WO2017013692A1 - 走行車線判定装置及び走行車線判定方法 - Google Patents

走行車線判定装置及び走行車線判定方法 Download PDF

Info

Publication number
WO2017013692A1
WO2017013692A1 PCT/JP2015/003660 JP2015003660W WO2017013692A1 WO 2017013692 A1 WO2017013692 A1 WO 2017013692A1 JP 2015003660 W JP2015003660 W JP 2015003660W WO 2017013692 A1 WO2017013692 A1 WO 2017013692A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
boundary
lane
travel
vehicle
Prior art date
Application number
PCT/JP2015/003660
Other languages
English (en)
French (fr)
Inventor
宏寿 植田
山口 一郎
千加夫 土谷
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/003660 priority Critical patent/WO2017013692A1/ja
Publication of WO2017013692A1 publication Critical patent/WO2017013692A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a travel lane determination device and a travel lane determination method for determining the travel lane of the host vehicle.
  • Patent Document 1 discloses an automatic travel control device.
  • this automatic travel control apparatus in addition to the CCD camera that detects the white line on the road, laser radars that detect the distance to the side wall of the road are provided on the left and right.
  • the image of the CCD camera is supplied to the image processing device, and the extracted white line is supplied to the vehicle control device.
  • the vehicle control device drives and controls the steering actuator based on the detected white line.
  • the vehicle control device steers based on the distance to the side wall. Control. Also, when a front obstacle is found by a laser radar, the lane is changed while the vehicle position is detected based on the distance to the side wall to avoid the obstacle.
  • the present invention has been made in view of such circumstances, and the traveling lane is accurately determined when a white line is detected again after passing an intersection in a state where the estimation accuracy of the lateral position is deteriorated.
  • An object is to provide a lane determination device and a traveling lane determination method.
  • a road boundary indicating a boundary of a lane in which the host vehicle is traveling is detected, and the host vehicle is traveling.
  • the road edge indicating the edge of the road is detected, the position of the vehicle is acquired, the road boundary information indicating the road boundary on the map corresponding to the position of the vehicle, and the road edge information indicating the road edge on the map are obtained.
  • the driving lane is based on the distance from the road edge, the road boundary information, and the road edge information. Determine.
  • the travel lane when a white line is detected again after passing through an intersection in a state where the estimation accuracy of the lateral position is deteriorated, even if the estimation accuracy of the vehicle position on the map is low, Therefore, the travel lane can be determined with high accuracy.
  • first and second embodiments of the present invention will be described with reference to the drawings.
  • the same or similar parts are denoted by the same or similar reference numerals.
  • the drawings are schematic and different from the actual ones. Therefore, specific components should be determined in consideration of the following description.
  • the following first and second embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the shape of a component,
  • the structure and arrangement are not specified as follows.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
  • the traveling lane determination device includes an imaging unit 1, a reflected wave detection unit 2, a host vehicle position acquisition unit 3, a map information acquisition unit 4, and a control device 5.
  • the driving support system 6 is provided.
  • the imaging unit 1 is attached to the vehicle A (hereinafter, the own vehicle), images a road surface area around the own vehicle, and outputs an image of the road surface area to the control device 5.
  • the imaging unit 1 is a front camera equipped with a wide-angle lens or a fisheye lens.
  • the imaging unit 1 is attached to the front part of the host vehicle, captures a road surface area in front of the host vehicle as an image, and outputs the image to the control device 5.
  • the imaging unit 1 is not limited to the front part of the host vehicle, and may be attached to the side or rear part of the host vehicle.
  • the imaging unit 1 is mounted around the rearview mirror in the vehicle interior at a height h1 and a position and posture at an angle ⁇ 1 from horizontal to downward, and images a road surface area in front of the host vehicle.
  • the imaging range (angle of view, etc.) of the imaging unit 1 is a range in which at least both ends of the road ahead of the host vehicle can be accommodated.
  • another imaging unit 1 that is attached to the left and right side surfaces (for example, around the door mirror) of the host vehicle and captures the road surface area on the side of the host vehicle as an image. May be provided.
  • the reflected wave detection unit 2 is attached to the host vehicle, irradiates the measurement points in the road surface area around the host vehicle with electromagnetic waves, detects the reflected wave, and outputs information based on the reflected wave to the control device 5.
  • the reflected wave detection unit 2 is a laser range finder (LRF), a laser radar, or the like.
  • LRF laser range finder
  • the reflected wave detection unit 2 irradiates the measurement point in the road surface area in front of the host vehicle with the laser beam, receives the reflected light with respect to the irradiated laser beam, and determines the measurement point from the received reflected light.
  • the reflected wave detection unit 2 is not limited to the front part of the host vehicle, and may be attached to the side or rear part of the host vehicle.
  • the reflected wave detection unit 2 is mounted around the bonnet, the front bumper, the windshield, the headlight, the radiator or the license plate in front of the host vehicle with a height h2 and a position and posture at an angle ⁇ 2 from the horizontal to the downward direction.
  • the target area is detected by scanning the road area in front of the vehicle. At this time, h1> h2 and ⁇ 1 ⁇ 2.
  • both the imaging part 1 and the reflected wave detection part 2 may be attached to the forefront part of the own vehicle.
  • the own vehicle position acquisition unit 3 acquires the position (coordinates, relative position, etc.) of the own vehicle.
  • the own vehicle position acquisition unit 3 is a car navigation system, a GPS receiver, or the like.
  • the vehicle position acquisition unit 3 may acquire the position of the vehicle through a communication system such as wireless communication (road-to-vehicle communication or vehicle-to-vehicle communication is possible).
  • the own vehicle position acquisition unit 3 may detect the position of the own vehicle using the imaging unit 1, the reflected wave detection unit 2, or the sensors of the own vehicle.
  • the map information acquisition unit 4 acquires map information.
  • the map information acquisition unit 4 is a car navigation system or a map database.
  • the map information acquisition part 4 may acquire and memorize
  • the map information acquisition unit 4 may periodically acquire the latest map information and update the held map information.
  • the map information acquisition part 4 may accumulate
  • the map information acquisition part 4 acquires the road boundary information which shows the road boundary line on a map, and the road edge information which shows the road edge on a map at least as map information.
  • the control device 5 captures an image captured by the imaging unit 1 and detects a road boundary line around the own vehicle from this image. Moreover, the control apparatus 5 takes in the reflected light data obtained by the reflected wave detection unit 2, and detects the road edge around the own vehicle from the reflected light data. In addition, the control device 5 is on the map corresponding to the current position of the own vehicle based on the position of the own vehicle acquired by the own vehicle position acquisition unit 3 and the map information acquired by the map information acquisition unit 4. Get track boundary information and track edge information. Based on this information, the control device 5, for example, when it becomes impossible to detect the road boundary line temporarily after passing through an intersection or the like, the road boundary line can be detected again. The travel lane is determined based on the distance. For example, as shown in FIG.
  • the traveling lane may be erroneously determined.
  • the determination accuracy of the traveling lane is improved by determining the traveling lane based on the distance from the end of the traveling road.
  • the control device 5 estimates the position / posture of the host vehicle in the travel lane, and transfers the estimated values of the position and posture to the driving support system 6. Details of the control device 5 will be described later.
  • the driving support system 6 performs driving support such as warning and / or braking / driving on the own vehicle based on the estimated position and posture of the own vehicle transferred from the control device 5.
  • the driving support system 6 is a known driving support system such as a lane keeping system, a lane departure warning, a lane change support system, an automatic travel system, and the like. Since the processing in the driving support system 6 is a known technique, a detailed description thereof is omitted.
  • the control device 5 and the driving support system 6 may be independent devices or may be integrated. It is sufficient that at least communication or cooperation is possible.
  • an electronic control device ECU
  • the control device 5 and the driving support system 6 may be a computer, a smartphone, a tablet terminal, a car navigation system, or the like.
  • the control device 5 includes a road boundary detection unit 51, a road edge detection unit 52, a road information acquisition unit 53, a travel lane calculation unit 54, and a stop determination unit 55.
  • the road boundary detection unit 51 detects a road boundary indicating the boundary of the lane in which the vehicle is traveling and a distance from the road boundary from the image captured by the imaging unit 1.
  • the road boundary line is one of road markings.
  • the runway boundary line is a white line, a division line, or the like.
  • the road edge detection unit 52 detects the road edge indicating the edge of the road on which the vehicle is traveling and the distance from the road edge from the reflected light data obtained by the reflected wave detection unit 2.
  • the runway edge is part of the road structure.
  • the runway edge is a curb, a guardrail, a side wall, a median strip, or the like.
  • the road information acquisition unit 53 acquires the road boundary information and the road edge information corresponding to the position of the vehicle acquired by the vehicle position acquisition unit 3 from the map information acquisition unit 4.
  • the track information acquisition unit 53 uses the map boundary information and the track within a predetermined range centered on the position of the host vehicle acquired by the host vehicle position acquisition unit 3 from the map information acquired by the map information acquisition unit 4. Get end information.
  • the travel lane calculation unit 54 includes a road boundary continuous detection determination unit 54a, a multiple lane determination unit 54b, a road edge parallel determination unit 54c, a road boundary reference selection unit 54d, a travel lane determination unit 54e, and a lateral position calculation. Part 54f.
  • the runway boundary continuous detection determination unit 54a determines whether or not the road boundary detection unit 51 continuously detects the road boundary. For example, the road boundary line continuous detection determination unit 54a is detected when a predetermined number of times (for example, three times) is not continuously detected in the calculation cycle of the road boundary line detection unit 51, or for a predetermined time (for example, one second). If not, it is determined that the road boundary line is not continuously detected. Further, when the road boundary continuous detection determination unit 54a determines that the vehicle is in the intersection based on the road boundary information and the road edge information (or map information) acquired by the road information acquisition unit 53. It may be determined that the road boundary line is not continuously detected.
