WO2017012129A1 - 对气体机余热能进行梯级回收的多能量形式输出的能源塔 - Google Patents

对气体机余热能进行梯级回收的多能量形式输出的能源塔 Download PDF

Info

Publication number
WO2017012129A1
WO2017012129A1 PCT/CN2015/085040 CN2015085040W WO2017012129A1 WO 2017012129 A1 WO2017012129 A1 WO 2017012129A1 CN 2015085040 W CN2015085040 W CN 2015085040W WO 2017012129 A1 WO2017012129 A1 WO 2017012129A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat
pipeline
internal combustion
combustion engine
Prior art date
Application number
PCT/CN2015/085040
Other languages
English (en)
French (fr)
Inventor
舒歌群
王轩
田华
车家强
刘鹏
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US15/739,761 priority Critical patent/US10247050B2/en
Publication of WO2017012129A1 publication Critical patent/WO2017012129A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/14Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/22Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a condensation chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • F05D2220/62Application making use of surplus or waste energy with energy recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an energy tower for utilizing waste heat of an internal combustion engine.
  • it relates to an energy tower for multi-energy output output for step recovery of gas residual heat energy.
  • the most important residual heat source is engine exhaust, the temperature can reach up to 600 °C; the second is the residual heat of the liner water, but the temperature of the liner water is generally between about 75-85 ° C; if it is a pressurized gas machine, increase The pressurized gas also carries away a portion of the heat, which is typically around 120 ° C at the supercharger outlet.
  • the main heat and heat quality of the main residual heat sources are very different, and the temperature after the waste heat recovery and utilization is greatly reduced, which belongs to the large temperature difference residual heat and the energy quality span is large.
  • any waste heat recovery method can only efficiently recover the heat of a certain energy quality section, so a single waste heat recovery method cannot fully utilize the waste heat of the gas machine.
  • the technical problem to be solved by the present invention is to provide a multi-energy output energy tower for step-by-step recovery of waste heat energy of a gas machine by using a combination of cold, heat and electricity combined with excess heat recovery.
  • a multi-energy output energy tower for step recovery and utilization of gas waste heat energy comprising an internal combustion engine, further provided with heat exchange with a high temperature gas discharged from the internal combustion engine to expand the steam turbine
  • the work water vapor Rankine cycle system exchanges heat with the high temperature gas, cylinder liner water, charge air and condensation heat in the water vapor Rankine cycle system of the internal combustion engine, respectively, so that the expander expands and works organically.
  • a Rankine cycle system a bromine-cooling unit that exchanges part of the cylinder liner water discharged from the internal combustion engine as a heat source of an absorption refrigeration system, and a heat connected to the high-temperature gas terminal discharged from the internal combustion engine for heating domestic water Water heat exchanger.
  • the cylinder liner of the internal combustion engine discharges three branches, and the first branch heat exchanges with the high temperature gas discharged from the internal combustion engine after heat exchange through the water vapor Rankine cycle system through a cylinder water heater, and then enters the bromine cold
  • the generator in the unit is heat exchanged as a heat source of the absorption refrigeration system and flows into the internal combustion engine through the meeting point; the second branch is used for heat exchange with the organic Rankine cycle system, and then flows into the internal combustion engine through the meeting point;
  • the third branch flows directly into the internal combustion engine through the meeting point.
  • the water vapor Rankine cycle system includes: a high temperature gas that can be exhausted through the internal combustion engine, for a waste heat boiler that is heated by the internal water to be heated into a high-temperature and high-pressure gas, and is connected to a high-temperature and high-pressure gas flowing out of the waste heat boiler through a pipeline, and is used for a steam turbine that expands work, and is connected to a steam body that is discharged after the steam turbine is operated by a pipeline, and is used for giving
  • the first condenser for cooling and condensing the vapor body is connected to the outlet of the first condenser condensed into liquid water through a pipeline for pumping the liquid water, and the pump is pressurized
  • the liquid water enters the waste heat boiler through the pipeline and exchanges heat with the high temperature gas discharged from the internal combustion engine.
  • the organic Rankine cycle system includes an expander that performs expansion work by flowing high-temperature gaseous working medium, and connects a low-temperature gaseous working fluid flowing out of the expander after work, and is heated with cooling water flowing through the inside.
  • the exchanged second condenser, the low-temperature liquid working medium flowing out of the second condenser is divided into three paths through a pipeline and a working fluid pump disposed on the pipeline, wherein one of the low-temperature liquid working fluids is connected to the cylinder liner through the pipeline
  • the pipeline is connected to a pressurized air preheater for heating the low temperature liquid working medium by the pressurized air of the internal combustion engine, and the liquid working medium flowing out from the pressurized air preheater is
  • a first condenser that condenses heat to form a high-temperature gaseous working medium
  • the high-temperature gaseous working medium flowing out from the first condenser is connected to the expander through a pipeline for work, and the working fluid discharged after the work is passed through the second condensation.
  • the pump and the working fluid pump start the next cycle.
  • the high-temperature gas terminal discharged from the internal combustion engine that has undergone heat exchange with the low-temperature liquid working medium through the exhaust gas preheater is connected to a hot water heat exchanger for heating domestic water through a pipeline.
  • the bromine-cooling unit includes a generator for heating a dilute solution flowing through the inside through a liner water flowing in through the second branch b, and the liner water flowing out of the generator is connected to the meeting point through a pipeline and Flowing into the internal combustion engine; a portion of the dilute solution heated by the generator becomes a gaseous refrigerant connected to a third condenser for condensing the gaseous refrigerant through a pipeline, and the other portion becomes a high-temperature concentrated solution and sequentially passes through the solution heat exchange And the first expansion valve is connected to the absorber for absorbing the refrigerant; the refrigerant condensed into the liquid by the cooling water through the third condenser is sequentially connected to the brine for passing through the subcooler and the second expansion valve
  • the heat exchange evaporator, the refrigerant after heat exchange through the evaporator is connected to the subcooler through a pipeline and exchanges heat with the liquid refrigerant flowing from the third condenser
  • the multi-energy output energy tower for step recovery of gas waste heat energy of the invention is based on the principle of energy cascade utilization and combined with the different requirements of energy for building energy, and proposes a combination of excess heat recovery mode. , heat, electricity triple for waste heat recovery system.
  • steam Rankine cycle the organic Rankine cycle, the bromine cooler, and several heat exchangers to use the waste heat of the gas machine according to its characteristics, in order to maximize the recovery of the residual heat energy of the gas machine, to provide different quality to the building and
  • the energy of the function makes the waste heat of the gas machine fully utilized, and at the same time greatly improves the comprehensive energy utilization rate of the whole system and achieves the effect of energy saving and emission reduction.
