值,且各个Doherty功放单元各自接收到的输入信号异相时,触发Doherty功放单元中的主功率放大器处于工作状态,并触发n路Outphasing合路器处于异相工作状态;其中,第二功率阈值小于Doherty功放单元中各个峰值功率放大器的起始工作功率。
在设计功率放大器时,需要预先为该功率放大器设计一个功率阈值,该功率阈值用于触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态。
对于被设置为以第二工作模式工作的功率放大器来说,该功率放大器对应的第二功率阈值需要小于Doherty功放单元中各个峰值功率放大器的起始工作功率,从而保证在输入信号的功率达到第二功率阈值之前,各个Doherty功放单元中的各个峰值功率放大器均未开始工作。
同时,在输入信号的功率小于第二功率阈值时,信号控制系统向各个Doherty功放单元发送的输入信号为异相输入信号,由于各个Doherty功放单元中的各个峰值功率放大器均未开始工作,所以仅由各个主功率放大器对该异相输入信号进行功率放大(放大后的信号仍旧为异相信号)。由于n路Outphasing合路器的目的是对n路异相信号进行合并,所以当n路Outphasing合路器的各个输入端接收各个Doherty功放单元发送的n路异相信号时,该n路Outphasing合路器即处于异相工作状态,异相工作状态是n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
步骤703,当Doherty功放单元接收到的输入信号的功率大于第二功率阈值,且各个Doherty功放单元各自接收到的输入信号非异相时,触发Doherty功放单元中的主功率放大器和各个峰值功率放大器均处于工作状态,并触发n 路Outphasing合路器处于非异相工作状态。
当Doherty功放单元接收到的输入信号的功率大于第二功率阈值时,随着输入信号功率的增加,各个Doherty功放单元中的峰值功率放大器陆续进入工作状态。
同时,在输入信号的功率大于第二功率阈值时,信号控制系统将向各个Doherty功放单元发送的输入信号调整为非异相输入信号,并由各个Doherty功放单元中的主功率放大器和各个峰值功率放大器对非异相输入信号进行功率放大(放大后的信号仍旧为非异相信号)。此时,由于n路Outphasing合路器的各个输入端接收到信号为n路非异相信号,该n路Outphasing合路器即被触发处于非异相工作状态,非异相工作状态是n路Outphasing合路器直接对各个输入端接收到的信号进行合并,而不需要进行相位调整的工作状态。
图7B是本发明提供的功率放大器在第二工作模式下的效率曲线图。显而易见的,在第二工作模式下,当输入功率较小时,功率放大器以Outphasing模式工作,其效率曲线即为Outphasing功率放大器的效率曲线;当输入功率较大时,功率放大器以Doherty模式工作,其效率曲线即为Doherty功率放大器的效率曲线。相较于传统的Doherty功率放大器,该功率放大器能够在更大的输入功率范围内保持高效率。
综上所述,本实施例提供的功率放大方法,通过采用包含n个并联的Doherty功放单元和n路Outphasing合路器结构的功率放大器,并由该功率放大器根据接收到的信号的输入功率,触发Doherty功放单元和n路Outphasing合路器中的全部或者一部分处于工作状态;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
请参考图8,其示出了本发明一个实施例提供的功率放大控制装置的结构方框图,该功率放大控制装置用于信号控制系统中,该信号控制系统用于为图3或图4所示的功率放大器提供输入信号。该功率放大控制装置,包括:
处理模块810,用于根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信 号或n路异相输入信号;
所述处理模块810,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
发送模块820,用于将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
综上所述,本实施例提供的功率放大控制装置,通过根据功率放大器的工作模式确定该功率放大器对应的功率阈值,并在输入信号的功率达到该功率阈值时对输入信号进行调整,使其符合功率放大器的工作模式;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
在图8的基础上,可选地,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
所述处理模块810,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
可选地,该处理模块810,还用于当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
可选地,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
所述处理模块810,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
可选地,所述处理模块810,用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
请参考图9,其示出了本发明一个实施例提供的功率方法控制装置的框图。该功率方法控制装置900可以包括:总线910,以及通过总线910相连的处理器920、存储器930和收发器940。其中,存储器1030用于存储一个或者一个 以上的指令,该指令被配置成由处理器920执行。
处理器920,用于根据功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
所述处理器920,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
所述处理器920,还用于控制收发器1040将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
可选地,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
所述处理器920,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
可选地,所述处理器920,还用于当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
可选地,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