  • a predetermined number of times for example, three times
  • a predetermined time for example, one second
  • the multiple lane determination unit 54b is based on the road boundary information acquired by the road information acquisition unit 53. It is determined whether the road on which the host vehicle is traveling is a road having a plurality of traveling lanes. At this time, in the case of a road having a plurality of lanes in a round trip, the determination is made only on one side of the lane with the road center line and the median strip as a boundary, and the opposite lane is not included.
  • the overtaking lane is also one of the traveling lanes.
  • the multiple lane determination unit 54b refers to the road boundary information acquired by the road information acquisition unit 53, and the road on which the vehicle is traveling has only one lane on one side, or has two or more lanes on one side. Determine whether. If the road on which the host vehicle is traveling is a road having two or more lanes on one side, the multiple lane determining unit 54b determines that the road has a plurality of traveling lanes.
  • the road edge parallel determination unit 54c determines that the road edge detected by the road edge detection unit 52 is the travel of the own vehicle. It is determined whether or not it is parallel to the direction. Specifically, the road edge parallel determination unit 54c determines whether or not the difference in angle between the traveling direction of the host vehicle and the extending direction of the road edge is equal to or less than a threshold value. In this case, if the difference in angle between the traveling direction of the own vehicle and the extending direction of the traveling road edge is equal to or smaller than the threshold value, it is determined that the traveling road edge is parallel to the traveling direction of the own vehicle.
  • the road edge parallel determination unit 54c is detected by the road edge detection unit 52 even when the road edge is not detected by the road edge detection unit 52 and there is no road edge detected by the road edge detection unit 52. It is determined that the runway end that has been made is not parallel to the traveling direction of the host vehicle.
  • the road edge parallel determination unit 54c determines that the road edge detected by the road edge detection unit 52 is not parallel to the traveling direction of the own vehicle, the vehicle is changing lanes, or an intersection. Therefore, it is assumed that the vehicle is traveling or turning, so that the process does not shift to the traveling lane determination process.
  • the road boundary reference selection unit 54d selects a reference line for determining the traveling lane of the own vehicle based on the result determined by the road boundary continuous detection determination unit 54a.
  • the road boundary reference selection unit 54d selects which of the road boundary line and the road edge is the reference line. Specifically, the road boundary reference selection unit 54d determines that the road boundary line is continuously detected by the road boundary continuous detection determination unit 54a, and the multiple lane determination unit 54b is traveling the host vehicle. When it is determined that the road is not a road having a plurality of travel lanes, the road boundary detected by the road boundary detection unit 51 is selected as the reference line.
  • the road boundary reference selection unit 54d determines that the road boundary line is not continuously detected by the road boundary continuous detection determination unit 54a, and the road edge is determined by the road edge parallel determination unit 54c. When it is determined that the road is parallel to the direction, the road edge detected by the road edge detector 52 is selected as the reference line.
  • the traveling lane determining unit 54e determines the traveling lane of the host vehicle based on the reference line selected by the traveling road boundary reference selecting unit 54d and the traveling road boundary information and the traveling road edge information acquired by the traveling road information acquisition unit 53. To do. In the present embodiment, the traveling lane determination unit 54e cannot determine the traveling lane based on the traveling road boundary detected by the traveling road boundary detection unit 51 and the traveling road boundary information acquired by the traveling road information acquisition unit 53. The travel lane is determined based on the distance from the road edge detected by the road edge detection unit 52 and the road boundary information and the road edge information acquired by the road information acquisition unit 53. In other cases, the travel lane determination unit 54e determines the travel lane based on the travel boundary line detected by the travel boundary detection unit 51 and the travel boundary information acquired by the travel information acquisition unit 53. To do.
  • the lateral position calculation unit 54f is determined by the travel lane determination unit 54e based on the distance from the road boundary detected by the road boundary detection unit 51 and the road boundary information acquired by the road information acquisition unit 53.
  • the lateral position of the vehicle in the travel lane is calculated.
  • the lateral position calculation unit 54f is based on the distance from the reference line selected by the road boundary reference selection unit 54d and the road boundary information and the road edge information acquired by the road information acquisition unit 53.
  • the lateral position of the host vehicle in the travel lane determined by the travel lane determination unit 54e may be calculated.
  • the lateral position calculation unit 54f may be linked or integrated with the travel lane determination unit 54e.
  • the lateral position calculation unit 54f may be a part of the traveling lane determination unit 54e.
  • the stop determination unit 55 determines whether or not the ignition key (IGN) of the own vehicle is OFF, and if it is OFF, the series of processing ends.
  • the stop determination unit 55 determines that the vehicle is OFF because it is clear that the vehicle is not traveling. That is, the stop determination unit 55 determines that the ignition key is OFF when the ignition key is other than ON.
  • the ignition key is only an example of an engine switch. Actually, instead of the ignition key, a push-type starter switch may be used. In the case of a push type starter switch, START is ON and STOP is OFF.
  • FIG. 4 is a flowchart showing a flow of travel lane determination processing performed by the travel lane determination apparatus according to the first embodiment.
  • the road boundary detection unit 51 detects the road boundary around the host vehicle and the distance from the road boundary from the image captured by the imaging unit 1, and calculates the detection result of the subsequent road lane.
  • the road edge detection unit 52 detects the road edge around the own vehicle and the distance from the road edge based on the reflected light data obtained by the reflected wave detection unit 2, and the detection result is shown in the subsequent stage. Is output to the travel lane calculation unit 54.
  • step S103 the runway information acquisition unit 53 acquires the position of the host vehicle from the host vehicle position acquisition unit 3, and based on the position of the host vehicle, the road boundary around the host vehicle as map information from the map information acquisition unit 4 The line information and the road edge information are acquired, and the acquisition result is output to the travel lane calculation unit 54 in the subsequent stage.
  • step S ⁇ b> 104 the lane boundary continuous detection determination unit 54 a of the lane calculation unit 54 determines whether the lane boundary is continuously detected by the lane boundary detection unit 51.
  • the process proceeds to the process of the multiple lane determination unit 54b (step S109).
  • the flow proceeds to the setting process of the driving lane determination flag (step S105). .
  • step S105 the road boundary continuous detection determination unit 54a sets the travel lane determination flag (LaneFLG) to OFF. For example, a value indicating false is set among the true / false values in the traveling lane determination flag. Then, the runway boundary continuous detection determination unit 54a proceeds to the process (step S106) of the runway end parallel determination unit 54c.
  • Step S106 the process of the runway end parallel determination unit 54c.
  • step S106 the road edge parallel determination unit 54c determines whether or not the road edge detected by the road edge detection unit 52 is parallel to the traveling direction of the host vehicle.
  • the process of the road boundary reference selection unit 54d step S107. Proceed to On the other hand, when the road edge parallel determination unit 54c determines that the road edge is not parallel to the traveling direction of the host vehicle (No in step S106), the process proceeds to the process of the stop determination unit 55 (step S115).
  • step S107 the road boundary reference selection unit 54d selects the road edge detected by the road edge detection unit 52 as the reference line, and outputs the selection result to the road lane determination unit 54e.
  • step S108 since the reference line selected by the road boundary reference selection unit 54d is the road edge detected by the road edge detection unit 52, the road lane determination unit 54e detects the road edge detected by the road edge detection unit 52.
  • the travel lane of the host vehicle is determined based on the distance from the vehicle and the travel boundary information and the travel edge information acquired by the travel information acquisition unit 53. Specifically, as shown in FIG. 5, the travel lane determination unit 54e has a road edge acquired by the road information acquisition unit 53 because the distance from the road edge detected by the road edge detection unit 52 is L0.
  • the traveling lane determining unit 54e determines the lane to which the position at the distance L0 from the end of the traveling road belongs as the traveling lane of the own vehicle using the traveling road boundary information acquired by the traveling road information acquiring unit 53.
  • the traveling lane determination device does not detect white lines or curbs in the intersection, and passes through the intersection in a state where the lateral position estimation accuracy deteriorates.
  • the method of determining the driving lane of the vehicle based on only the information on the white line is compared with the closest white line on the map with a low estimation accuracy of the vehicle position on the map.
  • the traveling lane is erroneously determined. Even if the estimation accuracy of the vehicle position on the map is low, the travel lane is determined based on the distance from the end of the road, so the travel lane can be determined with high accuracy. Then, the traveling lane determining unit 54e proceeds to the process (step S113) of the lateral position calculating unit 54f.
  • step S109 the multiple lane determination unit 54b determines whether or not the road on which the vehicle is traveling is a road having a plurality of travel lanes based on the road boundary information acquired by the road information acquisition unit 53. Determine.
  • the determination process of the travel lane determination flag step S110.
  • the multiple lane determining unit 54b performs processing (step S111) of the lane boundary reference selecting unit 54d.
  • step S110 the multiple lane determination unit 54b determines whether or not the travel lane determination flag is OFF.
