WO2017014468A1 - 클렙시엘라균 감염질환의 예방용 백신 - Google Patents

클렙시엘라균 감염질환의 예방용 백신 Download PDF

Info

Publication number
WO2017014468A1
WO2017014468A1 PCT/KR2016/007496 KR2016007496W WO2017014468A1 WO 2017014468 A1 WO2017014468 A1 WO 2017014468A1 KR 2016007496 W KR2016007496 W KR 2016007496W WO 2017014468 A1 WO2017014468 A1 WO 2017014468A1
Authority
WO
WIPO (PCT)
Prior art keywords
klebsiella
vaccine
bns
pneumoniae
ompa
Prior art date
Application number
PCT/KR2016/007496
Other languages
English (en)
French (fr)
Inventor
김윤근
이원희
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2017014468A1 publication Critical patent/WO2017014468A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a method for producing a vaccine for preventing or treating a Klebsiella infectious disease, and a vaccine produced by the same, more specifically, containing envelope membrane protein A (OmpA) in Klebsiella pneumoniae. It relates to a vaccine composition comprising a protoplast-derived nano-vesicles, a preparation method thereof.
  • OmpA envelope membrane protein A
  • Klebsiella pneumoniae is an anaerobic bacterium with a gram-negative coat and is found in the normal flora of the mouth, skin and intestines.
  • the most common infectious disease caused by out-of-hospital Klebsiella bacteria is pneumonia, which typically appears in the form of bronchial pneumonia and bronchitis.
  • Klebsiella pneumoniae can destroy human lungs through infection and bleeding, sometimes producing mucus sputum.
  • the bacteria enter the respiratory tract by inhalation of microorganisms, typically in large oral pharynx.
  • Creepsiella infections mostly occur in people with weakened immunity and have a high mortality rate of about 50% even with antimicrobial therapy.
  • Klebsiella pneumoniae can cause infections in the urinary system, gallbladder ducts, and surgical wounds.
  • Klebsiella pneumoniae has been recognized as a very important pathogen in hospital infection. Excessive use of antibiotics may be a factor in increasing the risk of in-hospital infection of Krepsiella bacteria that are resistant to various antibiotics. Due to the mortality caused by the infection of Krebsiella pneumoniae, which is resistant to various drugs, the development of prophylactic agents to lower the infection rate of Krebsiella is urgent.
  • Vaccines administer antigenic substances to produce protective immunity against disease, which is considered the most cost-effective way to prevent infectious diseases.
  • the method is such that defensive immunity is induced by using an active immune strategy with the ability to elicit specific long-term defensive memories that are characteristic of adaptive immunity.
  • the key to eradicating pathogen infection is the activation of immune responses specific to pathogens such as humoral (or antibody mediated) and cellular (T-cell mediated) immunity.
  • Extracellular vesicles also known as outer membrane vesicles (OMVs)
  • OMVs outer membrane vesicles
  • LPS lipopolysaccharides
  • periplasmic proteins DNA, RNA, and other toxic factors.
  • Gram-negative bacteria-derived envelopes as vaccines, despite their excellent effects, remain toxic.
  • Outer vesicles contain a variety of molecules that can act as antigens, but certain molecules induce severe immune responses and cause inflammation, which can lead to local or systemic inflammatory responses, such as sepsis.
  • Protoplasts are living cellular material of plants and bacteria, and the cell walls of these cells can be removed using partially or fully mechanical / enzymatic methods. Therefore, since gram negative bacteria do not have a bacterial outer membrane and a peptidoglycan layer, protoplasts can solve the toxicity problem of the outer membrane vesicles, and since they do not have the outer membrane, they do not have enough antigens, so there is a problem to use them as vaccines. For this reason, the use of protoplasts as vaccines requires proteins that can act as antigens.
  • the present invention is to provide a vaccine composition comprising a protoplast-derived nano-vesicle containing the outer membrane protein A (OmpA) in Krebssiella pneumoniae, and a method for preparing the same.
  • OmpA outer membrane protein A
  • the present invention is to provide a method for effectively preventing or treating diseases caused by bacteria of the genus Klebsiella and / or infection by bacteria of the genus Klebsiella using the vaccine.
  • the present invention provides a method for preparing a vaccine for preventing or treating Klebsiella infectious disease, comprising the following steps:
  • OmpA Outer membrane protein A
  • the protoplasts in the step (b) is characterized in that obtained by extruding after processing the lysozyme to the host bacteria.
  • the Klebsiella bacteria is characterized by Klebsiella pneumoniae .
  • the Klebsiella infection disease is characterized in that selected from the group consisting of sepsis, pneumonia and emphysema.
  • the host bacterium is characterized in that E. coli.
  • the present invention also provides a vaccine for preventing or treating Klebsiella infectious disease prepared by the above method.
  • the vaccine is characterized in that the OmpA (Outer membrane protein A) protein derived from Klebsiella overexpressed in the lumen of the protoplasts.
  • OmpA Outer membrane protein A
  • the Klebsiella bacteria is characterized by Klebsiella pneumoniae .
  • the Klebsiella infection disease is characterized in that selected from the group consisting of sepsis, pneumonia and emphysema.
  • the protoplasts are characterized in that the average diameter is 200-300 nm.
  • the present invention uses a protoplast-derived nanovesicle containing outer membrane protein A (OmpA) in Klebsiella pneumoniae as a vaccine, thereby regulating an immune response to prevent infection by bacteria of the Klebsiella spp. Disease caused by vesicles can be effectively prevented or treated.
  • OmpA outer membrane protein A
  • FIG. 1A to 1C show the toxicity of extracellular vesicles derived from Klebsiella pneumoniae from the weight of mice (FIG. 1A), the number of peripheral white blood cells (FIG. 1B), and the survival rate (FIG. 1C).
  • FIG. 2 shows the size and sequence of OmpA, ABC transporter (ABCT), FepA gene in Klebsiella pneumoniae.
  • FIG. 3A and 3B show TEM (FIG. 3A) and DLS (FIG. 3B) analysis of P-BNS (protoplast-bionanosome) loaded with OmpA, ABCT, and FepA, respectively, in Krebssiella pneumoniae.
  • P-BNS protoplast-bionanosome
  • FIG. 4A and 4B show SDS-PAGE (FIG. 4A) and Western blotting (FIG. 4B) for wild type BL21, protein-transformed BL21, and protein (OmpA, ABCT, FepA) -transformed P-BNS. ) Is the result.
  • FIG. 5a macrophages to determine whether P-BNS loaded with OmpA (Fig. 5a), ABCT (Fig. 5b), FepA (Fig. 5c), respectively, in Krebsiella pneumoniae induces an innate immune response.
  • Fig. 5a macrophages to determine whether P-BNS loaded with OmpA
  • Fig. 5b ABCT
  • FepA Fig. 5c
  • FIG. 6A to 6C show the results of confirming that IgG antibodies specific for P-BNS loaded with OmpA (FIG. 6A), ABCT (FIG. 6B), and FepA (FIG. 6C), respectively, were generated in Krebsiella pneumoniae. .
  • Figure 9 is the result of measuring the amount of IFN- ⁇ , IL-17, IL-4, IL-10 in order to evaluate the T cell response to P-BNS loaded with ABCT in Krebsiella pneumoniae.
  • 11A to 11C show the results of confirming the protective effect of P.B. vaccine containing Krepsiella pneumoniae protein (OmpA (FIG. 11A), ABCT (FIG. 11B), FepA (FIG. 11C)) against sepsis.
  • OMVs outer membrane vesicles
  • EVs extracellular vesicles
  • LPS lipopolysaccharide
  • P-BNS protoplast-derived bionanosome
  • OmpA K. pneumoniae outer membrane protein A
  • ABCT K. pneumoniae glutamin ATP-binding cassette transporter perplasmic-binding protein
  • FepA K. pneumoniae ferric enterobactin protein A
  • Krebsciella pneumoniae OmpA is a conserved protein in the Enterobacteriaceae family, particularly a protein that plays an important role in immune avoidance by interfering with the innate immune response to suppress early inflammatory responses.
  • Krebsiella pneumoniae ABCT is a family of ATP-binding cassettes that is conserved in most bacteria and is toxic.
  • Klebsiella pneumoniae FepA is a transplastomic bacterial protein that is involved in iron transport and is immunogenic and can be used as an antigen for vaccines.
  • the P-BNS vaccine against Klebsiella infection can be prepared to overexpress the target antigen (OmpA) in Escherichia coli ( E. coli ) and prepare a protoplast so that the OmpA is loaded thereon.
  • OmpA target antigen
  • E. coli Escherichia coli
  • In vitro / in vivo innate and adaptive immunogenicity of antigen-loaded P-BNS was evaluated by pro-inflammatory mediator induction or antigen-specific adaptive immunogenicity.
  • mice challenged with K. pneumoniae were immunized with P-BNS vaccine candidates.
  • P-BNS vaccine candidates were immunized with P-BNS vaccine candidates.
  • antigen-specific antibodies and T cell responses were induced, but lethality that could be induced by the bacteria itself was not induced by P-BNS loaded with OmpA antigen specific for K. pneumonia .
  • the mortality rate was also high, indicating that loading of OmpA was the most effective vaccine.
  • the present invention (A) overexpressing OmpA (Outer membrane protein A) gene derived from Klebsiella bacteria to the host bacteria; (b) removing the outer membrane and the peptidoglycan layer from the overexpressed host bacteria to obtain protoplasts; And (c) relates to a method for producing a vaccine for preventing or treating Klebsiella infectious disease, comprising the step of separating the protoplasts.
  • OmpA Outer membrane protein A
  • the method for producing the protoplast there is no particular limitation on the method for producing the protoplast, but after treatment with the lysozyme to the bacteria can be obtained by extruding with a filter, it may further include a process such as centrifugation, ultracentrifugation.
  • the host bacterium capable of overexpressing the gene is not particularly limited, but E. coli is preferred.
  • 'Klebsiella bacteria' is not particularly limited as long as the genus Klebsiella bacteria, but is preferably Klebsiella pneumoniae ( Klebsiella pneumoniae ).
  • 'Klebsiella infection disease' is not particularly limited as long as the disease can be caused by Klebsiella infection, it is preferably selected from the group consisting of sepsis, pneumonia and emphysema, sepsis is the most desirable.
  • treatment or prevention of infectious disease is meant to include the reduction, alleviation and improvement of symptoms of an infectious disease, and also to include a lower possibility of getting an infectious disease.
  • 'extracellular vesicles derived from Klebsiella' can be isolated from the culture solution of Klebsiella, or from foods fermented with Klebsiella.
  • the method for separating the extracellular vesicles from the bacterial culture medium or the fermented food containing the bacteria is not particularly limited as long as it contains extracellular vesicles, for example, in culture or fermented food, centrifugation, ultra-fast centrifugation, filtration by filter, gel Extracellular vesicles can be separated using methods such as filtration chromatography, pre-flow electrophoresis, capillary electrophoresis, and combinations thereof. In addition, it may further include a process for washing to remove impurities, concentration of the obtained extracellular vesicles and the like.
