WO2017012137A1 - 一种液晶面板及电压调节方法 - Google Patents

一种液晶面板及电压调节方法 Download PDF

Info

Publication number
WO2017012137A1
WO2017012137A1 PCT/CN2015/085694 CN2015085694W WO2017012137A1 WO 2017012137 A1 WO2017012137 A1 WO 2017012137A1 CN 2015085694 W CN2015085694 W CN 2015085694W WO 2017012137 A1 WO2017012137 A1 WO 2017012137A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
tft
liquid crystal
leakage current
voltage
Prior art date
Application number
PCT/CN2015/085694
Other languages
English (en)
French (fr)
Inventor
陈宥烨
吴宇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/909,097 priority Critical patent/US9799289B2/en
Publication of WO2017012137A1 publication Critical patent/WO2017012137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal panel and a voltage adjustment method.
  • Each liquid crystal pixel in a TFT (Thin Film Transistor) liquid crystal panel is driven by a TFT integrated behind the pixel. Therefore, the TFT liquid crystal panel has high speed, high brightness, and high contrast compared to other display screens.
  • the advantages of contrast display screen information are increasingly favored by users.
  • the internal electric field which generates a superposition effect with the electric field applied to the liquid crystal pixel point, so that a picture of the image remains (ie, the image displayed on the liquid crystal panel appears to be the residual image left by the previous fixed picture), so that the TFT The display of the LCD screen is not good.
  • the embodiment of the invention provides a liquid crystal panel and a voltage adjustment method, which can improve the display effect of the TFT liquid crystal screen.
  • a first aspect of the embodiment of the present invention discloses a liquid crystal panel, including: a display area and a non-display area, wherein
  • the display area includes a plurality of TFT thin film transistors for driving sub-pixel points connected to the TFT to display an image;
  • the non-display area is an area of a preset area disposed around a boundary line of the display area, and the non-display area includes a preset number of TFTs, the preset number of Data line data lines in a vertical direction, and Extending in the horizontal direction by at least one Gate line scan line in the display area a target Gate line, wherein each of the Data lines is connected to a TFT, and each of the target Gate lines is connected to at least one TFT, and each of the Data lines is configured to detect a leakage current of a TFT connected to the Data line.
  • the detected leakage current is used to reflect a TFT leakage current characteristic in the display area
  • the non-display area includes a TFT structure that is the same as a TFT structure included in the display area, and each TFT included in the non-display area Connect a subpixel.
  • a second aspect of the embodiments of the present invention discloses a voltage adjustment method, including:
  • the common voltage on the first plate of the liquid crystal capacitor of the display area is adjusted to the target voltage.
  • the liquid crystal panel detects whether the plurality of TFT thin film transistors in the non-display area are turned off, and if so, detects a leakage current flowing from the TFT through a data line connected to the TFT, and further, according to the detected leak Current, after determining the target voltage, the liquid crystal panel can adjust the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage. According to the embodiment of the invention, the liquid crystal panel adjusts the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage, and when the liquid crystal molecules continuously switch between the positive and negative electrodes, the first plate of the liquid crystal capacitor can be ensured.
  • the voltage difference between the common voltage and the pixel voltage on the second plate remains unchanged, so that the liquid crystal molecules are electrically neutral, and do not capture the charged ions in the interface, so that there is no image residual image. Thereby, the display effect of the TFT liquid crystal panel can be improved.
  • FIG. 1 is a schematic structural view of a liquid crystal panel disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a display area of a liquid crystal panel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an equivalent circuit of a sub-pixel point according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a voltage adjustment method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of another voltage adjustment method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a liquid crystal panel disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another liquid crystal panel disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another liquid crystal panel disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another liquid crystal panel disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a liquid crystal panel and a voltage adjustment method, which can improve the display effect of the TFT liquid crystal screen. The details are described below separately.
  • the liquid crystal panel may include any liquid crystal panel configured with a TFT thin film transistor, and the liquid crystal panel may be applied to any device that needs to be configured with a display screen, and the device may include, but is not limited to, a television set, a smart phone, a notebook computer, A personal computer (Personal Computer, PC), a personal digital assistant (PDA), a mobile Internet device (MID), a smart wearable device (such as a smart watch, a smart wristband), etc., are not in the embodiment of the present invention. Make a limit.
  • FIG. 1 is a schematic structural diagram of a liquid crystal panel according to an embodiment of the present invention.
  • the liquid crystal panel may include a display area and a non-display area, where
  • the display area includes a plurality of TFT thin film transistors for driving sub-pixel points connected to the TFT to display an image;
  • the non-display area is an area of a preset area set around a boundary line of the display area, and the non-display area includes a preset number of TFTs, a preset number of Data line data lines in the vertical direction, and a display area in the horizontal direction.
  • At least one Gate line extending the target Gate line, wherein each Data line is connected to a TFT, and each target Gate line is connected to at least one TFT, and each Data line is used to detect leakage current of the TFT connected to the Data line. The detected leakage current is used to reflect the TFT leakage current characteristic in the display area.
  • the non-display area includes a TFT structure which is the same as the TFT structure included in the display area, and each TFT included in the non-display area is connected to one sub-pixel point.
  • the number of TFTs included in the non-display area may be First, it is determined according to the degree of flickering of the screen in the display area, as shown in Figure 1. After determining the preset number of TFTs included in the non-display area, the non-display area also sets a preset number of Data line data lines, and each data line is connected to only one TFT, so that the time is completely guaranteed within one frame time. Detecting the leakage current of the TFT.
  • the target Gate line included in the non-display area may be extended to one side (eg, to the left or right) to the non-display area by at least one Gate line scan line in the display area, or may be scanned by at least one Gate line in the display area.
  • each target Gate line is connected to at least one TFT.
  • the non-display area includes six TFTs, six data lines, and three target Gate lines.
  • the three target Gate lines are corresponding to three Gate lines in the display area (Article 1, m/ 2 and m) are obtained by extending both sides to the non-display area.
  • the positions of the TFTs are the upper left area, the upper right area, the left middle area, the right middle area, the lower left area, and the lower right area, respectively.
  • each data line of the non-display area is used to detect the leakage current of the TFT connected to the Data line, and the detected leakage current is used to reflect the TFT leakage current characteristic in the display area.
  • the non-display area includes a TFT structure that is the same as the TFT structure included in the display area, and each TFT included in the non-display area is connected to one sub-pixel point, wherein one liquid crystal pixel point includes three sub-pixels. Points (ie, 3 sub-pixel points of red, green, and blue).
  • each data line of the non-display area is specifically used for charging a voltage during an on time of the TFT connected to the Data line, and for detecting a change of the leakage current during a turn-off time of the TFT connected to the Data line.
  • the leakage current is a leakage current flowing out of the TFT connected to the Data line during the off time.
  • the number of TFTs in the non-display area shown in FIG. 1 is not limited to six, and the positions of the TFTs are not limited to those shown in FIG. 1, that is, the TFT positions in the non-display area may be changed according to actual needs. .
  • the more the number of TFTs in the non-display area the higher the accuracy of reflecting the TFT leakage current in the display area, but the area occupied by the non-display area becomes larger, that is, the frame becomes wider, and the user can refer to the specific situation. Set the number of TFTs in the non-display area.
  • FIG. 2 is a schematic structural diagram of a display area of a liquid crystal panel according to an embodiment of the present invention, as shown in FIG.
  • the display area When the resolution of the display area is n*m, the display area is divided into 3n*m sub-areas by 3n vertical line lines and m horizontal direction Gate lines, wherein each sub-area includes one sub-pixel point, and the display area is displayed.
  • Each of the Date lines included in the area is connected to a plurality of TFTs, and each of the display areas is included
  • the Gate line connects multiple TFTs.
  • the display area when the resolution of the display area is n*m, the display area has 3n*m sub-pixel points, and each sub-pixel point is driven by a TFT integrated behind the sub-pixel point, so There are 3n*m TFTs in the display area, and the display area includes 3n Date lines and m Gate lines. These Date line and Gate line divide the display area into 3n*m sub-areas, where each sub-area includes one sub-area. At the pixel, each Date line included in the display area is connected to a plurality of TFTs, and each Gate line included in the display area is connected to a plurality of TFTs.
  • FIG. 3 is a schematic structural diagram of an equivalent circuit of a sub-pixel point according to an embodiment of the present invention.
  • the equivalent circuit includes a TFT, a liquid crystal capacitor, and a storage capacitor.
  • the gates of the TFTs of the non-display area and the display area are connected to the Gate line, and the sources of the TFTs of the non-display area and the display area are connected to the Data line, and the drains of the TFTs of the non-display area and the display area are connected to the first of the liquid crystal capacitors.
  • the electrodes of the TFTs of the non-display area and the display area are connected to the first plate of the storage capacitor, and the second plate of the liquid crystal capacitor and the second plate of the storage capacitor are respectively connected to the common electrode.
  • the non-display area includes a TFT structure that is the same as the TFT structure included in the display area, and each TFT included in the non-display area is connected to one sub-pixel point, such that sub-pixel points in the non-display area, etc.
  • the effective circuit is the same as the equivalent circuit of the sub-pixels in the display area. Therefore, the leakage current of the TFT in the non-display area can simulate the leakage current of the TFT in the display area.
  • T1 ie, TFT
  • TFT liquid crystal capacitor
  • the storage capacitor C ST2 maintains the voltage of each pixel, and the leakage current on T1 will be reversed. Flows into the Data line connected to the T1.
  • the liquid crystal panel detects whether the plurality of TFT thin film transistors in the non-display area are turned off, and when detecting that the TFT is turned off, detecting a leakage current flowing from the TFT through a data line connected to the TFT, further, according to the detection After the measured leakage current determines the target voltage, the liquid crystal panel can adjust the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage.
  • the liquid crystal panel can separately query the voltage corresponding to each leakage current from the pre-stored leakage current and voltage according to the detected leakage current, sum the queried voltages and average the values. Obtaining the average voltage as the target voltage, or the liquid crystal panel can sum and average the detected leakage currents to obtain an average leakage current, and according to the average leakage current, the pre-stored leakage current In the correspondence between the flow and the voltage, the target voltage corresponding to the average leakage current is queried. After obtaining the target voltage, the liquid crystal panel can adjust the common voltage on the first plate of each liquid crystal capacitor of the display area to the target voltage.