  • the process proceeds to the process of the road edge parallel determination unit 54c (step S106).
  • the process proceeds to the process (step S111) of the road boundary reference selection unit 54d.
  • step S111 the road boundary reference selection unit 54d selects the road boundary detected by the road boundary detection unit 51 as a reference line, and outputs the selection result to the road lane determination unit 54e.
  • step S112 the travel lane determination unit 54e is detected by the travel boundary detection unit 51 because the reference line selected by the travel boundary reference selection unit 54d is the travel boundary detected by the travel boundary detection unit 51.
  • the traveling lane of the host vehicle is determined based on the distance from the traveling road boundary line and the traveling road boundary information and the traveling edge information acquired by the traveling road information acquisition unit 53.
  • the travel lane determination unit 54e since it is determined that the road boundary line is continuously detected by the road boundary continuous detection determination unit 54a (Yes in step S104), the travel lane determination unit 54e has already determined the travel lane of the host vehicle. Judgment. Thereby, since the traveling lane determination apparatus according to the first embodiment determines the traveling lane based on the traveling road boundary line during single road traveling, the traveling lane can be stably determined.
  • a single road refers to a portion of a road excluding intersections and level crossings.
  • the traveling lane determining unit 54e proceeds to the process (step S113) of the lateral position calculating unit
  • step S113 the lateral position calculation unit 54f determines the travel lane based on the distance from the track boundary detected by the track boundary detection unit 51 and the track boundary information acquired by the track information acquisition unit 53. The lateral position of the host vehicle in the travel lane determined by the unit 54e is calculated. In practice, as shown in FIG.
  • the lateral position calculation unit 54f When determining the travel lane of the own vehicle based on the end information, the lateral position calculation unit 54f, the determined travel lane of the own vehicle, the travel route boundary information acquired by the travel route information acquisition unit 53, Based on the distance L0 from the road edge detected by the road edge detection unit 52, the lateral position of the own vehicle in the traveling lane of the own vehicle may be calculated. Then, the lateral position calculation unit 54f proceeds to the travel lane determination flag setting process (step S114).
  • step S114 the traveling lane determination unit 54e sets the traveling lane determination flag to ON. For example, a value indicating true among true / false values is set in the traveling lane determination flag. And it progresses to the process (step S115) of the stop determination part 55.
  • FIG. 11 the traveling lane determination unit 54e sets the traveling lane determination flag to ON. For example, a value indicating true among true / false values is set in the traveling lane determination flag. And it progresses to the process (step S115) of the stop determination part 55.
  • step S115 the stop determination part 55 determines whether the ignition key of the own vehicle is OFF.
  • step S106 the process of the road edge parallel determination unit 54c (step S106) is not performed, and the process of the road boundary reference selection unit 54d (step S107) is directly performed from the previous process. You may make it go.
  • the driving lane can be determined with higher accuracy.
  • the road edge detection unit 52 the road edge is detected. Regardless of whether the vehicle is parallel to the traveling direction of the vehicle, it is possible to determine the traveling lane based on the distance from the end of the traveling road.
  • the road edge detection unit 52 when the road edge is detected by the road edge detection unit 52, the road edge detection unit 52 unconditionally estimates that the road edge is parallel to the traveling direction of the host vehicle. It is possible to proceed to the process of the road boundary reference selection unit 54d (step S107) as it is when the road edge is detected.
  • the road boundary detection unit 51 detects, from the image captured by the imaging unit 1, the road boundary indicating the boundary of the lane in which the host vehicle is traveling and the distance from the road boundary. Yes.
  • the road edge detection unit 52 detects the road edge indicating the end of the road on which the vehicle is traveling and the distance from the road edge from the reflected light data obtained by the reflected wave detection unit 2.
  • the road boundary detection unit 51 uses the reflected light data obtained by the reflected wave detection unit 2 to indicate the road boundary that indicates the boundary of the lane in which the host vehicle is traveling and the distance from the road boundary. May be detected.
  • the road edge detection part 52 may detect the distance from the road edge which shows the edge of the road where the own vehicle is running, and the road edge from the image imaged by the imaging part 1. That is, either one of the imaging unit 1 and the reflected wave detection unit 2 can be replaced with the other.
  • the travel lane determination apparatus according to the first embodiment may include at least one of the imaging unit 1 and the reflected wave detection unit 2.
  • the travel lane determination device works effectively in a situation where it temporarily passes through a place where there is no road boundary, so that it is possible to accurately determine the travel lane. it can.
  • places where there are no runway boundaries include unpaved roads, land, private roads, large facilities and parking lots with multiple entrances, or all runway boundaries due to road construction and other circumstances. There are sections that are lost or concealed.
  • the travel lane determination device detects a road boundary indicating the boundary of the lane in which the host vehicle is traveling, detects a path end indicating the end of the road on which the host vehicle is traveling, Obtains the position of the vehicle, obtains the road boundary information indicating the road boundary on the map corresponding to the position of the vehicle and the road edge information indicating the road edge on the map from the map information, and detects the road boundary
  • the travel lane is determined based on the distance from the road edge, the road boundary line information, and the road edge information.
  • the traveling lane can be correctly determined.
  • the travel lane determination apparatus after determining the travel lane, if the travel boundary line is detected, the travel lane determination apparatus according to the first embodiment is based on the distance from the travel boundary line. Calculate the lateral position of the car. As a result, after determining the driving lane based on the detection result of the road edge, the driving lane is determined based on the detection result of the road boundary line, so that the driving lane can be determined stably during single road driving. Can do.
  • the traveling lane determination device determines whether or not the difference in angle between the traveling direction of the own vehicle and the extending direction of the traveling road edge is equal to or smaller than a threshold value, and the traveling road boundary line is detected. After running out, the road boundary line is detected again, and if it is determined that the difference in angle is less than or equal to the threshold, based on the distance from the road edge, the road boundary line information, and the road edge information Determine the driving lane. As a result, the driving lane is determined based on the distance from the end of the road when the direction of the host vehicle and the end of the road are nearly parallel. it can.
  • the travel lane determination apparatus travels based on the travel boundary line and the travel boundary information first when the travel boundary is detected again after the travel boundary is not detected. If the determination of the lane is attempted and the travel lane cannot be determined, the travel lane is determined based on the distance from the road edge, the road boundary information, and the road edge information. As a result, even after the travel lane is determined, if the travel boundary is not detected, the travel lane is determined based on the detection result of the travel edge, so the travel lane can be stably displayed during single-road travel. You can continue to judge.
  • the system configuration of the traveling lane determination apparatus according to the second embodiment is basically the same as that of the first embodiment (see FIG. 1). Further, the flowchart showing the flow of the traveling lane determination process in the second embodiment is basically the same as that in the first embodiment (see FIG. 4). However, the processing content of step S104 is different. Therefore, here, the processing content of step S104 in the second embodiment will be described. Since other processing contents are the same as those in the first embodiment, the description thereof is omitted.
  • step S104 in the second embodiment the running road boundary continuous detection determination unit 54a of the running lane calculation unit 54 continuously detects both the running road boundary lines detected by the running road boundary detection unit 51 on the left and right sides of the host vehicle. It is determined whether or not it has been detected. Specifically, the running road boundary continuous detection determination unit 54 a determines that at least one of the running road boundary lines on both the left and right sides of the host vehicle is a predetermined number of times (for example, 3 times) in the calculation cycle of the running road boundary detection unit 51. When it is not detected continuously or when it is not detected for a predetermined time (for example, 1 second), it is determined that it is not continuously detected. For example, such a situation may occur when the travel lane is changed as shown in FIG.
  • a predetermined time for example, 1 second
  • the road boundary continuous detection determination unit 54a determines that the vehicle is changing the driving lane based on steering information obtained from the sensors of the vehicle, other recognition results (lateral acceleration, yaw rate, etc.), and the like. Alternatively, it may be determined that they are not continuously detected.
  • the road boundary continuous detection determination unit 54a determines that the road boundary is continuously detected (Yes in step S104)
  • the road boundary reference selection unit 54d performs processing (step S109). move on.
  • the flow proceeds to the setting process of the driving lane determination flag (step S105). .
  • the travel lane determination device is such that at least one of the road boundary lines on both the left and right sides of the host vehicle is temporarily detected in a situation where both the road boundary lines on the left and right sides of the host vehicle are detected. If both the left and right lane boundary lines of the vehicle are detected again, the lane is determined based on the distance from the lane edge, the lane boundary information, and the lane edge information. judge. As a result, as shown in FIG. 7, the travel lane determination device according to the second embodiment moves beyond the road boundary line, such as when the travel lane is changed, and thus it is difficult to determine the travel lane.
  • the traveling lane can be determined with high accuracy. For example, if it is determined that at least one of the road boundary lines on both the left and right sides of the vehicle is not continuously detected, it can be recognized that the driving lane has been changed, and accordingly By switching the reference road boundary line, the lateral position can be calculated again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