  • the extracellular vesicles are naturally secreted or include extracellularly secreted extracellular vesicles.
  • the protoplasts of the vaccine prepared by the above method are overexpressed proteins derived from Klebsiella in the lumen, wherein the overexpressed proteins are preferably OmpA, ABC transporter (ABCT), FepA, etc. OmpA is most preferred.
  • the protoplasts of the vaccine prepared by the above method may have an average diameter of 200-300 nm, but preferably 250-300 nm.
  • the vaccine for treating or preventing the infectious disease may be prepared in a pharmaceutical composition. It is possible to administer the protoplast-derived nanovesicles (P-BNS) of the present invention for use in treatment and prophylaxis, but it is preferred that the P-BNS is included as an active ingredient of the pharmaceutical composition.
  • P-BNS protoplast-derived nanovesicles
  • the pharmaceutical composition may contain the separated P-BNS as an active ingredient and may include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers are conventionally used in the preparation, and include, but are not limited to, saline solution, sterile water, Ringer's solution, buffered saline, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposomes, and the like. If necessary, other conventional additives such as antioxidants and buffers may be further included.
  • diluents, dispersants, surfactants, binders, lubricants and the like may be additionally added to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • Suitable pharmaceutically acceptable carriers and formulations can be preferably formulated according to the individual components using methods disclosed in Remington's literature.
  • the pharmaceutical composition of the present invention is not particularly limited in formulation, but may be formulated as an injection, inhalant, or external skin preparation.
  • the method of administering the pharmaceutical composition of the present invention is not particularly limited, but may be parenterally or orally administered, such as intravenous, subcutaneous, intraperitoneal, inhalation, dermal application or topical application, depending on the desired method.
  • Daily dosage refers to the amount of therapeutic substance of the invention sufficient for treatment for a disease state alleviated by administration to a subject in need thereof.
  • Effective amounts of therapeutic agents depend on the particular compound, disease state and severity thereof, and on the individual in need thereof, and can be routinely determined by one skilled in the art.
  • the dosage of the composition according to the present invention to the human body may vary depending on the age, weight, sex, dosage form, health condition and degree of disease of the patient and may be based on an adult patient weighing 70 kg. At this time, it is generally 0.01 to 1000 mg / day, preferably 1 to 500 mg / day, and may be dividedly administered once to several times a day at regular time intervals.
  • extracellular vesicles derived from Klebsiella pneumoniae were administered to female wild-type C57BL / 6 mice 6-7 weeks old, followed by body weight and peripheral blood leukocyte count ( WBC), Survival was confirmed. At this time, PBS was used as a control.
  • weight loss was induced in both 1 ⁇ g and 5 ⁇ g extracellular vesicle administration groups, especially in the group administered 5 ⁇ g extracellular vesicles. Decreased.
  • leukocytes were reduced 24 hours after administration of the extracellular vesicles.
  • the bacteria were cultured in Merck at 200 rpm and 37 ° C until the OD value was 1.5, and then the cultures were 5,000 ⁇ 4 ° C. g, centrifuged for 10 minutes.
  • the bacterial pellet was resuspended in distilled water, heated at 100 ° C. for 10 minutes, and then the heated bacteria were centrifuged at 10,000 ⁇ g for 10 minutes to remove the cell wall comprising the bacterial envelope and peptidoglycan layer. .
  • the genome of the supernatant was used as a PCR template to amplify candidate genes, and cloned using K. pneumonia OmpA, FepA and ABC transporter genes as candidate genes, and the size and sequence of each gene are shown in FIG. Numbers 1 to 3).
  • these genes were PCR amplified using KOD FX (TOYOBO) DNA polymerase, dNTP, primer pairs according to the manufacturer's protocol, and each primer pair is shown in Table 1 below.
  • PCR products were inserted into a T-blunt PCR cloning kit (Solgent), and each plasmid was digested with EcoRI (OmpA, ABC transporter) and BglII (FepA). The fragments were separated by electrophoresis, inserted into a pET-30a plasmid, transformed into E. coli DH5a by thermal shock, and finally the three types of candidate genes were cloned.
  • Solgent Solgent
  • EcoRI EcoRI
  • BglII FrapA
  • the fragments were separated by electrophoresis, inserted into a pET-30a plasmid, transformed into E. coli DH5a by thermal shock, and finally the three types of candidate genes were cloned.
  • Example 2 Three clones obtained in Example 2 were incubated in Luria Bertani broth (Merch) at 37 ° C., 200 rpm for 12 hours, and then Exprep plasmid mini prep. Each plasmid was isolated using Kit (GeneAll) and transfected into E. coli BL21 (Real Biotech).
  • the bacterial pellet was resuspended in Tris buffer and treated with 1 mg / ml lysozyme (Sigma) at 37 ° C., 100 rpm, 2 hours to obtain protoplasts, followed by 10 ⁇ m, 5 ⁇ m, and 1 Extruded in order with LiposoFast extruder (Avestin) through a membrane of ⁇ m pore size. Finally, P-BNS was obtained by ultracentrifugation with 10% and 50% opti-prep density gradient medium (OptiPrep).
  • Example 3-1 The P-BNS obtained in Example 3-1 was diluted (50 ⁇ g / ml) with PBS and loaded 10 ⁇ l onto 300-mesh copper grids (EMS). Uranyl acetate (2%) was dropped on the grid for negative staining and observed with a JEM1011 electron microscope (JEOL).
  • EMS 300-mesh copper grids
  • Example 3-1 The P-BNS obtained in Example 3-1 was diluted with PBS (500 ng / ml), the diameter size distribution was measured by dynamic light scattering using Zetasizer Nano ZS (Malvern Instruments), and the result was analyzed using Dynamic V6 software. Was analyzed.
  • P-BNS obtained in Example 3-1 and BL21 as a control were dissolved in a radiation-immunoprecipitation assay buffer (Thermo Scientific), and then heated in SDS and loaded on a 10% polyacrylamide gel, respectively, at 300 mA. Electrophoresis.
  • P-BNS obtained in Example 3-1 and BL21 bacteria as a control group were subjected to western blotting with anti-OmpA, anti-ABCT, and anti-FepA antibodies.
  • P-BNS should be able to induce an immune response in order to use as a vaccine
  • in vitro experiments were performed using Raw 264.7 mouse macrophages to evaluate the induction of innate immune responses by P-BNS.
  • raw 264.7 mouse macrophages (5 ⁇ 10 5 cells / well) were treated with DMEM containing 10% FBS and antibiotics (100 unit / ml penicillin and 100 ⁇ g / ml streptomycin) for 24 well tissues at 37 ° C. for 24 hours.
  • P-BNS was changed to serum-free DMEM medium added at various concentrations from 0.1 ng / ml to 10 mg / ml.
  • the ELISA assay was performed on the culture medium, and the expression levels of proinflammatory cytokines IL-6 and TNF- ⁇ were measured. At this time, LPS was used as the negative control group.
  • P-BNS was administered to mice to have immunity.
  • blood was collected from the control group (PBS) and mice administered P-BNS after immunization to measure the concentration of P-BNS specific IgG antibody.
  • PBS containing 100 ng of P-BNS was coated on a 96-well black plate (Greiner Bio-one) at 4 ° C. for 24 hours. Plates coated with P-BNS were washed with PBS and treated with 1% BSA solution diluted with PBS for 1 hour to perform a blocking procedure and washed again with PBS.
  • Blood was separated from the control (PBS) and mice treated with 5 ⁇ g, 10 ⁇ g and 40 ⁇ g of P-BNS and centrifuged to separate serum and cell layers, and then serum was diluted 1: 500 in the 1% BSA solution. It was reacted for 2 hours in a plate coated with P-BNS. After incubation, the plate was washed and reacted for 2 hours by adding 200 ng / ml of horseradish peroxidase-conjugated goat anti-mouse IgG (Santa Cruz Biotechnology). After washing the plate again, ECL substrate (Thermo Scientific) was added and IgG antibody titer was analyzed using Victor Wallac 1420 apparatus (PerkinElmer).
  • P-BNS was observed for 3 days after intraperitoneal administration to mice at high concentrations of 50, 100 and 500 ⁇ g.
  • T cell responses were assessed by measuring cytokine levels in control (PBS) and P-BNS-treated mice.
  • IL-6 and P-BNS-stimulated Raw 264.7 cells using ELISA duoset (R & D Systems) according to the manufacturer's protocol.
  • the amount of TNF- ⁇ was also measured from IFN- ⁇ , IL-17, IL-4 and IL-10 from the culture medium of splenocytes restimulated with anti-CD3 / anti-CD28.
  • the splenocyte re-stimulation assay method is as follows. First, the spleens isolated from mice were digested by passing them through a 100 ⁇ m cell strainer (BD Biosciences) with 5 ml syringe washing buffer (2.5% FBS, DMEM containing 0.01 M HEPES). The isolated splenocytes were treated with ammonium chloride solution (STEM CELL) at 4 ° C. for 10 minutes to allow erythrocyte lysis.
  • STEM CELL ammonium chloride solution
  • the obtained splenocytes were washed with washing buffer and filtered with 40 ⁇ m cell strainer (BD), followed by 10% FBS, 50 ⁇ M 2-ME, 0.01 M HEPES and antibiotics (100 unit / ml penicillin, 100 ⁇ g / ml streptomycin). Incubated for 12 hours in a 24-well plate using the included RPMI 1640 medium. The 24-well plate was coated with 1 ⁇ g / ml of anti-CD3 (eBioscience) and 1 ⁇ g / ml of anti-CD28 (eBioscience) antibody to re-stimulate spleen T cells.
  • BD cell strainer
  • antibiotics 100 unit / ml penicillin, 100 ⁇ g / ml streptomycin
  • the amount of IFN- ⁇ which is a major cytokine produced by Th1 cells specifically produced in P-BNS, was controlled in all three kinds of P-BNS loaded with proteins. Increased proportionally to the dose administered.
  • IL-17 the major cytokine produced by Th17
  • OmpA FIG. 8
  • ABC transporter FIG. 9
  • FepA FIG. 10
  • Example 7 Klebsiella pneumoniae against sepsis K. pneumoniae Protective effect of protein-containing P-BNS vaccine
  • each of the mouse 5, 10, or during the PBS a week intervals 100 ⁇ l containing the P-BNS of 40 ⁇ g 3 weeks and administered intraperitoneally after one week last dose lethal to the keurep when Ella pneumoniae (1 ⁇ 10 8 CFU) was inoculated and checked for survival at 12 o'clock for 3 days.
  • mice As a result, as shown in Figs. 11A to 11C, the control mice (PBS) not administered with the vaccine all died within 36 hours after injection into Krebs. In the case of mice administered at a concentration of 80% and 100%, respectively (FIG. 11A).
  • OmpA protein-containing P-BNS was found to be the most effective as a vaccine against the infection of Krebs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은, 클렙시엘라균 감염질환의 예방 또는 치료용 백신을 제조하는 방법, 및 이에 의해 제조된 백신에 관한 것으로, 구체적으로는 크렙시엘라 뉴모니에 외막단백질 A(OmpA)를 함유하는 원형질체 유래 나노소포를 포함하는 백신 조성물, 및 이의 제조방법을 제공하고자 한다.