  • the liquid crystal panel separately queries the target voltage corresponding to each leakage current from the pre-stored leakage current and the voltage according to the detected leakage current, and further, according to the correspondence between the pre-stored sub-region and the TFT. Determining a target voltage of each of the plurality of sub-areas divided in advance by the display area, wherein the target voltage of the sub-area is a target voltage corresponding to a leakage current flowing from the TFT corresponding to the sub-area, and the liquid crystal capacitance of each sub-area The common voltage on the first plate is adjusted to the target voltage of the sub-region.
  • the liquid crystal panel adjusts the common voltage on the first plate of the liquid crystal capacitor of the display region to the target voltage, when the liquid crystal molecules continuously switch between the positive and negative electrodes, the first plate of the liquid crystal capacitor can be ensured.
  • the voltage difference between the upper common voltage and the pixel voltage on the second plate remains unchanged, so that the liquid crystal molecules are electrically neutral, and the charged ions in the interface are not captured, so that there is no image residual image. Therefore, the display effect of the TFT liquid crystal panel can be improved.
  • the principle that the "common voltage on the first plate of the liquid crystal capacitor" described herein is the common voltage on the second plate of the liquid crystal capacitor connected to the common electrode in the above device embodiment
  • the pixel voltage on the diode plate is the pixel voltage on the first plate connected to the drain of the TFT in the above device embodiment.
  • FIG. 4 is a schematic flow chart of a voltage adjustment method according to an embodiment of the present invention, which is applied to a liquid crystal panel. As shown in FIG. 4, the method can include the following steps.
  • step S401 Detect whether a plurality of TFT thin film transistors in the non-display area are turned off. If yes, go to step S402, and if no, return to step S401.
  • each liquid crystal pixel in a TFT (Thin Film Transistor) liquid crystal panel is driven by a TFT integrated behind the pixel. Therefore, the TFT liquid crystal screen has higher performance than other display screens.
  • the advantages of speed, high brightness and high contrast display screen information are increasingly favored by users.
  • a TFT thin film transistor has two operating states: on and off, and when the TFT is turned on, the liquid crystal capacitor is quickly charged, and when the TFT is turned off, the voltage of the liquid crystal capacitor is maintained.
  • the pixel voltage on the liquid crystal capacitor should theoretically remain one frame. Time, but the presence of leakage current after the TFT is turned off causes the pixel voltage to shift, and its positive and negative polarity is no longer symmetrical with respect to VCOM (common voltage) on the liquid crystal capacitor.
  • VCOM common voltage
  • the positive and negative polarities are applied to the voltages at both ends of the liquid crystal panel for a long time, so that the ions are trapped by the interface to form a built-in electric field, thereby applying an electric field to the liquid crystal itself (switching to pure gray scale When the picture is on, it produces a superimposed effect, which looks like it left a residual image before the fixed picture.
  • the leakage current when the TFT in the display region of the TFT liquid crystal panel is turned off will flow backward into the Data line, and the Data line is in a state of transmitting voltage for most of a frame, which is difficult. Independently used as a path to detect leakage current.
  • the liquid crystal panel is provided with a plurality of TFTs in the non-display area in advance, and the structure of the TFTs of the non-display area is completely consistent with the structure of the TFTs of the display area, and only one TFT is connected to each data line in the non-display area.
  • the Data line is connected to the source IC (source drive), and only charges the voltage corresponding to the scan line (the scan line), and detects the change of the current on the Data line at other times, so that it can be guaranteed in one frame.
  • the condition of the TFT leakage current is completely detected within the time.
  • the liquid crystal panel can reflect the leakage current characteristics of the TFT in the display area by detecting the leakage current of the TFT in the non-display area.
  • the liquid crystal panel when the liquid crystal panel detects that the plurality of TFT thin film transistors in the non-display area are turned off, the liquid crystal panel can detect each leakage current flowing from the TFT.
  • the liquid crystal panel may add a corresponding channel (ie, a channel) on the source IC (ie, the source driver) to drive the TFT in the non-display area, and detect a leakage current flowing from the TFT in the non-display area.
  • a corresponding channel ie, a channel
  • the source IC ie, the source driver
  • the liquid crystal panel after the liquid crystal panel detects each leakage current flowing from the TFT, the liquid crystal panel can determine the target voltage according to the detected leakage current.
  • the specific implementation manner of determining the target voltage by the liquid crystal panel according to the detected leakage current may include the following steps:
  • the queried voltages are summed and averaged to obtain an average voltage as the target voltage.
  • the user stores a correspondence between the leakage current and the voltage in the liquid crystal panel in advance, wherein the correspondence may be obtained by the user in advance through experiments.
  • the liquid crystal panel After the liquid crystal panel detects the leakage current flowing from each TFT, the liquid crystal panel can query the voltage corresponding to each leakage current from the corresponding relationship between the pre-stored leakage current and the voltage, and further, the liquid crystal panel queries the The voltages are summed and averaged to obtain an average voltage as the target voltage.
  • the specific implementation manner of determining the target voltage by the liquid crystal panel according to the detected leakage current may include the following steps:
  • the target voltage corresponding to the average leakage current is queried from the correspondence relationship between the pre-stored leakage current and the voltage.
  • the user stores a correspondence between the leakage current and the voltage in the liquid crystal panel in advance, wherein the correspondence may be obtained by the user in advance through experiments.
  • the liquid crystal panel After the liquid crystal panel detects the leakage current flowing from each TFT, the liquid crystal panel can sum and average the detected leakage currents to obtain an average leakage current. Further, the liquid crystal panel can be based on the average leakage current. From the correspondence relationship between the pre-stored leakage current and the voltage, the target voltage corresponding to the average leakage current is queried.
  • the existence of leakage current after the TFT is turned off causes the pixel voltage on the liquid crystal capacitor to shift, which cannot be changed. Therefore, in order to keep the liquid crystal molecules in a DC balance (electrically neutral), liquid crystal is required.
  • the voltage difference between the two plates of the capacitor is a fixed value, that is, the difference between the pixel voltage on the liquid crystal capacitor and the VCOM on the liquid crystal capacitor is a fixed value.
  • the VCOM on the liquid crystal capacitor can the liquid crystal molecules be electrically charged. Therefore, the liquid crystal molecules will not capture the charged ions in the interface, so that the TFT liquid crystal screen will not have a residual image.
  • the liquid crystal panel after the liquid crystal panel adjusts the common voltage on the first plate of each liquid crystal capacitor of the display region to the target voltage in real time, it can ensure that each liquid crystal molecule is electrically neutral, so that the liquid crystal molecules are not Will capture the charged ions in the interface.
  • the liquid crystal capacitor has two upper and lower plates, which are respectively a first plate and a second plate.
  • the first plate is loaded with VCOM, that is, a common voltage
  • the second plate is loaded with a pixel voltage. .
  • first plate of the liquid crystal capacitor in the method embodiment is the second plate of the liquid crystal capacitor connected to the common electrode in the device embodiment, and the “second plate” in the method embodiment is the above.
  • the first plate of the drain of the TFT is connected. The same is true in the subsequent method embodiments.
  • the liquid crystal panel detects whether a plurality of TFT thin film transistors in the non-display area are turned off, and if so, detects each leakage current flowing from the TFT, and further, according to the detected leakage current, After the target voltage is determined, the liquid crystal panel can adjust the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage. According to the embodiment of the invention, the liquid crystal panel adjusts the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage, and when the liquid crystal molecules continuously switch between the positive and negative electrodes, the second plate of the liquid crystal capacitor can be ensured.
  • the voltage difference between the upper common voltage and the pixel voltage on the second plate remains unchanged, so that the liquid crystal molecules are electrically neutral, and the charged ions in the interface are not captured, so that there is no image residual image. Therefore, the display effect of the TFT liquid crystal panel can be improved.
  • FIG. 5 is a schematic flowchart diagram of another voltage adjustment method according to an embodiment of the present invention. As shown in FIG. 5, the method can include the following steps.
  • step S501 The liquid crystal panel detects whether the plurality of TFT thin film transistors in the non-display area are turned off. If yes, step S502 is performed, and if not, returning to step S501.
  • the liquid crystal panel detects each leakage current flowing from the TFT.
  • the liquid crystal panel queries the target voltage corresponding to each leakage current from the corresponding relationship between the pre-stored leakage current and the voltage according to the detected leakage current.
  • the user stores the corresponding relationship between the leakage current and the voltage in the liquid crystal panel in advance, wherein the corresponding relationship may be obtained by the user in advance through experiments.
  • the liquid crystal panel After the liquid crystal panel detects the leakage current flowing from each TFT, the liquid crystal panel can query the target voltage corresponding to each leakage current from the pre-stored relationship between the leakage current and the voltage to obtain a plurality of target voltages.
  • the liquid crystal panel determines a target voltage of each of the plurality of sub-regions divided into the display regions in advance according to the correspondence relationship between the sub-regions and the TFTs stored in advance.
  • the user divides the display area of the liquid crystal panel into a plurality of sub-areas in advance. For example, when the number of TFTs disposed in the non-display area of the liquid crystal panel is six, the user can divide the display area of the liquid crystal panel into 6 sub-regions, 12 sub-regions, or 18 sub-regions, etc., are not limited in the embodiment of the present invention.
  • the user After the user divides the display area of the liquid crystal panel into a plurality of sub-areas, the user can establish a correspondence relationship between the TFTs in each sub-area and the non-display area, and store the corresponding relationship in the Source IC of the liquid crystal panel.
  • the liquid crystal panel queries the target electric current corresponding to each leakage current flowing from the TFT.
  • the liquid crystal panel can determine the TFT corresponding to each sub-region according to the corresponding relationship between the pre-stored sub-region and the TFT, and further determine the target voltage corresponding to each leakage current flowing from the TFT.
  • the target voltage of each sub-region that is, the target voltage of each sub-region is the target voltage corresponding to the leakage current flowing from the TFT corresponding to the sub-region.
  • the liquid crystal panel adjusts a common voltage on the first plate of the liquid crystal capacitor of each sub-region to a target voltage of the sub-region.
  • the liquid crystal panel after the liquid crystal panel determines the target voltage of each of the plurality of sub-regions divided into the display regions in advance, the liquid crystal panel can adjust the common voltage on the first plate of the liquid crystal capacitor of each sub-region to The target voltage of the sub-area.