横位置の推定精度が劣化した状態で交差点を通過した後、再び白線を検出したときに、精度良く走行車線を判定する走行車線判定装置及び走行車線判定方法を提供する。自車が走行中の車線の境界を示す走路境界線を検出し、自車が走行中の道路の端を示す走路端を検出し、自車の位置を取得し、自車の位置に対応する地図上の走路境界線を示す走路境界線情報及び地図上の走路端を示す走路端情報を地図情報から取得し、走路境界線が検出されなくなった後、再び走路境界線が検出された場合には、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。

Description

走行車線判定装置及び走行車線判定方法
 本発明は、自車の走行車線を判定する走行車線判定装置及び走行車線判定方法に関する。
 白線や縁石等を検出し、白線が検出されているときには白線の検出結果により道路内での横位置を算出し、白線が検出されないときには縁石の検出結果により道路内での横位置を算出する技術の一例として、特許文献1に自動走行制御装置が開示されている。この自動走行制御装置では、走路の白線を検出するCCDカメラの他に、走路の側壁までの距離を検出するレーザレーダを左右に設ける。CCDカメラの画像は画像処理装置に供給され、抽出された白線は車両制御装置に供給される。車両制御装置は、走路上の2本の白線が検出された場合にはこれに基づいてステアリングアクチュエータを駆動して操舵制御するが、白線を検出できない場合には、側壁までの距離に基づいて操舵制御する。また、前方障害物をレーザレーダで発見した場合にも、側壁までの距離に基づいて自車位置を検出しつつ車線変更して障害物を回避する。
特開平10-31799号公報
 しかしながら、例えば交差点を走行した場合、交差点内においては白線や縁石が検出されないため、道路内での横位置の推定精度が劣化する。横位置の推定精度が劣化した状態で交差点を通過した後、再び白線を検出したときに、地図上で最も近い白線と比較すると、走行車線を誤って判定してしまう場合があるという問題があった。
 本発明は、このような事情に鑑みてなされたものであって、横位置の推定精度が劣化した状態で交差点を通過した後、再び白線を検出したときに、精度良く走行車線を判定する走行車線判定装置及び走行車線判定方法を提供することを目的とする。
 上記の課題を解決するため、本発明の一態様に係る走行車線判定装置及び走行車線判定方法では、自車が走行中の車線の境界を示す走路境界線を検出し、自車が走行中の道路の端を示す走路端を検出し、自車の位置を取得し、自車の位置に対応する地図上の走路境界線を示す走路境界線情報及び地図上の走路端を示す走路端情報を地図情報から取得し、走路境界線が検出されなくなった後、再び走路境界線が検出された場合には、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。
 本発明の一態様によれば、横位置の推定精度が劣化した状態で交差点を通過した後、再び白線を検出したときに、地図上の自車位置の推定精度が低くても、走路端からの距離を基準に走行車線を判定するので、精度良く走行車線を判定することができる。
本発明の第1実施形態に係る車両位置算出装置の構成例を示す図である。 走行車線の判定を誤ってしまう状況の一例を説明する図である。 本発明の第1実施形態に係る車両位置算出装置の制御装置の構成例を示す図である。 本発明の第1実施形態における走行車線判定処理の流れを示すフローチャートである。 走路端からの距離に基づく走行車線判定を説明する図である。 本発明の第1実施形態の効果を説明する図である。 本発明の第2実施形態における走行車線変更時の作用を説明する図である。
 次に、図面を参照して、本発明の第1及び第2実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。
 また、以下に示す第1及び第2実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 <第1実施形態>
 まず、本発明の第1実施形態について説明する。
 (システム構成)
 図1に示すように、第1実施形態に係る走行車線判定装置は、撮像部1と、反射波検出部2と、自車位置取得部3と、地図情報取得部4と、制御装置5と、運転支援システム6とを備える。
 撮像部1は、車両A(以下、自車)に取り付けられ、自車の周囲の路面領域を撮像し、その路面領域の画像を制御装置5に出力する。例えば、撮像部1は、広角レンズ又は魚眼レンズを搭載したフロントカメラである。第1実施形態では、撮像部1は、自車の前部に取り付けられ、自車の前方の路面領域を画像として撮像し、その画像を制御装置5に出力する。但し、実際には、撮像部1は、自車の前部に限らず、自車の側方や後部に取り付けられていても良い。ここでは、撮像部1は、車室内のルームミラー周辺に、高さh1、水平から下向きに角度θ1の位置及び姿勢で取り付けられており、自車の前方の路面領域を撮像する。撮像部1の撮像範囲(画角等)は、少なくとも自車の前方の道路の両端が収まる範囲である。なお、実際には、上記の撮像部1に加えて、更に、自車の左右側面部(例えばドアミラー周辺)に取り付けられ、自車の側方の路面領域を画像として撮像する別の撮像部1を設けても良い。
 反射波検出部2は、自車に取り付けられ、自車の周囲の路面領域における計測点に電磁波を照射し、その反射波を検出し、その反射波に基づく情報を制御装置5に出力する。例えば、反射波検出部2は、レーザーレンジファインダー(LRF)、レーザレーダ等である。第1実施形態では、反射波検出部2は、自車の前方の路面領域における計測点にレーザー光を照射し、照射したレーザー光に対する反射光を受光し、受光した反射光から、計測点の距離及び方位と、反射光の強度を示す反射強度とを、反射光データとして取得し、その反射光データを制御装置5に出力する。但し、実際には、反射波検出部2は、自車の前部に限らず、自車の側方や後部に取り付けられていても良い。ここでは、反射波検出部2は、ボンネット、フロントバンパー、フロントガラス、ヘッドライト、ラジエータ若しくは自車前方のナンバープレートの周辺に、高さh2、水平から下向きに角度θ2の位置及び姿勢で取り付けられており、自車の前方の路面領域をスキャンして物標を検出する。このとき、h1>h2、θ1<θ2である。なお、撮像部1と反射波検出部2とは共に自車の最前部に取り付けられていても良い。
 自車位置取得部3は、自車の位置(座標、相対位置等)を取得する。例えば、自車位置取得部3は、カーナビゲーションシステムやGPS受信機等である。また、自車位置取得部3は、無線通信(路車間通信又は車車間通信でも可)等の通信システムを介して自車の位置を取得しても良い。また、自車位置取得部3は、撮像部1や反射波検出部2、若しくは自車のセンサー類等を用いて、自車の位置を検出しても良い。
 地図情報取得部4は、地図情報を取得する。例えば、地図情報取得部4は、カーナビゲーションシステムや地図データベース等である。なお、地図情報取得部4は、無線通信(路車間通信又は車車間通信でも可)等の通信システムを介して外部から地図情報を取得して記憶しても良い。この場合、地図情報取得部4は、定期的に最新の地図情報を入手して、保有する地図情報を更新しても良い。また、地図情報取得部4は、自車が実際に走行した走路を地図情報として蓄積しても良い。第1実施形態では、地図情報取得部4は、地図情報として、少なくとも、地図上の走路境界線を示す走路境界線情報と、地図上の走路端を示す走路端情報とを取得する。
 制御装置5は、撮像部1で撮像された画像を取り込み、この画像から自車の周囲の走路境界線を検出する。また、制御装置5は、反射波検出部2で得られた反射光データを取り込み、この反射光データから自車の周囲の走路端を検出する。また、制御装置5は、自車位置取得部3で取得された自車の位置と、地図情報取得部4で取得された地図情報とに基づいて、自車の現在位置に対応する地図上の走路境界線情報と走路端情報とを取得する。制御装置5は、これらの情報に基づいて、例えば交差点等の通過により、一時的に走路境界線が検出できなくなった後、再び走路境界線が検出できるようになった場合には、走路端からの距離に基づいて走行車線を判定する。例えば、図2に示すように、自車が交差点を通過して、交差点侵入前の道路と車線数が異なる道路に進入したときに、その道路が複数の走行車線を有する道路である場合、自車の周囲の走路境界線を検出しただけではその道路における自車の走行車線を特定することができず、地図情報を表示した際の自車の表示位置を基に地図上で最も近い走路境界線と比較すると、走行車線を誤って判定してしまう場合がある。本実施形態では、走路端からの距離を基準に走行車線を判定することで、走行車線の判定精度の向上を図る。制御装置5は、この走行車線における自車の位置・姿勢を推定し、それらの位置や姿勢の推定値を運転支援システム6に転送する。制御装置5の詳細については、後述する。
