WO2017010235A1 - 水素吸蔵炭素材料 - Google Patents

水素吸蔵炭素材料 Download PDF

Info

Publication number
WO2017010235A1
WO2017010235A1 PCT/JP2016/068187 JP2016068187W WO2017010235A1 WO 2017010235 A1 WO2017010235 A1 WO 2017010235A1 JP 2016068187 W JP2016068187 W JP 2016068187W WO 2017010235 A1 WO2017010235 A1 WO 2017010235A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
hydrogen storage
carbon
less
hydrogen
Prior art date
Application number
PCT/JP2016/068187
Other languages
English (en)
French (fr)
Inventor
治夫 熊谷
純一 尾崎
大谷 朝男
孝文 石井
卓也 真家
里江子 小林
靖雄 今城
Original Assignee
国立大学法人北海道大学
国立大学法人群馬大学
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人群馬大学, 日清紡ホールディングス株式会社 filed Critical 国立大学法人北海道大学
Priority to EP16824215.4A priority Critical patent/EP3320968A4/en
Priority to US15/735,777 priority patent/US10392249B2/en
Priority to CN201680037567.3A priority patent/CN107709230B/zh
Publication of WO2017010235A1 publication Critical patent/WO2017010235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage carbon material.
  • Hydrogen is attracting attention as a clean energy source that does not generate carbon dioxide when burned.
  • methods for storing and transporting hydrogen have been studied.
  • a high-pressure gas cylinder is generally used, but the gas cylinder is heavy, and the storage efficiency per unit volume of the gas cylinder is practically limited, so a large improvement in storage efficiency cannot be expected. .
  • Patent Document 1 discloses that the volume of pores having a diameter of 1 nm or less exceeds 0.2 cm 3 / g, and the ratio of the volume of pores having a diameter of 1 nm or less to the total pore volume is 85% or more.
  • the occupying porous carbon material is described.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a hydrogen storage carbon material having a carbon structure suitable for hydrogen storage and a method for producing the same.
  • the ratio of the ultra-micro pore volume to the micro-pore volume is 60% or more, and the stored hydrogen is measured in 1 H-NMR measurement. Further, it is characterized by having a carbon structure showing a second peak at a position of a chemical shift of ⁇ 2 ppm to ⁇ 20 ppm with respect to the first peak caused by gaseous hydrogen. According to the present invention, a hydrogen storage carbon material having a carbon structure suitable for hydrogen storage is provided.
  • the hydrogen storage carbon material may not contain a metal inside.
  • the average crystallite size La in the a-axis direction of the carbon structure may be 1.00 nm or more and 2.50 nm or less.
  • the micropore volume is, 0.19 cm 3 / g or more, it may be less than 0.40 cm 3 / g.
  • the hydrogen storage carbon material may have a true density of 1.40 g / cm 3 or more and 3.00 g / cm 3 or less.
  • the said hydrogen storage carbon material is good also as having the said carbon structure in which a peak top position shows a peak of 18.0 degrees or more and 25.0 degrees or less in powder X-ray diffraction.
  • a hydrogen storage carbon material having a carbon structure suitable for hydrogen storage and a method for producing the same are provided.
  • Example which concerns on one Embodiment of this invention it is explanatory drawing which shows the result of having evaluated characteristics, such as the ultra micro pore volume, of a carbon material.
  • the hydrogen storage carbon material according to the present embodiment (hereinafter referred to as “the present carbon material”) has a ratio of the ultra-micro pore volume to the micro-pore volume of 60% or more, and the stored hydrogen is measured by 1 H-NMR measurement.
  • the carbon structure has a second peak at a chemical shift of ⁇ 2 ppm to ⁇ 20 ppm with respect to the first peak due to gaseous hydrogen.
  • This carbon material is a carbon material having hydrogen storage capacity. That is, the present carbon material is preferably applied to various devices and systems that use hydrogen as a fuel. Therefore, this embodiment includes the use of the carbon material in hydrogen storage and the method of using the carbon material for hydrogen storage.
  • hydrogen storage by the present carbon material for example, hydrogen used as a fuel is brought into contact with the present carbon material at a high pressure to cause the present carbon material to store the hydrogen. Alternatively, hydrogen may be released from the present carbon material that occludes hydrogen by lowering the hydrogen pressure.
  • the carbon structure of the present carbon material includes micropores, and the micropores include ultra micropores.
  • Micropores are pores having a pore size of 2 nm or less (for example, the pore size measured by carbon dioxide adsorption is 0.48 nm or more and 2 nm or less).
  • the ultra micropore is a pore having a pore size of 0.7 nm or less (for example, a pore size measured by carbon dioxide adsorption is 0.48 nm or more and 0.7 nm or less).