  • Figure 1 is a schematic view showing the entire structure of the present invention.
  • the energy tower of the present invention for multi-energy output of step recovery of a gas engine includes a gas-fuel internal combustion engine 1, and is further provided with heat exchange with the high-temperature gas discharged from the internal combustion engine 1, thereby
  • the water vapor Rankine cycle system 2 for steam turbine expansion work exchanges heat with the high temperature gas, the jacket water, the charge air, and the condensation heat in the water vapor Rankine cycle system 2 discharged from the internal combustion engine 1, respectively, thereby causing expansion
  • the cylinder liner of the internal combustion engine 1 discharges three branches of water, and the first branch a passes through a cylinder water heater 6 and a high temperature gas of about 180 ° C discharged from the internal combustion engine 1 after heat exchange through the water vapor Rankine cycle system 2.
  • the temperature of the cylinder liner water from the generator is lowered to a temperature slightly lower than that required to enter the internal combustion engine 1, through the meeting point d flows into the internal combustion engine 1;
  • the second branch b is used for heat exchange with the organic Rankine cycle system 3 for preheating the organic working fluid in the organic Rankine cycle system 3, and preheating the cylinder after the working medium
  • the temperature of the jacket water drops to a temperature slightly lower than that required to enter the internal combustion engine 1, and flows into the internal combustion engine 1 through the meeting point d;
  • the third branch c directly flows into the meeting point d, and is used to adjust the cylinder liner water of the three branches after the final mixing.
  • the temperature is such that it flows into the internal combustion engine 1 after satisfying the temperature required for the jacket water to enter the internal combustion engine 1.
  • the design temperature of the cylinder water of the first branch a and the second branch b at the meeting point d is lower than the required temperature of the inlet to avoid the water temperature after the convergence of the three branches is higher than the required temperature of the inlet, and further Perform additional cooling.
  • adjusting the flow rate of the third branch c can adjust the final inlet temperature of the liner water.
  • the water vapor Rankine cycle system 2 includes a high temperature gas that can be exhausted through the internal combustion engine 1 and a waste heat boiler 21 for heating water flowing inside into a high temperature and high pressure gas, and is connected to the waste heat boiler 21 through a pipeline.
  • the high-temperature and high-pressure gas flowing out is used for the steam turbine 22 for expanding the work, the steam body discharged after the work of the steam turbine 22 is connected through the pipeline, and the first condenser 23 for cooling and condensing the steam body is connected through the pipeline.
  • the first condenser 23 is condensed into an outlet of liquid water, a pump 24 for pressurizing the liquid water, and the liquid water pressurized by the pump 24 enters the waste heat boiler 21 through a pipeline to be again
  • the high temperature gas discharged from the internal combustion engine 1 is heat exchanged, and the steam turbine 22 is of a back pressure type.
  • the steam turbine 22 is of a back pressure type, and its outlet pressure is slightly higher than atmospheric pressure, so the condensation temperature of the water in the condenser 24 is slightly larger than 100 °C. Since the condensation temperature is high, this part of the condensation heat continues as the evaporation heat source of the lower organic Rankine cycle system 3 cycle.
  • the water condensed into a liquid is pumped by the pump to the waste heat boiler 21 to continue heating for the next cycle.
  • the high temperature exhaust gas is reduced to about 180 ° C after a heat exchange in the waste heat boiler.
  • the organic Rankine cycle system 3 includes an expander 31 for performing expansion work by flowing high-temperature gaseous working medium, and connecting the low-temperature gaseous working fluid flowing out of the expander 31 after work, and cooling with the internal flow.
  • the second condenser 32 for heat exchange of water, the low-temperature liquid working medium flowing out of the second condenser 32 is divided into three paths through a pipeline and a working fluid pump 33 disposed on the pipeline, wherein one of the low-temperature liquid working fluid passes through
  • the pipeline is connected to the exhaust preheater 34 for heating the low temperature liquid working fluid at the exhaust end of the jacket water heat exchanger 6, and the high temperature liquid working medium flowing out of the exhaust preheater 34 is connected to the working point of the working fluid through the pipeline.
  • the second low-temperature liquid working medium is connected to the pressurized air preheater 35 heated by the pressurized air of the internal combustion engine 1 to the low-temperature liquid working medium, and flows out from the pressurized air preheater 35.
  • the liquid working medium is connected to the working point convergence point e through a pipeline;
  • the third low temperature liquid working medium is connected through a pipeline to the cylinder jacket water flowing out from the second branch b of the cylinder liner of the internal combustion engine to the low temperature liquid working a heated cylinder liner water preheater 36, preheating from the cylinder liner
  • the liquid working fluid flowing out of the device 36 is connected to the working point convergence point e through a pipeline, and the three-way low-temperature liquid working fluid flowing to the working point confluence point e is connected to the water vapor Rankine cycle system 2 through the pipeline.
  • the first condenser 23 (which functions as a lower organic Rankine cycle evaporator) for forming a high-temperature gaseous working medium by absorbing heat of condensation of the water vapor Rankine cycle system, and the high-temperature gaseous working medium flowing out from the first condenser 23 Then, the expander 31 is connected to the expander 31 for work.
  • the working fluid discharged after the work is condensed into a liquid state by the second condenser 32, and the next cycle is started after the pressurization of the working fluid pump 33.
  • the low temperature liquid working medium which is pressurized from the condenser 32 and passed through the working fluid pump is divided into three paths after the pump: Part of it is preheated by part of the liner water to near the jacket water outlet temperature; the other part is preheated by the charge air to a relatively high temperature level (close to the charge air temperature but less than or equal to the organic Rankine cycle system 3) Evaporation temperature), while the charge air is cooled to near the condenser outlet temperature in the organic Rankine cycle system 3, so that the charge air is substantially reduced to the temperature required for combustion into the cylinder, so the organic Rankine cycle system 3
  • the pressurized air preheater also functions as an air intercooler; the last part of the working medium is preheated by the low temperature exhaust after the secondary heat exchange to a relatively high temperature (close to the exhaust heat in the cylinder jacket water) The temperature at the outlet of the vessel is less than or equal to the
  • the working fluid has been preheated to a higher temperature level, and By a two-phase fluid.
  • the organic working fluid absorbs the heat of condensation of the upper water in the first condenser of the water vapor Rankine cycle (corresponding to the evaporator of the organic Rankine cycle system 3) and all becomes a high temperature gaseous working medium.
  • the high-temperature gaseous working fluid expands in the expander, it is condensed into a liquid through the second condenser, and then pumped to each heat exchanger by the pump to start the next cycle.
  • the high-temperature gas terminal discharged from the internal combustion engine 1 through which the exhaust gas preheater 34 exchanges heat with the low-temperature liquid working medium is connected to a hot water heat exchanger 5 for heating domestic water.