Description

클렙시엘라균 감염질환의 예방용 백신
본 발명은, 클렙시엘라균 감염질환의 예방 또는 치료용 백신을 제조하는 방법, 및 이에 의해 제조된 백신에 관한 것으로, 보다 구체적으로는 크렙시엘라 뉴모니에 외막단백질 A(OmpA)를 함유하는 원형질체 유래 나노소포를 포함하는 백신 조성물, 이의 제조방법에 관한 것이다.
크렙시엘라 뉴모니에(Klebsiella pneumoniae)는 그람음성의 피막을 가진 혐기성 세균으로 입, 피부, 장 등의 정상세균총에서 발견된다. 병원 밖 크렙시엘라 세균에 의해 유발되는 가장 흔한 감염질환은 폐렴이며, 전형적으로 기관지폐렴 및 기관지염의 형태로 나타난다. 크렙시엘라 뉴모니에는 감염 및 출혈을 통해 인간 폐를 파괴할 수 있고, 때로 점액성 객담을 생성한다. 상기 세균은 전형적으로 구강인두에 대량 서식하는 미생물 흡입에 의해 기도로 들어가게 된다.
크렙시엘라 감염은 대부분 면역력이 약한 사람에게서 나타나며, 항균치료를 수행하더라도 약 50%의 높은 사망률을 나타낸다. 게다가 크렙시엘라 뉴모니에는 비뇨기관, 쓸개관, 및 수술에 의한 상처부위에서도 감염을 유발할 수 있다. 최근에는 크렙시엘라 뉴모니에가 병원내 감염에서 매우 중요한 병원균으로 인식되고 있다. 항생제의 과다한 사용은 다양한 항생제에 내성을 갖는 크렙시엘라 세균의 병원내 감염의 위험을 증가시키는 요인이 될 수 있다. 다양한 약물에 내성을 갖는 크렙시엘라 뉴모니에 감염에 의한 치사율 때문에, 크렙시엘라 감염률을 낮추기 위한 예방용 제제의 개발이 절실하다.
백신은 질병에 대한 방어 면역을 생성하기 위해 항원 물질을 투여하는 것으로, 감염성 질병을 예방하기 위해 비용적으로 가장 효율이 높은 방법으로 여겨지고 있다. 상기 방법은, 적응면역의 특징인 특이적인 장기 방어 기억을 유도하는 능력을 가진 능동면역 전략을 사용함으로써, 방어면역이 유도되도록 하는 것이다. 병원균 감염을 근절하기 위한 열쇠는 체액성(또는 항체 매개) 및 세포성(T-세포 매개) 면역과 같은 병원균에 특이적인 면역반응의 활성화이다.
그람음성균 유래 외막소포(outer membrane vesicles; OMVs)라고도 알려진 세포밖 소포(extracellular vesicles; EVs)는 구형의 인지질 이중막으로 20-200 nm의 직경을 가지며, 병원체와 관련된 많은 단백질을 포함한다. 생화학 및 프로테옴 연구를 통해 세균 유래 세포밖 소포는 외막 단백질, 지질다당류(lipopolysaccharide; LPS), 외막 지질, 주변세포질 단백질, DNA, RNA, 및 다른 독성관련 인자로 구성되어 있음이 보고되었다. 최근 수막염균(Neisseria meningitidis), 아시네토박터 바우마니(Acinetobacter baumannii), 포르피로모나스 진지발리스(Porphyromonas gingivalis), 살모넬라 엔테리카(Salmonella enterica), 세로바 티피무륨(serovar Typhimurium), 헬리코박터 파일로리(Helicobacter pylori), 및 비브리오 콜레라(Vibrio cholerae)와 같은 그람음성균 유래 세포밖 소포는 마우스에서 세균 감염에 대한 방어면역을 유도함이 보고된 바 있다.
백신으로써 그람음성균 유래 외막소포는 자체의 우수한 효과에도 불구하고 독성문제가 남아있다. 외막소포는 항원으로 작용할 수 있는 다양한 종류의 분자를 포함하지만 어떠한 분자는 심각한 면역반응을 유도하고 염증을 야기시키므로, 패혈증과 같은 국소 또는 전신 염증 반응을 유발할 수 있다.
원형질체(Protoplast)는 식물, 세균의 살아있는 세포 물질이며, 이들 세포의 세포벽은 부분적으로 또는 완전히 기계적/효소적인 방법을 사용하여 제거될 수 있다. 따라서, 그람음성균의 원형질체는 세균의 외막과 펩티도글리칸층을 가지지 않으므로, 원형질체가 외막소포의 독성문제를 해결할 수 있는 한편, 외막을 가지고 있지 않으므로 항원이 충분하지 않아 백신으로써 사용하기에는 문제가 있다. 이러한 이유로 원형질체를 백신으로 사용하기 위해서는 항원으로 작용할 수 있는 단백질이 필요하다.
이에, 본 발명은 크렙시엘라 뉴모니에 외막단백질 A(OmpA)를 함유하는 원형질체 유래 나노소포를 포함하는 백신 조성물, 및 이의 제조방법을 제공하고자 한다.
또한, 본 발명은 상기 백신을 이용하여 크렙시엘라 속 세균유래 세포밖 소포에 의한 질환 및/또는 크렙시엘라 속 세균에 의한 감염을 효과적으로 예방 또는 치료하는 방법을 제공하고자 한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은, 하기의 단계를 포함하는, 클렙시엘라균 감염질환 예방 또는 치료용 백신의 제조방법을 제공한다:
(a) 클렙시엘라균 유래의 OmpA(Outer membrane protein A) 유전자를 숙주균에 과발현시키는 단계; (b) 상기 과발현된 숙주균에서 외막과 펩티도글리칸층을 제거하여 원형질체를 얻는 단계; 및 (c) 상기 원형질체를 분리하는 단계.
본 발명의 일 구현예에 있어서, 상기 (b) 단계에서 원형질체는 숙주균에 라이소자임을 처리한 후 압출하여 얻는 것을 특징으로 한다.
본 발명의 다른 구현예에 있어서, 상기 클렙시엘라균은 클렙시엘라 뉴모니에(Klebsiella pneumoniae)인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 클렙시엘라균 감염질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 숙주균은 대장균(E.coli)인 것을 특징으로 한다.
또한, 본 발명은 상기 방법으로 제조된, 클렙시엘라균 감염질환 예방 또는 치료용 백신을 제공한다.
본 발명의 일 구현예에 있어서, 상기 백신은 원형질체의 내강(lumen)에 클렙시엘라균 유래의 OmpA(Outer membrane protein A) 단백질이 과발현되어 존재하는 것을 특징으로 한다.
본 발명의 다른 구현예에 있어서, 상기 클렙시엘라균은 클렙시엘라 뉴모니에(Klebsiella pneumoniae)인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 클렙시엘라균 감염질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 원형질체는 평균 직경이 200-300 nm인 것을 특징으로 한다.
본 발명은 크렙시엘라 뉴모니에 외막단백질 A(OmpA)를 함유하는 원형질체 유래 나노소포를 백신으로 이용함으로써, 면역반응을 조절하여 크렙시엘라 속 세균에 의한 감염 혹은 크렙시엘라 속 세균유래 세포밖 소포에 의한 질병을 효율적으로 예방 또는 치료할 수 있다.
도 1a 내지 도 1c는, 크렙시엘라 뉴모니에 유래 세포밖 소포의 독성을, 마우스의 체중(도 1a), 말초 혈액의 백혈구수(도 1b), 생존률(도 1c)로 평가한 결과이다.
도 2는, 크렙시엘라 뉴모니에 OmpA, ABC transporter(ABCT), FepA 유전자의 크기 및 염기서열을 나타낸 것이다.
도 3a 및 도 3b는, 크렙시엘라 뉴모니에 OmpA, ABCT, FepA이 각각 로딩된 P-BNS(protoplast-bionanosome)에 대하여 TEM(도 3a) 및 DLS(도 3b) 분석을 실시한 결과이다.
도 4a 및 도 4b는, 야생형 BL21균, 단백질-형질전환된 BL21균, 단백질(OmpA, ABCT, FepA)-형질전환된 P-BNS에 대하여 SDS-PAGE(도 4a) 및 웨스턴 블랏팅(도 4b)을 실시한 결과이다.
도 5a 내지 도 5c는, 크렙시엘라 뉴모니에 OmpA(도 5a), ABCT(도 5b), FepA(도 5c)이 각각 로딩된 P-BNS가 선천성 면역반응을 유도하는지 확인하기 위하여, 대식세포에 P-BNS를 처리 후 IL-6와 TNF-α의 발현을 확인한 결과이다.
도 6a 내지 도 6c는, 크렙시엘라 뉴모니에 OmpA(도 6a), ABCT(도 6b), FepA(도 6c)이 각각 로딩된 P-BNS에 대하여 각각 특이적인 IgG 항체가 생성되었는지 확인한 결과이다.
도 7은, 크렙시엘라 뉴모니에 OmpA, ABCT, FepA이 각각 로딩된 P-BNS의 독성을 평가하기 위하여 마우스에 투여후 생존율을 확인한 결과이다.
도 8은, 크렙시엘라 뉴모니에 OmpA이 로딩된 P-BNS에 대하여 T 세포 반응을 평가하기 위하여 IFN-γ, IL-17, IL-4, IL-10의 양을 측정한 결과이다.
도 9는, 크렙시엘라 뉴모니에 ABCT이 로딩된 P-BNS에 대하여 T 세포 반응을 평가하기 위하여 IFN-γ, IL-17, IL-4, IL-10의 양을 측정한 결과이다.
도 10은, 크렙시엘라 뉴모니에 FepA이 로딩된 P-BNS에 대하여 T 세포 반응을 평가하기 위하여 IFN-γ, IL-17, IL-4, IL-10의 양을 측정한 결과이다.
도 11a 내지 도 11c는, 패혈증에 대한 크렙시엘라 뉴모니에 단백질(OmpA(도 11a), ABCT(도 11b), FepA(도 11c)) 함유 P-BNS 백신의 보호 효과를 확인한 결과이다.
그람음성균에서 유래된 EV는 숙주에 다양한 면역반응을 유도할 수 있기 때문에, 최근의 백신 연구는, 그람음성균에서 분비되는 OMV(outer membrane vesicle) 즉 EV(extracellular vesicle)를 vehicle로 이용하는데 집중되어 있다. 그러나, OMV는 LPS(lipopolysaccharide)와 같은 세균독소를 함유하고 있기 때문에 독성문제가 남아있고, 제조상의 어려움도 있다.
이에, 본 발명에서는, 종래 OMV계 백신의 독성문제를 피하기 위하여, 그람음성균의 원형질막(plasma membrane)만 남겨두고 외막(outer membrane)과 펩티도글리칸층(peptidoglycan)을 포함하는 세포벽(cell wall)을 제거하여 만들어진 원형질체(protoplast)를 이용하였다. 또한, 자연적으로 배출되는 EV는 생산성이 낮기 때문에, 세균 원형질체로부터 인공적으로 EV를 제조하면 생산성도 증대시킬 수 있는 바, 이와 같은 본 발며의 신규 항원 운반 시스템을 P-BNS(protoplast-derived bionanosome)이라 칭한다.
본 발명에서는, 특히 항-크렙시엘라균 백신의 개발을 위한 후보 항원으로써 3가지 단백질을 선별하였다. 즉, OmpA(K. pneumoniae outer membrane protein A), ABCT(K. pneumoniae glutamin ATP-binding cassette transporter perplasmic-binding protein), FepA(K. pneumoniae ferric enterobactin protein A)으로서, 이들 단백질은 모두 외막에 존재하기 때문에 세균 인식을 위한 에피토프(epitopes)로 작용할 수 있다.