  • the liquid crystal panel when the liquid crystal panel detects that the plurality of TFT thin film transistors in the non-display area are turned off, detecting each leakage current flowing from the TFT, and leaking the pre-stored leakage current according to the detected leakage current.
  • the liquid crystal panel may determine each of the plurality of sub-regions that are previously divided into the display regions according to the correspondence between the pre-stored sub-regions and the TFTs. The target voltage of the region, and the common voltage on the first plate of the liquid crystal capacitor of each sub-region is adjusted to the target voltage of the sub-region.
  • FIG. 6 is a schematic structural diagram of a liquid crystal panel according to an embodiment of the present invention.
  • the liquid crystal panel 600 may include: a detecting unit 601, a detecting unit 602, a determining unit 603, and an adjusting unit. 604, where:
  • the detecting unit 601 is configured to detect whether the plurality of TFT thin film transistors in the non-display area are turned off.
  • each liquid crystal pixel in a TFT (Thin Film Transistor) liquid crystal panel is driven by a TFT integrated behind the pixel. Therefore, the TFT liquid crystal screen has higher performance than other display screens.
  • the advantages of speed, high brightness and high contrast display screen information are increasingly favored by users.
  • a TFT thin film transistor has two operating states: on and off, and when the TFT is turned on, the liquid crystal capacitor is quickly charged, and when the TFT is turned off, the voltage of the liquid crystal capacitor is maintained.
  • VCOM common voltage
  • the positive and negative polarities are applied to the voltages at both ends of the liquid crystal panel for a long time, so that the ions are trapped by the interface to form a built-in electric field, thereby applying an electric field to the liquid crystal itself (switching to pure gray scale When the picture is on, it produces a superimposed effect, which looks like it left a residual image before the fixed picture.
  • the leakage current when the TFT in the display region of the TFT liquid crystal panel is turned off will flow backward into the Data line, and the Data line is in a state of transmitting voltage for most of a frame, which is difficult. Independently used as a path to detect leakage current.
  • the liquid crystal panel is provided with a plurality of TFTs in the non-display area in advance, and the structure of the TFTs of the non-display area is completely consistent with the structure of the TFTs of the display area, and only one TFT is connected to each data line in the non-display area.
  • the Data line is connected to the source IC (source drive), and only charges the voltage corresponding to the scan line (the scan line), and detects the change of the current on the Data line at other times, so that it can be guaranteed in one frame.
  • the condition of the TFT leakage current is completely detected within the time.
  • the detecting unit 601 can detect each slave TFT by detecting unit 602 when detecting that the TFT of the non-display area is turned off.
  • the leakage current flowing out reflects the leakage current characteristics of the TFT in the display region.
  • the detecting unit 602 is configured to detect each leakage current flowing from the TFT when the detecting unit 601 detects that the plurality of TFT thin film transistors in the non-display area are turned off.
  • the detecting unit 601 when the detecting unit 601 detects that the plurality of TFT thin film transistors in the non-display area are turned off, the detecting unit 602 can detect each leakage current flowing from the TFT.
  • the liquid crystal panel can add a corresponding channel (ie, a channel) to the TFT in the non-display area on the source IC (ie, the source driver), and the detecting unit 602 detects the leakage current flowing from the TFT in the non-display area. .
  • the determining unit 603 is configured to determine the target voltage according to the detected leakage current.
  • the adjusting unit 604 is configured to adjust a common voltage on the first plate of the liquid crystal capacitor of the display area to a target voltage.
  • the existence of leakage current after the TFT is turned off causes the pixel voltage on the liquid crystal capacitor to shift, which cannot be changed. Therefore, in order to keep the liquid crystal molecules in a DC balance (electrically neutral), liquid crystal is required.
  • the voltage difference between the two plates of the capacitor is a fixed value, that is, the pixel voltage on the liquid crystal capacitor
  • the difference between the VCOMs on the liquid crystal capacitors is a fixed value.
  • only the regulating unit 604 can ensure that the liquid crystal molecules are electrically neutral by adjusting the VCOM on the liquid crystal capacitors, so that the liquid crystal molecules do not capture the charged ions in the interface. Therefore, the TFT LCD screen will not have a residual image.
  • the adjustment unit 604 can ensure that each liquid crystal molecule is electrically neutral, so that the liquid crystal molecules are Will not capture the charged ions in the interface.
  • the liquid crystal capacitor has two upper and lower plates, which are respectively a first plate and a second plate.
  • the first plate is loaded with VCOM, that is, a common voltage
  • the second plate is loaded with a pixel voltage. .
  • FIG. 7 is a schematic structural diagram of another liquid crystal panel disclosed in an embodiment of the present invention, wherein the liquid crystal panel shown in FIG. 7 is further optimized on the basis of the liquid crystal panel shown in FIG. Compared with the liquid crystal panel shown in FIG. 6, the liquid crystal panel shown in FIG. 7 includes, in addition to all the units of the liquid crystal panel shown in FIG. 6, the determining unit 603 may include:
  • the first query sub-unit 6031 is configured to query the voltage corresponding to each leakage current from the corresponding relationship between the pre-stored leakage current and the voltage according to the detected leakage current.
  • the first calculating sub-unit 6032 is configured to sum and average the queried voltages to obtain an average voltage as the target voltage.
  • the user stores a correspondence between the leakage current and the voltage in the liquid crystal panel in advance, wherein the correspondence may be obtained by the user in advance through experiments.
  • the first query sub-unit 6031 can query the voltage corresponding to each leakage current from the corresponding relationship between the pre-stored leakage current and the voltage. Further, The first calculation sub-unit 6032 sums the queried voltages and averages them to obtain an average voltage as the target voltage.
  • the adjusting unit 604 is specifically configured to adjust a common voltage on the first plate of each liquid crystal capacitor of the display area to a target voltage.
  • FIG. 8 is a schematic structural diagram of another liquid crystal panel according to an embodiment of the present invention.
  • the liquid crystal panel shown in FIG. 8 is further optimized on the basis of the liquid crystal panel shown in FIG.
  • the liquid crystal panel shown in FIG. 8 includes, in addition to all the units of the liquid crystal panel shown in FIG. 6, the determining unit 603 may include:
  • a second calculating sub-unit 6033 configured to sum and average the detected leakage currents to obtain a flat Both leakage current.
  • the second query subunit 6034 is configured to query the target voltage corresponding to the average leakage current from the corresponding relationship between the pre-stored leakage current and the voltage according to the average leakage current.
  • the user stores a correspondence between the leakage current and the voltage in the liquid crystal panel in advance, wherein the correspondence may be obtained by the user in advance through experiments.
  • the second calculating sub-unit 6033 can sum and average the detected leakage currents to obtain an average leakage current, and further, the second The inquiry sub-unit 6034 can query the target voltage corresponding to the average leakage current from the correspondence relationship between the pre-stored leakage current and the voltage according to the average leakage current.
  • the adjusting unit 604 is specifically configured to adjust a common voltage on the first plate of each liquid crystal capacitor of the display area to a target voltage.
  • FIG. 9 is a schematic structural diagram of another liquid crystal panel disclosed in an embodiment of the present invention, wherein the liquid crystal panel shown in FIG. 9 is further optimized on the basis of the liquid crystal panel shown in FIG.
  • the liquid crystal panel shown in FIG. 9 includes, in addition to all the units of the liquid crystal panel shown in FIG. 6, the adjustment unit 604, which includes: a determination subunit 6041 and an adjustment subunit 6042, wherein:
  • the determining unit 603 is specifically configured to query the target voltage corresponding to each leakage current from the corresponding relationship between the pre-stored leakage current and the voltage according to the detected leakage current.
  • the user stores the corresponding relationship between the leakage current and the voltage in the liquid crystal panel in advance, wherein the corresponding relationship may be obtained by the user in advance through experiments.
  • the determining unit 603 can query the target voltage corresponding to each leakage current from the pre-stored relationship between the leakage current and the voltage to obtain multiple targets. Voltage.
  • the determining subunit 6041 is configured to determine a target voltage of each of the plurality of sub-regions divided into the display region in advance according to the correspondence relationship between the pre-stored sub-region and the TFT, wherein the target voltage of the sub-region is a TFT corresponding to the sub-region The target voltage corresponding to the leakage current flowing out.
  • the user divides the display area of the liquid crystal panel into a plurality of sub-areas in advance. For example, when the number of TFTs disposed in the non-display area of the liquid crystal panel is six, the user can divide the display area of the liquid crystal panel into 6 sub-regions, 12 sub-regions, or 18 sub-regions, etc., are not limited in the embodiment of the present invention.
  • the user After the user divides the display area of the LCD panel into multiple sub-areas, the user can A correspondence relationship between each sub-area and a TFT in the non-display area is established, and the correspondence is stored in the Source IC of the liquid crystal panel.
  • the determining subunit 6041 can determine each sub-region according to the corresponding relationship between the pre-stored sub-region and the TFT. Corresponding TFTs, and further, determining a target voltage of each sub-region according to the target voltage corresponding to each leak current flowing from the TFT, that is, the target voltage of each sub-region is a leakage current flowing from the TFT corresponding to the sub-region Corresponding target voltage.
  • the adjusting subunit 6042 is configured to adjust a common voltage on the first plate of the liquid crystal capacitor of each sub-region to a target voltage of the sub-region.
  • the adjusting sub-unit 6042 can publicize the first plate of the liquid crystal capacitor of each sub-region.
  • the voltage is regulated to the target voltage of the sub-region.
  • the detecting unit 601 detects whether a plurality of TFT thin film transistors in the non-display area are turned off, and if so, the detecting unit 602 detects each leakage current flowing from the TFT, and further After determining the target voltage according to the detected leakage current, the determining unit 604 can adjust the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage.
  • the adjusting unit 604 adjusts the common voltage on the first plate of the liquid crystal capacitor of the display area to the target voltage, so that the common voltage on the second plate of the liquid crystal capacitor and the second plate can be ensured. The voltage difference between the pixel voltages remains unchanged.
  • the liquid crystal molecules When the liquid crystal molecules are continuously switched between the positive and negative electrodes, the liquid crystal molecules can be made electrically neutral, and the charged ions in the interface are not captured, so that the liquid crystal molecules do not appear.
  • the residual image of the image can improve the display effect of the TFT LCD screen.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种液晶面板,包括:显示区域和非显示区域;显示区域包括的多个TFT薄膜晶体管用于驱动与TFT连接的子像素点,以显示图像;非显示区域为围绕显示区域的边界线设置的预设面积的区域,且非显示区域包括预设数量的TFT、垂直方向上的预设数量的Data line数据线以及水平方向上的由显示区域内的至少一条Gate line扫描线延伸的目标Gate line,其中,每条Data line连接一个TFT,每条目标Gate line连接至少一个TFT,每条Data line用于侦测与Data line连接的TFT的漏电流,非显示区域包括的TFT架构与显示区域包括的TFT架构相同,非显示区域包括的每个TFT连接一个子像素点。还提供了一种电压调节方法。上述显示面板和电压调节方法可提高TFT液晶屏的显示效果。

