WO2015135283A1 - 一种三路反型Doherty功率放大器及实现方法 - Google Patents

一种三路反型Doherty功率放大器及实现方法 Download PDF

Info

Publication number
WO2015135283A1
WO2015135283A1 PCT/CN2014/083927 CN2014083927W WO2015135283A1 WO 2015135283 A1 WO2015135283 A1 WO 2015135283A1 CN 2014083927 W CN2014083927 W CN 2014083927W WO 2015135283 A1 WO2015135283 A1 WO 2015135283A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
signal
path
input
auxiliary
Prior art date
Application number
PCT/CN2014/083927
Other languages
English (en)
French (fr)
Inventor
韩辉
黎家璐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015135283A1 publication Critical patent/WO2015135283A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/408Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a three-way inverse Doherty power amplifier and an implementation method thereof.
  • Doherty power amplifier technology can significantly improve the efficiency of power amplifiers, and has been widely used in current wireless communication base stations. It is mainly composed of 2 to more power amplifier tubes, which are divided into main power amplifier tubes and auxiliary power amplifier tubes. The main power amplifier tube and the auxiliary power amplifier tube work in different working states respectively, and the efficiency is improved by the impedance modulation technology. There is usually an impedance transformation line at the output of the power amplifier tube to achieve impedance modulation and matching.
  • the traditional two-way symmetric Doherty power amplifier has a high dynamic range of 6 dB, and its performance for improving efficiency is limited for signals with higher peak-to-average ratio.
  • the structure that can be used has an asymmetric structure, but the asymmetric structure can expand the high efficiency range, and its efficiency drops significantly between the two peak points.
  • Embodiments of the present invention provide a three-way anti-Doherty power amplifier and an implementation method thereof, so as to at least solve the problem that a power of a large peak-to-average ratio keeps a high efficiency in a large dynamic range.
  • a method for implementing a three-way inversion Doherty power amplifier including: performing power amplification on a signal input to a main path to obtain a power amplification signal of a main circuit; and performing power on a signal input to the first auxiliary path Amplifying, obtaining a first auxiliary path power amplification signal; performing power amplification on the signal input to the second auxiliary path to obtain a second auxiliary path power amplification signal; respectively performing phase separation of the first auxiliary path power amplification signal and the second auxiliary path power amplification signal After the compensation process, the main path power amplification signal is combined and output.
  • the signal of the input main path is power amplified.
  • the signal input to the first auxiliary path is subjected to power amplification, wherein a power threshold of the first auxiliary path is greater than the main The power threshold of the road.
  • the power of the signal input to the second auxiliary path is greater than the power threshold of the second auxiliary path
  • the signal input to the second auxiliary path is subjected to power amplification, wherein a power threshold of the second auxiliary path is greater than the first The power threshold of an auxiliary circuit.
  • the method further includes: performing power allocation on the input signal to obtain a first input signal and a second input signal; performing power allocation on the first input signal to obtain a signal for inputting the main path and inputting the first auxiliary path
  • the signal is phase compensated for the second input signal to obtain a signal for inputting the second auxiliary path.
  • the signal power ratio of the signal input to the main path, the signal input to the first auxiliary path, and the signal input to the second auxiliary path is 1: 1:1.
  • a Doherty power amplifier including: a main power amplification module configured to perform power amplification on a signal of an input main path to obtain a main power amplification signal; and a first auxiliary power amplification module,
  • the first output signal phase amplification module is configured to perform phase amplification on the signal input to the first auxiliary path to obtain a first auxiliary circuit power amplification signal; and the first output signal phase compensation module is configured to perform phase on the first auxiliary path power amplification signal output by the first auxiliary path power amplification module.
  • the second auxiliary power amplification module is configured to perform power amplification on the signal input to the second auxiliary road to obtain a second auxiliary power amplification signal;
  • the second output signal phase compensation module is set to the second auxiliary power amplification module
  • the output second auxiliary power amplification signal performs phase compensation processing;
  • the combined output module is configured to combine the signal output by the first output signal phase compensation module, the signal output by the second output signal phase compensation module, and the main path power amplification signal output by the main circuit power amplification module Road and output.
  • the main path power amplifying module performs power amplification on a signal of the input main path when a power of a signal of the input main path is greater than a power threshold of the main path; the first auxiliary path power amplifying module is in the When the power of the signal input to the first auxiliary path is greater than the power threshold of the first auxiliary path, power amplification of the signal input to the first auxiliary path; and the power of the signal input by the second auxiliary power amplification module at the input second auxiliary path When the power threshold of the second auxiliary path is greater than the power threshold of the main auxiliary power amplifier module, the power threshold of the first auxiliary power amplifier module is greater than the power threshold of the main power amplifier module.
  • the power threshold of the secondary circuit is greater than the power threshold of the first secondary path.
  • the method further includes: a first coupler configured to perform power distribution on the input signal to obtain a first input signal and a second input signal; and a second coupler configured to perform power allocation on the first input signal to obtain a signal for inputting the main path and a signal for inputting the first auxiliary circuit; and an input signal phase compensation module configured to phase compensate the second input signal to obtain a signal for inputting the second auxiliary path.
  • the power split ratio of the first coupler is 2: 1
  • the power split ratio of the second coupler is 1: lo.
  • the invention adopts a three-way inversion structure, which not only can optimize the broadband performance, but also has three efficiency peak points and has higher efficiency.
  • FIG. 1 is a schematic block diagram showing an implementation method of a three-way inverted Doherty power amplifier provided by the present invention
  • 2 is a block diagram of input signal processing of a three-way inverted Doherty power amplifier provided by the present invention
  • FIG. 1 is a schematic block diagram showing an implementation method of a three-way inverted Doherty power amplifier provided by the present invention
  • 2 is a block diagram of input signal processing of a three-way inverted Doherty power amplifier provided by the present invention
  • FIG. 1 is a schematic block diagram showing an implementation method of a three-way inverted Doherty power amplifier provided by the present invention
  • 2 is a block diagram of input signal processing of a three-way inverted Doherty power amplifier provided by the present invention
  • FIG. 1 is a schematic block diagram showing an implementation method of a three-way inverted Doherty power amplifier provided by the present invention
  • 2 is a block diagram of input signal processing of a three-way inverted Doherty power amplifier provided
  • FIG. 3 is a schematic block diagram of a three-way inverted Doherty power amplifier provided by the present invention
  • FIG. 4 is a three-way inverted Doherty provided by the present invention.
  • FIG. 5 is a circuit diagram of a three-way inverted Doherty power amplifier according to an embodiment of the present invention
  • FIG. 6 is a circuit schematic diagram of a three-way inverted Doherty power amplifier according to an embodiment of the present invention
  • FIG. 7 is an application example of a three-way inverse Doherty power amplifier according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • Step 1 is a schematic block diagram of an implementation method of a three-way inversion Doherty power amplifier provided by the present invention.
  • the steps include: Step 1: Power amplification of a signal input to a main path to obtain a main channel power amplification signal. Further, when the power of the signal input to the main path is greater than the power threshold of the main path, the signal of the input main path is power amplified. The power threshold of the main path can be determined by circuit debugging.
  • Step 2 Perform power amplification on the signal input to the first auxiliary path to obtain a first auxiliary path power amplification signal.
  • Step 3 Perform power amplification on the signal input to the second auxiliary path to obtain a second auxiliary path power amplification signal.
  • Step 4 Perform phase compensation processing on the first auxiliary path power amplification signal and the second auxiliary path power amplification signal, respectively, and combine and output the main path power amplification signal.
  • 2 is a block diagram of input signal processing of a three-way inverted Doherty power amplifier provided by the present invention. As shown in FIG.
  • the steps include: Step 1: Power allocation of an input signal to obtain a first input signal and a second input signal.
  • Step 2 Perform power allocation on the first input signal to obtain a signal for inputting the main path and a signal for inputting the first auxiliary path.
  • Step 3 Perform phase compensation on the second input signal to obtain a signal for inputting the second auxiliary path.
  • the input signal power in the first step may be allocated according to 2:1
  • the first input signal power in the second step may be allocated according to 1:1, so that the signal input to the main path is input to the first auxiliary path.
  • the signal power ratio of the signal and the signal input to the second auxiliary path is 1: 1:1.
  • the first auxiliary path power amplification signal and the second auxiliary path power amplification signal of the present invention are respectively phase-compensated and combined with the main path power amplification signal, and have an output signal phase with the conventional main circuit output.
  • the power amplification signal of the main circuit does not need phase compensation, the power loss of the main circuit is reduced, and the bandwidth performance of the three-way inverted Doherty power amplifier is improved.
  • 3 is a schematic block diagram of a three-way inverted Doherty power amplifier provided by the present invention, as shown in FIG. 3, including a main power amplification module, a first auxiliary power amplification module, a first output signal phase compensation module, and a second auxiliary power.