 運転支援システム6は、制御装置5から転送された自車の位置や姿勢の推定値に基づいて、自車に対する警報及び/又は制駆動等の運転支援を行う。運転支援システム6は、例えば、レーンキープシステム、車線逸脱警報、車線変更支援システム、自動走行システム等の公知の運転支援システムである。運転支援システム6での処理は公知技術であるため、詳細の説明は割愛する。
 なお、制御装置5及び運転支援システム6は、独立した装置でも良いし、一体化していても良い。少なくとも通信又は連携可能であれば良い。制御装置5及び運転支援システム6の例として、電子制御装置(ECU)を想定している。但し、実際には、制御装置5及び運転支援システム6は、計算機、スマートフォン、タブレット端末、カーナビゲーションシステム等でも良い。
 (制御装置の詳細)
 図3を参照して、制御装置5の詳細について説明する。
 制御装置5は、走路境界線検出部51と、走路端検出部52と、走路情報取得部53と、走行車線算出部54と、停止判定部55とを備える。
 走路境界線検出部51は、撮像部1で撮像した画像から、自車が走行中の車線の境界を示す走路境界線及びその走路境界線からの距離を検出する。走路境界線は、路面標示の1つである。例えば、走路境界線は、白線、区画線等である。
 走路端検出部52は、反射波検出部2で得られた反射光データから、自車が走行中の道路の端を示す走路端及びその走路端からの距離を検出する。走路端は、道路の構造の一部である。例えば、走路端は、縁石、ガードレール、側壁、中央分離帯等である。
 走路情報取得部53は、自車位置取得部3で取得された自車の位置に対応する走路境界線情報及び走路端情報を地図情報取得部4から取得する。例えば、走路情報取得部53は、地図情報取得部4で取得された地図情報から、自車位置取得部3で取得された自車の位置を中心として所定の範囲内の走路境界線情報及び走路端情報を取得する。
 走行車線算出部54は、走路境界線連続検出判定部54aと、複数車線判定部54bと、走路端平行判定部54cと、走路境界基準選択部54dと、走行車線判定部54eと、横位置算出部54fとを備える。
 走路境界線連続検出判定部54aは、走路境界線検出部51で走路境界線が連続して検出されているか否かを判定する。例えば、走路境界線連続検出判定部54aは、走路境界線検出部51の演算周期で、所定回数(例えば3回)連続して検出されなかった場合、若しくは、所定時間(例えば1秒間)検出されなかった場合に、走路境界線が連続して検出されていないと判定する。また、走路境界線連続検出判定部54aは、走路情報取得部53で取得された走路境界線情報及び走路端情報(又は地図情報)に基づいて、自車が交差点内にいると判定した場合に、走路境界線が連続して検出されていないと判定しても良い。
 複数車線判定部54bは、走路境界線連続検出判定部54aで走路境界線が連続して検出されていると判定された場合、走路情報取得部53で取得された走路境界線情報に基づいて、自車の走行中の道路が複数の走行車線を有する道路であるか否かを判定する。このとき、往復で複数の車線となっている道路の場合、車道中央線や中央分離帯を境界として、片側の走行車線のみで判断し、対向車線は含めないようにする。ここでは、追越車線も走行車線の1つとする。例えば、複数車線判定部54bは、走路情報取得部53で取得された走路境界線情報を参照し、自車の走行中の道路が片側1車線のみ有する道路か、それとも片側2車線以上を有する道路かを判定する。複数車線判定部54bは、自車の走行中の道路が片側2車線以上を有する道路であれば、複数の走行車線を有する道路であると判定する。
 走路端平行判定部54cは、走路境界線連続検出判定部54aで走路境界線が連続して検出されていないと判定された場合、走路端検出部52で検出された走路端が自車の走行方向に対して平行であるか否かを判定する。具体的には、走路端平行判定部54cは、自車の走行方向と走路端の延在方向との角度の差が閾値以下であるか否かを判定する。この場合、自車の走行方向と走路端の延在方向との角度の差が閾値以下であれば、走路端が自車の走行方向に対して平行であると判定する。なお、走路端平行判定部54cは、走路端検出部52で走路端が検出されておらず、走路端検出部52で検出された走路端が存在しない場合にも、走路端検出部52で検出された走路端が自車の走行方向に対して平行ではないと判定する。ここで、走路端平行判定部54cが、走路端検出部52で検出された走路端が自車の走行方向に対して平行ではないと判定した場合には、自車が車線変更中、又は交差点等を走行中若しくは旋回中であると推測されるため、走行車線の判定処理に移行しないようにする。
 走路境界基準選択部54dは、走路境界線連続検出判定部54aで判定された結果に基づいて、自車の走行車線を判定するための基準線を選択する。本実施形態では、走路境界基準選択部54dは、走路境界線と走路端とのいずれを基準線とするか選択する。具体的には、走路境界基準選択部54dは、走路境界線連続検出判定部54aで走路境界線が連続して検出されていると判定され、且つ、複数車線判定部54bで自車の走行中の道路が複数の走行車線を有する道路ではないと判定された場合等には、基準線として、走路境界線検出部51で検出された走路境界線を選択する。また、走路境界基準選択部54dは、走路境界線連続検出判定部54aで走路境界線が連続して検出されていないと判定され、且つ、走路端平行判定部54cで走路端が自車の走行方向に対して平行であると判定された場合等には、基準線として、走路端検出部52で検出された走路端を選択する。
 走行車線判定部54eは、走路境界基準選択部54dで選択された基準線と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて、自車の走行車線を判定する。本実施形態では、走行車線判定部54eは、走路境界線検出部51で検出された走路境界線と、走路情報取得部53で取得された走路境界線情報とに基づいて走行車線を判定できない場合には、走路端検出部52で検出された走路端からの距離と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて走行車線を判定する。それ以外の場合には、走行車線判定部54eは、走路境界線検出部51で検出された走路境界線と、走路情報取得部53で取得された走路境界線情報とに基づいて走行車線を判定する。
 横位置算出部54fは、走路境界線検出部51で検出された走路境界線からの距離と、走路情報取得部53で取得された走路境界線情報とに基づいて、走行車線判定部54eで判定された走行車線内での自車の横位置を算出する。なお、実際には、横位置算出部54fは、走路境界基準選択部54dで選択された基準線からの距離と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて、走行車線判定部54eで判定された走行車線内での自車の横位置を算出しても良い。また、実際には、横位置算出部54fは、走行車線判定部54eと連携又は一体化していても良い。例えば、横位置算出部54fは、走行車線判定部54eの一部でも良い。
 停止判定部55は、自車のイグニッションキー(IGN)がOFFであるか否かを判定し、OFFである場合には一連の処理を終了する。ここでは、停止判定部55は、イグニッションキーがACCやLOCKの状態である場合も、自車が走行中ではないことが明らかであるため、OFFであると判定する。すなわち、停止判定部55は、イグニッションキーがON以外である場合には、OFFであると判定する。なお、イグニッションキーは、エンジンスイッチの一例に過ぎない。実際には、イグニッションキーではなく、プッシュ式のスタータスイッチでも良い。プッシュ式のスタータスイッチの場合、STARTがONであり、STOPがOFFである。