  • the bromine-cooling unit 4 includes a generator 41 for heating a dilute solution flowing through the inside through a liner water flowing in through the second branch b, and the cylinder water flowing out from the generator 41 is connected to the pipeline through a pipe Convergence point d flows into the internal combustion engine 1; a portion of the dilute solution heated by the generator 41 becomes a gaseous refrigerant connected to the third condenser 46 for condensing the gaseous refrigerant through a line, and the other portion becomes a high temperature
  • the concentrated solution is sequentially connected to the absorber 44 for absorbing the refrigerant through the solution heat exchanger 42 and the first expansion valve 43, and the refrigerant condensed into the liquid by the cooling water through the third condenser 46 sequentially passes through the subcooler 47,
  • the second expansion valve 48 is connected to an evaporator 49 for heat exchange of the brine, and the refrigerant exchanged by the evaporator 49 is connected to the subcooler 47 through the pipeline and
  • the liquid refrigerant of the cooler 47 After the liquid refrigerant of the cooler 47 is subjected to heat exchange, it is connected to an absorber 44 for absorbing the refrigerant and performing heat exchange with the cooling water through a pipe, and the liquid refrigerant after the absorber 44 forms a dilute solution through the pipe and Solution set on the pipeline 45 is connected to the solution heat exchanger 42 and exchanges heat with the concentrated solution flowing from the generator 41 into the solution heat exchanger 42 to enter the generator 41, and again with the liner water flowing through the generator 41. Heat exchange.
  • the multi-energy output energy tower for step recovery of gas waste heat energy of the invention has four heat exchanges: the first heat exchange heats the water into superheated steam, and the heat exchange temperature is about 180 ° C;
  • the second heat exchange is used to heat the part of the liner water which is the heat source of the absorption refrigeration system, so as to increase the evaporation end temperature and the input heat in the generator, thereby increasing the cooling capacity, and the temperature after heat exchange is about 110 ° C;
  • the third time The heat transfer is to transfer the remaining higher temperature heat to the organic Rankine cycle system 3, increase the output power of the organic Rankine cycle system 3, the temperature after heat exchange is about 60 ° C;
  • the last heat transfer is heating life With low-temperature hot water (such as bath water), because the hydrogen content in the gaseous fuel is high, the water vapor content in the exhaust gas after combustion is relatively large, and this part of water vapor condenses into water at about 60 ° C, and emits more latent heat of condensation. Therefore, this part of the
  • the water vapor Rankine cycle is the first stage for recycling waste heat, and the waste heat boiler, back pressure turbine, condenser, and water pump are connected in sequence to form a Rankine cycle.
  • the exhaust gas after the turbocharger first enters the waste heat boiler, and heats the water to a superheated steam of high temperature and high pressure of 1.6 MPa.
  • back pressure is 2bar
  • the superheated steam comes out of the boiler and enters the steam turbine to expand work, pushing the steam turbine to rotate.
  • the steam turbine is connected to a generator to drive the motor to Building power supply.
  • the steam turbine is connected to the hot fluid side of the condenser, and the expanded vapor is condensed here to a saturated liquid water of 120 ° C under a condensing pressure of 2 bar, and then pressurized by the water pump to the evaporation pressure and sent to the waste heat boiler again, thereby completing the cycle. .
  • the water vapor Rankine cycle can deliver approximately 90 kW of output work. After the flue gas has undergone a heat exchange in the waste heat boiler, the temperature is lowered to about 180 °C.
  • the condenser of the Rankine cycle is also the evaporator of the lower ORC (Organic Rankine Cycle System), which is a connecting component of two cycles.
  • the hot fluid in the heat exchanger is the working water of the Rankine cycle
  • the cold fluid is the organic of the ORC.
  • Working fluid, the organic working fluid in this embodiment is R123.
  • the working medium R123 absorbs the heat of condensation of the upper water in the evaporator and all becomes saturated steam at 110 ° C under 0.97 MPa, and then enters the expander to expand work.
  • the expander is also connected to a generator and drives the motor to power the building.
  • the expanded organic working fluid is cooled by external cooling water to a saturated liquid working medium of about 38 °C.
  • the working fluid after the condenser is divided into three branches: the first branch is connected to the cold fluid side of the liner water preheater, and then connected to the working point.
  • the hot fluid in the preheater is a part of the cylinder liner water, which is at the inlet temperature of the heat exchanger of 85 ° C and the outlet temperature is about 70 ° C.
  • the working fluid on the branch is heated to 80 in the cylinder jacket water preheater. °C; the second branch is connected to the cold fluid side of the charge air preheater, and then connected to the working point.
  • the hot fluid in the preheater is the charge air.
  • the temperature of the charge air at the inlet of the heat exchanger is about 130 °C. After the heat exchange with the low temperature working medium, the temperature drops to about 43 °C and flows into the gas machine, and the working medium is heated. It is about 110 °C; the third branch is connected to the cold fluid side of the exhaust preheater, and then connected to the working point.
  • the hot fluid in the preheater is the low temperature exhaust after the cylinder water heater, and the inlet temperature is about 120 °C.
  • the working fluid on this branch flows into the exhaust preheater and is heated to about 100 °C.
  • the exhaust gas temperature is reduced to about 60 °C.
  • the organic working fluids of the three branches are re-synthesized into a working fluid flow after coming out of the respective heat exchangers, and the temperature is about 100 °C.
  • the ORC evaporator is connected after the meeting point, where the working fluid is all heated to saturated steam.
  • the ORC output power is approximately 85 kW.
  • the liner water is cooled in the gas machine and is taken out of the body after the temperature rises. After exiting the machine, it is divided into three branches: the first branch is connected to the cylinder water preheater. After the cylinder water is preheated here, the temperature is lowered to about 70 °C, and then connected to the meeting point; A strip heat exchanger is connected in turn to the exhaust heat exchanger, and the generator of the bromine cold unit is connected to the meeting point.
  • the liner water on this branch is heated in the exhaust heat exchanger by a low-temperature exhaust (about 180 ° C) after heat exchange to nearly 90 ° C, and then enters the generator in the bromine cooling unit as absorption refrigeration.
  • the heat source of the system after flowing out of the generator, drops to a temperature of about 70 ° C and then merges into the meeting point.
  • the tail gas is reduced to about 120 °C by the secondary heat exchange temperature; the third branch directly flows into the meeting point, and the junction point is followed by the cylinder liner water inlet into the machine. After the three branches are merged, the temperature becomes 75 °C required by the inlet. Then flow into the gas engine block.
  • the absorption refrigeration system produces approximately 200 kW of domestic refrigeration.
  • the exhaust gas flow path is connected with a waste heat boiler, a cylinder water heater, an ORC preheater, a domestic water heater, a total of four heat exchangers, and finally discharged into the environment.
  • the entire system can recover approximately 175 kW of electrical energy, 200 kW of domestic cold, and about 100 kW of low-temperature living heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,包括内燃机(1);还设置有与内燃机(1)排出的高温气体进行热交换、并使汽轮机(22)膨胀作功的水蒸气朗肯循环系统(2);分别与内燃机(1)排出的高温气体、缸套水,增压空气以及水蒸气朗肯循环系统(2)中的冷凝热进行热交换,并使膨胀机(31)膨胀作功的有机朗肯循环系统(3);将内燃机(1)排出的部分缸套水作为吸收式制冷系统热源进行热交换的溴冷机组(4);以及与内燃机(1)排出的高温气体终端相连用于给生活用水进行加热的热水换热器(5)。该能源塔提出一种多余热回收方式相结合的冷、热、电三联供余热回收系统,提高了整个系统的综合能源利用率,达到了节能减排的效果。