  • the amplification module, the second output signal phase compensation module, and the combined output module performs power amplification on the input main road signal to obtain a main road power amplification signal; the first auxiliary road power amplification module performs power amplification on the signal input to the first auxiliary road to obtain a first auxiliary path power amplification Signaling, and performing, by the first output signal phase compensation module, a phase compensation process on the first auxiliary path power amplification signal output by the first auxiliary path power amplification module; the second auxiliary path power amplification module inputting a signal on the second auxiliary path Performing power amplification to obtain a second auxiliary path power amplification signal, and performing phase compensation processing on the second auxiliary path power amplification signal output by the second auxiliary path power amplification module by the second output signal phase compensation module; The module combines and outputs the signal output by the first output signal phase compensation module, the signal output by the second output signal phase compensation module, and the main path power amplification signal
  • the main path power amplification module performs power amplification on the signal of the input main path when the power of the signal of the input main path is greater than the power threshold of the main path; the first auxiliary circuit power amplification module is in the When the power of the signal input to the first auxiliary path is greater than the power threshold of the first auxiliary path, power amplification of the signal input to the first auxiliary path; and the power of the signal input by the second auxiliary power amplification module at the input second auxiliary path Greater than the second When the power threshold of the auxiliary path is used, the signal input to the second auxiliary path is subjected to power amplification; wherein, the power threshold of the first auxiliary power amplification module is greater than the power threshold of the main power amplification module, and the second auxiliary path The power threshold is greater than a power threshold of the first secondary path.
  • the main path power amplification module, the first auxiliary path power amplification module, and the second auxiliary path power amplification module may each be composed of one or more cascaded amplifiers.
  • 4 is a schematic block diagram of an input signal portion of a three-way inverted Doherty power amplifier provided by the present invention. As shown in FIG. 4, the first coupler, the second coupler, and the input signal phase compensation module are included. Wherein: the first coupler performs power allocation on the input signal to obtain a first input signal and a second input signal; and the second coupler performs power allocation on the first input signal to obtain a path for inputting the main path.
  • the input signal phase compensation module performs phase compensation on the second input signal to obtain a signal for inputting the second auxiliary path.
  • the power split ratio of the first coupler is 2:1
  • the power split ratio of the second coupler is 1:1, so that the signal of the input main path, the signal input to the first auxiliary path,
  • the signal power ratio of the signal input to the second auxiliary path is 1: 1:1.
  • first coupler and the second coupler which are circuit input couplers, can use 5dB and 3dB bridges for power distribution, first achieving an unequal power division of 2:1, and then implementing a second branch of 1: 1
  • the power distribution is such that the secondary distribution finally achieves a power of 1:1:1, and the power splitter has a simple structure, is easy to implement, has high isolation, and can simultaneously achieve power halving and 90° phase shift, and is simple. Design requirements.
  • the first power peak point that is, the first efficiency maximum point of the amplifier
  • 9.5dB back-off at the maximum power output value of the amplifier meeting the new
  • the generation of the communication system has a large peak-to-average ratio signal requirement; in addition, an efficiency peak point is added, that is, there are three efficiency peak points.
  • the efficiency peak points are respectively at the maximum power output point.
  • the present invention adopts an inverted structure, that is, the output ends of the first and second auxiliary power amplifier modules are respectively output via the first and second output signal phase compensation modules and the main power amplification module. Connected, signal combining.
  • the power amplification module is not connected to the output signal phase compensation module, the power loss of the main circuit is reduced, and the bandwidth performance of the three-way inverse Doherty power amplifier is improved.
  • the invention can meet the requirements of the large peak-to-average ratio signal of the new generation communication system, and can ensure higher efficiency under the requirement of large peaks.
  • Figure 5 - Figure 7 is used to further illustrate a three-way anti-Doherty power amplifier.
  • the three-way anti-Doherty power amplifier adds one auxiliary power amplifier (peak power amplifier) with a 5dB input.
  • the coupler and/or a 3dB coupler performs power distribution, and the main circuit output adopts an inverted structure, that is, the output end of the main power amplifier is not connected to the 1/4 wavelength line, and the outputs of the two auxiliary power amplifiers are respectively via a 1
  • the /4 wavelength line is connected to the output of the main power amplifier for signal combining.
  • the present embodiment expands the structure of the 2-way Doherty power amplifier into a 3-way Doherty power amplifier structure by adding a second-stage peak power amplifier, specifically including a main A power amplifier, two peak power amplifiers, consisting of a main power amplifier operating in class AB and a peak power amplifier operating in class C.
  • a second-stage peak power amplifier specifically including a main A power amplifier, two peak power amplifiers, consisting of a main power amplifier operating in class AB and a peak power amplifier operating in class C.
  • the power loss caused by the wavelength line is the main channel output, and the Doherty power amplifier main circuit output power is the largest, which can further improve the efficiency.
  • the bandwidth of the Doherty power amplifier is small due to the one-half wavelength line of the main output of the inversion structure. Performance will also improve.
  • 5 is a circuit structural diagram of a three-way inverted Doherty power amplifier according to an embodiment of the present invention.
  • the method mainly includes a first coupler 101, a first absorption load 102, and a third quarter-wavelength line 103.
  • a first final stage power amplifier ie, a second stage peak power amplifier
  • a second coupler 105 a second absorption load 106
  • a second final stage power amplifier ie, a first stage peak power amplifier
  • the power amplifier ie, main power amplifier
  • the second quarter-wavelength line 109, the first quarter-wavelength line 110, and the combined output circuit 111 are in sections.
  • the input end of the first coupler 101 is connected to the input signal of the three-way inverse Doherty power amplifier, the isolation end of the first coupler 101 is connected to the first absorption load 102, and the 0° output end of the first coupler 101 is phase-modulated and connected.
  • the third quarter-wavelength line 103, the -90[deg.] output of the first coupler is coupled to the second coupler 105.
  • the third quarter-wavelength line 103 output is terminated to the first final stage power amplifier 104.
  • the isolation end of the second coupler 105 is connected to the second absorption load 106, and the 0° output end of the second coupler 105 is phase-modulated and then connected to the second final stage power amplifier 107, and the -90° output end of the second coupler 105 passes through Phase modulation is followed by a third final stage power amplifier 108.
  • the second final stage power amplifier 107 outputs a second quarter wavelength line 109.
  • the output of the first final stage power amplifier 104 is terminated to the first quarter wavelength line 110.
  • the output end of the third final stage power amplifier 108, the output end of the second quarter wavelength line 109, and the output end of the first quarter wavelength line 110 are connected together to the input end of the combined output circuit 111.
  • the output of the output circuit 111 outputs an amplified signal.
  • the first coupler 101 performs power distribution on its input signal (power allocation of its input signal according to a power division ratio of 1:2), and is respectively output through its 0° output terminal and -90° output terminal.
  • Two-way letter The third quarter-wavelength line 103 is connected to the signal outputted by the 0° output end of the first coupler, and the signal is phase-compensated as an input of the first final stage power amplifier 104.
  • Signaling is transmitted to the first final stage power amplifier 104; the second coupler 105 is connected to a signal outputted by the -90[deg.] output of the first coupler 101, and the signal is power-distributed (according to The power division ratio is 1:1, and the input signal is subjected to power distribution), and two signals respectively outputted through the 0° output terminal and the ⁇ 90° output terminal are obtained, and the two signals are respectively used as the second final stage.
  • the input signals of the power amplifier 107 and the third final stage power amplifier 108 are output to the second final stage power amplifier 107 and the third final stage power amplifier 108.
  • the first final stage power amplifier 104 has a first power threshold, is activated when the power of the input signal is greater than the first power threshold, and performs power amplification on the input signal to obtain a first power amplification signal;
  • An output of the stage power amplifier 104 is coupled to one end of the first quarter-wavelength line 110;
  • the second final stage power amplifier 107 has a second power threshold, which is initiated when the power of the input signal is greater than the second power threshold.
  • the third final stage power amplifier 108 has a third power threshold, is activated when the power of the input signal is greater than the third power threshold, and performs power amplification on the input signal to obtain a third power amplification signal, where the The third power threshold is smaller than the second power threshold; the output end of the third final power amplifier 108 is connected to the other end of the first 1/4 wavelength line 110 and Said another end of the second quarter wavelength line 109, the signal combiner forming point; point the signal combination circuit connected to the combiner output, outputs a signal through the output combiner circuit.
  • the first coupler 101 selects a common (0°, -90°) 5dB coupler, and its rated power is determined according to input and output power.
  • the first absorption load 102 and the second absorption load 106 are 50 ohm load resistors, and the resistance is determined according to the input and output power of the coupler.
  • the second coupler 105 selects a common (0°, -90°) 3dB coupler whose rated power is based on input and output power.
  • the third quarter-wavelength line 103, the second quarter-wavelength line 109, and the first quarter-wavelength line 110 have the same width, and the impedance is 50 ohms. The specific width value is determined by the dielectric constant and the final level of the PCB sheet.