크렙시엘라 뉴모니에 OmpA는 엔테로박테리아 과(Enterobacteriaceae family)에서 보존된 단백질로서, 특히 초기 염증반응을 억제하기 위해 선천성 면역반응을 방해함으로써 면역 회피에 중요한 역할을 하는 단백질이다. 크렙시엘라 뉴모니에 ABCT는 ATP-binding cassette family 중 하나로, 대부분의 세균에서 보존된 단백질이며 독성을 가지고 있다. 크렙시엘라 뉴모니에 FepA는 transplastomic 세균 단백질로서 철 수송에 관여하고, 면역원성을 가지므로 백신의 항원으로도 사용할 수 있다.
본 발명에서, 크렙시엘라균 감염에 대한 P-BNS 백신은, 타겟항원(OmpA)을 대장균(E.coli)에 과발현시킨후 원형질체를 제조하여 여기에 OmpA가 로딩되도록 제조할 수 있다. 항원이 로딩된 P-BNS의 in vitro/in vivo 내재 및 적응 면역원성(innate and adaptive immunogenicity)은, 전염증 매개체 유도능이나 항원특이적 적응면역 유도능으로 평가하였다.
또한, 마우스에서 P-BNS 백신 효율을 검증하기 위하여, K. pneumoniae로 챌린지된 마우스에서 P-BNS 백신 후보로 면역화하였다. 그 결과, 항원-특이 항체 및 T 세포 반응이 유도되었으나, 세균 자체에 의해 유도될 수 있는 치사율은, K. pneumonia에 특이적인 OmpA 항원을 로딩한 P-BNS로는 유도되지 않았다. 또한, OmpA 이외의 다른 항원이 로딩된 경우 역시 치사율이 높았기 때문에 OmpA를 로딩하는 것이 가장 유효한 백신임을 알 수 있었다.
본 발명은, (a) 클렙시엘라균 유래의 OmpA(Outer membrane protein A) 유전자를 숙주균에 과발현시키는 단계; (b) 상기 과발현된 숙주균에서 외막과 펩티도글리칸층을 제거하여 원형질체를 얻는 단계; 및 (c) 상기 원형질체를 분리하는 단계를 포함하는, 클렙시엘라균 감염질환 예방 또는 치료용 백신의 제조방법에 관한 것이다.
본 발명에서, 원형질체를 제조하는 방법에 특별히 제한은 없으나, 세균에 라이소자임을 처리한 후 필터로 압출하여 얻을 수 있으며, 원심분리, 초원심분리 등의 공정을 더 포함할 수 있다.
본 발명에서, 유전자를 과발현시킬 수 있는 숙주균에 특별히 제한은 없으나, 대장균(E.coli)인 것이 바람직하다.
본 발명에서, '클렙시엘라균'이란, 클렙시엘라 속(Genus Klebsiella) 세균이면 특별히 제한은 없으나, 클렙시엘라 뉴모니에(Klebsiella pneumoniae)인 것이 바람직하다.
본 발명에서, '클렙시엘라균 감염질환'이란, 클렙시엘라균 감염에 의해 발생될 수 있는 질환이면 특별히 제한은 없으나, 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 것이 바람직하고, 패혈증이 가장 바람직하다.
본 발명에서 '감염질환의 치료 또는 예방'이란, 감염질환의 경감, 완화 및 증상의 개선을 포함하며, 또한 감염질환이 걸릴 가능성을 낮추는 것을 포함하는 의미이다.
본 발명에서 '클렙시엘라균에서 유래하는 세포밖 소포'란 클렙시엘라균의 배양액에서 분리되거나, 또는 클렙시엘라균로 발효시킨 식품에서 분리될 수 있다. 상기 세균 배양액 또는 상기 세균 첨가 발효식품에서 상기 세포밖 소포를 분리하는 방법은 세포밖 소포를 포함한다면 특별히 제한되지 않으며, 예컨대 배양액이나 발효식품에서, 원심분리, 초고속 원심분리, 필터에 의한 여과, 겔 여과 크로마토그래피, 프리-플로우 전기영동, 모세관 전기영동 등의 방법 및 이들의 조합을 이용하여 세포밖 소포를 분리할 수 있다. 또한, 불순물의 제거를 위한 세척, 수득된 세포밖 소포의 농축 등의 과정을 추가로 포함할 수 있다. 상기 세포밖 소포는 자연적으로 분비된 것이거나, 혹은 인공적으로 분비된 세포밖 소포체를 포함한다.
본 발명에서, 상기 방법에 의해 제조된 백신의 원형질체는 내강(lumen)에 클렙시엘라균 유래의 단백질이 과발현되어 있으며, 이때 과발현 단백질로는 OmpA, ABC transporter(ABCT), FepA 등이 바람직하며, OmpA이 가장 바람직하다.
본 발명에서, 상기 방법에 의해 제조된 백신의 원형질체는 평균 직경이 200-300 nm일 수 있으나, 바람직하게는 250-300 nm이다.
본 발명에서, 상기 감염질환의 치료 또는 예방용 백신은 약학적 조성물로 제조될 수 있다. 치료 및 예방에 사용하기 위해 본 발명의 원형질체 유래 나노소포(P-BNS) 자체를 투여하는 것이 가능하나, 약학적 조성물의 활성 성분으로서 상기 P-BNS가 포함되는 것이 바람직하다.
상기 약학적 조성물은 상기 분리된 P-BNS를 유효성분으로 함유하며, 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약학적으로 허용 가능한 담체는 제제시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제화에 관해서는 레밍턴의 문헌에 개시되어 있는 방법을 이용하여 각 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학적 조성물은 제형에 특별한 제한은 없으나 주사제, 흡입제, 피부 외용제 등으로 제제화할 수 있다.
본 발명의 약학적 조성물의 투여방법은 특별히 제한되는 것은 아니나, 목적하는 방법에 따라 정맥 내, 피하, 복강 내, 흡입, 피부도포 또는 국소적용과 같이 비경구 투여하거나 경구 투여할 수 있다.
투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. 일일 투여량은 치료를 필요로 하는 개체에 투여됨으로써 경감된 질병 상태에 대한 치료에 충분한 본 발명의 치료용 물질의 양을 의미한다. 치료용 물질의 효과적인 양은 특정 화합물, 질병 상태 및 그의 심각도, 치료를 필요로 하는 개체에 따라 달라지며, 이는 당업자에 의해 통상적으로 결정될 수 있다. 비제한적 예로서, 본 발명에 의한 조성물의 인체에 대한 투여량은 환자의 나이, 몸무게, 성별, 투여 형태, 건강 상태 및 질환 정도에 따라 달라질 수 있으며, 몸무게가 70 ㎏인 성인 환자를 기준으로 할 때, 일반적으로는 0.01∼1000 ㎎/일, 바람직하게는 1∼500 ㎎/일이며, 일정시간 간격으로 1일 1회 내지 수회에 분할 투여할 수도 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1: 크렙시엘라 뉴모니에( K. pneumoniae ) 유래 세포밖 소포의 독성
세포밖 소포의 독성을 확인하기 위하여, 크렙시엘라 뉴모니에 유래 세포밖 소포를 6-7주령의 암컷 야생형 C57BL/6 마우스에 투여 후, 마우스의 체중(Body weight), 말초 혈액의 백혈구수(WBC), 생존률(Survival)을 확인하였다. 이때, 대조군으로는 PBS를 이용하였다.
그 결과, 도 1a에 나타낸 바와 같이, 1 ㎍ 및 5 ㎍의 세포밖 소포 투여 그룹 모두에서 체중 감소를 유도하였으며, 특히 5 ㎍의 세포밖 소포를 투여한 그룹에서는 투여 48시간 후 3 g 이상 몸무게가 감소하였다. 또한, 도 1b에 나타낸 바와 같이, 세포밖 소포를 투여한지 24시간 후 백혈구가 감소되었다.
또한, 세포밖 소포의 치사율을 측정하기 위하여, 더 많은 양(1, 25, 50 ㎍)의 세포밖 소포를 복강 내로 투여한 결과, 도 1c에 나타낸 바와 같이, 50 ㎍, 25 ㎍의 세포밖 소포를 투여한 마우스에서 각각 80%, 20%가 죽었다.
이러한 결과는, 세포밖 소포가 패혈증(sepsis)과 같은 면역학적 문제를 일으킬 수 있음을 의미하는 것이며, 따라서 세포밖 소포를 백신으로 사용시 안전성 문제를 고려해야 할 것이다.
실시예 2: 크렙시엘라 뉴모니에( K. pneumoniae ) 후보 유전자 클로닝
크렙시엘라 뉴모니에(ATCC 4208)의 전체 genomic DNA를 얻기 위해서, 박테리아를 OD값이 1.5가 될 때까지 200rpm, 37℃에서 영양배지(Merck)에 배양한 후 배양균을 4℃에서 5,000 × g, 10분 동안 원심분리하였다.
박테리아 펠렛(pellet)을 증류수로 재현탁하였고, 100℃에서 10분 동안 가열한 후, 박테리아 외막과 펩티도글리칸층을 포함하는 세포벽을 제거하기 위하여 가열한 박테리아를 10,000 x g에서 10분 동안 원심분리하였다. 상층액의 게놈은 후보 유전자들을 증폭시키기 위해 PCR 주형으로써 사용하였고, K. pneumonia OmpA, FepA 및 ABC transporter 유전자를 후보 유전자로 하여 클로닝하였으며, 각 유전자의 크기와 염기서열을 도 2 및 서열목록(서열번호 1 내지 3)에 나타내었다.
구체적으로는, 이들 유전자를 제조사의 프로토콜에 따라 KOD FX(TOYOBO) DNA 폴리머라아제, dNTP, 프라이머쌍을 이용하여 PCR 증폭하였으며, 각각의 프라이머쌍을 하기 [표 1]에 나타내었다.
Gene Primer Sequence
OmpA Forward 5'-ATGATTGCAGTGGCACTGGCT-3' 서열번호 4
Reverse 5'-AAAGCCGCCGGCTGAGTTAC-3' 서열번호 5
FepA Forward 5'-ATGACGGTCGCTTTTTCTTATCAC-3' 서열번호 6
Reverse 5'-AACAGTCCGGCGAGTTTGTGAAA-3' 서열번호 7
ABC transporter Forward 5'-AGATCTTTCCCTGGCCTT-3' 서열번호 8
Reverse 5'-AGATCTTTCAGAAGTGGGTGTTGA-3' 서열번호 9
PCR 산물은 T-blunt PCR 벡터(T-blunt PCR cloning kit, Solgent)에 삽입한 후, 각각의 플라스미드를 EcoRI(OmpA, ABC transporter) 및 BglII(FepA)로 절단하였다. 절편을 전기영동으로 분리한 후 pET-30a 플라스미드에 삽입하고, 대장균 DH5a에 열충격법으로 형질전환(transformation)하여, 최종적으로 상기 3종류의 후보 유전자를 클로닝하였다.
실시예 3: 크렙시엘라 뉴모니에( K. pneumoniae ) 단백질 함유 P-BNS의 특성분석
3-1. 항원이 로딩된 P-BNS(protoplast-bionanosome) 제조
상기 실시예 2에서 얻어진 3종류의 클론을 37℃, 200 rpm, 12시간 동안 Luria Bertani broth(Merch)에서 배양한 후, Exprep plasmid mini prep. Kit(GeneAll)를 이용하여 각각의 플라스미드를 분리하여 대장균 BL21(Real Biotech)에 트랜스펙션시켰다.
BL21를 OD값이 0.3이 될 때까지 200 rpm, 37℃, 100 ml LB broth(1 mM IPTG)에서 3시간 배양한 후, 3,000 × g, 4℃에서 10분 동안 원심분리하여 얻어진 박테리아 펠렛을 Tris buffer(0.01M Tris HCl, 0.5M sucrose)로 세척하였고, 4℃, 3,000 × g에서 10분 동안 원심분리한 다음 Tris buffer로 재현탁하였다. 재현탁한 박테리아를 37℃, 100 rpm에서 30분 동안 0.01 M EDTA로 처리하고, 4℃, 3,000 × g에서 10분 동안 펠릿화한 후, Tris buffer로 세척하여 펠릿화하였다.