 (走行車線判定処理)
 図4は、第1実施形態に係る走行車線判定装置により行われる走行車線判定処理の流れを示すフローチャートである。
 ステップS101では、走路境界線検出部51は、撮像部1で撮像した画像から、自車の周囲の走路境界線及びその走路境界線からの距離を検出し、その検出結果を後段の走行車線算出部54に出力する。
 ステップS102では、走路端検出部52は、反射波検出部2で得られた反射光データに基づいて、自車の周囲の走路端及びその走路端からの距離を検出し、その検出結果を後段の走行車線算出部54に出力する。
 ステップS103では、走路情報取得部53は、自車位置取得部3から自車の位置を取得し、自車の位置に基づいて、地図情報取得部4から地図情報として自車の周囲の走路境界線情報及び走路端情報を取得し、その取得結果を後段の走行車線算出部54に出力する。
 ステップS104では、走行車線算出部54の走路境界線連続検出判定部54aは、走路境界線検出部51で走路境界線が連続して検出されているか否かを判定する。
 ここで、走路境界線連続検出判定部54aは、走路境界線が連続して検出されている(ステップS104でYes)と判定した場合には、複数車線判定部54bの処理(ステップS109)に進む。
 反対に、走路境界線連続検出判定部54aは、走路境界線が連続して検出されていない(ステップS104でNo)と判定した場合には、走行車線判定フラグの設定処理(ステップS105)に進む。
 ステップS105では、走路境界線連続検出判定部54aは、走行車線判定フラグ(LaneFLG)をOFFに設定する。例えば、走行車線判定フラグに真偽値のうち偽(false)を示す値を設定する。そして、走路境界線連続検出判定部54aは、走路端平行判定部54cの処理(ステップS106)に進む。
 ステップS106では、走路端平行判定部54cは、走路端検出部52で検出された走路端が自車の走行方向に対して平行であるか否かを判定する。
 ここで、走路端平行判定部54cは、走路端が自車の走行方向に対して平行である(ステップS106でYes)と判定した場合には、走路境界基準選択部54dの処理(ステップS107)に進む。
 反対に、走路端平行判定部54cは、走路端が自車の走行方向に対して平行でない(ステップS106でNo)と判定した場合には、停止判定部55の処理(ステップS115)に進む。
 ステップS107では、走路境界基準選択部54dは、基準線として、走路端検出部52で検出された走路端を選択し、その選択結果を走行車線判定部54eに出力する。
 ステップS108では、走行車線判定部54eは、走路境界基準選択部54dで選択された基準線が走路端検出部52で検出された走路端であるため、走路端検出部52で検出された走路端からの距離と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて、自車の走行車線を判定する。具体的には、走行車線判定部54eは、図5に示すように、走路端検出部52で検出された走路端からの距離がL0であるため、走路情報取得部53で取得された走路端情報を用いて、走路端情報に対応する走路端から距離L0の位置を自車が走行していると判定し、走路情報取得部53で取得された走路境界線情報を用いて、自車の走行車線を判定する。例えば、走行車線判定部54eは、走路情報取得部53で取得された走路境界線情報を用いて、走路端から距離L0の位置が属する車線を、自車の走行車線として判定する。これにより、第1実施形態に係る走行車線判定装置は、図6に示すように、交差点内においては白線や縁石が検出されず、横位置の推定精度が劣化した状態で交差点を通過した後、再び白線を検出したときに、白線の情報のみの情報で自車の走行車線を判定する方法では、地図上の自車位置の推定精度が低い状態で、地図上で最も近い白線と比較すると、走行車線を誤って判定してしまう場合がある。地図上の自車位置の推定精度が低くても、走路端からの距離を基準に走行車線を判定するので、精度良く走行車線を判定することができる。
 そして、走行車線判定部54eは、横位置算出部54fの処理(ステップS113)に進む。
 一方、ステップS109では、複数車線判定部54bは、走路情報取得部53で取得された走路境界線情報に基づいて、自車の走行中の道路が複数の走行車線を有する道路であるか否かを判定する。
 ここで、複数車線判定部54bは、自車の走行中の道路が複数の走行車線を有する道路である(ステップS109でYes)と判定した場合には、走行車線判定フラグの判定処理(ステップS110)に進む。
 反対に、複数車線判定部54bは、自車の走行中の道路が複数の走行車線を有する道路でない(ステップS109でNo)と判定した場合には、走路境界基準選択部54dの処理(ステップS111)に進む。
 ステップS110では、複数車線判定部54bは、走行車線判定フラグがOFFか否かを判定する。
 ここで、複数車線判定部54bは、走行車線判定フラグがOFFである(ステップS110でYes)と判定した場合には、走路端平行判定部54cの処理(ステップS106)に進む。
 反対に、複数車線判定部54bは、走行車線判定フラグがOFFでない(ステップS110でNo)と判定した場合には、走路境界基準選択部54dの処理(ステップS111)に進む。
 ステップS111では、走路境界基準選択部54dは、基準線として、走路境界線検出部51で検出された走路境界線を選択し、その選択結果を走行車線判定部54eに出力する。
 ステップS112では、走行車線判定部54eは、走路境界基準選択部54dで選択された基準線が走路境界線検出部51で検出された走路境界線であるため、走路境界線検出部51で検出された走路境界線からの距離と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて、自車の走行車線を判定する。ここでは、走路境界線連続検出判定部54aで走路境界線が連続して検出されている(ステップS104でYes)と判定されているため、走行車線判定部54eは、自車の走行車線を既に判定している。これにより、第1実施形態に係る走行車線判定装置は、単路走行中には走路境界線を基準に走行車線を判定するので、安定して走行車線を判定し続けることができる。なお、一般に、単路とは、道路のうち交差点及び踏切等を除いた部分をいう。
 そして、走行車線判定部54eは、横位置算出部54fの処理(ステップS113)に進む。
 ステップS113では、横位置算出部54fは、走路境界線検出部51で検出された走路境界線からの距離と、走路情報取得部53で取得された走路境界線情報とに基づいて、走行車線判定部54eで判定された走行車線内での自車の横位置を算出する。なお、実際には、図5に示すように、走行車線判定部54eが走路端検出部52で検出された走路端からの距離と、走路情報取得部53で取得された走路境界線情報及び走路端情報とに基づいて、自車の走行車線を判定した場合には、横位置算出部54fは、判定した自車の走行車線と、走路情報取得部53で取得された走路境界線情報と、走路端検出部52で検出された走路端からの距離L0とに基づいて、自車の走行車線内での自車の横位置を算出しても良い。
 そして、横位置算出部54fは、走行車線判定フラグの設定処理(ステップS114)に進む。
 ステップS114では、走行車線判定部54eは、走行車線判定フラグをONに設定する。例えば、走行車線判定フラグに真偽値のうち真(true)を示す値を設定する。そして、停止判定部55の処理(ステップS115)に進む。
 ステップS115では、停止判定部55は、自車のイグニッションキーがOFFであるか否かを判定する。
 ここで、停止判定部55は、自車のイグニッションキーがOFFであると判定した場合には、一連の処理を終了する。
 反対に、停止判定部55は、自車のイグニッションキーがOFFでないと判定した場合には、走路境界線検出部51の処理(ステップS101)に戻る。
 (変形例)