Description

一种液晶面板及电压调节方法
本申请要求于2015年7月20日提交中国专利局、申请号为201510427290.2、发明名称为“一种液晶面板及电压调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种液晶面板及电压调节方法。
背景技术
TFT(Thin Film Transistor,薄膜晶体管)液晶屏中的每个液晶像素点都是由集成在像素点后面的TFT来驱动,因此,TFT液晶屏相较于其他显示屏具有高速度、高亮度、高对比度显示屏幕信息的优点,越来越受到用户的青睐。然而,实践中发现,由于TFT关闭后漏电流的存在,导致施加在液晶像素点上的像素电压发生偏移,其正负极性电压相对于公共电压不再对称,使得离子被界面捕获而形成内电场,该内电场与施加在液晶像素点上的电场产生叠加效应,这样就会出现影像残留的画面(即液晶面板上显示的图像看起来是之前固定画面留下的残影),使得TFT液晶屏的显示效果不好。
发明内容
本发明实施例提供了一种液晶面板及电压调节方法,可以提高TFT液晶屏的显示效果。
本发明实施例第一方面公开了一种液晶面板,包括:显示区域和非显示区域,其中,
所述显示区域包括的多个TFT薄膜晶体管用于驱动与所述TFT连接的子像素点,以显示图像;
所述非显示区域为围绕所述显示区域的边界线设置的预设面积的区域,且所述非显示区域包括预设数量的TFT、垂直方向上的所述预设数量的Data line数据线以及水平方向上的由所述显示区域内的至少一条Gate line扫描线延伸的 目标Gate line,其中,每条所述Data line连接一个TFT,每条所述目标Gate line连接至少一个TFT,每条所述Data line用于侦测与所述Data line连接的TFT的漏电流,所述侦测的漏电流用于反映所述显示区域中的TFT漏电流特性,所述非显示区域包括的TFT架构与所述显示区域包括的TFT架构相同,所述非显示区域包括的每个TFT连接一个子像素点。
本发明实施例第二方面公开了一种电压调节方法,包括:
检测非显示区域的多个TFT薄膜晶体管是否关闭;
若是,则侦测每个从所述TFT流出的漏电流;
根据侦测到的所述漏电流,确定目标电压;
将显示区域的液晶电容的第一极板上的公共电压调节为所述目标电压。
本发明实施例中,液晶面板检测非显示区域的多个TFT薄膜晶体管是否关闭,若是,则通过与TFT连接的data line侦测从该TFT流出的漏电流,进一步地,根据侦测到的漏电流,确定目标电压后,液晶面板就可以将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。通过本发明实施例,液晶面板将显示区域的液晶电容的第一极板上的公共电压调节为目标电压,当液晶分子在不断地进行正负极切换时,可以确保液晶电容第一极板上的公共电压与第二极板上的像素电压之间的压差保持不变,使得液晶分子呈电中性,而不会去捕获界面中带电的离子,这样就不会出现影像残留的画面,从而可以提高TFT液晶屏的显示效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种液晶面板的结构示意图;
图2是本发明实施例公开的一种液晶面板的显示区域的结构示意图;
图3是本发明实施例公开的一种子像素点的等效电路的结构示意图;
图4是本发明实施例公开的一种电压调节方法的流程示意图;
图5是本发明实施例公开的另一种电压调节方法的流程示意图;
图6是本发明实施例公开的一种液晶面板的结构示意图;
图7是本发明实施例公开的另一种液晶面板的结构示意图;
图8是本发明实施例公开的另一种液晶面板的结构示意图;
图9是本发明实施例公开的另一种液晶面板的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种液晶面板及电压调节方法,可以提高TFT液晶屏的显示效果。以下分别进行详细说明。
本发明实施例中,液晶面板可以包括任何配置有TFT薄膜晶体管的液晶屏,该液晶面板可以应用于任何需要配置显示屏的设备,该设备可以包括但不限于电视机、智能手机、笔记本电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、智能穿戴设备(如智能手表、智能手环)等,本发明实施例不做限定。
请参见图1,图1是本发明实施例公开的一种液晶面板的结构示意图,如图1所示,该液晶面板可以包括显示区域和非显示区域,其中,
显示区域包括的多个TFT薄膜晶体管用于驱动与TFT连接的子像素点,以显示图像;
非显示区域为围绕显示区域的边界线设置的预设面积的区域,且非显示区域包括预设数量的TFT、垂直方向上的预设数量的Data line数据线以及水平方向上的由显示区域内的至少一条Gate line扫描线延伸的目标Gate line,其中,每条Data line连接一个TFT,每条目标Gate line连接至少一个TFT,每条Data line用于侦测与Data line连接的TFT的漏电流,侦测的漏电流用于反映显示区域中的TFT漏电流特性,非显示区域包括的TFT架构与显示区域包括的TFT架构相同,非显示区域包括的每个TFT连接一个子像素点。
本发明实施例中,非显示区域包括的TFT的数量(即预设数量)可以是预 先根据显示区域的画面闪烁的程度确定出来的,如图1所示的6个。当确定了非显示区域包括的TFT的预设数量后,非显示区域也要设置预设数量的Data line数据线,每条data line仅连接一个TFT,这样就可以保证在一帧的时间内完全侦测该TFT的漏电流状况。非显示区域包括的目标Gate line扫描线可以由显示区域内的至少一条Gate line扫描线向一边(如向左边或右边)延伸到非显示区域,也可以由显示区域内的至少一条Gate line扫描线向两边(同时向左边和向右边)延伸到非显示区域,每条目标Gate line连接至少一个TFT。如图1所示,该非显示区域包括6个TFT、6条data line以及3条目标Gate line,该3条目标Gate line由显示区域内相应的3条Gate line(第1条、第m/2条以及第m条)向两边延长至非显示区域而得到的。TFT的位置分别为左上区、右上区、左中区、右中区、左下区、右下区。
本发明实施例中,非显示区域的每条Data line用于侦测与Data line连接的TFT的漏电流,侦测的漏电流用于反映显示区域中的TFT漏电流特性。为了使侦测的结果更加精确,非显示区域包括的TFT架构与显示区域包括的TFT架构相同,且非显示区域包括的每个TFT连接一个子像素点,其中,一个液晶像素点包括3个子像素点(即红、绿、蓝3个子像素点)。
具体地,非显示区域的每条Data line具体用于在与Data line连接的TFT的导通时间内充入电压,以及用于在与Data line连接的TFT的关闭时间内侦测漏电流的变化,其中,漏电流为与Data line连接的TFT在关闭时间内所流出的漏电流。
需要说明的是,图1所示的非显示区域的TFT的数量不限于6个,TFT的位置也不限于图1所示的那些位置,即非显示区域中的TFT位置可以根据实际需要而改变。非显示区域中的TFT的数量越多,反映显示区域中的TFT漏电流情况的准确性就越高,但占用非显示区域的面积会变大,即边框会变宽,用户可以根据具体情况来设置非显示区域中的TFT的数量。
请一并参见图2,图2是本发明实施例公开的一种液晶面板的显示区域的结构示意图,如图2所示,
当显示区域的解析度为n*m时,显示区域被3n条垂直方向的Date line以及m条水平方向的Gate line划分成3n*m个子区域,其中,每个子区域包括一个子像素点,显示区域包括的每条Date line连接多个TFT,显示区域包括的每条 Gate line连接多个TFT。
本发明实施例中,当显示区域的解析度为n*m时,该显示区域就有3n*m个子像素点,每个子像素点都是由集成在该子像素点后面的TFT来驱动,因此显示区域就有3n*m个TFT,同时显示区域包括3n条Date line和m条Gate line,这些Date line和Gate line就把显示区域划分成3n*m个子区域,其中,每个子区域包括一个子像素点,显示区域包括的每条Date line连接多个TFT,显示区域包括的每条Gate line连接多个TFT。
请一并参见图3,图3是本发明实施例公开的一种子像素点的等效电路的结构示意图,如图3所示,该等效电路包括TFT、液晶电容以及存储电容,其中,
非显示区域和显示区域的TFT的栅极均连接Gate line,非显示区域和显示区域的TFT的源极均连接Data line,非显示区域和显示区域的TFT的漏极均连接液晶电容的第一极板,且非显示区域和显示区域的TFT的漏极均连接存储电容的第一极板,液晶电容的第二极板以及存储电容的第二极板分别连接公共电极。
本发明实施例中,非显示区域包括的TFT架构与显示区域包括的TFT架构相同,且非显示区域包括的每个TFT均连接一个子像素点,这样,非显示区域中的子像素点的等效电路与显示区域中的子像素点的等效电路相同,因此,非显示区域中的TFT的漏电流情况就可以模拟显示区域中的TFT的漏电流情况。
当T1(即TFT)导通时,Data line上的数据就可以写入液晶电容CLC2,当T1关闭时,存储电容CST2维持每个像素的电压,同时,T1上的漏电流将会反向流入到与该T1连接的Data line中。
下面结合图1~图3对本发明装置实施例的原理进行详细的描述。
本发明实施例中,液晶面板检测非显示区域的多个TFT薄膜晶体管是否关闭,当检测到TFT关闭时,通过与TFT连接的data line侦测从该TFT流出的漏电流,进一步地,根据侦测到的漏电流,确定目标电压后,液晶面板就可以将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。