Description

对气体机余热能进行梯级回收的多能量形式输出的能源塔 技术领域
本发明涉及一种内燃机余热利用的能源塔。特别是涉及一种对气体机余热能进行梯级回收的多能量形式输出的能源塔。
背景技术
随着石油资源的日益枯竭,以常规天然气和各种非常规天然气为燃料的内燃机(气体机)由于清洁,高效,低污染以及气体资源潜力巨大的特点正在被越来越多地使用。其中大型发电用燃气内燃机结合其余热回收系统往往作为一整套独立的供能系统为建筑供能。这种系统受到许多发达国家的重视并被称为“第二代能源系统”,在为建筑供能的领域得到了日益广泛的应用。气体机具有多种余热源,每种余热源的品位都不同。最主要的余热源是发动机排气,温度最高可达600℃左右;其次是缸套水余热,但缸套水的温度一般在大约75-85℃之间;如果是增压型气体机,增压气体还会带走一部分热量,其在增压器出口的温度一般为120℃左右。几种主要余热源的热量大小和品质差别都很大,且排气余热回收利用后温度大幅度降低,属于大温差余热,能量品质跨度大。然而任何一种余热回收方式只能对某一能量品质段的热量进行高效的回收,所以单一的余热回收方式不能充分利用气体机的余热。
因此针对上述问题,必须立足于对能量梯级利用的原则并结合建筑用能对能量品质的不同需求(一栋建筑对能量品质的需求也是多样性的,有的需要高品位能量比如发电,有的需要中或低品位的能量比如制冷或供暖),采用多种余热回收方式相结合的方法,才能尽可能的充分利用气体机余热。
发明内容
本发明所要解决的技术问题是,提供一种采用多余热回收方式相结合的冷,热,电三联供的对气体机余热能进行梯级回收的多能量形式输出的能源塔。
本发明所采用的技术方案是:一种对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,包括内燃机,还设置有与所述内燃机排出的高温气体进行热交换,使汽轮机膨胀作功的水蒸气朗肯循环系统,分别与所述内燃机排出的高温气体、缸套水,增压空气以及水蒸气朗肯循环系统中的冷凝热进行热交换,使膨胀机膨胀作功的有机朗肯循环系统,将所述内燃机排出的部分缸套水作为吸收式制冷系统热源进行热交换的溴冷机组,以及与所述的内燃机排出的高温气体终端相连用于给生活用水进行加热的热水换热器。
所述的内燃机排出的缸套水分三条支路,第一条支路通过一个缸套水加热器与经过水蒸气朗肯循环系统热交换后的内燃机排出的高温气体进行热交换,然后进入溴冷机组中的发生器中作为吸收式制冷系统的热源进行热交换后经汇合点流入内燃机;第二条支路用于与所述的有机朗肯循环系统进行热交换,然后经汇合点流入内燃机;第三条支路直接经汇合点流入内燃机。
所述的水蒸气朗肯循环系统包括有:内部能够贯通所述内燃机排出的高温气体,用于将 流过内部的水加热成高温高压气体的余热锅炉,通过管路连接余热锅炉流出的高温高压气体,用于膨胀做功的汽轮机,通过管路连接汽轮机作功后排出的汽体,用于给所述的汽体降温冷凝的第一冷凝器,通过管路连接经第一冷凝器的冷凝成液体水的出口,用于对所述液体水进行加压的泵,所述经泵加压后的液体水通过管路进入所述的余热锅炉再次与所述的内燃机排出的高温气体进行热交换。
所述的有机朗肯循环系统包括有通过流入的高温气态工质进行膨胀作功的膨胀机,通过管路连接膨胀机做功后流出的低温气态工质,并与流经内部的冷却水进行热交换的第二冷凝器,流出第二冷凝器的低温液态工质通过管路和设置在所述管路上的工质泵分为三路,其中的一路低温液态工质通过管路连接到缸套水换热器排气端的用于加热低温液态工质的排气预热器,排气预热器流出的高温液态工质通过管路连接至工质汇合点;第二路低温液态工质通过管路连接到用所述内燃机的增压空气给低温液态工质加热的增压空气预热器,从所述增压空气预热器流出的液态工质通过管路连接至工质汇合点;第三路低温液态工质通过管路连接到用所述内燃机缸套水的第二条支路流出的缸套水给低温液态工质加热的缸套水预热器,从所述缸套水预热器流出的液态工质通过管路连接至工质汇合点,所述的流至工质汇合点的三路低温液态工质共同通过管路连接水蒸气朗肯循环系统中的用于通过吸收水蒸气朗肯循环系统的冷凝热而形成高温气态工质的第一冷凝器,从第一冷凝器流出的高温气态工质再通过管路连接到所述膨胀机作功,作功后流出的工质再经由第二冷凝器和工质泵开始下次循环。
流经所述排气预热器与所述的低温液态工质进行热交换后的内燃机排出的高温气体终端通过管路连接用于给生活用水进行加热的热水换热器。
所述的溴冷机组包括有通过经第二支路b流入的缸套水对流经内部的稀溶液进行加热的发生器,从所述发生器流出的缸套水通过管路连接到汇合点并流入内燃机;经所述发生器加热后的稀溶液一部分变为气态制冷剂通过管路连接到用于冷凝所述气态制冷剂的第三冷凝器,另一部分变为高温浓溶液依次通过溶液热交换器和第一膨胀阀连接到用于吸收制冷剂的吸收器;经第三冷凝器被冷却水冷凝成液态的制冷剂依次通过过冷器、第二膨胀阀连接到用于对载冷剂进行热交换的蒸发器,经过蒸发器热交换后的制冷剂通过管路连接过冷器并与从所述第三冷凝器流入过冷器的液态制冷剂进行热交换后,通过管路连接到用于吸收制冷剂并与冷却水进行热交换的吸收器,经吸收器后形成稀溶液通过管路和设置在管路上的溶液泵连接至溶液热交换器,并与从所述发生器流入溶液热交换器中出的浓溶液进行热交换后进入发生器,与流经发生器内的缸套水再次进行热交换。
本发明的对气体机余热能进行梯级回收的多能量形式输出的能源塔,是按照能量梯级利用的原则并结合建筑用能对能量品质的不同需求,提出一种多余热回收方式相结合的冷,热,电三联供余热回收系统。利用蒸汽朗肯循环,有机朗肯循环,溴冷机,以及几个换热器对气体机的余热按照其特点进行梯级利用,以最大程度的回收利用气体机余热能,向建筑提供不同品质和功能的能量,使得气体机余热得到了非常充分的利用,同时大大提高了整个系统的综合能源利用率,达到了节能减排的效果。
附图说明
图1是本发明的整体结构示意图。
图中:
1;内燃机                     2:水蒸气朗肯循环系统
3:有机朗肯循环系统           4:溴冷机组
5:热水换热器                 6:缸套水加热器
21:余热锅炉                  22:汽轮机(自带发电机)
23:第一冷凝器                24:泵
31:膨胀机(自带发电机)        32:第二冷凝器
33:工质泵                    34:排气预热器
35:增压空气预热器            36:缸套水预热器
41:发生器                    42:溶液热交换器
43:第一膨胀阀                44:吸收器
45:溶液泵                    46:第三冷凝器
47:过冷器                    48:第二膨胀阀
49:蒸发器                    S:冷却水
B:生活用热水                 Z:载冷剂
具体实施方式
下面结合实施例和附图对本发明的对气体机余热能进行梯级回收的多能量形式输出的能源塔做出详细说明。
如图1所示,本发明的对气体机余热能进行梯级回收的多能量形式输出的能源塔,包括气体燃料内燃机1,还设置有与所述内燃机1排出的高温气体进行热交换,从而使汽轮机膨胀作功的水蒸气朗肯循环系统2,分别与所述内燃机1排出的高温气体、缸套水,增压空气以及水蒸气朗肯循环系统2中的冷凝热进行热交换,从而使膨胀机膨胀作功的有机朗肯循环系统3,将所述内燃机1排出的缸套水作为吸收式制冷系统热源进行热交换的溴冷机组4,以及与所述的内燃机1排出的高温气体终端相连用于给生活用水进行加热的热水换热器5。
所述的内燃机1排出的缸套水分三条支路,第一条支路a通过一个缸套水加热器6与经过水蒸气朗肯循环系统2热交换后的内燃机1排出的180℃左右高温气体进行热交换,然后进入溴冷机组4中的发生器中作为吸收式制冷系统的热源进行热交换,缸套水从发生器出来后温度降到稍低于进入内燃机1要求的温度,经汇合点d流入内燃机1;第二条支路b用于与所述的有机朗肯循环系统3进行热交换,用于预热有机朗肯循环系统3中的有机工质,预热完工质后的缸套水温度降到稍低于进入内燃机1要求的温度,经汇合点d流入内燃机1;第三条支路c直接流入汇合点d,用于调节三条支路的缸套水在最终混合后的温度,  以便在满足缸套水进入内燃机1所要求的温度后,流入内燃机1。
第一条支路a和第二条支路b的缸套水在汇合点d时的设计温度低于进机要求温度是为了避免三条支路汇合后水温高于进机要求温度,还需再进行额外冷却。当汇合点d温度出现小范围波动时,调节第三支路c的流量就可以调整缸套水最终进机温度。