  • the first coupler 101 and the second coupler 105 are connected by a microstrip line
  • the first coupler 101 and the third quarter-wavelength line 103 are connected by a microstrip line
  • the second coupler 105 and the second final stage power amplifier 107 Through the microstrip line connection, the second coupler 105 is connected to the third final stage power amplifier 108 through a microstrip line
  • the third quarter wavelength line 103 is connected to the first final stage power amplifier 104 via a microstrip line
  • the stage power amplifier is connected to the first quarter-wavelength line 110 through a microstrip line
  • the second final stage power amplifier 107 and the second quarter-wavelength line 109 are connected by a microstrip line
  • the second quarter-wavelength line 109 The third 1/4 wavelength line 110 and the third final stage power amplifier 108 are connected by a microstrip line and a combined output circuit 111 through a microstrip line.
  • the working mode of the invention is: the radio frequency signal input to the circuit is divided into two signals with two power distribution ratios of 1:2 and a phase difference of 90° through the first 5dB coupler 101, wherein the signal of 0° phase After The third quarter-wavelength line 103 is phase-compensated and input to the first final stage power amplifier 104.
  • the -90° phase signal is input to the Doherty combiner amplifier, and the signal input to the Doherty combiner amplifier is coupled through the second 3dB.
  • the device 105 divides the signal into two signals of equal amplitude and phase difference of 90°, wherein a signal with a phase of 0° is input to the second final stage power amplifier 107, and a signal with a phase of ⁇ 90° is input to the third final stage power amplifier. 108.
  • the signals output from the final stage power amplifier 108 are combined, and the combined signals are impedance-converted by the combined output circuit 111 and output as an output signal of the entire machine.
  • the Doherty combiner amplifier includes a second final stage power amplifier 107 and a third final stage power amplifier 108, the main feature of which is that the second final stage power amplifier 107 operates in a Class C mode of operation, and the third final stage power amplifier 108 operates in In the class AB mode of operation, the second final stage power amplifier 107 is coupled to the second quarter wavelength line 109 to achieve an equal phase output of the peak power amplifier and the main path power amplifier.
  • the first final stage power amplifier 104 operates in a Class C mode of operation. The entire circuit can be divided into three operating phases. In the input small signal phase, the input power is lower than the power threshold level of the first final stage power amplifier 104 and the second final stage power amplifier 107, and the input signal passes through the third final stage power amplifier 108.
  • the high-impedance state of the output of the third final stage power amplifier 108 advances into voltage saturation and reaches the maximum efficiency point of the third final stage power amplifier, which results in a first peak efficiency in the fallback
  • the input power is so large that the second final stage power amplifier 107 is turned on, and the third final stage power amplifier 108 remains turned on.
  • the third final stage power amplifier 108 And the impedance of the second final stage power amplifier 107 is reduced, and the output power from the two final stage power amplifiers increases as the signal level increases until the second final stage power amplifier 107 reaches saturation, which will Resulting in a second peak efficiency point in the fallback; in the input large signal phase, the input power is large enough to put the first final stage power
  • the device 104 is turned on, and the second final stage power amplifier 107 and the third final stage power amplifier 108 remain turned on, and the loads of the three final stage power amplifiers continue to be pulled by each other to be reduced until the first final stage power amplifier 104 is saturated. This results in a third peak efficiency point in the fallback.
  • the output powers of the first final stage power amplifier 103, the second final stage power amplifier 107, and the third final stage power amplifier 108 are equal.
  • the Doherty power amplifier features a change in operating state through impedance modulation in different signal states to improve efficiency in small signals and to ensure linearity in large signals. Therefore, in general, different Doherty power amplifier circuits have different impedance characteristics at the junction, and are typically not 50 ohms, so a final match of 50 ohms is required.
  • the combined output circuit 111 realizes the impedance conversion function.
  • the anti-Doherty power amplifier structure is adopted, and the output of the main power amplifier is reduced by 1/2 wavelength line, which reduces the size of the power amplifier, and avoids the differential loss caused by the microstrip line, thereby improving the overall efficiency of the power amplifier. .
  • Vm/201 is a main power amplifier of a Doherty power amplifier
  • Rload/202 is an output load of a Doherty power amplifier
  • Vpl/203 is the first peak power amplifier of Doherty power amplifier
  • Zol/204 is a 1/4 wavelength microstrip line with characteristic impedance of 50 ohms
  • Vp2/205 is the second peak power amplifier of Doherty power amplifier
  • Zo2/206 It is a 1/4 wavelength microstrip line with a characteristic impedance of 50 ohms.
  • the first stage When small signal, Vpl/203 and Vp2/205 are not conducting, and the "open" state is present at the junction point before Rload/202. Only Vm/201 works, its load is not towed, Vm The load of the /201 amplifier is converted to high resistance, which makes the voltage saturation point of the Vm/201 amplifier advance, and the efficiency is improved when the same power is output.
  • the Vm/201 road reaches voltage saturation; the second stage: signal When Vpl/203 is turned on, Vm/201 keeps the voltage saturated, but the impedance is pulled, and the impedances of Vm/201 and Vpl/203 are reduced, so that the saturated power point moves backward.
  • Vm /201 achieves current saturation, Vpl/203 reaches voltage saturation;
  • Phase 3 When Vp2/205 is turned on, the load of Vm/201, Vpl/203 Vp2/205 continues to be pulled and reduced simultaneously until saturation is reached at the same time. At this stage, the Vm/201 and Vpl/203 voltages are saturated.
  • the Vp2/205 voltage is saturated, and the currents of Vm/201 and Vpl/203 Vp2/205 are simultaneously saturated at the same time.
  • the positions of the main power amplifier and the auxiliary power amplifier are actually exchanged, and the output end of the main power amplifier is relatively short, because the 1/4 wavelength line behind the auxiliary power amplifier can replace the original
  • the impedance line achieves an open circuit effect of its small signal, so the size can be reduced.
  • the load of the main structure power amplifier of the inversion structure is a process of changing from small impedance to large impedance.
  • the conventional type is to obtain high efficiency by a large load, and the inverse type is obtained by a small load.
  • the invention can be widely applied to a high efficiency, multi-carrier power amplifier of a G/U base station system.
  • the following is an example of the high efficiency, multi-carrier power amplifier applied to the GSM base station system 105W to illustrate the embodiment of Figures 5 and 6 for the whole
  • the efficiency of the amplifier is improved.
  • 7 is a three-way anti-Doherty power amplifier application example provided by an embodiment of the present invention, a GSM6 carrier 24M signal output 105W, a signal peak-to-average ratio of 6.8dB, a working frequency band 1805MHz-1880MHz high-efficiency power amplifier, the principle block diagram is shown in FIG. 7 .
  • the power amplifier mainly includes: a driving amplifier 31, a final stage amplifier 32, and an output isolator 33.
  • the driving amplifier 31 includes: a first stage amplifier 301, a second stage amplifier 302, and a third stage amplifier 303.
  • the final stage amplifier 32 includes: a first coupler 304, a first absorption load 305, and a third quarter wavelength micro Strip line 306, first peak power amplifier 309, second coupler 307, second absorption load 308, second peak power amplifier 310, main path amplifier 311, first quarter wavelength microstrip line 312, second 1/ 4 wavelength microstrip line 313, impedance converter 314; output isolator 315.
  • the first stage amplifier 301, the second stage amplifier 302, and the third stage amplifier 303 are cascaded to form a driving circuit, which is arranged to amplify the RF input signal to achieve sufficient power at the input end of the final stage amplifier, and the final stage amplifier 32 employs the present invention.
  • the proposed three-way inverse Doherty power amplifier structure, the output isolator 33 uses a circulator to isolate the signal.
  • the final amplifier adopts the circuit of the invention, and a reasonable power amplifier tube is selected, and the matching circuit is rationally designed.
  • the power amplifier output average power is 105W (6 carriers)
  • the power amplifier is fully integrated. The efficiency can reach 46.5%.
  • the linear performance of the power amplifier is 1817MHz ⁇ -65dBc, 1868MHz ⁇ -64dBc, and the amplifier passes the high and low temperature verification and reliability experiments.
  • the power amplifier has reliable overall operation and stable performance. It has been applied to large-scale production and has good consistency.
  • the present invention has the following technical effects:
  • the invention adopts a three-way structure, and the circuit structure of the Doherty power amplifier is provided.
  • a peak power amplifier is added to the traditional Doherty power amplifier circuit to form a structure of a three-way Doherty power amplifier, so that the circuit is retracted at a certain power.
  • the invention adopts an inverted structure at the output end of the main circuit, and 1/2 wavelength line is omitted, which reduces the size of the power amplifier to a considerable extent, and supports the demand for miniaturization of the power amplifier. It can also reduce the loss caused by the output microstrip line, thereby improving the efficiency of the power amplifier and optimizing the bandwidth.
  • a three-way inversion Doherty power amplifier and an implementation method provided by the embodiments of the present invention have the following beneficial effects: Since a peak power is added to the conventional Doherty power amplifier circuit
  • the amplifier is configured to form a three-way Doherty power amplifier, so that the circuit has three efficiency peak points in a certain power back-off range, and has high efficiency in a larger power back-off range to satisfy the power amplifier. Signals with a large peak-to-average ratio within the range can maintain high efficiency requirements.
  • the 1/2 wavelength line is omitted, thus reducing the size of the power amplifier to a considerable extent, supporting the need for miniaturization of the power amplifier, and also reducing The small output microstrip line brings the difference, which improves the efficiency of the power amplifier and optimizes the bandwidth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种三路反型Doherty功率放大器及实现方法,涉及通信技术领域,所述方法包括:对输入主路的信号进行功率放大,得到主路功率放大信号;对输入第一辅路的信号进行功率放大,得到第一辅路功率放大信号;对输入第二辅路的信号进行功率放大,得到第二辅路功率放大信号;将所述第一辅路功率放大信号和所述第二辅路功率放大信号分别进行相位补偿处理后,与所述主路功率放大信号合路并输出。上述功率放大器及实现方法能够满足新一代通信系统大峰均比信号的要求,同时在大峰均比要求下还可以保证更高的效率。