具体的,液晶面板可以根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的电压,对查询到的电压求和并取平均值,以获得平均电压作为目标电压,或者,液晶面板可以对侦测到的漏电流求和并取平均值,以获得平均漏电流,并根据平均漏电流,从预先存储的漏电 流与电压的对应关系中,查询平均漏电流对应的目标电压。在获得目标电压后,液晶面板可以将显示区域的每一个液晶电容的第一极板上的公共电压调节为目标电压。
或者,液晶面板根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的目标电压,进一步地,根据预先存储的子区域与TFT的对应关系,确定预先对显示区域划分的多个子区域中每个子区域的目标电压,其中,子区域的目标电压为子区域对应的TFT所流出的漏电流对应的目标电压,并将每个子区域的液晶电容的第一极板上的公共电压调节为子区域的目标电压。
通过本发明实施例,液晶面板将显示区域的液晶电容的第一极板上的公共电压调节为目标电压后,当液晶分子在不断地进行正负极切换时,可以确保液晶电容第一极板上的公共电压与第二极板上的像素电压之间的压差保持不变,使得液晶分子呈电中性,而不会去捕获界面中带电的离子,这样就不会出现影像残留的画面,从而可以提高TFT液晶屏的显示效果。
需要说明的是,原理这里描述的“液晶电容的第一极板上的公共电压”就是上述装置实施例中连接公共电极的液晶电容的第二极板上的公共电压,原理这里描述的“第二极板上的像素电压”就是上述装置实施例中连接TFT漏极的第一极板上的像素电压。
请参见图4,图4是本发明实施例公开的一种电压调节方法的流程示意图,该方法应用于液晶面板。如图4所示,该方法可以包括以下步骤。
S401、检测非显示区域的多个TFT薄膜晶体管是否关闭,若是,执行步骤S402,若否,返回继续执行步骤S401。
本发明实施例中,TFT(Thin Film Transistor,薄膜晶体管)液晶屏中的每个液晶像素点都是由集成在像素点后面的TFT来驱动,因此,TFT液晶屏相较于其他显示屏具有高速度、高亮度、高对比度显示屏幕信息的优点,越来越受到用户的青睐。
通常,TFT薄膜晶体管有两种工作状态:导通和关闭,当TFT导通时,对液晶电容快速充电,当TFT关闭时,保持液晶电容的电压。
当写入一行数据后TFT关闭时,理论上液晶电容上的像素电压要保持一帧 时间,但TFT关闭后漏电流的存在,导致像素电压偏移,其正负极性相对于液晶电容上的VCOM(公共电压)不再对称。液晶分子在不断地进行正负极切换时,正负极性长时间施加在液晶面板两端的电压不相等,使得离子被界面捕获形成内建电场,从而与本身液晶施加电场(切换成纯灰阶画面时)产生叠加效应,看起来像是之前固定画面留下了残影。
本发明实施例中,TFT液晶屏的显示区域中的TFT关闭时的漏电流会反向流入Data line(数据线),而Data line在一帧的大部分时间都处于传送电压的状态,很难独立出来作为侦测漏电流的路径。
本发明实施例中,液晶面板预先在非显示区域设置多个TFT,该非显示区域的TFT的架构与显示区域的TFT的架构完全一致,且非显示区域中的每条Data line仅连接一个TFT,Data line接入source IC(即源极驱动),仅在对应scan line(即扫描线)的时间充入电压,其他时间去侦测该Data line上电流的变化,这样就保证可以在一帧的时间内完全侦测该TFT漏电流的状况。需要说明的是,当非显示区域的TFT的架构与显示区域的TFT的架构完全一致时,液晶面板就可以通过侦测非显示区域的TFT的漏电流情况来反映显示区域的TFT的漏电流特性。
S402、侦测每个从TFT流出的漏电流。
本发明实施例中,当液晶面板检测非显示区域的多个TFT薄膜晶体管关闭时,液晶面板可以侦测每个从TFT流出的漏电流。
具体的,液晶面板可以在Source IC(即源极驱动)上增加对应channel(即通道)去驱动非显示区域中的TFT,并侦测该非显示区域中的TFT所流出的漏电流。
S403、根据侦测到的漏电流,确定目标电压。
本发明实施例中,液晶面板侦测到每个从TFT流出的漏电流之后,液晶面板就可以根据侦测到的漏电流,确定目标电压。
作为一种可选的实施方式,液晶面板根据侦测到的漏电流,确定目标电压的具体实施方式可以包括以下步骤:
11)根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的电压;
12)对查询到的电压求和并取平均值,以获得平均电压作为目标电压。
在该实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。液晶面板侦测到从每个TFT流出的漏电流之后,液晶面板就可以从预先存储的漏电流与电压的对应关系中,查询每个漏电流对应的电压,进一步地,液晶面板对查询到的电压求和并取平均值,以获得平均电压作为目标电压。
作为另一种可选的实施方式,液晶面板根据侦测到的漏电流,确定目标电压的具体实施方式可以包括以下步骤:
21)对侦测到的漏电流求和并取平均值,以获得平均漏电流;
22)根据平均漏电流,从预先存储的漏电流与电压的对应关系中,查询平均漏电流对应的目标电压。
在该实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。液晶面板侦测到从每个TFT流出的漏电流之后,液晶面板就可以对侦测到的漏电流求和并取平均值,以获得平均漏电流,进一步地,液晶面板可以根据平均漏电流,从预先存储的漏电流与电压的对应关系中,查询平均漏电流对应的目标电压。
S404、将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。
本发明实施例中,TFT关闭后漏电流的存在而导致液晶电容上的像素电压发生偏移是无法改变的事实,因此,要使得液晶分子始终保持直流平衡(呈电中性),就需要液晶电容两极板上的压差为固定值,即液晶电容上的像素电压与液晶电容上的VCOM之间的差值为固定值,此时只有通过调节液晶电容上的VCOM才能确保液晶分子呈电中性,这样,液晶分子就不会去捕获界面中带电的离子,从而TFT液晶屏就不会出现影像残留的画面。
本发明实施例中,液晶面板实时将显示区域的每一个液晶电容的第一极板上的公共电压调节为目标电压后,就可以确保每一个液晶分子呈电中性,这样,液晶分子就不会去捕获界面中带电的离子。其中,该液晶电容有上下两个极板,分别为第一极板和第二极板,该第一极板上加载的是VCOM,即公共电压,该第二极板上加载的是像素电压。
需要说明的是,方法实施例中的“液晶电容的第一极板”就是上述装置实施例中连接公共电极的液晶电容的第二极板,方法实施例中的“第二极板”就是上述装置实施例中连接TFT漏极的第一极板。后续方法实施例中也一样。
在图4所描述的方法流程中,液晶面板检测非显示区域的多个TFT薄膜晶体管是否关闭,若是,则侦测每个从TFT流出的漏电流,进一步地,根据侦测到的漏电流,确定目标电压后,液晶面板就可以将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。通过本发明实施例,液晶面板将显示区域的液晶电容的第一极板上的公共电压调节为目标电压,当液晶分子在不断地进行正负极切换时,可以确保液晶电容的第二极板上的公共电压与第二极板上的像素电压之间的压差保持不变,使得液晶分子呈电中性,而不会去捕获界面中带电的离子,这样就不会出现影像残留的画面,从而可以提高TFT液晶屏的显示效果。
请参见图5,图5是本发明实施例公开的另一种电压调节方法的流程示意图。如图5所示,该方法可以包括以下步骤。
S501、液晶面板检测非显示区域的多个TFT薄膜晶体管是否关闭,若是,执行步骤S502,若否,返回继续执行步骤S501。
S502、液晶面板侦测每个从TFT流出的漏电流。
S503、液晶面板根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的目标电压。
本发明实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。液晶面板侦测到从每个TFT流出的漏电流之后,液晶面板就可以从预先存储的漏电流与电压的对应关系中,查询每个漏电流对应的目标电压,以获得多个目标电压。
S504、液晶面板根据预先存储的子区域与TFT的对应关系,确定预先对显示区域划分的多个子区域中每个子区域的目标电压。
本发明实施例中,用户预先将液晶面板的显示区域划分为多个子区域,比如:当设置在液晶面板非显示区域中的TFT的数量为6个时,用户可以将液晶面板的显示区域划分为6个子区域、12个子区域或者18个子区域等等,本发明实施例不作限定。用户将液晶面板的显示区域划分为多个子区域之后,用户可以建立每个子区域与非显示区域中的TFT的对应关系,并将该对应关系存储在液晶面板的Source IC中。
本发明实施例中,液晶面板查询到每个从TFT流出的漏电流对应的目标电 压后,进一步的,液晶面板可以根据预先存储的子区域与TFT的对应关系,确定每一个子区域对应的TFT,进而,根据查询到的每个从TFT流出的漏电流对应的目标电压,确定每个子区域的目标电压,即每个子区域的目标电压为该子区域对应的TFT所流出的漏电流对应的目标电压。
S505、液晶面板将每个子区域的液晶电容的第一极板上的公共电压调节为子区域的目标电压。
本发明实施例中,液晶面板确定预先对显示区域划分的多个子区域中每个子区域的目标电压之后,液晶面板就可以将每个子区域的液晶电容的第一极板上的公共电压调节为该子区域的目标电压。