  • this carbon material has the said ultra micropore whose ratio of the ultramicropore volume with respect to micropore volume is 60% or more (60% or more, 100% or less). That is, in the present carbon material, the ratio of ultra micropores to micropores is relatively large.
  • the ratio of the ultra micro pore volume to the micro pore volume in the present carbon material is preferably 65% or more (65% or more and 100% or less), and 70% or more (70% or more and 100% or less). Particularly preferred.
  • the occluded hydrogen further shows a second peak at a chemical shift of ⁇ 2 ppm to ⁇ 20 ppm relative to the first peak due to gaseous hydrogen in 1 H-NMR measurement.
  • the NMR spectrum obtained by 1 H-NMR measurement of the present carbon material occluded with hydrogen has a first peak due to gaseous hydrogen, and 2 ppm to 20 ppm from the position of the first peak to the high magnetic field side. And a second peak at the shifted position.
  • the chemical shift of the second peak of the present carbon material may be, for example, -3 ppm to -15 ppm, -3 ppm to -12 ppm, or -4 ppm to -12 ppm. -4 ppm to -10 ppm.
  • the present carbon material has a specific carbon structure suitable for hydrogen storage, including a high proportion of ultra-micro pores, and the stored hydrogen shows a chemical shift in a specific range. That is, the present carbon material has a high proportion of ultra-micro pores in which the occluded hydrogen exhibits a specific range of chemical shift.
  • This carbon material is manufactured by a method including heating a raw material containing an organic compound while increasing the temperature at a temperature increase rate of less than 50 ° C./h, and carbonizing the raw material at a temperature of 300 ° C. or more and 2000 ° C. or less.
  • the organic compound contained in the carbonization raw material is not particularly limited as long as it can be carbonized (that can be used as a carbon source), and an organic low molecular compound and / or an organic polymer compound is used. Preferably used.
  • the organic polymer compound is not particularly limited.
  • phenol resin polyacrylonitrile, polyvinyl pyridine, chelate resin, cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, polymethyl acrylate, polymethyl methacrylate, polyfurfuryl.
  • Alcohol furan resin, phenol formaldehyde resin, polyimidazole, melamine resin, epoxy resin, pitch, lignite, polyvinylidene chloride, polycarbodiimide, lignin, anthracite, biomass, protein, humic acid, polysulfone, polyaminobismaleimide, polyimide, polyaniline
  • One or more selected from the group consisting of, polypyrrole, and ionomer may be used.
  • Carbonization is performed by heating the raw material and holding it at a predetermined temperature (carbonization temperature) at which the organic compound contained in the raw material is carbonized.
  • the carbonization temperature is not particularly limited as long as the organic compound contained in the raw material is carbonized.
  • the carbonization temperature may be 300 ° C. or more and 2000 ° C. or less, more than 600 ° C. and less than 1500 ° C. It may be 700 degreeC or more and 1400 degreeC or less.
  • the time for holding the raw material at the carbonization temperature is not particularly limited as long as the organic compound contained in the raw material is carbonized, but may be, for example, 5 minutes or more and 24 hours or less.
  • the carbonization is preferably performed under a flow of an inert gas such as nitrogen.
  • a relatively small temperature increase rate of less than 50 ° C./h is adopted.
  • heating is performed up to the carbonization temperature at a heating rate of less than 50 ° C./h, and when the carbonization temperature exceeds 1000 ° C., at least It is good also as heating at 1000 degreeC with the temperature increase rate of less than 50 degrees C / h.
  • the heating rate may be 45 ° C./h or less, for example. More specifically, the heating rate may be, for example, 20 ° C./h or more and less than 50 ° C./h, 20 ° C./h or more and 45 ° C./h or less, and 30 ° C./h. As above, it may be 45 ° C./h or less.
  • the raw material may be heated while increasing the temperature at a temperature increase rate of less than 50 ° C./h, and carbonized at a temperature of more than 600 ° C. and less than 1500 ° C., Heating may be performed while increasing the temperature at a temperature increase rate of less than 50 ° C / h, and carbonization may be performed at a temperature of 700 ° C or higher and 1400 ° C or lower.
  • the present carbon material having a carbon structure suitable for hydrogen storage as described above can be efficiently produced.
  • This carbon material may not contain metal inside. That is, in this case, the present carbon material is prepared by heating a raw material that contains an organic compound and does not contain a metal at a temperature rising rate of less than 50 ° C./h. It is manufactured by the method including comprising.
  • This carbon material, micropore volume is, 0.19 cm 3 / g or more, may be less than 0.40 cm 3 / g.
  • the volume of the micropores of the present carbon material may be, for example, 0.20 cm 3 / g or more and 0.30 cm 3 / g or less.