다음으로, 박테리아 펠릿을 Tris buffer로 재현탁하고, 원형질체를 얻기 위하여 37℃, 100 rpm, 2시간 동안 1 mg/ml 라이소자임(lysozyme)(Sigma)을 처리한 후, 10 μm, 5 μm, 및 1 μm 기공 크기의 막을 통해 순서대로 LiposoFast extruder(Avestin)로 압출하였다. 최종적으로, 10% 및 50% opti-prep 밀도구배 배지(OptiPrep)로 초원심분리여 P-BNS를 얻었다.
3-2. 투과 전자 현미경(Transmission electron microscopy, TEM)
실시예 3-1에서 얻은 P-BNS를 PBS로 희석(50 μg/ml)시키고, 300-mesh copper grids(EMS)에 10 μl 로딩하였다. 음성염색(negative stain)을 위하여 우라닐아세테이트(2%)를 그리드에 떨어뜨리고, JEM1011 전자 현미경(JEOL)으로 관찰하였다.
그 결과, 도 3a에 나타낸 바와 같이, P-BNS는 구형으로서 프로토플라즘(protoplasm)으로 둘러싸여 있음을 확인하였다.
3-3. 동적 광산란(Dynamic light scattering, DLS)
실시예 3-1에서 얻은 P-BNS를 PBS로 희석(500 ng/ml)시키고, Zetasizer Nano ZS(Malvern Instruments)을 이용하여 동적 광산란법으로 지름 크기 분포를 측정하고, Dynamic V6 software를 이용하여 결과를 분석하였다.
그 결과, 도 3b에 나타낸 바와 같이, P-BNS는 평균지름이 263 nm임을 알 수 있었다.
3-4. SDS-PAGE
실시예 3-1에서 얻은 P-BNS와 대조군으로서의 BL21균을 방사선-면역 침전 어세이버퍼(Thermo Scientific)로 용해시킨 후, 각각 SDS로 가열하고 10% 폴리아크릴아마이드 겔에 로딩하여, 300 mA에서 전기영동하였다.
그 결과, 도 4a에 나타낸 바와 같이, 야생형 BL21균, 단백질-형질전환된 BL21균, 단백질-형질전환된 P-BNS 각각은 단백질 프로파일이 서로 상이함을 알 수 있었다
3-5. 웨스턴 블랏팅
실시예 3-1에서 얻은 P-BNS와 대조군으로서의 BL21균에 대하여, 항-OmpA, 항-ABCT, 항-FepA 항체로 웨스턴 블로팅을 실시하였다.
그 결과, 도 4b에 나타낸 바와 같이, 클로닝으로 로딩된 단백질들이 과발현되었음을 알 수 있었다.
실시예 4: 크렙시엘라 뉴모니에( K. pneumoniae ) 단백질 함유 P-BNS에 의해 유도된 선천성 면역반응
P-BNS를 백신으로서 이용하기 위해서는 면역반응을 유도할 수 있어야 하기 때문에, P-BNS에 의한 선천성 면역반응 유도 수준을 평가하기 위해 Raw 264.7 마우스 대식세포를 사용하여 in vitro 실험을 수행하였다.
우선, Raw 264.7 마우스 대식세포(5 x 105cells/well)를 10% FBS와 항생제(100 unit/ml 페니실린 및 100 μg/ml 스트렙토마이신)를 함유한 DMEM으로 37℃에서 24시간 동안 24 well 조직배양플레이트(TPP)에서 배양하였다. 배지 제거 후, P-BNS를 0.1 ng/ml∼10 mg/ml의 다양한 농도로 첨가한 무혈청 DMEM 배지로 갈아주었다. 15시간 후 상기 배양 배지로 ELISA assay를 수행하여 전염증 사이토카인인 IL-6 및 TNF-α의 발현수준을 측정하였다. 이때, 음성대조군으로는 LPS를 이용하였다.
그 결과, 도 5a 내지 도 5c에 나타낸 바와 같이, P-BNS가 처리된 대식세포는 IL-6와 TNF-α의 발현을 효과적으로 유도하였다. 즉, 3종류의 단백질을 과발현하는 각각의 P-BNS 모두 선천성 면역반응을 유도할 수 있었으며, 특히 K. pneumoniae ABCT(도 5b) 또는 FebA(도 5c)에 비하여, K. pneumoniae OmpA가 로딩된 P-BNS의 경우 가장 효과적으로 선천성 면역반응을 유도하였다(도 5a).
실시예 5: 크렙시엘라 뉴모니에( K. pneumoniae ) 단백질 함유 P-BNS 백신에 의한 in vivo 항체 생성 및 P-BNS의 치사율 분석
5-1. 생체내 항체 생성 확인
생체내(in vivo)에서 P-BNS에 의한 적응 면역반응 유도능을 확인하고, P-BNS의 유효량을 결정하기 위하여, P-BNS를 마우스에 투여하여 면역성을 갖도록 하였다. 또한, 면역화 후 대조군(PBS) 및 P-BNS를 투여한 마우스에서 혈액을 채취하여 P-BNS 특이적 IgG 항체의 농도를 측정하였다.
구체적으로, 100 ng의 P-BNS가 포함된 100 μl의 PBS를 4℃에서 96-well black plate(Greiner Bio-one)에 24시간 동안 코팅하였다. P-BNS로 코팅된 플레이트를 PBS로 세척하고 PBS로 희석한 1% BSA용액을 1시간 동안 처리하여 블로킹 과정을 수행하고 PBS로 다시 세척하였다.
대조군(PBS)과 P-BNS이 5 ㎍, 10 ㎍, 40 ㎍ 투여된 마우스로부터 혈액을 분리하고 원심분리하여 혈청과 세포층을 분리한 후, 혈청은 상기 1% BSA 용액으로 1:500 비율로 희석하였으며, P-BNS로 코팅된 플레이트에서 2시간 동안 반응시켰다. 배양 후 플레이트를 세척하고 horseradish peroxidase-conjugated goat anti-mouse IgG(Santa Cruz Biotechnology) 200 ng/ml를 첨가하여 2시간 동안 반응시켰다. 다시 플레이트를 세척한 후 ECL substrate(Thermo Scientific)를 첨가하고 Victor Wallac 1420 apparatus(PerkinElmer)를 이용하여 IgG 항체 역가를 분석하였다.
그 결과, 도 6a 내지 도 6c에 나타낸 바와 같이, 크렙시엘라 뉴모니에 단백질을 함유한 P-BNS 백신은, 상기 P-BNS에 특이적인 IgG 항체 생성을 유도함을 알 수 있었다.
5-2. 치사율 분석(독성평가)
P-BNS에 의한 독성을 평가하기 위하여, P-BNS를 50, 100 및 500 ㎍의 고농도로 마우스에 복강투여 한 후 3일 동안 관찰하였다.
그 결과, 도 7에 나타낸 바와 같이, 3종류의 단백질이 로딩된 P-BNS가 투여된 마우스 모두 생존함을 확인하였다.
실시예 6: 크렙시엘라 뉴모니에( K. pneumoniae ) 단백질 함유 P-BNS 백신에 의한 in vivo T 세포 반응 분석
생체내(in vivo)에서 P-BNS에 의한 적응 면역반응을 유도한 후, 대조군(PBS) 및 P-BNS를 투여한 마우스에서 사이토카인의 양을 측정하여 T 세포 반응을 평가하였다.
즉, Raw 264.7 마우스 대식세포주 또는 마우스 유래 비장세포로부터 분비된 사이토카인 양을 측정하기 위하여, ELISA duoset(R&D Systems)을 이용해 제조사의 프로토콜에 따라 P-BNS로 자극된 Raw 264.7 세포로부터 IL-6 및 TNF-α의 양을, 또한 항-CD3/항-CD28로 재자극된 비장세포의 배양 배지로부터 IFN-γ, IL-17, IL-4 및 IL-10의 양을 측정하였다.
이때, 비장세포 재자극 어세이(splenocyte re-stimulation assay) 방법은 다음과 같다. 우선, 마우스로부터 분리한 비장을 5 ml 시린지 washing buffer(2.5% FBS, 0.01M HEPES 함유 DMEM)로 100 μm cell strainer(BD Biosciences)에 통과시켜 분해시켰다. 분리된 비장세포에 암모늄 클로라이드 용액(STEM CELL)을 4℃에서 10분간 처리하여 적혈구 세포가 용해되도록 하였다. 얻어진 비장세포를 washing buffer로 세척하고 40 μm cell strainer(BD)로 필터링한 후 10% FBS, 50 μM 2-ME, 0.01 M HEPES 및 항생제(100 unit/ml 페니실린, 100 μg/ml 스트렙토마이신)가 포함된 RPMI 1640 배지를 이용해 24-well 플레이트에서 12시간 동안 배양하였다. 이때 24-well 플레이트는 비장 T 세포를 재자극시키기 위하여 1 μg/ml의 항-CD3(eBioscience)와 1 μg/ml의 항-CD28(eBioscience) 항체로 코팅된 것을 이용하였다.
그 결과, 도 8 내지 10에 나타낸 바와 같이, P-BNS에 특이적으로 생성된 Th1 세포에 의해 생성되는 주요 사이토카인인 IFN-γ의 양은, 3종류의 단백질이 로딩된 P-BNS에서 모두 대조군과 비교하여 투여 용량에 비례하게 증가하였다.
그러나, Th17에서 생성되는 주요 사이토카인인 IL-17의 경우, OmpA(도 8) 단백질을 함유한 P-BNS가 투여된 마우스에서만 증가하였을 뿐, ABC transporter(도 9) 및 FepA(도 10) 단백질을 함유한 P-BNS가 투여된 마우스에서는 증가하지 않았다.
또한, Th2 세포에서 생성되는 주요 사이토카인인 IL-4와 IL-10의 경우, 3종류의 P-BNS 백신이 투여된 경우 모두 증가하지 않았다.
실시예 7: 패혈증에 대한 크렙시엘라 뉴모니에( K. pneumoniae ) 단백질 함유 P-BNS 백신의 보호 효과
크렙시엘라 뉴모니에에 의해 유발되는 패혈증에 대한 P-BNS 백신의 효과를 검증하기 위하여, 다음과 같은 실험을 수행하였다.
우선, 마우스에 각각 5, 10 또는 40 ㎍의 P-BNS가 포함된 100 μl의 PBS를 일주일 간격으로 3주 동안 복강투여하고, 마지막 투여 일주일 후 크렙시엘라 뉴모니에를 치사량(1 × 108CFU)으로 접종하고 3일 동안 12시에 생존여부를 체크하였다.
그 결과, 도 11a 내지 도 11c에 나타낸 바와 같이, 백신을 투여하지 않은 대조군 마우스(PBS)들은 크렙시엘라 뉴모니에 주입 후 36시간 내에 모두 죽은 반면, OmpA 단백질 함유 P-BNS를 10과 40 ㎍의 농도로 투여한 마우스의 경우에는 각각 80%, 100% 생존하였다(도 11a).
그러나, ABC transporter 및 FepA 단백질 함유 P-BNS를 투여한 마우스 그룹에서는, 대조군 마우스와 백신이 투여된 마우스 간의 생존률에 있어서 현저한 차이가 나타나지 않았다(도 11b 및 11c).
따라서, OmpA 단백질 함유 P-BNS이 크렙시엘라 감염질환에 대하여 백신으로서 가장 유효함을 알 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
<210> 1
<211> 1071
<212> DNA
<213> Homo Sapiens
<220>
<221> gene
<222> (1)..(1071)
<223> OmpA
<400> 1
atgaaaaaga cagctatcgc gattgcagtg gcactggctg gcttcgctac cgtagcgcag 60
gccgctccga aagataacac ctggtatgca ggtggtaaac tgggttggtc ccagtatcac 120
gacaccggtt tctacggtaa cggtttccag aacaacaacg gtccgacccg taacgatcag 180
cttggtgctg gtgcgttcgg tggttaccag gttaacccgt acctcggttt cgaaatgggt 240