Description

一种三路反型 Doherty功率放大器及实现方法 技术领域 本发明涉及通信技术领域, 特别涉及一种三路反型 Doherty功率放大器及其实现 方法。 背景技术 使用 Doherty功率放大器技术可以显著改善功放的效率, 在目前的无线通信基站 中已广泛应用。 它主要由 2到多个功放管组成, 分为主功放管和辅助功放管。 主功放 管和辅助功放管分别工作在不同的工作状态, 通过阻抗调制技术实现效率的提升。 在 功放管合路输出处通常有阻抗变换线来实现阻抗调制和匹配。 随着现代通信中一些大峰均比的信号的采用, 加上节能环保的要求, 要求功放在 大动态范围内对大峰均比的信号均能保持较高的效率, 设计更高效率的功放就成了迫 切的要求。 然而传统的两路对称 Doherty功率放大器高效率的动态范围为 6dB, 对于 具有更高峰均比的信号, 其提高效率的性能却有限。 为了进一步提高 Doherty功率放 大器的效率,可以采用的结构有非对称结构,但非对称结构虽然可以拓展高效率范围, 其效率在两个峰值点之间却明显下降。 发明内容 本发明实施例提供了一种三路反型 Doherty功率放大器及实现方法, 以至少解决 功放在大动态范围内对大峰均比的信号保持较高效率的问题。 根据本发明的一个方面, 提供了一种三路反型 Doherty功率放大器的实现方法, 包括: 对输入主路的信号进行功率放大, 得到主路功率放大信号; 对输入第一辅路的信号进行功率放大, 得到第一辅路功率放大信号; 对输入第二辅路的信号进行功率放大, 得到第二辅路功率放大信号; 将所述第一辅路功率放大信号和所述第二辅路功率放大信号分别进行相位补偿处 理后, 与所述主路功率放大信号合路并输出。 优选地, 当所述输入主路的信号的功率大于主路的功率阈值时, 对所述输入主路 的信号进行功率放大。 优选地, 当所述输入第一辅路的信号的功率大于第一辅路的功率阈值时, 对所述 输入第一辅路的信号进行功率放大, 其中, 所述第一辅路的功率阈值大于所述主路的 功率阈值。 优选地, 当所述输入第二辅路的信号的功率大于第二辅路的功率阈值时, 对所述 输入第二辅路的信号进行功率放大, 其中, 所述第二辅路的功率阈值大于所述第一辅 路的功率阈值。 优选地, 还包括: 对输入信号进行功率分配, 得到第一输入信号和第二输入信号; 对所述第一输入信号进行功率分配, 得到用来输入主路的信号和用来输入第一辅 路的信号; 对所述第二输入信号进行相位补偿, 得到用来输入第二辅路的信号。 优选地, 所述输入主路的信号、 输入第一辅路的信号、 输入第二辅路的信号的信 号功率比为 1 : 1: 1。 根据本发明的另一方面, 提供了一种 Doherty功率放大器, 包括: 主路功率放大模块, 设置为对输入主路的信号进行功率放大, 得到主路功率放大 信号; 第一辅路功率放大模块, 设置为对输入第一辅路的信号进行功率放大, 得到第一 辅路功率放大信号; 第一输出信号相位补偿模块, 设置为对所述第一辅路功率放大模块输出的第一辅 路功率放大信号进行相位补偿处理; 第二辅路功率放大模块, 设置为对输入第二辅路的信号进行功率放大, 得到第二 辅路功率放大信号; 第二输出信号相位补偿模块, 设置为对所述第二辅路功率放大模块输出的第二辅 路功率放大信号进行相位补偿处理; 合路输出模块, 设置为将所述第一输出信号相位补偿模块输出的信号、 所述第二 输出信号相位补偿模块输出的信号、 所述主路功率放大模块输出的主路功率放大信号 进行合路并输出。 优选地, 所述主路功率放大模块在所述输入主路的信号的功率大于主路的功率阈 值时, 对所述输入主路的信号进行功率放大; 所述第一辅路功率放大模块在所述输入 第一辅路的信号的功率大于第一辅路的功率阈值时, 对所述输入第一辅路的信号进行 功率放大; 所述第二辅路功率放大模块在所述输入第二辅路的信号的功率大于第二辅 路的功率阈值时, 对所述输入第二辅路的信号进行功率放大; 其中, 所述第一辅路功 率放大模块的功率阈值大于所述主路功率放大模块的功率阈值, 所述第二辅路的功率 阈值大于所述第一辅路的功率阈值。 优选地, 还包括: 第一耦合器, 设置为对输入信号进行功率分配, 得到第一输入信号和第二输入信 号; 第二耦合器, 设置为对所述第一输入信号进行功率分配, 得到用来输入主路的信 号和用来输入第一辅路的信号; 输入信号相位补偿模块, 设置为对所述第二输入信号进行相位补偿, 得到用来输 入第二辅路的信号。 优选地,所述第一耦合器的功率分配比为 2: 1,所述第二耦合器的功率分配比为 1 : l o 与现有技术相比较, 本发明的有益效果在于:
1、 本发明采用三路反型结构, 不但能优化宽带性能, 而且具有三个效率峰值点, 具有更高的效率。
2、 本发明采用反型结构, 在主路输出端省去 1/2波长线, 这样在相当程度上减小 了 Doherty功率放大器的尺寸,支持了 Doherty功率放大器小型化的需求, 冋时还可以 减小输出微带线而带来的差损, 进而提高功放整版的效率和优化带宽。 附图说明 图 1是本发明提供的三路反型 Doherty功率放大器的实现方法原理框图; 图 2是本发明提供的三路反型 Doherty功率放大器的输入信号处理框图; 图 3是本发明提供的三路反型 Doherty功率放大器的原理框图; 图 4是本发明提供的三路反型 Doherty功率放大器的输入信号部分原理框图; 图 5是本发明实施例提供的三路反型 Doherty功率放大器的电路结构图; 图 6是本发明实施例提供的三路反型 Doherty功率放大器的电路原理图; 图 7是本发明实施例提供的三路反型 Doherty功率放大器的应用实例。 具体实施方式 以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下所说明的优 选实施例仅用于说明和解释本发明, 并不用于限定本发明。 图 1是本发明提供的三路反型 Doherty功率放大器的实现方法原理框图, 如图 1 所示, 步骤包括: 步骤一: 对输入主路的信号进行功率放大, 得到主路功率放大信号。 进一步地, 当输入主路的信号的功率大于主路的功率阈值时, 对所述输入主路的 信号进行功率放大。 其中, 所述主路的功率阈值可通过电路调试确定。 步骤二: 对输入第一辅路的信号进行功率放大, 得到第一辅路功率放大信号。 进一步地, 当输入第一辅路的信号的功率大于第一辅路的功率阈值时, 对所述输 入第一辅路的信号进行功率放大, 其中, 所述第一辅路的功率阈值大于所述主路的功 率阈值, 所述第一辅路的功率阈值也可通过电路调试确定。 步骤三: 对输入第二辅路的信号进行功率放大, 得到第二辅路功率放大信号。 进一步地, 当输入第二辅路的信号的功率大于第二辅路的功率阈值时, 对所述输 入第二辅路的信号进行功率放大, 其中, 所述第二辅路的功率阈值大于所述第一辅路 的功率阈值, 所述第二辅路的功率阈值也可通过电路调试确定。 