  • This carbon material is good also as an ultramicro pore volume being 0.12 cm ⁇ 3 > / g or more and 0.39 cm ⁇ 3 > / g or less.
  • the volume of the ultra-micro hole of the carbon material for example, 0.12 cm 3 / g or more, may be less 0.36cm 3 / g, 0.12cm 3 / g or more, 0.29 cm 3 / It may be g or less.
  • the carbon material may have an average crystallite size La (average La) in the a-axis direction of the carbon structure of 1.00 nm to 2.50 nm.
  • the average La of the present carbon material may be, for example, 1.10 nm or more and 2.40 nm or less, or 1.30 nm or more and 2.00 nm or less.
  • the average La corresponds to a diameter when a plane formed by two-dimensionally expanding the carbon network surface included in the carbon structure is approximated to a circle, and indicates the extent of the plane spread.
  • the carbon structure of the carbon material has a relatively small spread in the a-axis direction of the carbon network surface, and many edges formed by the carbon network surface being frequently interrupted. Will include the face.
  • the carbon material may have an average crystallite size Lc (average Lc) in the c-axis direction of the carbon structure of 0.20 nm or more and 0.65 nm or less.
  • the average Lc of the present carbon material may be, for example, 0.30 nm or more and 0.60 nm or less, or 0.35 nm or more and 0.45 nm or less.
  • the average Lc indicates the thickness in the c-axis direction of the carbon network groups stacked in parallel included in the carbon structure.
  • the present carbon material has a carbon structure in which a laminated structure in the c-axis direction is developed.
  • the present carbon material has a carbon structure with a larger number of carbon network layer stacks.
  • the carbon material may have an average (002) plane spacing d 002 (average plane spacing d 002 ) of the carbon structure of 0.35 nm or more and 0.50 nm or less.
  • the average interplanar spacing d 002 of the carbon material may be, for example, 0.37 nm or more and 0.45 nm or less, or 0.40 nm or more and 0.42 nm or less.
  • the average interplanar distance d 002 is an average distance between carbon (002) planes constituting the carbon structure.
  • This carbon material has a specific surface area determined by the carbon dioxide adsorption 20 m 2 / g or more, it may be at 1000 m 2 / g or less.
  • the specific surface area of the carbon material may be, for example, 200 m 2 / g or more and 900 m 2 / g or less, or 560 m 2 / g or more and 800 m 2 / g or less.
  • the present carbon material may have a bulk density of 0.60 g / cm 3 or more and 3.00 g / cm 3 or less.
  • the bulk density of the carbon material for example, 0.70 g / cm 3 or more, may also be 1.50 g / cm 3 or less, 0.72 g / cm 3 or more, 0.90 g / cm 3 or less There may be.
  • the carbon material may have a true density of 1.40 g / cm 3 or more and 3.00 g / cm 3 or less.
  • the true density of the carbon material for example, 1.50 g / cm 3 or more, may also be 2.50 g / cm 3 or less, 2.10 g / cm 3 or more, 2.25 g / cm 3 or less There may be.
  • the present carbon material may have a carbon structure showing a peak at a peak top position of 18.0 ° or more and 25.0 ° or less in powder X-ray diffraction. That is, when powder X-ray diffraction of the carbon material is performed, a peak with a peak top position of 18.0 ° or more and 25.0 ° or less is observed in a diffraction angle 2 ⁇ of 18 ° or more and 26 ° or less. .
  • the peak top position may be, for example, 19.0 ° or more and 25.0 ° or less, or 21.0 ° or more and 23.0 ° or less.
  • This carbon material may have a hydrogen storage amount of 0.05 wt% or more measured at 298 K and a hydrogen pressure of 10 MPa by a method according to JIS H7201.
  • the hydrogen storage amount of the present carbon material may be, for example, 0.30 wt% or more, or 0.33 wt% or more.
  • the hydrogen storage amount per unit surface area calculated by dividing the hydrogen storage amount by the specific surface area may be 0.40 ⁇ 10 ⁇ 5 g / m 2 or more.
  • the hydrogen storage amount per unit surface area of the carbon material may be, for example, 0.46 ⁇ 10 ⁇ 5 g / m 2 or more, or 0.53 ⁇ 10 ⁇ 5 g / m 2. It may be the above.
  • the hydrogen storage amount per unit volume calculated by dividing the hydrogen storage amount by the bulk density may be 0.50 mg / cm 3 or more.
  • the hydrogen storage amount per volume based on the bulk density of the carbon material may be, for example, 1.00 mg / cm 3 or more, or 2.80 mg / cm 3 or more.
  • the present carbon material may have a hydrogen storage amount per unit volume, calculated by dividing the hydrogen storage amount by the true density, of 1.00 mg / cm 3 or more.