所述的水蒸气朗肯循环系统2包括有:内部能够贯通所述内燃机1排出的高温气体,用于将流过内部的水加热成高温高压气体的余热锅炉21,通过管路连接余热锅炉21流出的高温高压气体,用于膨胀做功的汽轮机22,通过管路连接汽轮机22作功后排出的汽体,用于给所述的汽体降温冷凝的第一冷凝器23,通过管路连接经第一冷凝器23的冷凝成液体水的出口,用于对所述液体水进行加压的泵24,所述经泵24加压后的液体水通过管路进入所述的余热锅炉21再次与所述的内燃机1排出的高温气体进行热交换,所述的汽轮机22采用背压式。
汽轮机22采用背压式,其出口压力略高于大气压,所以冷凝器24中水的冷凝温度略大于100℃。由于冷凝温度较高,因此这部分冷凝热继续作为下级有机朗肯循环系统3循环的蒸发热源。被冷凝成液体的水被泵加压送到余热锅炉21中继续加热进行下次循环。高温排气在余热锅炉中经过一次换热后温度降低到大约180℃左右。
所述的有机朗肯循环系统3包括有通过流入的高温气态工质进行膨胀作功的膨胀机31,通过管路连接膨胀机31做功后流出的低温气态工质,并与流经内部的冷却水进行热交换的第二冷凝器32,流出第二冷凝器32的低温液态工质通过管路和设置在所述管路上的工质泵33分为三路,其中的一路低温液态工质通过管路连接到缸套水换热器6排气端的用于加热低温液态工质的排气预热器34,排气预热器34流出的高温液态工质通过管路连接至工质汇合点e;第二路低温液态工质通过管路连接到用所述内燃机1的增压空气给低温液态工质加热的增压空气预热器35,从所述增压空气预热器35流出的液态工质通过管路连接至工质汇合点e;第三路低温液态工质通过管路连接到用所述内燃机1缸套水的第二条支路b流出的缸套水给低温液态工质加热的缸套水预热器36,从所述缸套水预热器36流出的液态工质通过管路连接至工质汇合点e,所述的流至工质汇合点e的三路低温液态工质共同通过管路连接水蒸气朗肯循环系统2中的用于通过吸收水蒸气朗肯循环系统的冷凝热而形成高温气态工质的第一冷凝器23(起到下级有机朗肯循环蒸发器的作用),从第一冷凝器23流出的高温气态工质再通过管路连接到所述膨胀机31作功,作功后流出的工质,再经第二冷凝器32冷凝成液态,以及工质泵33的加压后开始下次循环。
有机朗肯循环系统3中,为了对不同热源的相似能量品质段的余热进行充分的回收利用,将从冷凝器32出来经过工质泵加压的低温液态工质在泵后分为三路:一部分由部分缸套水预热到接近缸套水出机温度;另一部分由增压空气预热到一个相对较高的温度水平(接近增压空气温度但小于或等于有机朗肯循环系统3的蒸发温度),同时增压空气被冷却到接近有机朗肯循环系统3中冷凝器出口工质温度,这样增压空气就基本降到了进入气缸内燃烧所要求的温度,因此有机朗肯循环系统3中的增压空气预热器也起到了空气中冷器的作用;最后一部分工质被二次换热后的低温排气预热到相对较高的温度(接近排气在缸套水换热器出口的温度但小于或等于有机朗肯循环系统3的蒸发温度),然后三路工质再混合成一股,这时工质已经被预热到一个较高的温度水平,且可能已经是两相流体。最后有机工质在水蒸气朗肯循环的第一冷凝器(相当于有机朗肯循环系统3的蒸发器)中吸收上级水的冷凝热而全部变成高温气态工质。高温气态工质在膨胀机中膨胀做功后经第二冷凝器被冷凝成液体,再由泵加压送到各个换热器中开始下次循环。
流经所述排气预热器34与所述的低温液态工质进行热交换后的内燃机1排出的高温气体终端通过管路连接用于给生活用水进行加热的热水换热器5。
所述的溴冷机组4包括有通过经第二支路b流入的缸套水对流经内部的稀溶液进行加热的发生器41,从所述发生器41流出的缸套水通过管路连接到汇合点d并流入内燃机1;经所述发生器41加热后的稀溶液一部分变为气态制冷剂通过管路连接到用于冷凝所述气态制冷剂的第三冷凝器46,另一部分变为高温浓溶液依次通过溶液热交换器42和第一膨胀阀43连接到用于吸收制冷剂的吸收器44;经第三冷凝器46被冷却水冷凝成液态的制冷剂依次通过过冷器47、第二膨胀阀48连接到用于对载冷剂进行热交换的蒸发器49,经过蒸发器49热交换后的制冷剂通过管路连接过冷器47并与从所述第三冷凝器46流入过冷器47的液态制冷剂进行热交换后,通过管路连接到用于吸收制冷剂并与冷却水进行热交换的吸收器44,经吸收器44后的液态制冷剂形成稀溶液通过管路和设置在管路上的溶液泵45连接至溶液热交换器42,并与从所述发生器41流入溶液热交换器42中出的浓溶液进行热交换后进入发生器41,与流经发生器41内的缸套水再次进行热交换。
本发明的对气体机余热能进行梯级回收的多能量形式输出的能源塔,排气一共经过四次换热:第一次换热将水加热成过热蒸气,换热后温度为大约180℃;第二次换热用于加热作为吸收式制冷系统热源的那部分缸套水,以提高发生器里的蒸发终温和输入热量,从而提高制冷量,换热后温度为大约110℃;第三次换热是将还剩下的一点较高温度的热量传给有机朗肯循环系统3,增大有机朗肯循环系统3输出功,换热后温度为大约60℃;最后一次换热是加热生活用低温热水(如洗澡水),因为气体燃料中氢含量高,燃烧后尾气中水蒸气含量较大,这部分水蒸气在60℃左右凝结成水,并放出较多的冷凝潜热。因此可以用这部分液化潜热去加热低温的生活用热水。
下面给出一实例:
本实施例中的气体机以及其余热源参数如表1所示。
表1.气体机以及其余热源参数(额定工况)
参数 数值
气体机额定功率 1100kW
尾气温度 540℃
进气体积流量(标准状况) 1.16m3/s
燃气体积流量(标准状况) 0.0784m3/s
缸套水流量 8.33kg/s
缸套水出机温度 85℃
缸套水进机温度 75℃
增压空气增压器后温度 130℃
水蒸气朗肯循环是对排气余热进行回收利用的第一级,余热锅炉,背压式汽轮机,冷凝器,水泵依次连接构成朗肯循环。涡轮增压器后的排气首先进入余热锅炉,将水加热成1.6MPa的高温高压的过热蒸气。余热锅炉后连接着背压式汽轮机(背压为2bar),过热蒸气从锅炉中出来进入汽轮机中膨胀做功,推动汽轮机旋转。汽轮机连接着一个发电机,从而带动电机为 建筑供电。汽轮机后连接着冷凝器的热流体侧,膨胀后的汽体在这里被冷凝成冷凝压力2bar下120℃的饱和液态水,接着被水泵加压到蒸发压力后再次送入余热锅炉,至此完成循环。水蒸汽朗肯循环可发出大约90kW的输出功。烟气在余热锅炉中经过一次换热后,温度降低到大约180℃左右。
朗肯循环的冷凝器也是下级ORC(有机朗肯循环系统)的蒸发器,它是两个循环的连接部件,换热器中热流体是朗肯循环的工质水,冷流体是ORC的有机工质,此实施例中有机工质为R123。工质R123在蒸发器中吸收上级水的冷凝热而全部变成0.97MPa下110℃饱和蒸汽,然后进入膨胀机中膨胀做功。膨胀机同样连接着一个发电机,并拖动电机为建筑供电。膨胀机后连接着冷凝器,膨胀后的有机工质在这里被外接冷却水冷成38℃左右的饱和液态工质。冷凝器后的工质分为三条支路:第一条支路上连接着缸套水预热器冷流体侧,之后连接至工质汇合点。预热器内的热流体为一部分缸套水,其在换热器进口温度为85℃,出口温度为70℃左右,此支路上的工质通入缸套水预热器中被加热到80℃;第二条支路上连接着增压空气预热器的冷流体侧,之后连接至工质汇合点。预热器内的热流体为增压空气,增压空气在换热器入口处温度为130℃左右,跟低温工质换热后温度降到43℃左右流入气体机内,同时工质被加热到大约110℃左右;第三条支路上连接着排气预热器冷流体侧,之后连接至工质汇合点。预热器内的热流体为缸套水加热器后的低温排气,其入口温度大约为120℃左右,这条支路上的工质流入排气预热器中被加热到100℃左右,同时排气温度降低到60℃左右。三条支路的有机工质从各自的换热器后出来后重新汇合成一股工质流,温度大约100℃左右。在汇合点后连接ORC蒸发器,工质在这里被全部加热成饱和蒸汽。ORC输出功为大约85kW。
缸套水在气体机中完成冷却功能而温度上升后被引出机体。出机后就分成三条支路:第一条支路连接缸套水预热器,这股缸套水在这里预热有机工质后温度降低至70℃左右,而后连接至汇合点;第二条支路上依次连接一个排气换热器,和溴冷机组的发生器,最后连接至汇合点。这条支路上的缸套水先在排气换热器中被经过一次换热后的低温排气(约180℃)加热升温至近90℃,然后进入溴冷机组中的发生器内作为吸收式制冷系统的热源,从发生器内流出后温度降至约70℃,再汇入汇合点。尾气经二次换热温度降至120℃左右;第三条支路直接流入汇合点,汇合点后接缸套水进机入口,三股支流在此汇合后温度变为进机要求的75℃,然后流入气体机缸体。吸收式制冷系统可产生大约200kW左右的生活用冷。
排气的流路上依次连接着余热锅炉,缸套水加热器,ORC预热器,生活用水加热器,共四个换热器,最后排放至环境中。整个系统可回收大约175kW电能,200kW生活用冷,和100kW左右的低温生活用热。