 なお、実際には、上記の走行車線判定処理において、走路端平行判定部54cの処理(ステップS106)を実施せず、前段の処理から直接、走路境界基準選択部54dの処理(ステップS107)に進むようにしても良い。走路端が自車の走行方向に対して平行であると判定することにより、より精度良く走行車線を判定することができるが、走路端検出部52で走路端が検出できていれば、走路端が自車の走行方向に対して平行であるか否かに関わらず、走路端からの距離を基準に走行車線を判定することは可能である。また、例えば走路端検出部52で走路端が検出されている場合には無条件で走路端が自車の走行方向に対して平行であると推定するようにした場合、走路端検出部52で走路端が検出されている時点でそのまま走路境界基準選択部54dの処理(ステップS107)に進むようにすることができる。
 また、上記の説明では、走路境界線検出部51は、撮像部1で撮像した画像から、自車が走行中の車線の境界を示す走路境界線及びその走路境界線からの距離を検出している。また、走路端検出部52は、反射波検出部2で得られた反射光データから、自車が走行中の道路の端を示す走路端及びその走路端からの距離を検出している。但し、実際には、走路境界線検出部51は、反射波検出部2で得られた反射光データから、自車が走行中の車線の境界を示す走路境界線及びその走路境界線からの距離を検出しても良い。また、走路端検出部52は、撮像部1で撮像した画像から、自車が走行中の道路の端を示す走路端及びその走路端からの距離を検出しても良い。すなわち、撮像部1と反射波検出部2とのうちいずれか一方を他方で代替することも可能である。この場合、第1実施形態に係る走行車線判定装置は、撮像部1と反射波検出部2のうち少なくとも一方を備えていれば良い。
 また、上記の説明では、交差点を通過する状況を想定しているが、実際には、交差点を通過する状況に限定されない。例えば、交差点でなくても、一時的に走路境界線のない場所を通過する状況においては、第1実施形態に係る走行車線判定装置は有効に作用するため、精度良く走行車線を判定することができる。なお、走路境界線のない場所の例としては、未舗装の道路や土地、私道、若しくは複数の出入口を有する大型の施設や駐車場、又は道路工事やその他の事情により全ての走路境界線が一時的に消失し又は隠蔽されている区間等がある。
 (第1実施形態の効果)
 第1実施形態によれば、以下のような効果を奏する。
 (1)第1実施形態に係る走行車線判定装置は、自車が走行中の車線の境界を示す走路境界線を検出し、自車が走行中の道路の端を示す走路端を検出し、自車の位置を取得し、自車の位置に対応する地図上の走路境界線を示す走路境界線情報及び地図上の走路端を示す走路端情報を地図情報から取得し、走路境界線が検出されなくなった後、再び走路境界線が検出された場合には、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。
 その結果、走路境界線を検出している場合であっても、走路境界線を検出できていない状態の後であれば、走路端の検出結果に基づいて走行車線を判定するので、交差点等を通過した後であっても、走行車線を正しく判定することができる。
 (2)第1実施形態に係る走行車線判定装置は、走行車線を判定した後、走路境界線が検出されている場合には、走路境界線からの距離に基づいて、走行車線内での自車の横位置を算出する。
 その結果、走路端の検出結果に基づいて走行車線を判定した後は、走路境界線の検出結果に基づいて走行車線を判定するので、単路走行中は安定して走行車線を判定し続けることができる。
 (3)第1実施形態に係る走行車線判定装置は、自車の走行方向と走路端の延在方向との角度の差が閾値以下であるか否かを判定し、走路境界線が検出されなくなった後、再び走路境界線が検出され、更に、上記の角度の差が閾値以下であると判定された場合に、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。
 その結果、自車の向きと走路端が平行に近い状態になったときに走路端からの距離に基づいて走行車線を判定するので、交差点右左折中等に誤った判定をすることを防ぐことができる。
 (4)第1実施形態に係る走行車線判定装置は、走路境界線が検出されなくなった後、再び走路境界線が検出された場合、先に走路境界線と走路境界線情報とに基づいて走行車線の判定を試み、走行車線を判定できなかった場合には、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。
 その結果、走行車線を判定した後であっても、走路境界線が検出されない場合には、走路端の検出結果に基づいて走行車線を判定するので、単路走行中は安定して走行車線を判定し続けることができる。
 <第2実施形態>
 次に、本発明の第2実施形態について説明する。
 第2実施形態では、自車の左右両側の走路境界線が両方とも連続して検出されているか否かを判定する。
 第2実施形態に係る走行車線判定装置のシステム構成は、基本的に第1実施形態と同様である(図1参照)。また、第2実施形態における走行車線判定処理の流れを示すフローチャートも、基本的に第1実施形態と同様である(図4参照)。但し、ステップS104の処理内容が異なる。したがって、ここでは、第2実施形態におけるステップS104の処理内容について説明する。他の処理内容については、第1実施形態と同様であるため、説明を省略する。
 第2実施形態におけるステップS104では、走行車線算出部54の走路境界線連続検出判定部54aは、自車の左右両側において走路境界線検出部51で検出された走路境界線が両方とも連続して検出されているか否かを判定する。具体的には、走路境界線連続検出判定部54aは、自車の左右両側の走路境界線のうち少なくとも一方の走路境界線が、走路境界線検出部51の演算周期で所定回数(例えば3回)連続して検出されなかった場合、又は所定時間(例えば1秒間)検出されなかった場合に、連続して検出されていないと判定する。例えば、図7に示す走行車線変更時等の場合に、このような状況が発生し得る。したがって、走路境界線連続検出判定部54aは、自車のセンサー類等から得られる操舵情報や他の認識結果(横加速度、ヨーレート等)等により、自車が走行車線変更中と判定した場合に、連続して検出されていないと判定しても良い。
 ここで、走路境界線連続検出判定部54aは、走路境界線が連続して検出されている(ステップS104でYes)と判定した場合には、走路境界基準選択部54dの処理(ステップS109)に進む。
 反対に、走路境界線連続検出判定部54aは、走路境界線が連続して検出されていない(ステップS104でNo)と判定した場合には、走行車線判定フラグの設定処理(ステップS105)に進む。
 (第2実施形態の効果)
 第2実施形態によれば、以下のような効果を奏する。
 (1)第2実施形態に係る走行車線判定装置は、自車の左右両側の走路境界線の両方が検出されている状況下で、自車の左右両側の走路境界線のうち少なくとも一方が一時的に検出されなくなった後、再び自車の左右両側の走路境界線の両方が検出された場合に、走路端からの距離と、走路境界線情報及び走路端情報とに基づいて、走行車線を判定する。
 その結果、第2実施形態に係る走行車線判定装置は、図7に示すように、走行車線の変更時等のように走路境界線を越えて移動し、走行車線の判定が困難な状況においても有効に作用するため、精度良く走行車線を判定することができる。
 例えば、自車の左右両側の走路境界線のうち少なくとも一方の走路境界線が連続して検出されていないと判定した場合、走行車線の変更が行われたことを認識することができ、それに応じて基準となる走路境界線を切り替え、横位置を再び算出することができる。
 以上、特定の実施形態を参照して本発明を説明したが、これらの説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。したがって、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。
 A 車両
 1 撮像部
 2 反射波検出部
 3 自車位置取得部
 4 地図情報取得部
 5 制御装置
 51 走路境界線検出部
 52 走路端検出部
 53 走路情報取得部
 54 走行車線算出部
 54a 走路境界線連続検出判定部
 54b 複数車線判定部
 54c 走路端平行判定部
 54d 走路境界基準選択部
 54e 走行車線判定部
 54f 横位置算出部
 55 停止判定部
 6 運転支援システム