所述处理器920,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
可选地,所述处理器920,还用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
综上所述,本实施例提供的功率放大控制装置,通过根据功率放大器的工作模式确定该功率放大器对应的功率阈值,并在输入信号的功率达到该功率阈值时对输入信号进行调整,使其符合功率放大器的工作模式;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
为了保证功率放大器高效工作,为该功率放大器提供输入信号的信号控制系统需要根据该功率放大器工作模式对应的功率阈值,实时调整输入信号。下面通过一个实施例进行说明。
请参考图10,其示出了本发明一个实施例提供的功率放大控制的方法流程图。本实施例以该功率放大控制方法用于上述各个实施例中的信号控制系统为例进行说明。该方法包括:
步骤1001,根据功率放大器的工作模式,确定功率放大器对应的功率阈值;功率阈值用于指示信号控制系统在n路输入信号的功率达到功率阈值时,调整n路输入信号为n路非异相输入信号或n路异相输入信号。
信号控制系统根据需要放大的信号的功率大小和功率放大器的工作模式,还可以进一步确定在n路输入信号的功率未达到功率阈值时,如何对该n路输入信号进行设置。
步骤1002,当n路输入信号的功率达到功率阈值时,调整n路输入信号为n路非异相输入信号或n路异相输入信号。
当n路输入信号的功率未达到功率阈值时,信号控制系统即根据步骤1001中确定的未达到功率时,n路输入信号对应的信号设置方式对n路输入信号进行设置。
步骤1003,将调整后的n路输入信号分别发送至Doherty功放单元的输入端。
综上所述,本实施例提供的功率放大控制方法,通过根据功率放大器的工作模式确定该功率放大器对应的功率阈值,并在输入信号的功率达到该功率阈值时对输入信号进行调整,使其符合功率放大器的工作模式;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
请参考图11,其示出了本发明另一个实施例提供的功率放大控制的方法流程图。本实施例以该功率放大控制方法用于图3或图4所示的信号控制系统为例进行说明。该方法包括:
步骤1101,根据功率放大器的工作模式,确定功率放大器对应的功率阈值; 功率阈值用于指示信号控制系统在n路输入信号的功率达到功率阈值时,调整n路输入信号为n路非异相输入信号或n路异相输入信号。
该信号控制系统中可以预先存储有各种工作模式下,功率放大器对应的功率阈值,当工作人员选择待连接的功率放大器的工作模式后,信号控制系统即可获取该工作模式对应的功率阈值。
由于本发明实施例提供的功率放大器包括两种工作模式,且两种工作模式对应的功率阈值不同,所以当与该信号控制系统连接的功率放大器的工作模式为第一工作模式时,信号控制系统确定功率放大器对应的功率阈值为第一功率阈值;当与该信号控制系统连接的功率放大器的工作模式为第二工作模式时,信号控制系统确定功率放大器对应的功率阈值为第二功率阈值。
其中,第一功率阈值大于Doherty功放单元中各个峰值功率放大器的起始工作功率,从而保证输入功率达到第一功率阈值时,Doherty功放单元中各个峰值功率放大器均处于工作状态;第二功率阈值小于Doherty功放单元中各个峰值功率放大器的起始工作功率,从而保证输入功率达到第二功率阈值时,Doherty功放单元中各个峰值功率放大器均未开始工作。
步骤1102,当n路输入信号的功率未达到第一功率阈值时,将n路输入信号调整为n路非异相输入信号。
在第一工作模式下,为了使功率放大器在输入信号的功率较小时以Doherty模式工作,即功率放大器中各个Doherty功放单元处于工作状态,且Outphasing合路器处于非异相工作状态,信号控制系统在n路输入信号的功率未达到第一功率阈值时,需要将n路输入信号调整为n路非异相输入信号。其中,非异相工作状态是n路Outphasing合路器直接对各个输入端接收到的信号进行合并,而不需要进行相位调整的工作状态。
步骤1103,将n路非异相输入信号分别发送至Doherty功放单元的输入端。
由于n路Outphasing合路器的目的是对n路异相信号进行合并,所以当n路Outphasing合路器的各个输入端接收到n路非异相信号时,n路Outphasing合路器即处于非异相工作状态,对接收到的非异相信号进行合并。
步骤1104,当n路输入信号的功率达到第一功率阈值时,将n路输入信号调整为n路异相输入信号。
在第一工作模式下,为了使功率放大器在输入信号的功率较大时以Outphasing模式工作,即功率放大器中各个Doherty功放单元处于工作状态, 且Outphasing合路器处于异相工作状态,信号控制系统需要在n路输入信号的功率达到第一功率阈值时,将n路非异相输入信号调整为n路异相输入信号。
执行完上述步骤1104后,信号控制系统即执行步骤1108。
步骤1105,当n路输入信号的功率未达到第二功率阈值时,将n路输入信号调整为n路异相输入信号。
在第二工作模式下,为了使功率放大器在输入信号的功率较小时以Outphasing模式工作,即功率放大器的各个Doherty功放单元中,仅主功率放大器处于工作状态,且n路Outphasing合路器处于异相工作状态,信号控制系统在n路输入信号的功率未达到第二功率阈值时,信号控制系统需要将n路输入信号调整为n路异相输入信号,从而触发n路Outphasing合路器进入异相工作状态。
步骤1106,将n路异相输入信号分别发送至Doherty功放单元的输入端。
对应的,n路Outphasing合路器的各个输入端接收到n路异相输入信号时,触发n路Outphasing合路器进入异相工作状态,对接收到的n路异相输入信号进行相位调整后再进行信号的合并。
步骤1107,当n路输入信号的功率达到第二功率阈值时,将n路输入信号调整为n路非异相输入信号。
在第二工作模式下,为了使功率放大器在输入信号的功率较大时以Doherty模式工作,即功率放大器各个Doherty功放单元中的主功率放大器和各个峰值功率放大器均处于工作状态,且Outphasing合路器处于非异相工作状态,当n路输入信号的功率达到第二功率阈值时,信号控制系统需要将n路异相输入信号调整为n路非异相输入信号。
执行完上述步骤1107后,信号控制系统即执行步骤1108。
步骤1108,将调整后的n路输入信号分别发送至Doherty功放单元的输入端。
对应的,各个Doherty功放单元通过各自的输入端接收调整后的n路输入信号,对该输入信号进行放大,并将放大后的信号交由n路Outphasing合路器进行合并。其中,在执行完上述步骤1104后,n路异相输入信号触发n路Outphasing合路器进入异相工作状态;在执行完上述步骤1107后,n路非异相输入信号触发n路Outphasing合路器进入非异相工作状态。