在图5所描述的方法流程中,液晶面板检测非显示区域的多个TFT薄膜晶体管关闭时,侦测每个从TFT流出的漏电流,根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的目标电压之后,进一步地,液晶面板可以根据预先存储的子区域与TFT的对应关系,确定预先对显示区域划分的多个子区域中每个子区域的目标电压,并将每个子区域的液晶电容的第一极板上的公共电压调节为该子区域的目标电压。当液晶分子在不断地进行正负极切换时,可以确保液晶电容的第二极板上的公共电压与第二极板上的像素电压之间的压差保持不变,使得液晶分子呈电中性,而不会去捕获界面中带电的离子,这样就不会出现影像残留的画面,从而可以提高TFT液晶屏的显示效果。
请参见图6,图6是本发明实施例公开的一种液晶面板的结构示意图,如图6所示,该液晶面板600可以包括:检测单元601、侦测单元602、确定单元603以及调节单元604,其中:
检测单元601,用于检测非显示区域的多个TFT薄膜晶体管是否关闭。
本发明实施例中,TFT(Thin Film Transistor,薄膜晶体管)液晶屏中的每个液晶像素点都是由集成在像素点后面的TFT来驱动,因此,TFT液晶屏相较于其他显示屏具有高速度、高亮度、高对比度显示屏幕信息的优点,越来越受到用户的青睐。
通常,TFT薄膜晶体管有两种工作状态:导通和关闭,当TFT导通时,对液晶电容快速充电,当TFT关闭时,保持液晶电容的电压。
当写入一行数据后TFT关闭时,理论上液晶电容上的像素电压要保持一帧时间,但TFT关闭后漏电流的存在,导致像素电压偏移,其正负极性相对于液晶电容上的VCOM(公共电压)不再对称。液晶分子在不断地进行正负极切换时,正负极性长时间施加在液晶面板两端的电压不相等,使得离子被界面捕获形成内建电场,从而与本身液晶施加电场(切换成纯灰阶画面时)产生叠加效应,看起来像是之前固定画面留下了残影。
本发明实施例中,TFT液晶屏的显示区域中的TFT关闭时的漏电流会反向流入Data line(数据线),而Data line在一帧的大部分时间都处于传送电压的状态,很难独立出来作为侦测漏电流的路径。
本发明实施例中,液晶面板预先在非显示区域设置多个TFT,该非显示区域的TFT的架构与显示区域的TFT的架构完全一致,且非显示区域中的每条Data line仅连接一个TFT,Data line接入source IC(即源极驱动),仅在对应scan line(即扫描线)的时间充入电压,其他时间去侦测该Data line上电流的变化,这样就保证可以在一帧的时间内完全侦测该TFT漏电流的状况。需要说明的是,当非显示区域的TFT的架构与显示区域的TFT的架构完全一致时,检测单元601就可以当检测非显示区域的TFT关闭时,由侦测单元602侦测每个从TFT流出的漏电流情况来反映显示区域的TFT的漏电流特性。
侦测单元602,用于当检测单元601检测非显示区域的多个TFT薄膜晶体管关闭时,侦测每个从TFT流出的漏电流。
本发明实施例中,当检测单元601检测非显示区域的多个TFT薄膜晶体管关闭时,侦测单元602就可以侦测每个从TFT流出的漏电流。
具体的,液晶面板可以在Source IC(即源极驱动)上增加对应channel(即通道)去驱动非显示区域中的TFT,侦测单元602侦测该非显示区域中的TFT所流出的漏电流。
确定单元603,用于根据侦测到的漏电流,确定目标电压。
调节单元604,用于将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。
本发明实施例中,TFT关闭后漏电流的存在而导致液晶电容上的像素电压发生偏移是无法改变的事实,因此,要使得液晶分子始终保持直流平衡(呈电中性),就需要液晶电容两极板上的压差为固定值,即液晶电容上的像素电压与 液晶电容上的VCOM之间的差值为固定值,此时只有调节单元604通过调节液晶电容上的VCOM才能确保液晶分子呈电中性,这样,液晶分子就不会去捕获界面中带电的离子,从而TFT液晶屏就不会出现影像残留的画面。
本发明实施例中,调节单元604实时将显示区域的每一个液晶电容的第一极板上的公共电压调节为目标电压后,就可以确保每一个液晶分子呈电中性,这样,液晶分子就不会去捕获界面中带电的离子。其中,该液晶电容有上下两个极板,分别为第一极板和第二极板,该第一极板上加载的是VCOM,即公共电压,该第二极板上加载的是像素电压。
请参见图7,图7是本发明实施例公开的另一种液晶面板的结构示意图,其中,图7所示的液晶面板是在图6所示的液晶面板的基础上进一步优化得到的,与图6所示的液晶面板相比,图7所示的液晶面板除了包括图6所示的液晶面板的所有单元外,确定单元603可以包括:
第一查询子单元6031,用于根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的电压。
第一计算子单元6032,用于对查询到的电压求和并取平均值,以获得平均电压作为目标电压。
在该实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。侦测单元602侦测到从每个TFT流出的漏电流之后,第一查询子单元6031就可以从预先存储的漏电流与电压的对应关系中,查询每个漏电流对应的电压,进一步地,第一计算子单元6032对查询到的电压求和并取平均值,以获得平均电压作为目标电压。
上述调节单元604具体用于将显示区域的每一个液晶电容的第一极板上的公共电压调节为目标电压。
请参见图8,图8是本发明实施例公开的另一种液晶面板的结构示意图,其中,图8所示的液晶面板是在图6所示的液晶面板的基础上进一步优化得到的,与图6所示的液晶面板相比,图8所示的液晶面板除了包括图6所示的液晶面板的所有单元外,确定单元603可以包括:
第二计算子单元6033,用于对侦测到的漏电流求和并取平均值,以获得平 均漏电流。
第二查询子单元6034,用于根据平均漏电流,从预先存储的漏电流与电压的对应关系中,查询平均漏电流对应的目标电压。
在该实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。侦测单元602侦测到从每个TFT流出的漏电流之后,第二计算子单元6033就可以对侦测到的漏电流求和并取平均值,以获得平均漏电流,进一步地,第二查询子单元6034可以根据平均漏电流,从预先存储的漏电流与电压的对应关系中,查询平均漏电流对应的目标电压。
上述调节单元604具体用于将显示区域的每一个液晶电容的第一极板上的公共电压调节为目标电压。
请参见图9,图9是本发明实施例公开的另一种液晶面板的结构示意图,其中,图9所示的液晶面板是在图6所示的液晶面板的基础上进一步优化得到的,与图6所示的液晶面板相比,图9所示的液晶面板除了包括图6所示的液晶面板的所有单元外,调节单元604可以包括:确定子单元6041和调节子单元6042,其中:
确定单元603,具体用于根据侦测到的漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个漏电流对应的目标电压。
本发明实施例中,用户预先在液晶面板中存储了漏电流与电压的对应关系,其中,该对应关系可以为用户预先通过实验获取到的。侦测单元602侦测到从每个TFT流出的漏电流之后,确定单元603就可以从预先存储的漏电流与电压的对应关系中,查询每个漏电流对应的目标电压,以获得多个目标电压。
确定子单元6041,用于根据预先存储的子区域与TFT的对应关系,确定预先对显示区域划分的多个子区域中每个子区域的目标电压,其中,子区域的目标电压为子区域对应的TFT所流出的漏电流对应的目标电压。
本发明实施例中,用户预先将液晶面板的显示区域划分为多个子区域,比如:当设置在液晶面板非显示区域中的TFT的数量为6个时,用户可以将液晶面板的显示区域划分为6个子区域、12个子区域或者18个子区域等等,本发明实施例不作限定。用户将液晶面板的显示区域划分为多个子区域之后,用户可 以建立每个子区域与非显示区域中的TFT的对应关系,并将该对应关系存储在液晶面板的Source IC中。
本发明实施例中,确定单元603查询到每个从TFT流出的漏电流对应的目标电压后,进一步的,确定子单元6041可以根据预先存储的子区域与TFT的对应关系,确定每一个子区域对应的TFT,进而,根据查询到的每个从TFT流出的漏电流对应的目标电压,确定每个子区域的目标电压,即每个子区域的目标电压为该子区域对应的TFT所流出的漏电流对应的目标电压。
调节子单元6042,用于将每个子区域的液晶电容的第一极板上的公共电压调节为子区域的目标电压。
本发明实施例中,确定子单元6041确定预先对显示区域划分的多个子区域中每个子区域的目标电压之后,调节子单元6042就可以将每个子区域的液晶电容的第一极板上的公共电压调节为该子区域的目标电压。
在图6~图9所描述的液晶面板600中,检测单元601检测非显示区域的多个TFT薄膜晶体管是否关闭,若是,则侦测单元602侦测每个从TFT流出的漏电流,进一步地,确定单元603根据侦测到的漏电流,确定目标电压后,调节单元604就可以将显示区域的液晶电容的第一极板上的公共电压调节为目标电压。通过本发明实施例,调节单元604将显示区域的液晶电容的第一极板上的公共电压调节为目标电压,这样就可以确保液晶电容的第二极板上的公共电压与第二极板上的像素电压之间的压差保持不变,当液晶分子在不断地进行正负极切换时,可以使得液晶分子呈电中性,而不会去捕获界面中带电的离子,这样就不会出现影像残留的画面,从而可以提高TFT液晶屏的显示效果。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于计算机可读 取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (12)