步骤四: 将所述第一辅路功率放大信号和所述第二辅路功率放大信号分别进行相 位补偿处理后, 与所述主路功率放大信号合路并输出。 图 2是本发明提供的三路反型 Doherty功率放大器的输入信号处理框图, 如图 2 所示, 步骤包括: 步骤一: 对输入信号进行功率分配, 得到第一输入信号和第二输入信号。 步骤二: 对所述第一输入信号进行功率分配, 得到用来输入主路的信号和用来输 入第一辅路的信号。 步骤三: 对所述第二输入信号进行相位补偿, 得到用来输入第二辅路的信号。 进一步地, 所述步骤一中的输入信号功率可以按照 2: 1进行分配, 步骤二中的第 一输入信号功率可以按照 1 : 1进行分配, 从而使输入主路的信号、 输入第一辅路的信 号、 输入第二辅路的信号的信号功率比为 1 : 1: 1。 由上述图 1和图 2可知, 本发明的第一辅路功率放大信号和第二辅路功率放大信 号分别进行相位补偿后与主路功率放大信号合路输出, 与传统的主路输出具有输出信 号相位补偿结构的 Doherty功放相比, 由于主路功率放大信号无需进行相位补偿, 从 而使主路的功率损耗减少, 三路反型 Doherty功放的带宽性能改善。 图 3是本发明提供的三路反型 Doherty功率放大器的原理框图, 如图 3所示, 包 括主路功率放大模块、 第一辅路功率放大模块、 第一输出信号相位补偿模块、 第二辅 路功率放大模块、 第二输出信号相位补偿模块和合路输出模块。 其中: 所述主路功率放大模块对输入主路信号进行功率放大, 得到主路功率放大信号; 所述第一辅路功率放大模块对输入第一辅路的信号进行功率放大, 得到第一辅路功率 放大信号, 并由所述第一输出信号相位补偿模块对所述第一辅路功率放大模块输出的 第一辅路功率放大信号进行相位补偿处理; 所述第二辅路功率放大模块对输入第二辅 路的信号进行功率放大, 得到第二辅路功率放大信号, 并由所述第二输出信号相位补 偿模块对所述第二辅路功率放大模块输出的第二辅路功率放大信号进行相位补偿处 理; 所述合路输出模块将所述第一输出信号相位补偿模块输出的信号、 所述第二输出 信号相位补偿模块输出的信号、 所述主路功率放大模块输出的主路功率放大信号进行 合路并输出。 进一步地, 所述主路功率放大模块在所述输入主路的信号的功率大于主路的功率 阈值时, 对所述输入主路的信号进行功率放大; 所述第一辅路功率放大模块在所述输 入第一辅路的信号的功率大于第一辅路的功率阈值时, 对所述输入第一辅路的信号进 行功率放大; 所述第二辅路功率放大模块在所述输入第二辅路的信号的功率大于第二 辅路的功率阈值时, 对所述输入第二辅路的信号进行功率放大; 其中, 所述第一辅路 功率放大模块的功率阈值大于所述主路功率放大模块的功率阈值, 所述第二辅路的功 率阈值大于所述第一辅路的功率阈值。 进一步地, 上述主路功率放大模块、 第一辅路功率放大模块、 第二辅路功率放大 模块均可以由一个或多个级联的放大器组成。 图 4是本发明提供的三路反型 Doherty功率放大器的输入信号部分原理框图, 如 图 4所示, 包括第一耦合器、 第二耦合器、 输入信号相位补偿模块。 其中: 所述第一耦合器对输入信号进行功率分配, 得到第一输入信号和第二输入信号; 所述第二耦合器对所述第一输入信号进行功率分配, 得到用来输入主路的信号和用来 输入第一辅路的信号;所述输入信号相位补偿模块对所述第二输入信号进行相位补偿, 得到用来输入第二辅路的信号。 进一步地,所述第一耦合器的功率分配比为 2: 1,所述第二耦合器的功率分配比为 1: 1, 从而使所述输入主路的信号、 输入第一辅路的信号、 输入第二辅路的信号的信 号功率比为 1 : 1: 1。 进一步地, 作为电路输入耦合器的第一耦合器和第二耦合器可以采用 5dB和 3dB 电桥来进行功率分配, 先实现 2: 1的不等功分, 再实现第二分支的 1 : 1等功分, 这样二 次分配最终实现 1 : 1 : 1的功率三等分, 这样的功分器结构简单、 易于实现、 隔离度高、 可以同时实现功率等分和 90° 相移, 满足简洁化设计的要求。 与传统 2路 Doherty功 率放大器相比, 具有更大的功率回退点, 其中第一功率峰值点, 即放大器的第一个效 率最大值点在放大器最大功率输出值回退 9.5dB处, 满足新一代通信系统大峰均比信 号的要求; 此外, 增加了一个效率峰值点, 即具有三个效率峰值点, 当三路功率分配 比为 1 : 1 : 1时, 效率峰值点分别在最大功率输出点回退 9.5dB、 6dB和 OdB处, 因此比 传统 2路 Doherty功率放大器具有更平滑的效率曲线, 提高效率的优势更明显。 由上述图 3和图 4可知, 本发明采用反型结构, 即第一和第二辅路功率放大模块 的输出端分别经由第一和第二输出信号相位补偿模块与主路功率放大模块的输出端相 连, 进行信号合路。 与传统的主路输出具有输出信号相位补偿模块的 Doherty功放相 比, 由于功率放大模块没有连接输出信号相位补偿模块,从而使主路的功率损耗减少, 三路反型 Doherty功放的带宽性能改善。 本发明能够满足新一代通信系统大峰均比信号的要求, 同时在大峰均比要求下还 可以保证更高的效率。 图 5-图 7用来进一步说明三路反型 Doherty功率放大器, 所述三路反型 Doherty 功率放大器在传统的 Doherty功率放大器基础上, 增加一路辅路功率放大器 (峰值功 率放大器), 输入采用一个 5dB耦合器和 /或一个 3dB耦合器进行功率分配, 主路输出 采用反型结构, 即主路功率放大器的输出端不接 1/4波长线, 而两个辅路功率放大器 的输出端分别经由一个 1/4波长线与主路功率放大器的输出端相连, 进行信号合路。 具体地说, 为满足现代通信系统大峰均比信号对效率的要求, 本实施例通过增加第二 级峰值功率放大器,将 2路 Doherty功率放大器结构扩展成 3路 Doherty功率放大器结 构, 具体包括一个主路功率放大器, 两个峰值功率放大器, 先由一个工作在 AB类的 主路功率放大器和一个工作在 C类的峰值功率放大器组成一个 Doherty合路放大器; 然后 Doherty合路放大器和另一个峰值功率放大器一起构成一个三路 Doherty功率放大 器; 该电路主路输出端采用反型结构, 反型结构要比传统的正型结构短二分之一波长 左右, 因而在节省尺寸的基础上减少二分之一波长线为主路输出带来的功率损耗, 而 Doherty功率放大器主路输出功率最大,可以进一步提高效率, 同时由于反型结构主路 输出端少二分之一波长线, 因此 Doherty功率放大器的带宽性能也会得到改善。 图 5是本发明实施例提供的三路反型 Doherty功率放大器的电路结构图, 如图 5 所示, 主要包括第一耦合器 101、 第一吸收负载 102、 第三 1/4波长线 103、 第一末级 功率放大器 (即第二级峰值功率放大器) 104、 第二耦合器 105、 第二吸收负载 106、 第二末级功率放大器(即第一级峰值功率放大器) 107、 第三末级功率放大器(即主路 功率放大器) 108、 第二 1/4波长线 109、 第一 1/4波长线 110、 合路输出电路 111几部 分。 