综上所述,本实施例提供的功率放大控制方法,通过根据功率放大器的工 作模式确定该功率放大器对应的功率阈值,并在输入信号的功率达到该功率阈值时对输入信号进行调整,使其符合功率放大器的工作模式;解决了采用当前架构的Doherty功率放大器,维持高效率时对应的输入功率变化范围较小,当输入功率变化范围较大时会导致功耗增加的问题;达到了采用该结构的功率放大器,能够在更大的输入功率变化范围内保持高效率,从而进一步降低功耗的效果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种功率放大器,其特征在于,所述功率放大器包括:n个并联的杜赫尔蒂Doherty功放单元和n路异相Outphasing合路器,n≥2且n为整数;
    各个所述Doherty功放单元包括一个输入端和一个输出端;
    所述n路Outphasing合路器包括n个输入端和一个输出端;
    各个所述Doherty功放单元的输出端分别与所述n路Outphasing合路器的输入端相连。
  2. 根据权利要求1所述的功率放大器,其特征在于,
    所述Doherty功放单元是m路Doherty功放单元,所述m路Doherty功放单元中包括一个主功率放大器和(m-1)个峰值功率放大器,m≥2且m为整数,且各个所述Doherty功放单元的路数相同或不同;
    对于每个所述m路Doherty功放单元,所述主功率放大器与各个所述峰值功率放大器之间并联,且各个所述峰值功率放大器之间并联。
  3. 根据权利要求2所述的功率放大器,其特征在于,
    所述m路Doherty功放单元为两路对称Doherty功放单元,所述两路对称Doherty功放单元中包含一个所述主功率放大器和一个所述峰值功率放大器;所述主功率放大器与所述峰值功率放大器采用相同功率的晶体管;
    或,
    所述m路Doherty功放单元为两路非对称Doherty功放单元,所述两路非对称Doherty功放单元中包含一个所述主功率放大器和一个所述峰值功率放大器;所述主功率放大器与所述峰值功率放大器采用不同功率的晶体管。
  4. 根据权利要求1至3任一所述的功率放大器,其特征在于,
    所述n路Outphasing合路器是异相Chireix合路器。
  5. 一种功率放大方法,其特征在于,用于如权利要求1至4任一所述的功率放大器中,所述方法包括:
    通过各个所述Doherty功放单元的输入端接收输入信号;
    根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态,包括:
    当所述Doherty功放单元接收到的所述输入信号的功率小于第一功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号非异相时,触发各个所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于非异相工作状态;其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
    当所述Doherty功放单元接收到的所述输入信号的功率大于所述第一功率阈值且各个所述Doherty功放单元各自接收到的所述输入信号异相时,触发所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于异相工作状态;
    所述非异相工作状态是所述n路Outphasing合路器直接对各个输入端接收到的信号进行合并的工作状态;
    所述异相工作状态是所述n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述输入信号的功率,触发所述Doherty功放单元和所述n路Outphasing合路器中的全部或者一部分处于工作状态,包括:
    当所述Doherty功放单元接收到的所述输入信号的功率小于第二功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号异相时,触发所述Doherty功放单元中的所述主功率放大器处于工作状态,并触发所述n路Outphasing合路器处于异相工作状态;其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
    当所述Doherty功放单元接收到的所述输入信号的功率大于所述第二功率阈值,且各个所述Doherty功放单元各自接收到的所述输入信号非异相时,触发 所述Doherty功放单元中的所述主功率放大器和各个所述峰值功率放大器均处于工作状态,并触发所述n路Outphasing合路器处于非异相工作状态;
    所述非异相工作状态是所述n路Outphasing合路器直接对各个输入端接收到的信号进行合并的工作状态;
    所述异相工作状态是所述n路Outphasing合路器对各个输入端接收到的信号进行相位调整后,再进行合并的工作状态。
  8. 一种功率放大控制装置,其特征在于,用于信号控制系统中,所述信号控制系统用于为权利要求1至4任一所述的功率放大器提供n路输入信号,n≥2且n为整数,所述装置包括:
    处理模块,用于根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
    所述处理模块,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
    发送模块,用于将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
  9. 根据权利要求8所述的装置,其特征在于,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
    所述处理模块,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
  10. 根据权利要求9所述的装置,其特征在于,
    所述处理模块,还用于当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
  11. 根据权利要求8所述的装置,其特征在于,所述功率放大器的所述工 作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
    所述处理模块,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
  12. 根据权利要求11所述的装置,其特征在于,
    所述处理模块,还用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
  13. 一种功率放大控制装置,其特征在于,用于信号控制系统中,所述信号控制系统用于为权利要求1至4任一所述的功率放大器提供n路输入信号,n≥2且n为整数,所述装置包括:
    处理器,用于根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
    所述处理器,还用于当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
    所述处理器,还用于控制收发器将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
  14. 根据权利要求13所述的装置,其特征在于,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
    所述处理器,还用于当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
  15. 根据权利要求14所述的装置,其特征在于,
    所述处理器,还用于当所述n路输入信号的功率未达到所述第一功率阈值 时,将所述n路输入信号调整为所述n路非异相输入信号。
  16. 根据权利要求13所述的装置,其特征在于,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
    所述处理器,还用于当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
  17. 根据权利要求16所述的装置,其特征在于,
    所述处理器,还用于当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
  18. 一种功率放大控制方法,其特征在于,用于信号控制系统中,所述信号控制系统用于为权利要求1至4任一所述的功率放大器提供n路输入信号,n≥2且n为整数,所述方法包括:
    根据所述功率放大器的工作模式,确定所述功率放大器对应的功率阈值;所述功率阈值用于指示所述信号控制系统在所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为n路非异相输入信号或n路异相输入信号;
    当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号;
    将调整后的所述n路输入信号分别发送至所述Doherty功放单元的输入端。
  19. 根据权利要求18所述的方法,其特征在于,所述功率放大器的所述工作模式为第一工作模式,对应的所述功率阈值为第一功率阈值,其中,所述第一功率阈值大于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率,
    所述当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号,包括:
    当所述n路输入信号的功率达到所述第一功率阈值时,将所述n路输入信 号调整为所述n路异相输入信号。
  20. 根据权利要求19所述的方法,其特征在于,所述方法,还包括:
    当所述n路输入信号的功率未达到所述第一功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
  21. 根据权利要求18所述的方法,其特征在于,所述功率放大器的所述工作模式为第二工作模式,对应的所述功率阈值为第二功率阈值,其中,所述第二功率阈值小于所述Doherty功放单元中各个所述峰值功率放大器的起始工作功率;
    所述当所述n路输入信号的功率达到所述功率阈值时,调整所述n路输入信号为所述n路非异相输入信号或所述n路异相输入信号,包括:
    当所述n路输入信号的功率达到所述第二功率阈值时,将所述n路输入信号调整为所述n路非异相输入信号。
  22. 根据权利要求21所述的方法,其特征在于,所述方法,还包括:
    当所述n路输入信号的功率未达到所述第二功率阈值时,将所述n路输入信号调整为所述n路异相输入信号。
PCT/CN2015/085314 2015-07-28 2015-07-28 功率放大器、功率放大方法、功率放大控制装置及方法 WO2017015858A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22198613.6A EP4199350A1 (en) 2015-07-28 2015-07-28 Power amplifier, power amplification method, and power amplification control apparatus and method
EP15899210.7A EP3316479B1 (en) 2015-07-28 2015-07-28 Power amplifier, power amplification method, and power amplification control device and method
KR1020187004362A KR102093658B1 (ko) 2015-07-28 2015-07-28 전력 증폭기, 전력 증폭 방법 및 전력 증폭 제어 디바이스 및 방법
JP2018502204A JP6611394B2 (ja) 2015-07-28 2015-07-28 電力増幅器、電力増幅方法、ならびに電力増幅制御装置および方法
CN201580072230.1A CN107112956B (zh) 2015-07-28 2015-07-28 功率放大器、功率放大方法、功率放大控制装置及方法
PCT/CN2015/085314 WO2017015858A1 (zh) 2015-07-28 2015-07-28 功率放大器、功率放大方法、功率放大控制装置及方法
US15/881,272 US10432146B2 (en) 2015-07-28 2018-01-26 Power amplifier, power amplification method, and power amplification control apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085314 WO2017015858A1 (zh) 2015-07-28 2015-07-28 功率放大器、功率放大方法、功率放大控制装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/881,272 Continuation US10432146B2 (en) 2015-07-28 2018-01-26 Power amplifier, power amplification method, and power amplification control apparatus and method