Claims (6)

  1. 一种对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,包括内燃机(1),其特征在于,还设置有与所述内燃机(1)排出的高温气体进行热交换,使汽轮机膨胀作功的水蒸气朗肯循环系统(2),分别与所述内燃机(1)排出的高温气体、缸套水,增压空气以及水蒸气朗肯循环系统(2)中的冷凝热进行热交换,使膨胀机膨胀作功的有机朗肯循环系统(3),将所述内燃机(1)排出的部分缸套水作为吸收式制冷系统热源进行热交换的溴冷机组(4),以及与所述的内燃机(1)排出的高温气体终端相连用于给生活用水进行加热的热水换热器(5)。
  2. 根据权利要求1所述的对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,其特征在于,所述的内燃机(1)排出的缸套水分三条支路,第一条支路(a)通过一个缸套水加热器(6)与经过水蒸气朗肯循环系统(2)热交换后的内燃机(1)排出的高温气体进行热交换,然后进入溴冷机组(4)中的发生器中作为吸收式制冷系统的热源进行热交换后经汇合点(d)流入内燃机(1);第二条支路(b)用于与所述的有机朗肯循环系统(3)进行热交换,然后经汇合点(d)流入内燃机(1);第三条支路(c)直接经汇合点(d)流入内燃机(1)。
  3. 根据权利要求1所述的对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,其特征在于,所述的水蒸气朗肯循环系统(2)包括有:内部能够贯通所述内燃机(1)排出的高温气体,用于将流过内部的水加热成高温高压气体的余热锅炉(21),通过管路连接余热锅炉(21)流出的高温高压气体,用于膨胀做功的汽轮机(22),通过管路连接汽轮机(22)作功后排出的汽体,用于给所述的汽体降温冷凝的第一冷凝器(23),通过管路连接经第一冷凝器(23)的冷凝成液体水的出口,用于对所述液体水进行加压的泵(24),所述经泵(24)加压后的液体水通过管路进入所述的余热锅炉(21)再次与所述的内燃机(1)排出的高温气体进行热交换。
  4. 根据权利要求1所述的对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,其特征在于,所述的有机朗肯循环系统(3)包括有通过流入的高温气态工质进行膨胀作功的膨胀机(31),通过管路连接膨胀机(31)做功后流出的低温气态工质,并与流经内部的冷却水进行热交换的第二冷凝器(32),流出第二冷凝器(32)的低温液态工质通过管路和设置在所述管路上的工质泵(33)分为三路,其中的一路低温液态工质通过管路连接到 缸套水换热器(6)排气端的用于加热低温液态工质的排气预热器(34),排气预热器(34)流出的高温液态工质通过管路连接至工质汇合点(e);第二路低温液态工质通过管路连接到用所述内燃机(1)的增压空气给低温液态工质加热的增压空气预热器(35),从所述增压空气预热器(35)流出的液态工质通过管路连接至工质汇合点(e);第三路低温液态工质通过管路连接到用所述内燃机(1)缸套水的第二条支路(b)流出的缸套水给低温液态工质加热的缸套水预热器(36),从所述缸套水预热器(36)流出的液态工质通过管路连接至工质汇合点(e),所述的流至工质汇合点(e)的三路低温液态工质共同通过管路连接水蒸气朗肯循环系统(2)中的用于通过吸收水蒸气朗肯循环系统(2)的冷凝热而形成高温气态工质的第一冷凝器(23),从第一冷凝器(23)流出的高温气态工质再通过管路连接到所述膨胀机(31)作功,作功后流出的工质再经由第二冷凝器(32)和工质泵(33)开始下次循环。
  5. 根据权利要求4所述的对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,其特征在于,流经所述排气预热器(34)与所述的低温液态工质进行热交换后的内燃机(1)排出的高温气体终端通过管路连接用于给生活用水进行加热的热水换热器(5)。
  6. 根据权利要求1所述的对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,其特征在于,所述的溴冷机组(4)包括有通过经第二支路b流入的缸套水对流经内部的稀溶液进行加热的发生器(41),从所述发生器(41)流出的缸套水通过管路连接到汇合点(d)并流入内燃机(1);经所述发生器(41)加热后的稀溶液一部分变为气态制冷剂通过管路连接到用于冷凝所述气态制冷剂的第三冷凝器(46),另一部分变为高温浓溶液依次通过溶液热交换器(42)和第一膨胀阀(43)连接到用于吸收制冷剂的吸收器(44);经第三冷凝器(46)被冷却水冷凝成液态的制冷剂依次通过过冷器(47)、第二膨胀阀(48)连接到用于对载冷剂进行热交换的蒸发器(49),经过蒸发器(49)热交换后的制冷剂通过管路连接过冷器(47)并与从所述第三冷凝器(46)流入过冷器(47)的液态制冷剂进行热交换后,通过管路连接到用于吸收制冷剂并与冷却水进行热交换的吸收器(44),经吸收器(44)后形成稀溶液通过管路和设置在管路上的溶液泵(45)连接至溶液热交换器(42),并与从所述发生器(41)流入溶液热交换器(42)中出的浓溶液进行热交换后进入发生器(41),与流经发生器(41)内的缸套水再次进行热交换。
PCT/CN2015/085040 2015-07-21 2015-07-24 对气体机余热能进行梯级回收的多能量形式输出的能源塔 WO2017012129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,761 US10247050B2 (en) 2015-07-21 2015-07-24 Energy tower of multi-energy-form output for stepwise recovering waste heat of a gas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510431672.2A CN105003351B (zh) 2015-07-21 2015-07-21 对气体机余热能进行梯级回收的多能量形式输出的能源塔
CN201510431672.2 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017012129A1 true WO2017012129A1 (zh) 2017-01-26