tatgactggc tgggccgtat ggcatataaa ggcagcgttg acaacggtgc tttcaaagct 300
cagggcgttc agctgaccgc taaactgggt tacccgatca ctgacgatct ggacatctac 360
acccgtctgg gcggcatggt ttggcgcgct gactccaaag gcaactacgc ttctaccggc 420
gtttcccgta gcgaacacga cactggcgtt tccccagtat ttgctggcgg cgtagagtgg 480
gctgttactc gtgacatcgc tacccgtctg gaataccagt gggttaacaa catcggcgac 540
gcgggcactg tgggtacccg tcctgataac ggcatgctga gcctgggcgt ttcctaccgc 600
ttcggtcagg aagatgctgc accggttgtt gctccggctc cggctccggc tccggaagtg 660
gctaccaagc acttcaccct gaagtctgac gttctgttca acttcaacaa agctaccctg 720
aaaccggaag gtcagcaggc tctggatcag ctgtacactc agctgagcaa catggatccg 780
aaagacggtt ccgctgttgt tctgggctac accgaccgca tcggttccga agcttacaac 840
cagcagctgt ctgagaaacg tgctcagtcc gttgttgact acctggttgc taaaggcatc 900
ccggctggca aaatctccgc tcgcggcatg ggtgaatcca acccggttac tggcaacacc 960
tgcgacaacg tgaaagctcg cgctgccctg atcgattgcc tggctccgga tcgtcgtgta 1020
gagatcgaag ttaaaggcta caaagaagtt gtaactcagc cggcggctta a 1071
<210> 2
<211> 2229
<212> DNA
<213> Homo Sapiens
<220>
<221> gene
<222> (1)..(2229)
<223> FepA
<400> 2
atgaataaca ggatcaaatc cctggccttg ctggtcaatc tgggaattta cggggttgct 60
tttccgttaa gcgcagcgga aaccgccacc gacgataaaa acagcgccgc tgaagagacc 120
atggtggtca ccgccgccga gcagaacctg caggcgccgg gcgtctccac catcaccgcc 180
gatgagatcc gcaaacgccc cccggcgcgc gacgtctcgg agatcattcg caccatgccg 240
ggggtcaacc tgaccggcaa ctccaccagc ggccagcgcg gcaacaaccg ccagattgat 300
atccgcggca tgggcccgga aaataccctg atcctgatcg acggcaagcc ggtcaccagc 360
cgcaactccg tgcgccttgg ctggcgcggc gagcgcgaca cccgcggcga taccagctgg 420
gtgccgccgg agatgatcga acgtatcgaa gtgattcgcg gcccggccgc cgcccgctac 480
ggcaacggcg ccgccggcgg cgtggtgaat atcatcacca aaaaaaccgg cgatgagtgg 540
cacggctcat ggaacaccta tatgaacgcc ccggagcaca aggatgaagg ctccaccaaa 600
cgcactaact tcagcctcag cggcccgctg ggcggcgatt ttagcttccg cctgttcggt 660
aacctcgaca aaacgcaggc tgacgcctgg gatatcaacc agggccatca gtccgagcgt 720
accgggatct atgccgatac tctgccggcc gggcgcgaag gggtgaaaaa caaaaacatc 780
gatggtctgg tgcgctggga attcgctccg atgcagtcgc tggagtttga ggccggctac 840
agccgccagg gcaacctcta cgccggcgat acccagaaca ccaactccaa cgacctggta 900
aaagagaact acggcaaaga gaccaaccgt ctgtatcgca acacctactc ggttacctgg 960
aacggcgcct gggacaacgg ggtgaccacc agcaactggg cgcagtacga acgcacccgc 1020
aactcgcgca aaggcgaagg cctggccggc ggcaccgagg ggatctttaa cagcaaccag 1080
ttcacggata tcgatctggc ggatgtgatg ctgcacagcg aagtcagcat tcccttcgac 1140
tatctggtta atcagaacct gacgctgggc agcgagtgga accagcagcg gatgaaggat 1200
aacgcctcca atacccaggc gctgtcgggc ggcagcatcc cgggctacga cagcaccggc 1260
cgcagcccgt actcgcaggc ggaaatcttc tcgctgttcg ctgagaacaa catggagctg 1320
accgacacca ccatgctgac cccggcgctg cgtttcgatc atcacagcat cgtgggcaat 1380
aactggagcc cgtccctcaa cctgtcgcag ggcctgtggg atgacttcac gctgaagatg 1440
ggcatcgccc gcgcctataa agcgccgagc ctgtatcaga ccaacccgaa ctacattctc 1500
tacagtaaag gccagggctg ctatgccagt aaagacggct gctatctgca gggtaacgac 1560
gacttaaaag ccgagaccag catcaacaaa gagattggcc tcgagtttaa acgcgacggc 1620
tggctggctg gcgtcacctg gttccgcaac gactaccgca acaagattga agcgggctat 1680
gccccggtct atcaaaacaa taaaggtacc gatctctacc agtgggaaaa cgtgccgaaa 1740
gcggtggtgg aaggtctgga ggggacgttg aacgttccgg tgagcgagac cgtcaactgg 1800
accaacaaca tcacctatat gctgcagagt aagaacaaaa agaccggcga tcgtctgtcg 1860
attatcccgg aatacacgct gaactccacc ctgagctggc aggttcgcga tgacgtttcg 1920
ctgcagtcga ccttcacctg gtacggcaag caggagccga agaagtacaa ctacaagggt 1980
caaccggtca ccggcagcga gaagaacgag gttagcccct acagcatcct cggcctgagc 2040
gcgacctggg acgtcaccaa atacgtcagt ctgaccggcg gcgtggataa cgtcttcgat 2100
aagcgccact ggcgcgcggg caacgcccag accaccgggg gcgccaccgg cacgatgtac 2160
ggcgccggcg ccgagaccta caatgaatcg ggccgcacct ggtacctgag cgtcaacacc 2220
cacttctga 2229
<210> 3
<211> 831
<212> DNA
<213> Homo Sapiens
<220>
<221> gene
<222> (1)..(831)
<223> ABC transporter
<400> 3
atgtgtctga gcgctgtatt aacggtcgct ttttcttatc acgccgtcgc ggccgatctt 60
ccggaaatag aaaaatccgg caccttgaaa gtggcgacgg aagatgatta tgcgccgttt 120
aactttatga ataatggcca ggctgatggc tttaacaaag atatgcttga ggaattacgt 180
aagtacgcaa aattccatgt cgaccagagc atattaccgt ggaccggatt attagcggct 240
gtctccaccg ggcaatacga tatggcctta accggggcgg ttattaccga tgagcggctg 300
aaggtctttg atttcacccc accgtgggcc tccgcgcagc actatttcgt caaacgcgct 360
ggcgatacct cgctaaatac cattgccgat ctcagcggca aaaaagtggg ggtacaggcc 420
gggagcgcgc tgctggcgcg tttgccggag ctgaaggcga tgctggagaa gaccggcggc 480
aagctggggc cggtggtgga gtatccctcc tatccggaag cctacgccga cctggcgaac 540
aagcgactgg attacgtgat taacgtggtg atctcggtaa acgacctggc gaaagccaaa 600
ccgaaggtct tcgccaaagg gctggccgtc tccggaccgg ggtatatggc gtggccgatc 660
ccgaaaaact cgccgcagct gctggcctat atgaccaggt ttatgaacca catgaaggag 720
accggcaagc tcgccgaact gcagaaaaaa tggttcggcg aaacctatga caacctgccg 780
accgaggcga tcaccagccc ggaacagttt cacaaactcg ccggactgta a 831
<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for OmpA
<400> 4
atgattgcag tggcactggc t 21
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for OmpA
<400> 5
aaagccgccg gctgagttac 20
<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for FepA
<400> 6
atgacggtcg ctttttctta tcac 24
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for FepA
<400> 7
aacagtccgg cgagtttgtg aaa 23
<210> 8
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer for ABC transporter
<400> 8
agatctttcc ctggcctt 18
<210> 9
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer for ABC transporter
<400> 9
agatctttca gaagtgggtg ttga 24