Publications (1)

Publication Number Publication Date
WO2017015858A1 true WO2017015858A1 (zh) 2017-02-02

Family

ID=57885205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085314 WO2017015858A1 (zh) 2015-07-28 2015-07-28 功率放大器、功率放大方法、功率放大控制装置及方法

Country Status (6)

Country Link
US (1) US10432146B2 (zh)
EP (2) EP3316479B1 (zh)
JP (1) JP6611394B2 (zh)
KR (1) KR102093658B1 (zh)
CN (1) CN107112956B (zh)
WO (1) WO2017015858A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045144A1 (zh) * 2022-09-01 2024-03-07 华为技术有限公司 一种功率放大电路和射频收发装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281932B2 (ja) * 2019-03-22 2023-05-26 古河電気工業株式会社 増幅装置
CN112865709A (zh) * 2019-11-28 2021-05-28 上海华为技术有限公司 一种功放合路装置及功放电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167434A1 (en) * 2008-01-01 2009-07-02 Mostafa Elmala Device, system, and method of semi-doherty outphasing amplification
CN102427332A (zh) * 2011-11-28 2012-04-25 华为技术有限公司 Doherty功率放大器及提高其功放效率的方法、设备
CN103415993A (zh) * 2011-03-16 2013-11-27 科锐 增强型多尔蒂放大器
CN103580623A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种射频功放装置以及一种射频功率放大方法
CN104242840A (zh) * 2013-06-18 2014-12-24 富士通株式会社 放大装置
WO2015071931A1 (ja) * 2013-11-14 2015-05-21 日本電気株式会社 電力増幅器及び電力増幅方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825719B1 (en) * 2000-05-26 2004-11-30 Intel Corporation RF power amplifier and methods for improving the efficiency thereof
SE0302586D0 (sv) * 2003-09-26 2003-09-26 Ericsson Telefon Ab L M Composite power amplifier
US7893762B2 (en) * 2005-12-30 2011-02-22 Telefonaktiebolaget Lm Ericsson (Publ) Efficient composite amplifier
US7579654B2 (en) * 2006-05-31 2009-08-25 Corning Incorporated Semiconductor on insulator structure made using radiation annealing
JP5474764B2 (ja) * 2007-04-23 2014-04-16 ダリ システムズ カンパニー リミテッド Nウェイ分散電力増幅器
JP5591106B2 (ja) * 2007-04-23 2014-09-17 ダリ システムズ カンパニー リミテッド デジタルハイブリッドモード電力増幅器システム
US9141832B2 (en) * 2010-02-03 2015-09-22 Massachusetts Institute Of Technology Multiway lossless power combining and outphasing incorporating transmission lines
EP2383883B1 (en) * 2010-04-23 2013-07-17 Nxp B.V. Power amplifier
DE102012210249A1 (de) * 2012-06-18 2013-12-19 Rwth Aachen Verstärkeranordnung
US8824978B2 (en) * 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US9190967B2 (en) * 2013-03-13 2015-11-17 Futurewei Technologies Inc. Apparatus and method for asymmetrically driven partial outphasing power amplifier
US20160241201A1 (en) * 2013-10-18 2016-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Power amplifier for amplification of an input signal into an output signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167434A1 (en) * 2008-01-01 2009-07-02 Mostafa Elmala Device, system, and method of semi-doherty outphasing amplification
CN103415993A (zh) * 2011-03-16 2013-11-27 科锐 增强型多尔蒂放大器
CN102427332A (zh) * 2011-11-28 2012-04-25 华为技术有限公司 Doherty功率放大器及提高其功放效率的方法、设备
CN103580623A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种射频功放装置以及一种射频功率放大方法
CN104242840A (zh) * 2013-06-18 2014-12-24 富士通株式会社 放大装置
WO2015071931A1 (ja) * 2013-11-14 2015-05-21 日本電気株式会社 電力増幅器及び電力増幅方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316479A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045144A1 (zh) * 2022-09-01 2024-03-07 华为技术有限公司 一种功率放大电路和射频收发装置