Family

ID=54376169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085040 WO2017012129A1 (zh) 2015-07-21 2015-07-24 对气体机余热能进行梯级回收的多能量形式输出的能源塔

Country Status (3)

Country Link
US (1) US10247050B2 (zh)
CN (1) CN105003351B (zh)
WO (1) WO2017012129A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882605A (zh) * 2017-12-11 2018-04-06 翁志远 热能回收动力系统及机动设备
CN108825320A (zh) * 2018-09-11 2018-11-16 翁志远 一种低温工质发电系统及动力系统
CN110131912A (zh) * 2019-05-25 2019-08-16 墙新奇 一种用气动压缩机的制冷发电装置
WO2019177464A1 (en) * 2018-03-16 2019-09-19 Cronus Technology As A system for recovery of waste heat from an industrial plant
CN113464227A (zh) * 2021-07-14 2021-10-01 国能龙源蓝天节能技术有限公司 热电联供控制方法及热电联供系统
CN113654372A (zh) * 2021-08-13 2021-11-16 浙江雅德居实业有限公司 一种定型机的余热回收系统及工艺
CN113686051A (zh) * 2021-08-16 2021-11-23 山东大学 一种高温高湿气体中水热回收的开式压缩吸收式热泵系统
CN113686169A (zh) * 2021-08-13 2021-11-23 浙江雅德居实业有限公司 一种定型机的余热回收系统及工艺
CN114198173A (zh) * 2021-11-04 2022-03-18 合肥通用机械研究院有限公司 一种全回热布雷顿循环与吸收式制冷集成的电冷联供系统