Claims (10)

  1. 하기의 단계를 포함하는, 클렙시엘라균 감염질환 예방 또는 치료용 백신의 제조방법:
    (a) 클렙시엘라균 유래의 OmpA(Outer membrane protein A) 유전자를 숙주균에 과발현시키는 단계;
    (b) 상기 과발현된 숙주균에서 외막과 펩티도글리칸층을 제거하여 원형질체를 얻는 단계; 및
    (c) 상기 원형질체를 분리하는 단계.
  2. 제 1 항에 있어서, 상기 (b) 단계에서 원형질체는 숙주균에 라이소자임을 처리한 후 압출하여 얻는 것을 특징으로 하는, 제조방법.
  3. 제 1 항에 있어서, 상기 클렙시엘라균은 클렙시엘라 뉴모니에(Klebsiella pneumoniae)인 것을 특징으로 하는, 제조방법.
  4. 제 1 항에 있어서, 상기 클렙시엘라균 감염질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 것을 특징으로 하는, 제조방법.
  5. 제 1 항에 있어서, 상기 숙주균은 대장균(E.coli)인 것을 특징으로 하는, 제조방법.
  6. 제 1 항의 방법으로 제조된, 클렙시엘라균 감염질환 예방 또는 치료용 백신.
  7. 제 6 항에 있어서, 상기 백신은 원형질체의 내강(lumen)에 클렙시엘라균 유래의 OmpA(Outer membrane protein A) 단백질이 과발현되어 존재하는 것을 특징으로 하는, 백신.
  8. 제 6 항에 있어서, 상기 클렙시엘라균은 클렙시엘라 뉴모니에(Klebsiella pneumoniae)인 것을 특징으로 하는, 백신.
  9. 제 6 항에 있어서, 상기 클렙시엘라균 감염질환은 패혈증, 폐렴 및 폐기종으로 이루어진 군에서 선택되는 것을 특징으로 하는, 백신.
  10. 제 7 항에 있어서, 상기 원형질체는 평균 직경이 200-300 nm인 것을 특징으로 하는, 백신.
PCT/KR2016/007496 2015-07-22 2016-07-11 클렙시엘라균 감염질환의 예방용 백신 WO2017014468A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0103471 2015-07-22
KR1020150103471A KR20170011221A (ko) 2015-07-22 2015-07-22 클렙시엘라균 감염질환의 예방용 백신