第一耦合器 101 的输入端接三路反型 Doherty功率放大器的输入信号, 第一耦合 器 101的隔离端接第一吸收负载 102,第一耦合器 101的 0° 输出端经过相位调制后接 第三 1/4波长线 103, 第一耦合器的 -90° 输出端接第二耦合器 105。 第三 1/4波长线 103输出端接第一末级功率放大器 104。第二耦合器 105的隔离端接第二吸收负载 106、 第二耦合器 105的 0° 输出端经过相位调制后接第二末级功率放大器 107,第二耦合器 105 的 -90° 输出端经过相位调制后接第三末级功率放大器 108。 第二末级功率放大器 107输出接第二 1/4波长线 109。第一末级功率放大器 104输出端接第一 1/4波长线 110。 第三末级功率放大器 108的输出端、 第二 1/4波长线 109的输出端和第一 1/4波长线 110的输出端连接在一起接到合路输出电路 111的输入端,合路输出电路 111的输出端 输出放大信号。 进一步说, 所述第一耦合器 101 对其输入信号进行功率分配 (可按照功分比 1 :2 对其输入信号进行功率分配),得到分别经由其 0° 输出端和 -90° 输出端输出的两路信 号;所述第三 1/4波长线 103接入所述第一耦合器的 0° 输出端输出的信号, 并将所述 信号进行相位补偿后作为所述第一末级功率放大器 104的输入信号传输至所述第一末 级功率放大器 104; 所述第二耦合器 105接入所述第一耦合器 101的 -90° 输出端输出 的信号,并将所述信号进行功率分配(可按照功分比 1 : 1对其输入信号进行功率分配), 得到分别经由其 0° 输出端和 -90° 输出端输出的两路信号, 并将所述两路信号分别作 为所述第二末级功率放大器 107和第三末级功率放大器 108的输入信号, 输出至所述 第二末级功率放大器 107和第三末级功率放大器 108。 所述第一末级功率放大器 104 具有第一功率阈值, 在其输入信号的功率大于第一功率阈值时启动, 并对其输入信号 进行功率放大, 得到第一功率放大信号; 所述第一末级功率放大器 104的输出端连接 所述第一 1/4波长线 110的一端; 所述第二末级功率放大器 107具有第二功率阈值, 在其输入信号的功率大于第二功率阈值时启动, 并对其输入信号进行功率放大, 得到 第二功率放大信号, 所述第二功率阈值小于所述第一功率阈值; 所述第二末级功率放 大器 107的输出端连接第二 1/4波长线 109;所述第三末级功率放大器 108具有第三功 率阈值, 在其输入信号的功率大于第三功率阈值时启动, 并对其输入信号进行功率放 大, 得到第三功率放大信号, 所述第三功率阈值小于所述第二功率阈值; 所述第三末 级功率放大器 108的输出端连接所述第一 1/4波长线 110的另一端和所述第二 1/4波长 线的另一端 109, 形成信号合路点; 所述信号合路点与合路输出电路连接, 通过所述 合路输出电路进行信号输出。 其中, 第一耦合器 101选用普通的 (0° , -90° ) 5dB耦合器, 其额定功率根据 输入、 输出功率而定。 第一吸收负载 102、 第二吸收负载 106都是 50欧姆负载电阻, 其阻值根据耦合器的输入、 输出功率而定。 第二耦合器 105选用普通的 (0° , -90° ) 3dB耦合器, 其额定功率根据输入、 输出功率而定。 第三 1/4波长线 103、 第二 1/4波 长线 109、 第一 1/4波长线 110宽度相同, 且阻抗都是 50欧, 具体的宽度值由 PCB板 材的介电常数和末级功率放大器所工作的频段而定。第一耦合器 101与第二耦合器 105 通过微带线连接, 第一耦合器 101与第三 1/4波长线 103通过微带线连接, 第二耦合 器 105与第二末级功率放大器 107通过微带线连接, 第二耦合器 105与第三末级功率 放大器 108通过微带线连接, 第三 1/4波长线 103与第一末级功率放大器 104通过微 带线连接, 第一末级功率放大器与第一 1/4波长线 110通过微带线连接, 第二末级功 率放大器 107与第二 1/4波长线 109通过微带线连接, 第二 1/4波长线 109、 第三 1/4 波长线 110和第三末级功率放大器 108通过微带线与合路输出电路 111通过微带线连 接。 本发明的工作方式是: 输入到该电路的射频信号经过第一 5dB耦合器 101将射频 信号分成两路功率分配比为 1 :2、相位相差 90° 的两路信号,其中 0° 相位的信号经过 第三 1/4波长线 103进行相位补偿后输入到第一末级功率放大器 104, -90° 相位的信 号输入到 Doherty合路放大器中, 输入到 Doherty合路放大器中的信号经过第二 3dB 耦合器 105将信号分成幅度相等、 相位相差 90° 的两路信号, 其中, 相位为 0° 的信 号输入到第二末级功率放大器 107, 相位为 -90° 的信号输入到第三末级功率放大器 108, 第一末级功率放大器 104经过第一 1/4波长线 110进行相位补偿后的信号和第二 末级功率放大器 107经过第二 1/4波长线 109进行相位补偿后的信号以及第三末级功 率放大器 108输出的信号进行合路, 合路后的信号经过合路输出电路 111进行阻抗变 换后作为整机的输出信号进行输出。 所述 Doherty合路放大器包括第二末级功率放大 器 107和第三末级功率放大器 108, 其主要特点是第二末级功率放大器 107工作在 C 类工作模式, 第三末级功率放大器 108工作在 AB类工作模式, 第二末级功率放大器 107后接第二 1/4波长线 109实现峰值功率放大器与主路功率放大器的等相位输出。第 一末级功率放大器 104工作在 C类工作模式下。 整个电路可以分为三个工作阶段, 在 输入小信号阶段, 输入功率低于第一末级功率放大器 104和第二末级功率放大器 107 的功率阈值水平, 输入信号通过第三末级功率放大器 108向输出负载提供电流, 第三 末级功率放大器 108的输出的高阻状态使其提前进入电压饱和, 并达到第三末级功率 放大器的最大效率点, 这导致了回退中出现第一峰值效率点; 在输入中信号阶段, 输 入功率大到使第二末级功率放大器 107开启, 而第三末级功率放大器 108保持开启, 在有源负载调制效应的影响下, 第三末级功率放大器 108和第二末级功率放大器 107 的阻抗均减小, 来自这两个末级功率放大器的输出功率随着信号电平的提高而增大, 直到第二末级功率放大器 107达到饱和为止,这会导致回退中出现第二个峰值效率点; 在输入大信号阶段, 输入功率大到使第一末级功率放大器 104开启, 而第二末级功率 放大器 107和第三末级功率放大器 108保持开启, 这三个末级功率放大器的负载继续 受到相互牵引而降低, 直到第一末级功率放大器 104饱和为止, 这样在回退中出现第 三个峰值效率点。第一末级功率放大器 103、第二末级功率放大器 107、第三末级功率 放大器 108的输出功率相等。