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544051B (en) * 2015-11-03 2020-01-01 Perkins Engines Co Ltd An energy recovery system for an internal combustion engine
CN105909329B (zh) * 2016-03-24 2018-02-16 上海光热实业有限公司 大型内燃机冷热电三联供优化系统
CN107304754B (zh) * 2016-04-24 2022-09-20 吕书龙 利用浮力采能的变形式朗肯循环低温差能开发系统
CN106089344B (zh) * 2016-07-25 2017-12-22 华电电力科学研究院 一种余热多级利用的分布式能源发电系统及方法
CN106246407A (zh) * 2016-08-25 2016-12-21 广西大学 一种优化发动机余热回收的系统
CN106246268B (zh) * 2016-10-10 2018-05-01 哈尔滨工业大学(威海) 一种发动机余热综合回收系统
CN106546033B (zh) * 2016-11-03 2018-06-19 天津大学 气体机多余热源驱动增压三效复合制冷循环系统
CN107060927A (zh) * 2017-06-09 2017-08-18 翁志远 余热回收利用系统及其方法和发电站
CN107060930A (zh) * 2017-06-09 2017-08-18 翁志远 热能利用系统及发电站
CN107143435A (zh) * 2017-06-22 2017-09-08 江苏科技大学海洋装备研究院 一种lng动力船的分布式能源系统及工作方法
CN107939548B (zh) * 2017-10-17 2020-06-23 山东大学 新型内燃机余热利用冷热电联供系统及其工作方法
CN108534345A (zh) * 2018-04-18 2018-09-14 苏州清荷坊环保科技有限公司 一种自动循环式水预热器
CN108868932B (zh) * 2018-07-12 2024-04-09 苏州颜吉通新能源科技有限公司 低温余热发电装置
CN109736963B (zh) * 2018-12-29 2021-01-19 西安交通大学 一种船舶发动机的余热利用系统及方法
CN109546179A (zh) * 2019-01-07 2019-03-29 中氢新能技术有限公司 一种甲醇重整燃料电池电堆散热系统
CN109827352B (zh) * 2019-01-24 2020-12-11 山东大学 一种冷热电和纯水四联供系统及联供方法
CN109707472B (zh) * 2019-02-28 2021-10-22 东北大学 一种利用干熄焦余热的分布式能源系统
CN109879251B (zh) * 2019-03-07 2024-05-03 南京工程学院 一种基于能量综合利用的氯化氢合成系统
CN111852600A (zh) * 2019-04-30 2020-10-30 中国船舶重工集团公司第七一一研究所 一种复叠式柴油机余热回收热电联产系统
CN110173347B (zh) * 2019-05-28 2020-02-28 浙江亿扬能源科技有限公司 一种煤矿在用设备的余热回收利用系统及运行方法
CN110388241B (zh) * 2019-07-31 2021-07-20 东北师范大学 一种汽车发动机废热回收热力循环系统
UA141780U (uk) * 2019-10-21 2020-04-27 Іван Іванович Котурбач Дизель-парова електростанція
CN110905618A (zh) * 2019-11-18 2020-03-24 天津大学 适用于分布式能源系统的内燃机热电联产余热回收系统
CN110821707A (zh) * 2019-11-25 2020-02-21 天津大学 基于二氧化碳动力循环的柴油机余热利用梯级耦合系统
CN111594281A (zh) * 2020-06-23 2020-08-28 南京天加热能技术有限公司 一种聚酯酯化蒸汽余热发电系统
CN112178971B (zh) * 2020-09-30 2021-08-17 武汉理工大学 一种利用邮轮发动机余热及太阳能的冷梁空调装置
CN112282962B (zh) * 2020-11-17 2023-11-21 天津大学合肥创新发展研究院 混合工质代替内燃机缸套水的余热回收有机朗肯循环系统
CN113074028B (zh) * 2021-04-22 2023-05-12 中创清洁能源发展(沈阳)股份有限公司 一种利用发电机组的烟气低温余热发电系统
CN113374299B (zh) * 2021-05-18 2022-05-13 青建集团股份公司 一种装配式建筑及其控制方法
CN114000926A (zh) * 2021-11-01 2022-02-01 哈尔滨工程大学 一种低速柴油机排气分流两级余热利用系统
CN114087047B (zh) * 2021-11-02 2023-09-19 鞍钢集团工程技术有限公司 一种ccpp电厂燃气回流能量回收系统及方法
CN116481210B (zh) * 2023-05-23 2024-03-29 哈尔滨工程大学 低速柴油机排气能量分流的orc和溴化锂制冷双循环梯度余热利用系统、工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251263A (ja) * 2003-02-21 2004-09-09 Kh Kogyo:Kk 内燃機関の冷却水廃熱・排気ガス熱及び不完全燃焼排気ガスの再燃焼熱を対向流式熱交換ボイラーで高効率熱回収を用いる動力発生装置及び熱利用装置及びこれらの併合装置
CN201321918Y (zh) * 2008-12-25 2009-10-07 上海交通大学 大型船舶柴油机废热利用的热电冷联产装置
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN103352772A (zh) * 2013-06-25 2013-10-16 天津大学 内燃机多品位余热利用的联合循环热电转换系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576005A (en) * 1985-01-07 1986-03-18 Force Louis W Wellhead gas treatment and co-generation method and system
US6523357B1 (en) * 2001-12-04 2003-02-25 Takuma Co., Ltd. Absorption refrigerator
JP5281587B2 (ja) 2008-02-14 2013-09-04 サンデン株式会社 内燃機関の廃熱利用装置
US8776517B2 (en) * 2008-03-31 2014-07-15 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
GB2480988B (en) * 2009-04-09 2013-11-06 Ocean Synergy Ltd Deep ocean energy system with full or partial sea water air conditioning and utility waste heat utilization
US8850814B2 (en) * 2009-06-11 2014-10-07 Ormat Technologies, Inc. Waste heat recovery system
US8650879B2 (en) * 2011-04-20 2014-02-18 General Electric Company Integration of waste heat from charge air cooling into a cascaded organic rankine cycle system
CN103206317B (zh) 2013-04-24 2014-11-05 哈尔滨广瀚新能动力有限公司 一种内燃发电机组余热梯级回收利用系统
CN103758658B (zh) 2013-12-27 2015-06-24 天津大学 二级双回路内燃机余热梯级利用热回收系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251263A (ja) * 2003-02-21 2004-09-09 Kh Kogyo:Kk 内燃機関の冷却水廃熱・排気ガス熱及び不完全燃焼排気ガスの再燃焼熱を対向流式熱交換ボイラーで高効率熱回収を用いる動力発生装置及び熱利用装置及びこれらの併合装置
CN201321918Y (zh) * 2008-12-25 2009-10-07 上海交通大学 大型船舶柴油机废热利用的热电冷联产装置
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN103352772A (zh) * 2013-06-25 2013-10-16 天津大学 内燃机多品位余热利用的联合循环热电转换系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882605A (zh) * 2017-12-11 2018-04-06 翁志远 热能回收动力系统及机动设备
WO2019177464A1 (en) * 2018-03-16 2019-09-19 Cronus Technology As A system for recovery of waste heat from an industrial plant
CN108825320A (zh) * 2018-09-11 2018-11-16 翁志远 一种低温工质发电系统及动力系统
CN110131912A (zh) * 2019-05-25 2019-08-16 墙新奇 一种用气动压缩机的制冷发电装置
CN110131912B (zh) * 2019-05-25 2024-05-14 墙新奇 一种用气动压缩机的制冷发电装置
CN113464227A (zh) * 2021-07-14 2021-10-01 国能龙源蓝天节能技术有限公司 热电联供控制方法及热电联供系统
CN113654372B (zh) * 2021-08-13 2024-03-22 浙江尤佳节能科技有限公司 一种定型机的余热回收系统及工艺
CN113654372A (zh) * 2021-08-13 2021-11-16 浙江雅德居实业有限公司 一种定型机的余热回收系统及工艺
CN113686169A (zh) * 2021-08-13 2021-11-23 浙江雅德居实业有限公司 一种定型机的余热回收系统及工艺
CN113686169B (zh) * 2021-08-13 2024-03-22 浙江尤佳节能科技有限公司 一种定型机的余热回收系统及工艺
CN113686051A (zh) * 2021-08-16 2021-11-23 山东大学 一种高温高湿气体中水热回收的开式压缩吸收式热泵系统
CN114198173B (zh) * 2021-11-04 2023-10-13 合肥通用机械研究院有限公司 一种全回热布雷顿循环与吸收式制冷集成的电冷联供系统
CN114198173A (zh) * 2021-11-04 2022-03-18 合肥通用机械研究院有限公司 一种全回热布雷顿循环与吸收式制冷集成的电冷联供系统

Also Published As

Publication number Publication date
CN105003351B (zh) 2016-08-17
US10247050B2 (en) 2019-04-02
US20180187575A1 (en) 2018-07-05
CN105003351A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2017012129A1 (zh) 对气体机余热能进行梯级回收的多能量形式输出的能源塔
CN111022138B (zh) 一种基于吸收式热泵余热回收的超临界二氧化碳发电系统
CN106762489B (zh) 一种基于低温太阳能及液化天然气冷能的发电系统
CN103161607A (zh) 一种基于内燃机余热利用的联合发电系统
CN107939548B (zh) 新型内燃机余热利用冷热电联供系统及其工作方法
CN104675521A (zh) 一种新型燃气-蒸汽联合循环冷热电联供系统
CN105423592A (zh) 双工况直燃双效型溴化锂吸收式热泵机组
CN206071658U (zh) 一种lng冷能综合利用系统
CN112554983A (zh) 一种耦合卡琳娜循环的液态二氧化碳储能系统及方法
CN108798898B (zh) 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN104697239A (zh) 一种生物质驱动的新型有机郎肯循环冷热电三联供系统
CN110905618A (zh) 适用于分布式能源系统的内燃机热电联产余热回收系统
US10344626B2 (en) Hybrid power generation system
CN113864017A (zh) 一种利用lng冷能和地热能的卡琳娜/有机朗肯联合循环发电系统
CN110925041B (zh) 一种联合循环高效燃煤发电系统
US20220220868A1 (en) Combined cycle power device
WO2023226666A1 (zh) 一种与煤电机组耦合的二氧化碳储能系统及方法
CN210530935U (zh) 一种多轴布置的双机回热系统
CN110953069A (zh) 一种燃机电站多能耦合发电系统
CN109882292A (zh) 一种lng燃气轮机耦合冷能发电系统及发电方法
CN205330748U (zh) 利用涡流管的高效热力循环系统
CN208831058U (zh) 天然气压差能发电装置
CN108894836B (zh) 基于天然气压力能回收的多能互补系统
Fang et al. Modeling and experimental investigation on a gas engine-driven heat pump for space-heating and sanitary hot water
TWI399512B (zh) 利用低階熱能產生電力及冷凍之裝置與方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898685

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 02/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15898685

Country of ref document: EP

Kind code of ref document: A1