Publications (1)

Publication Number Publication Date
WO2017014468A1 true WO2017014468A1 (ko) 2017-01-26

Family

ID=57834122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007496 WO2017014468A1 (ko) 2015-07-22 2016-07-11 클렙시엘라균 감염질환의 예방용 백신

Country Status (2)

Country Link
KR (1) KR20170011221A (ko)
WO (1) WO2017014468A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027432A1 (fr) * 1998-11-06 2000-05-18 Pierre Fabre Medicament UTILISATION D'UNE PROTEINE OmpA D'ENTEROBACTERIE, POUR LE CIBLAGE SPECIFIQUE VERS LES CELLULES PRESENTATRICES D'ANTIGENES
KR20120002942A (ko) * 2010-07-01 2012-01-09 포항공과대학교 산학협력단 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027432A1 (fr) * 1998-11-06 2000-05-18 Pierre Fabre Medicament UTILISATION D'UNE PROTEINE OmpA D'ENTEROBACTERIE, POUR LE CIBLAGE SPECIFIQUE VERS LES CELLULES PRESENTATRICES D'ANTIGENES
KR20120002942A (ko) * 2010-07-01 2012-01-09 포항공과대학교 산학협력단 세포의 원형질체에서 유래한 마이크로베시클 및 이의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM, O. Y. ET AL.: "Bacterial Protoplast-derived Nanovesicles as Vaccine Delivery System against Bacterial Infection", NANO LETTERS, vol. 15, no. 1, 15 December 2014 (2014-12-15), pages 266 - 274, XP055347466 *
KURUPATI , P. ET AL.: "Protective Efficacy of DNA Vaccines Encoding Outer Membrane Protein A and OmpK36 of Klebsiella Pneumoniae in Mice", CLINICAL AND VACCINE IMMUNOLOGY, vol. 18, no. 1, 2011, pages 82 - 88, XP055112798 *
MERSEY, B. G. ET AL.: "The Isolation of Coated Vesicles from Protoplasts of Soybean", PLANTA, vol. 163, no. 3, 1985, pages 317 - 327, XP008169268 *

Also Published As

Publication number Publication date
KR20170011221A (ko) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2018143678A1 (ko) 신규 유산균 및 이의 용도
WO2019209079A1 (en) Nucleic acid molecules inserted expression regulation sequences, expression vector comprising nucleic acid moleclues and pharmaceutical use thereof
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2017047968A1 (ko) 다양한 기능성을 가진 신규 유산균 및 이의 용도
WO2021107689A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 면역관문 억제제를 포함하는 암 치료용 약학 조성물
WO2020222461A1 (ko) 면역항암 보조제
WO2019216623A1 (ko) 당뇨병 및 비만 치료용 면역관용 세포 백신 및 인슐린 분비 세포의 제조 방법
WO2017014468A1 (ko) 클렙시엘라균 감염질환의 예방용 백신
WO2023113541A1 (en) Pharmaceutical composition for preventing or treating cancer or inflammatory disease
WO2022164122A1 (en) Immunosuppressive pharmaceutical composition including benzene derivative as immunosuppressant
WO2023121036A1 (ko) 불활화된 폐렴구균 변이 균주를 포함하는 백신 조성물
WO2022119380A1 (ko) 신규한 ace2 변이체 및 그의 이용
EP3755336A1 (en) Compositions for preventing or treating uveitis
WO2020204615A1 (ko) 용암해수 유래 천연 미네랄 코팅 프로바이오틱스의 제조방법 및 이를 이용한 용암해수 유래 천연 미네랄 코팅 프로바이오틱스
WO2014182078A1 (ko) 장 면역활성 조절용 조성물 및 이의 용도
WO2023244001A1 (ko) 면역활성 부위 융합 단백질을 포함하는 결핵 백신 조성물
AU2018372397B2 (en) Compositions for preventing or treating lupus
WO2021066573A1 (ko) 신규 화합물 및 이의 자가면역질환 치료 용도
WO2024049280A1 (ko) 수퍼옥시드 디스뮤타제를 발현하는 바실러스 종 균주, 바실러스 종 균주 포자 및/또는 수퍼옥시드 디스뮤타제 및 이의 섬유화 질환 예방 또는 치료용 용도
WO2020080653A1 (ko) Treg 세포를 유도하는 효모 유래 다당체의 구조 및 기능 특성
WO2019132610A1 (ko) Baf57 재조합 융합 단백질 및 이의 용도
WO2023075421A1 (ko) 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물
WO2017026620A1 (ko) 락토바실러스 펜토서스를 유효성분으로 포함하는 Th1-매개 면역 질환, Th17-매개 면역 질환, 또는 Th2-매개 면역 질환의 예방, 개선, 또는 치료용 조성물
WO2022035246A1 (ko) B형 간염 바이러스 유래 폴리펩티드를 포함하는 면역 어쥬번트
WO2023211228A1 (ko) 항―wars1 항체를 포함하는 염증성 질환의 예방 또는 치료용 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827972

Country of ref document: EP

Kind code of ref document: A1