Claims (5)

  1.  自車が走行中の車線の境界を示す走路境界線を検出する走路境界線検出部と、
     自車が走行中の道路の端を示す走路端を検出する走路端検出部と、
     自車の位置を取得する自車位置取得部と、
     地図情報として、少なくとも地図上の走路境界線を示す走路境界線情報及び地図上の走路端を示す走路端情報を取得する地図情報取得部と、
     前記走路境界線検出部で前記走路境界線が検出されなくなった後、再び前記走路境界線検出部で前記走路境界線が検出された場合には、前記走路端検出部で検出された前記走路端からの距離と、前記地図情報取得部で取得された前記走路境界線情報及び前記走路端情報とに基づいて、走行車線を判定する走行車線判定部と、
    を備えることを特徴とする走行車線判定装置。
  2.  前記走行車線判定部で走行車線を判定した後、前記走路境界線検出部で前記走路境界線が検出されている場合には、前記走路境界線検出部で検出された前記走路境界線からの距離に基づいて、前記走行車線内での自車の横位置を算出する横位置算出部を更に備える請求項1に記載の走行車線判定装置。
  3.  自車の走行方向と前記走路端の延在方向との角度の差が閾値以下であるか否かを判定する走路端平行判定部を更に備え、
     前記走行車線判定部は、前記走路境界線検出部で前記走路境界線が検出されなくなった後、再び前記走路境界線検出部で前記走路境界線が検出され、更に、前記走路端平行判定部で前記角度の差が閾値以下であると判定された場合に、前記走路端検出部で検出された前記走路端からの距離と、前記地図情報取得部で取得された前記走路境界線情報及び前記走路端情報とに基づいて、走行車線を判定する請求項1又は2に記載の走行車線判定装置。
  4.  前記走行車線判定部は、前記走路境界線検出部で前記走路境界線が検出されなくなった後、再び前記走路境界線検出部で前記走路境界線が検出された場合、先に前記走路境界線検出部で検出された前記走路境界線と、前記地図情報取得部で取得された前記走路境界線情報とに基づいて走行車線の判定を試み、走行車線を判定できなかった場合には、前記走路端検出部で検出された前記走路端からの距離と、前記地図情報取得部で取得された前記走路境界線情報及び前記走路端情報とに基づいて、走行車線を判定する請求項1から3のいずれか一項に記載の走行車線判定装置。
  5.  自車が走行中の車線の境界を示す走路境界線を検出し、
     自車が走行中の道路の端を示す走路端を検出し、
     自車の位置を取得し、
     自車の位置に対応する地図上の走路境界線を示す走路境界線情報及び地図上の走路端を示す走路端情報を地図情報から取得し、
     前記走路境界線が検出されなくなった後、再び前記走路境界線が検出された場合には、前記走路端からの距離と、前記走路境界線情報及び前記走路端情報とに基づいて、走行車線を判定することを特徴とする走行車線判定方法。
PCT/JP2015/003660 2015-07-21 2015-07-21 走行車線判定装置及び走行車線判定方法 WO2017013692A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/003660 WO2017013692A1 (ja) 2015-07-21 2015-07-21 走行車線判定装置及び走行車線判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/003660 WO2017013692A1 (ja) 2015-07-21 2015-07-21 走行車線判定装置及び走行車線判定方法

Publications (1)

Publication Number Publication Date
WO2017013692A1 true WO2017013692A1 (ja) 2017-01-26

Family

ID=57834105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003660 WO2017013692A1 (ja) 2015-07-21 2015-07-21 走行車線判定装置及び走行車線判定方法

Country Status (1)

Country Link
WO (1) WO2017013692A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109624974A (zh) * 2017-10-05 2019-04-16 本田技研工业株式会社 车辆控制装置、车辆控制方法以及存储介质
CN113313629A (zh) * 2021-07-30 2021-08-27 北京理工大学 交叉路口自动识别方法、系统及其模型保存方法、系统
WO2021261304A1 (ja) * 2020-06-23 2021-12-30 株式会社Soken 自車位置推定装置、走行位置推定方法
CN113990105A (zh) * 2021-10-22 2022-01-28 数字广东网络建设有限公司 一种车辆轨迹的处理方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034769A (ja) * 1999-07-26 2001-02-09 Pioneer Electronic Corp 画像処理装置、画像処理方法及びナビゲーション装置
JP2004145852A (ja) * 2002-08-27 2004-05-20 Clarion Co Ltd レーンマーカー位置検出方法及びレーンマーカー位置検出装置並びに車線逸脱警報装置
JP2006349580A (ja) * 2005-06-17 2006-12-28 Denso Corp 走行状況判定装置及び車載ナビゲーション装置
JP2009053231A (ja) * 2007-08-23 2009-03-12 Aisin Aw Co Ltd 道路情報作成装置、道路情報作成方法及びプログラム
JP2011013039A (ja) * 2009-06-30 2011-01-20 Clarion Co Ltd 車線判定装置及びナビゲーションシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034769A (ja) * 1999-07-26 2001-02-09 Pioneer Electronic Corp 画像処理装置、画像処理方法及びナビゲーション装置
JP2004145852A (ja) * 2002-08-27 2004-05-20 Clarion Co Ltd レーンマーカー位置検出方法及びレーンマーカー位置検出装置並びに車線逸脱警報装置
JP2006349580A (ja) * 2005-06-17 2006-12-28 Denso Corp 走行状況判定装置及び車載ナビゲーション装置
JP2009053231A (ja) * 2007-08-23 2009-03-12 Aisin Aw Co Ltd 道路情報作成装置、道路情報作成方法及びプログラム
JP2011013039A (ja) * 2009-06-30 2011-01-20 Clarion Co Ltd 車線判定装置及びナビゲーションシステム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109624974A (zh) * 2017-10-05 2019-04-16 本田技研工业株式会社 车辆控制装置、车辆控制方法以及存储介质
JP2019067345A (ja) * 2017-10-05 2019-04-25 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US10591928B2 (en) 2017-10-05 2020-03-17 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and computer readable storage medium
CN109624974B (zh) * 2017-10-05 2022-06-03 本田技研工业株式会社 车辆控制装置、车辆控制方法以及存储介质
WO2021261304A1 (ja) * 2020-06-23 2021-12-30 株式会社Soken 自車位置推定装置、走行位置推定方法
JPWO2021261304A1 (ja) * 2020-06-23 2021-12-30
JP7260064B2 (ja) 2020-06-23 2023-04-18 株式会社Soken 自車位置推定装置、走行位置推定方法
CN113313629A (zh) * 2021-07-30 2021-08-27 北京理工大学 交叉路口自动识别方法、系统及其模型保存方法、系统
CN113990105A (zh) * 2021-10-22 2022-01-28 数字广东网络建设有限公司 一种车辆轨迹的处理方法、装置、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
JP4561863B2 (ja) 移動体進路推定装置
JP6252304B2 (ja) 車両用認知通知装置、車両用認知通知システム
CN106394406B (zh) 用于车辆的摄像机装置
JP6566132B2 (ja) 物体検出方法及び物体検出装置
CN106462727B (zh) 车辆、车道终止检测系统和方法
CN107251127B (zh) 车辆的行驶控制装置以及行驶控制方法
JP4420011B2 (ja) 物体検知装置
RU2730790C2 (ru) Способ управления движением транспортного средства и устройство управления движением транспортного средства
CA3035879C (en) Dispatch support method and device
US20190333373A1 (en) Vehicle Behavior Prediction Method and Vehicle Behavior Prediction Apparatus
US20100030474A1 (en) Driving support apparatus for vehicle
US20140240502A1 (en) Device for Assisting a Driver Driving a Vehicle or for Independently Driving a Vehicle
CN110816540B (zh) 交通拥堵的确定方法、装置、系统及车辆
US20190293435A1 (en) Host vehicle position estimation device
JP6129268B2 (ja) 車両用運転支援システムおよび運転支援方法
CN102673560A (zh) 识别拐弯机动的方法和驾驶员辅助系统
US20200130683A1 (en) Collision prediction apparatus and collision prediction method
WO2017013692A1 (ja) 走行車線判定装置及び走行車線判定方法
KR101281499B1 (ko) 자동차 자동 운행 시스템
JP7043765B2 (ja) 車両走行制御方法及び装置
CA3037458A1 (en) Method for controlling travel and device for controlling travel of vehicle
CN114194186B (zh) 车辆行驶控制装置
JP6627135B2 (ja) 車両位置判定装置
KR20130006752A (ko) 차선 인식 장치 및 그 방법
EP2246762A1 (en) System and method for driving assistance at road intersections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15898854

Country of ref document: EP

Kind code of ref document: A1