  1. 一种液晶面板,包括:显示区域和非显示区域,其中,
    所述显示区域包括的多个TFT薄膜晶体管用于驱动与所述TFT连接的子像素点,以显示图像;
    所述非显示区域为围绕所述显示区域的边界线设置的预设面积的区域,且所述非显示区域包括预设数量的TFT、垂直方向上的所述预设数量的Data line数据线以及水平方向上的由所述显示区域内的至少一条Gate line扫描线延伸的目标Gate line,其中,每条所述Data line连接一个TFT,每条所述目标Gate line连接至少一个TFT,每条所述Data line用于侦测与所述Data line连接的TFT的漏电流,所述侦测的漏电流用于反映所述显示区域中的TFT漏电流特性,所述非显示区域包括的TFT架构与所述显示区域包括的TFT架构相同,所述非显示区域包括的每个TFT连接一个子像素点。
  2. 根据权利要求1所述的液晶面板,其特征在于,所述非显示区域的每条所述Data line具体用于在与所述Data line连接的TFT的导通时间内充入电压,以及用于在与所述Data line连接的TFT的关闭时间内侦测漏电流的变化,其中,所述漏电流为与所述Data line连接的TFT在关闭时间内所流出的漏电流。
  3. 根据权利要求1所述的液晶面板,其特征在于,当所述显示区域的解析度为n*m时,所述显示区域被3n条垂直方向的Date line以及m条水平方向的Gate line划分成3n*m个子区域,其中,每个所述子区域包括一个子像素点,所述显示区域包括的每条Date line连接多个TFT,所述显示区域包括的每条Gate line连接多个TFT。
  4. 根据权利要求1所述的液晶面板,其特征在于,所述液晶面板包括多个子像素点的等效电路,每个所述子像素点的等效电路均相同,所述等效电路包括TFT、液晶电容以及存储电容,其中,
    所述非显示区域和所述显示区域的TFT的栅极均连接Gate line,所述非显示区域和所述显示区域的TFT的源极均连接Data line,所述非显示区域和所述显示区域的TFT的漏极均连接所述液晶电容的第一极板,且所述非显示区域和所述显示区域的TFT的漏极均连接所述存储电容的第一极板,所述液晶电容的第二极板以及所述存储电容的第二极板分别连接公共电极。
  5. 根据权利要求2所述的液晶面板,其特征在于,所述液晶面板包括多个 子像素点的等效电路,每个所述子像素点的等效电路均相同,所述等效电路包括TFT、液晶电容以及存储电容,其中,
    所述非显示区域和所述显示区域的TFT的栅极均连接Gate line,所述非显示区域和所述显示区域的TFT的源极均连接Data line,所述非显示区域和所述显示区域的TFT的漏极均连接所述液晶电容的第一极板,且所述非显示区域和所述显示区域的TFT的漏极均连接所述存储电容的第一极板,所述液晶电容的第二极板以及所述存储电容的第二极板分别连接公共电极。
  6. 根据权利要求3所述的液晶面板,其特征在于,所述液晶面板包括多个子像素点的等效电路,每个所述子像素点的等效电路均相同,所述等效电路包括TFT、液晶电容以及存储电容,其中,
    所述非显示区域和所述显示区域的TFT的栅极均连接Gate line,所述非显示区域和所述显示区域的TFT的源极均连接Data line,所述非显示区域和所述显示区域的TFT的漏极均连接所述液晶电容的第一极板,且所述非显示区域和所述显示区域的TFT的漏极均连接所述存储电容的第一极板,所述液晶电容的第二极板以及所述存储电容的第二极板分别连接公共电极。
  7. 一种电压调节方法,应用于液晶面板,其特征在于,包括:
    检测非显示区域的多个TFT薄膜晶体管是否关闭;
    若是,则侦测每个从所述TFT流出的漏电流;
    根据侦测到的所述漏电流,确定目标电压;
    将显示区域的液晶电容的第一极板上的公共电压调节为所述目标电压。
  8. 根据权利要求7所述的方法,其特征在于,所述根据侦测到的所述漏电流,确定目标电压包括:
    根据侦测到的所述漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个所述漏电流对应的电压;
    对查询到的所述电压求和并取平均值,以获得平均电压作为目标电压。
  9. 根据权利要求7所述的方法,其特征在于,所述根据侦测到的所述漏电流,确定目标电压包括:
    对侦测到的所述漏电流求和并取平均值,以获得平均漏电流;
    根据所述平均漏电流,从预先存储的漏电流与电压的对应关系中,查询所述平均漏电流对应的目标电压。
  10. 根据权利要求8所述的方法,其特征在于,所述将显示区域的液晶电容的第一极板上的公共电压调节为所述目标电压包括:
    将显示区域的每一个液晶电容的第一极板上的公共电压调节为所述目标电压。
  11. 根据权利要求9所述的方法,其特征在于,所述将显示区域的液晶电容的第一极板上的公共电压调节为所述目标电压包括:
    将显示区域的每一个液晶电容的第一极板上的公共电压调节为所述目标电压。
  12. 根据权利要求7所述的方法,其特征在于,所述根据侦测到的所述漏电流,确定目标电压包括:
    根据侦测到的所述漏电流,从预先存储的漏电流与电压的对应关系中,分别查询每个所述漏电流对应的目标电压;
    所述将显示区域的液晶电容的第一极板上的公共电压调节为所述目标电压,包括:
    根据预先存储的子区域与TFT的对应关系,确定预先对所述显示区域划分的多个子区域中每个子区域的目标电压,其中,所述子区域的目标电压为所述子区域对应的TFT所流出的漏电流对应的目标电压;
    将每个子区域的液晶电容的第一极板上的公共电压调节为所述子区域的目标电压。
PCT/CN2015/085694 2015-07-20 2015-07-31 一种液晶面板及电压调节方法 WO2017012137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/909,097 US9799289B2 (en) 2015-07-20 2015-07-31 Liquid crystal panels and voltage adjusting methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510427290.2 2015-07-20
CN201510427290.2A CN104932165B (zh) 2015-07-20 2015-07-20 一种液晶面板及电压调节方法