Doherty 功率放大器的特点是通过不同信号状态下的阻抗调制实现工作状态的改 变,以提高小信号时的效率并保证大信号时的线性。因此,通常情况下,不同的 Doherty 功率放大器电路在合路点具有不同的阻抗特性, 且通常不是 50欧姆, 因此需要最后匹 配为 50欧姆。 合路输出电路 111即实现该阻抗变换功能。 本实施例采用反型 Doherty功率放大器结构,主路功率放大器输出端少了 1/2波长 线, 减小了功放尺寸, 同时避免了输出由于微带线带来的差损, 从而提高功放整体效 率。 本实施例输出端各点的阻抗值依赖于所选的功率回退点, 所述功率回退点确定了 主级、 第一峰值、 第二峰值之间的功率分布。 图 6是本发明实施例提供的三路反型 Doherty功率放大器的电路原理图, 如图 6 所示, Vm/201为 Doherty功率放大器的主路功率放大器, Rload/202为 Doherty功率放 大器的输出负载, Vpl/203为 Doherty功率放大器的第一峰值功率放大器, Zol/204为 特性阻抗为 50欧姆的 1/4波长微带线, Vp2/205为 Doherty功率放大器的第二峰值功 率放大器, Zo2/206为特性阻抗为 50欧姆的 1/4波长微带线。 第一阶段: 小信号时, Vpl/203和 Vp2/205不导通, 在 Rload/202前的合路点处呈 现 "断开"状态, 只有 Vm/201路工作, 其负载不受牵引, Vm/201路放大器的负载变 换为高阻, 使得 Vm/201路放大器电压饱和点提前, 输出同样功率时的效率提高, 在 第一阶段结束时, Vm/201路达到电压饱和; 第二阶段:信号大到 Vpl/203开启后, Vm/201路保持电压饱和,但受到阻抗牵引, Vm/201 和 Vpl/203 的阻抗均减小, 使得饱和功率点后移, 在第二阶段结束的时刻, Vm/201达到电流饱和, Vpl/203达到电压饱和; 第三阶段: 当 Vp2/205开启后, Vm/201、 Vpl/203 Vp2/205的负载继续受到相互 牵引同时降低, 直到同时达到饱和。 在此阶段, Vm/201、 Vpl/203 电压保持饱和, 在 第三阶段最后时刻, Vp2/205电压达到饱和, Vm/201、 Vpl/203 Vp2/205的电流在此 刻也同时达到饱和。 相对传统结构而言, 本实施例实际是将主路功率放大器和辅路功率放大器的位置 进行互换, 主路功率放大器输出端相对变短, 因为辅路功率放大器后面的 1/4波长线 可以代替原阻抗线实现其小信号的开路效果, 因此尺寸可以减小。 同时需要注意的是 反型结构主路功率放大器的负载是由小阻抗到大阻抗的变化过程, 传统型的是由大负 载获得高效率, 而反型结构的却用小负载获得。 本发明可广泛应用于 G/U基站系统高效率、 多载波功率放大器上, 下面根据一个 应用于 GSM基站系统 105W高效率、 多载波功率放大器的实例来说明图 5和图 6的 实施例对整个功放效率的提升效果。 图 7是本发明实施例提供的三路反型 Doherty功率放大器应用实例, 一款 GSM6 载波 24M信号输出 105W, 信号峰均比为 6.8dB, 工作频段 1805MHz-1880MHz高效 率功放, 原理框图见图 7。 该功放主要包括: 驱动放大器 31、 末级放大器 32、 输出隔离器 33。 其中, 驱动 放大器 31包括: 第一级放大器 301、 第二级放大器 302、 第三级放大器 303 ; 末级放 大器 32包括: 第一耦合器 304, 第一吸收负载 305、第三 1/4波长微带线 306、第一峰 值功率放大器 309、 第二耦合器 307、 第二吸收负载 308、 第二峰值功率放大器 310、 主路放大器 311、第一 1/4波长微带线 312、第二 1/4波长微带线 313、阻抗变换器 314; 输出隔离器为 315。 第一级放大器 301、 第二级放大器 302、 第三级放大器 303通过级 联组成驱动电路, 设置为放大射频输入信号,使末级放大器的输入端达到足够的功率, 末级放大器 32采用本发明提出的三路反型 Doherty功率放大器结构, 输出隔离器 33 采用环形器来对信号进行隔离。 该实例为了满足高效率, 末级放大器采用本发明的电路, 选用了合理的功率放大 管, 对匹配电路进行了合理的设计, 在功放输出平均功率 105W ( 6载波) 的情况下, 功放整版效率可达到 46.5%, 通过配合外加的 DPD (数字预失真) 补偿电路, 功放整 机的线性指标性能为, 1817MHz<-65dBc,1868MHz<-64dBc, 并且该功放通过高低温验 证和可靠性实验, 功放整体工作可靠, 性能稳定, 已应用于大规模生产, 并且具有良 好的一致性。 综上所述, 本发明具有以下技术效果:
1、 本发明采用三路结构, 提供的 Doherty功率放大器的电路结构在传统 Doherty 功率放大器电路的基础上增加一个峰值功率放大器, 形成三路 Doherty功率放大器的 结构, 使该电路在一定的功率回退范围内有三个效率峰值点, 同时在更大的功率回退 范围内具有高效率, 以满足功放在大动态范围内对大峰均比的信号均能保持较高的效 率的要求。
2、在简洁化设计的需求下,本发明在主路输出端采用反型结构,省去 1/2波长线, 这样在相当程度上减小了功放尺寸, 支持了功放小型化的需求, 同时还可以减小输出 微带线带来的差损, 进而提高功放整版的效率和优化带宽。 尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领域技术人员 可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原理所作的修改, 都应当 理解为落入本发明的保护范围。 工业实用性 如上所述, 本发明实施例提供的一种三路反型 Doherty功率放大器及实现方法具 有以下有益效果: 由于在传统 Doherty功率放大器电路的基础上增加了一个峰值功率 放大器, 以形成三路 Doherty功率放大器的结构, 因而该电路在一定的功率回退范围 内存在三个效率峰值点, 同时在更大的功率回退范围内具有高效率, 以满足功放在大 动态范围内对大峰均比的信号均能保持较高的效率的要求。 在简洁化设计的需求下, 由于在主路输出端采用反型结构, 省去 1/2波长线, 因而在相当程度上减小了功放尺 寸, 支持了功放小型化的需求, 同时还可以减小输出微带线带来的差损, 进而提高功 放整版的效率和优化带宽。