Also Published As

Publication number Publication date
CN107112956A (zh) 2017-08-29
JP6611394B2 (ja) 2019-11-27
JP2018521592A (ja) 2018-08-02
CN107112956B (zh) 2020-09-08
EP3316479A4 (en) 2018-06-27
US10432146B2 (en) 2019-10-01
KR20180030131A (ko) 2018-03-21
EP3316479B1 (en) 2022-10-26
EP4199350A1 (en) 2023-06-21
US20180152150A1 (en) 2018-05-31
EP3316479A1 (en) 2018-05-02
KR102093658B1 (ko) 2020-03-26

Similar Documents

Publication Publication Date Title
US8994450B2 (en) Doherty power amplifier, and method and device for improving power amplification efficiency of Doherty power amplifier
US8606198B1 (en) Directional coupler architecture for radio frequency power amplifier with complex load
US8446218B2 (en) Power amplifier and transmitter
US8897730B2 (en) Radio frequency switch circuit
WO2016023144A1 (zh) 功率放大器、射频拉远单元及基站
JP2023529848A (ja) 高周波パワーアンプ、高周波フロントエンドモジュール及び通信端末
WO2017015858A1 (zh) 功率放大器、功率放大方法、功率放大控制装置及方法
WO2014117402A1 (zh) 功率放大器、收发信机及基站
CN104393843A (zh) 采用多级式辅路放大器的Doherty功率放大器
EP2541766A1 (en) Power amplification tube and power amplification method
WO2015135283A1 (zh) 一种三路反型Doherty功率放大器及实现方法
WO2021143193A1 (zh) 功率控制装置及方法、存储介质
WO2014029807A1 (en) High efficiency power amplifier architecture for off-peak traffic hours
US9473072B2 (en) Amplification device and amplification method
EP2536026A1 (en) Power amplification tube and power amplification method
CN112491434A (zh) 一种射频前端电路、射频信号接收方法、通信方法及设备
JP7490050B2 (ja) 電力増幅回路、送信機、およびネットワークデバイス
CN204376835U (zh) 采用多级式辅路放大器的Doherty功率放大器
CN103067041A (zh) 终端及其通信方法
US9479119B2 (en) Amplifier circuit and operation method thereof
WO2015024208A1 (zh) 平衡式Doherty功率放大器电路和无线发射机
JP2005229141A (ja) 送信回路
KR20060014815A (ko) 송신 전력 세기에 따른 매칭기능을 가지는 무선통신단말기 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187004362

Country of ref document: KR

Kind code of ref document: A