Publications (1)

Publication Number Publication Date
WO2017012137A1 true WO2017012137A1 (zh) 2017-01-26

Family

ID=54119396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085694 WO2017012137A1 (zh) 2015-07-20 2015-07-31 一种液晶面板及电压调节方法

Country Status (3)

Country Link
US (1) US9799289B2 (zh)
CN (1) CN104932165B (zh)
WO (1) WO2017012137A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739540B2 (ja) * 2016-03-09 2020-08-12 イー インク コーポレイション 電気光学ディスプレイを駆動するための方法
CN107134269B (zh) * 2017-07-03 2020-11-10 京东方科技集团股份有限公司 栅极驱动电路、栅极驱动方法、阵列基板和显示装置
CN107170405B (zh) * 2017-07-24 2020-08-18 京东方科技集团股份有限公司 电路驱动方法及装置、电子装置、存储介质和显示设备
CN107749285A (zh) * 2017-11-14 2018-03-02 深圳市华星光电技术有限公司 一种漏电流控制电路及控制方法
CN109616065A (zh) * 2018-12-29 2019-04-12 武汉华星光电技术有限公司 显示面板的显示方法
US11170690B2 (en) * 2019-09-26 2021-11-09 Apple Inc. Pixel leakage and internal resistance compensation systems and methods
US10964240B1 (en) * 2019-10-23 2021-03-30 Pixelworks, Inc. Accurate display panel calibration with common color space circuitry
TWI729907B (zh) * 2020-08-14 2021-06-01 凌巨科技股份有限公司 顯示器以及用於顯示器的多工器
CN112735272B (zh) 2020-12-30 2022-05-17 武汉华星光电技术有限公司 显示面板及显示装置
CN112782895A (zh) * 2021-01-27 2021-05-11 武汉华星光电技术有限公司 显示面板及液晶显示装置
CN113140191A (zh) * 2021-04-16 2021-07-20 武汉华星光电技术有限公司 一种显示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527271A (zh) * 2003-03-03 2004-09-08 ��ʽ����������ʾ�� 图像显示装置
CN1908741A (zh) * 2005-08-01 2007-02-07 三星电子株式会社 液晶显示装置及其驱动方法
CN1991964A (zh) * 2005-12-30 2007-07-04 Lg.菲利浦Lcd株式会社 液晶显示装置及其驱动方法
CN101191925A (zh) * 2006-11-29 2008-06-04 中华映管股份有限公司 液晶显示器及其显示面板
US20090207333A1 (en) * 2008-02-14 2009-08-20 Samsung Electronics Co., Ltd. Liquid crystal display including sensing unit for compensation driving
TW201042615A (en) * 2009-05-18 2010-12-01 Chi Mei Optoelectronics Corp Liquid crystal display and driving method thereof
CN102142218A (zh) * 2010-12-28 2011-08-03 友达光电股份有限公司 平面显示装置及其工作电位调整方法
US20110221983A1 (en) * 2010-03-11 2011-09-15 Samsung Mobile Display Co., Ltd. Liquid crystal display device
US20120242641A1 (en) * 2011-03-24 2012-09-27 Kwangsae Lee Display device and method of operating the same
US20140071034A1 (en) * 2012-09-07 2014-03-13 Chunghwa Picture Tubes, Ltd. Device for reducing flickers of a liquid crystal display panel and method for reducing flickers of a liquid crystal display panel
CN104134417A (zh) * 2014-01-08 2014-11-05 友达光电股份有限公司 显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330091A (ja) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd 液晶表示装置およびその駆動方法
JP4886493B2 (ja) * 2006-12-12 2012-02-29 富士フイルム株式会社 画像信号読出方法および装置並びに画像信号読出システム
CN101241281B (zh) * 2007-02-07 2010-09-15 中华映管股份有限公司 主动元件阵列基板
JP4949908B2 (ja) * 2007-03-29 2012-06-13 富士フイルム株式会社 放射線画像検出方法および装置
JP4842192B2 (ja) * 2007-03-30 2011-12-21 富士フイルム株式会社 放射線画像検出装置及びそれに用いられる残存電荷量推定方法並びにプログラム
JP2010164714A (ja) * 2009-01-14 2010-07-29 Seiko Epson Corp 表示体、検査装置、および検査方法
KR101604490B1 (ko) * 2009-10-23 2016-03-17 엘지디스플레이 주식회사 능동 스위치 소자를 가지는 표시장치와 그 제어 방법
US20140368446A1 (en) * 2013-06-17 2014-12-18 Himax Technologies Limited In-cell touch screen and apparatus of driving the same
KR102073685B1 (ko) * 2013-09-06 2020-02-06 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527271A (zh) * 2003-03-03 2004-09-08 ��ʽ����������ʾ�� 图像显示装置
CN1908741A (zh) * 2005-08-01 2007-02-07 三星电子株式会社 液晶显示装置及其驱动方法
CN1991964A (zh) * 2005-12-30 2007-07-04 Lg.菲利浦Lcd株式会社 液晶显示装置及其驱动方法
CN101191925A (zh) * 2006-11-29 2008-06-04 中华映管股份有限公司 液晶显示器及其显示面板
US20090207333A1 (en) * 2008-02-14 2009-08-20 Samsung Electronics Co., Ltd. Liquid crystal display including sensing unit for compensation driving
TW201042615A (en) * 2009-05-18 2010-12-01 Chi Mei Optoelectronics Corp Liquid crystal display and driving method thereof
US20110221983A1 (en) * 2010-03-11 2011-09-15 Samsung Mobile Display Co., Ltd. Liquid crystal display device
CN102142218A (zh) * 2010-12-28 2011-08-03 友达光电股份有限公司 平面显示装置及其工作电位调整方法
US20120242641A1 (en) * 2011-03-24 2012-09-27 Kwangsae Lee Display device and method of operating the same
US20140071034A1 (en) * 2012-09-07 2014-03-13 Chunghwa Picture Tubes, Ltd. Device for reducing flickers of a liquid crystal display panel and method for reducing flickers of a liquid crystal display panel
CN104134417A (zh) * 2014-01-08 2014-11-05 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
CN104932165B (zh) 2018-05-25
US9799289B2 (en) 2017-10-24
US20170162144A1 (en) 2017-06-08
CN104932165A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2017012137A1 (zh) 一种液晶面板及电压调节方法
US8593491B2 (en) Application of voltage to data lines during Vcom toggling
US10564491B2 (en) Display device and electronic apparatus
US8928568B2 (en) Sub-pixel voltage control using coupling capacitors
US8456400B2 (en) Liquid crystal device and electronic apparatus
US20180182321A1 (en) Driving method and device of liquid crystal panel
US8723773B2 (en) Electro-optical device and electronic apparatus
JP6360892B2 (ja) アレイ基板及び液晶表示装置
US9599848B2 (en) Display device including compensation capacitors with different capacitance values
US11195451B2 (en) Voltage compensation circuit and method to compensate gamma voltage and enabling target pixel voltages to be consistent
US10629145B2 (en) Array substrate for lowering switch frequency of drive polarity in data lines
US9564094B2 (en) Method and display device for uniform image display
KR101764553B1 (ko) 어레이 기판 및 액정 디스플레이 패널
WO2016187909A1 (zh) 一种液晶显示面板及其驱动方法
US20120299983A1 (en) Writing data to sub-pixels using different write sequences
WO2016106879A1 (zh) 一种阵列基板和显示装置
KR20020052137A (ko) 액정표시장치
WO2016106904A1 (zh) 液晶显示面板及液晶显示装置
WO2016179936A1 (zh) 显示面板、调试画面闪烁的方法及装置、显示装置
CN100472303C (zh) 显示装置
JP4735998B2 (ja) アクティブマトリックス液晶表示装置及びその駆動方法
GB2534064A (en) Array substrate and 3D display device
US11069316B2 (en) Liquid crystal display, driving circuit and driving method for the liquid crystal display
US9257077B2 (en) Liquid crystal display apparatus and driving method thereof
TWI556218B (zh) 畫素及其驅動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14909097

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898693

Country of ref document: EP

Kind code of ref document: A1