Claims

权 利 要 求 书 、 一种三路反型 Doherty功率放大器的实现方法, 包括: 对输入主路的信号进行功率放大, 得到主路功率放大信号; 对输入第一辅路的信号进行功率放大, 得到第一辅路功率放大信号; 对输入第二辅路的信号进行功率放大, 得到第二辅路功率放大信号; 将所述第一辅路功率放大信号和所述第二辅路功率放大信号分别进行相位 补偿处理后, 与所述主路功率放大信号合路并输出。 、 根据权利要求 1所述的方法, 其中, 当所述输入主路的信号的功率大于主路的 功率阈值时, 对所述输入主路的信号进行功率放大。 、 根据权利要求 2所述的方法, 其中, 当所述输入第一辅路的信号的功率大于第 一辅路的功率阈值时, 对所述输入第一辅路的信号进行功率放大, 其中, 所述 第一辅路的功率阈值大于所述主路的功率阈值。 、 根据权利要求 3所述的方法, 其中, 当所述输入第二辅路的信号的功率大于第 二辅路的功率阈值时, 对所述输入第二辅路的信号进行功率放大, 其中, 所述 第二辅路的功率阈值大于所述第一辅路的功率阈值。 、 根据权利要求 1-4任意一项所述的方法, 其中, 还包括: 对输入信号进行功率分配, 得到第一输入信号和第二输入信号; 对所述第一输入信号进行功率分配, 得到用来输入主路的信号和用来输入 第一辅路的信号; 对所述第二输入信号进行相位补偿, 得到用来输入第二辅路的信号。 、 根据权利要求 5所述的方法, 其中, 所述输入主路的信号、 输入第一辅路的信 号、 输入第二辅路的信号的信号功率比为 1 : 1: 1。 、 一种三路反型 Doherty功率放大器, 包括: 主路功率放大模块, 设置为对输入主路的信号进行功率放大, 得到主路功 率放大信号; 第一辅路功率放大模块, 设置为对输入第一辅路的信号进行功率放大, 得 到第一辅路功率放大信号;
第一输出信号相位补偿模块, 设置为对所述第一辅路功率放大模块输出的 第一辅路功率放大信号进行相位补偿处理;
第二辅路功率放大模块, 设置为对输入第二辅路的信号进行功率放大, 得 到第二辅路功率放大信号;
第二输出信号相位补偿模块, 设置为对所述第二辅路功率放大模块输出的 第二辅路功率放大信号进行相位补偿处理;
合路输出模块, 设置为将所述第一输出信号相位补偿模块输出的信号、 所 述第二输出信号相位补偿模块输出的信号、 所述主路功率放大模块输出的主路 功率放大信号进行合路并输出。 、 根据权利要求 7所述的三路反型 Doherty功率放大器, 其中, 所述主路功率放大模块在所述输入主路的信号的功率大于主路的功率阈值 时, 对所述输入主路的信号进行功率放大;
所述第一辅路功率放大模块在所述输入第一辅路的信号的功率大于第一辅 路的功率阈值时, 对所述输入第一辅路的信号进行功率放大;
所述第二辅路功率放大模块在所述输入第二辅路的信号的功率大于第二辅 路的功率阈值时, 对所述输入第二辅路的信号进行功率放大;
其中, 所述第一辅路功率放大模块的功率阈值大于所述主路功率放大模块 的功率阈值, 所述第二辅路的功率阈值大于所述第一辅路的功率阈值。 、 根据权利要求 7或 8所述的三路反型 Doherty功率放大器, 其中, 还包括: 第一耦合器, 设置为对输入信号进行功率分配, 得到第一输入信号和第二 输入信号;
第二耦合器, 设置为对所述第一输入信号进行功率分配, 得到用来输入主 路的信号和用来输入第一辅路的信号;
输入信号相位补偿模块, 设置为对所述第二输入信号进行相位补偿, 得到 用来输入第二辅路的信号。 0、 根据权利要求 9所述的三路反型 Doherty功率放大器, 其中, 所述第一耦合器 的功率分配比为 2: 1, 所述第二耦合器的功率分配比为 1 : 1。
PCT/CN2014/083927 2014-03-11 2014-08-07 一种三路反型Doherty功率放大器及实现方法 WO2015135283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410086668.2 2014-03-11
CN201410086668.2A CN104917468A (zh) 2014-03-11 2014-03-11 一种三路反型Doherty功率放大器及实现方法

Publications (1)

Publication Number Publication Date
WO2015135283A1 true WO2015135283A1 (zh) 2015-09-17

Family

ID=54070864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083927 WO2015135283A1 (zh) 2014-03-11 2014-08-07 一种三路反型Doherty功率放大器及实现方法

Country Status (2)

Country Link
CN (1) CN104917468A (zh)
WO (1) WO2015135283A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411275B (zh) * 2016-10-12 2018-11-16 杭州电子科技大学 改善带宽的三路Doherty功率放大器及实现方法
CN107947744B (zh) * 2017-11-28 2021-04-16 广东工业大学 一种功率合成型的功率放大器及毫米波芯片
CN108900218A (zh) * 2018-08-07 2018-11-27 张家港市泰克软件有限公司 一种信号增强设备及增强方法
CN111030617B (zh) * 2019-12-31 2024-02-23 京信网络系统股份有限公司 一种功率放大器
CN115441843A (zh) * 2021-06-02 2022-12-06 中兴通讯股份有限公司 功率放大器、信号处理方法、发射机和基站设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202014226U (zh) * 2011-02-25 2011-10-19 武汉正维电子技术有限公司 一种3路Doherty高效率放大器
CN102355198A (zh) * 2011-08-01 2012-02-15 深圳大学 多路非对称Doherty功率放大器
US20120218044A1 (en) * 2011-02-24 2012-08-30 Postech Academy- Industry Foundation Three-Stage GaN HEMT Doherty Power Amplifier for High Frequency Applications
CN103178786A (zh) * 2011-12-26 2013-06-26 瑞典爱立信有限公司 多路Doherty放大器
EP2568598B1 (en) * 2011-09-06 2014-02-26 Alcatel Lucent Power amplifier for mobile telecommunications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064774B (zh) * 2009-11-18 2013-11-06 中兴通讯股份有限公司 一种功率放大电路实现方法及功率放大装置
CN103580613B (zh) * 2012-08-10 2018-05-08 中兴通讯股份有限公司 一种多路功放装置及其实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120218044A1 (en) * 2011-02-24 2012-08-30 Postech Academy- Industry Foundation Three-Stage GaN HEMT Doherty Power Amplifier for High Frequency Applications
CN202014226U (zh) * 2011-02-25 2011-10-19 武汉正维电子技术有限公司 一种3路Doherty高效率放大器
CN102355198A (zh) * 2011-08-01 2012-02-15 深圳大学 多路非对称Doherty功率放大器
EP2568598B1 (en) * 2011-09-06 2014-02-26 Alcatel Lucent Power amplifier for mobile telecommunications
CN103178786A (zh) * 2011-12-26 2013-06-26 瑞典爱立信有限公司 多路Doherty放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, GUANGMING: "Study on Key Technology of the RF Power Amplifier", DOCTORAL DISSERTATION OF UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, 15 March 2012 (2012-03-15) *

Also Published As

Publication number Publication date
CN104917468A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CA2765107C (en) Power amplifier and transmitter
KR101677555B1 (ko) 도허티 증폭기에서 낮은 전력 영역에서의 효율을 향상시키기 위한 장치
CN110266275B (zh) 一种连续逆F类和J类混合的宽带Doherty功率放大器
CN103430603B (zh) 功率放大器、收发信机及基站
WO2015135283A1 (zh) 一种三路反型Doherty功率放大器及实现方法
CN109660212B (zh) 一种采用电抗补偿拓展带宽的3路Doherty功率放大器
EP2536025A1 (en) Power amplifier device and power amplifier circuit
CN102064774A (zh) 一种功率放大电路实现方法及功率放大装置
WO2012146007A1 (zh) 一种多合体功率放大器及其实现方法
WO2012146002A1 (zh) 一种多合体功率放大器及其实现方法
CN111030620A (zh) 一种新型合路的宽带Doherty功率放大器及其设计方法
WO2017036093A1 (zh) 一种多路Doherty放大器
CN102594266A (zh) 一种多级多路Doherty放大器
CN104393843A (zh) 采用多级式辅路放大器的Doherty功率放大器
CN202424626U (zh) 一种多路非对称Doherty放大器
CN210053382U (zh) 一种连续逆F类和J类混合的宽带Doherty功率放大器
CN109921750B (zh) 一种基于有源负载调制的宽带功率放大器及其设计方法
CN101834571A (zh) 高效线性功率放大电路
CN202535310U (zh) 一种多级多路Doherty放大器
US8797099B2 (en) Power amplifier device and power amplifier circuit thereof
CN108599727B (zh) 高效宽带Doherty功率放大器
CN210327509U (zh) 一种新型的反向doherty放大器
CN201994914U (zh) 用于基站系统功率放大器的非对称Doherty放大电路
CN102265506B (zh) 陶赫蒂Doherty电路、多路陶赫蒂Doherty电路和基站设备
Liu et al. A 26-40 GHz 4-Way Hybrid Parallel-Series Role-Exchange Doherty PA with Broadband Deep Power Back-Off Efficiency Enhancement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885583

Country of ref document: EP

Kind code of ref document: A1