  • the hydrogen storage amount per volume based on the true density of the carbon material may be, for example, 5.00 mg / cm 3 or more, or 8.20 mg / cm 3 or more.
  • Example 1 the hydrogen storage carbon material was manufactured by carbonizing the raw material which contains an organic compound and does not contain a metal. That is, phenol resin beads (100 ⁇ m, manufactured by Gunei Chemical Industry Co., Ltd.) are heated under vacuum, and the temperature is increased from room temperature to 800 ° C. at a temperature increase rate of 48 ° C./h. Carbonization was performed by holding at the carbonization temperature for 1 hour. After carbonization, the temperature was lowered to room temperature by natural cooling. The carbon material containing no metal in the inside thus obtained was used as the hydrogen storage carbon material according to Example 1. In Example 2, a hydrogen storage carbon material was produced in the same manner as in Example 1 except that the carbonization temperature was 1000 ° C.
  • Example 3 phenol resin beads (100 ⁇ m, manufactured by Gunei Chemical Industry Co., Ltd.) were heated under vacuum to increase the temperature from room temperature to 1000 ° C. at a temperature increase rate of 48 ° C./h, Then, the temperature was increased from 1000 ° C. to 1200 ° C. at a rate of temperature increase of 100 ° C./h, and thereafter, carbonization was performed by holding at a carbonization temperature of 1200 ° C. for 1 hour. After carbonization, the temperature was lowered to room temperature by natural cooling. The carbon material containing no metal in the inside thus obtained was used as the hydrogen storage carbon material according to Example 3.
  • Comparative Example 1 a hydrogen storage carbon material was produced in the same manner as in Example 1 except that the carbonization temperature was 600 ° C.
  • Comparative Example 2 a hydrogen storage carbon material was produced in the same manner as in Example 3 except that the carbonization temperature was 1500 ° C.
  • Comparative Example 3 a hydrogen storage carbon material was produced in the same manner as in Example 3 except that the carbonization temperature was 2000 ° C.
  • a hydrogen storage carbon material was manufactured by carbonizing a raw material containing an organic compound and a metal. That is, 10 g of phenol resin, 3.05 g of iron phthalocyanine, and acetone as a solvent were mixed, and the resulting solution was dried to obtain a solid. The solid is heated in a nitrogen atmosphere, and the temperature is increased from room temperature to 800 ° C. at a rate of temperature increase of 10 ° C./min, and then maintained at a carbonization temperature of 800 ° C. for 1 hour to effect carbonization. went. After carbonization, the temperature was lowered to room temperature by natural cooling.
  • the carbon material thus obtained was pulverized, and the pulverized carbon material containing metal (iron) inside was used as the hydrogen storage carbon material according to Comparative Example 4.
  • the hydrogen storage carbon material according to Comparative Example 5 commercially available activated carbon (4H, manufactured by Tsurumi Co.) was used.
  • the CO 2 adsorption / desorption measurement was performed at 273K. That is, the specific surface area, micropore volume, and ultramicropore volume of each carbon material obtained as described above were measured using a high-pressure gas adsorption amount measuring device (BELSORP-HP, Nippon Bell Co., Ltd.).
  • the carbon material was held at 300 ° C. and a pressure of 1 Pa or less for 2 hours to remove moisture adsorbed on the carbon material.
  • adsorption measurement was performed in a CO 2 gas pressure range of 0 to 3.45 MPa, and the specific surface area of the carbon material was calculated by the BET method using the obtained adsorption isotherm.
  • the volume of micropores (pores having a size of 2 nm or less) and ultramicropores (pores having a size of 0.7 nm or less) of the carbon material were calculated by the HK method.
  • the HK method is a method devised by Horvath and Kawazoe to determine the pore distribution of slit-shaped micropores. It can calculate the pore size distribution from the adsorption isotherm and is considered to be effective for the analysis of micropores. ing. (“Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon”, Geza Horvath and Kunitaro Kawazoe, J. Chem. 4).
  • R is an ideal gas constant
  • T is the absolute temperature
  • L is Avogadro's number
  • N s is the number of atoms per unit surface area of the sorbent
  • a s is the adsorbate Is the Lennard-Jones constant
  • N a is the number of molecules per unit surface area of the adsorbate in the adsorbed state
  • a a is the Lennard-Jones constant for the adsorbate with zero interaction energy
  • l is the slit Is the sum of the adsorbate molecule diameter dA (nm) and the adsorbent molecule diameter da (nm)
  • is the adsorption with zero interaction energy. This is the distance between the agent surface and adsorbate atoms.
  • the pore diameter was first determined, and then the relative pressure corresponding to the pore diameter was calculated. Next, the amount of adsorption at the relative pressure is calculated by linear interpolation of the adsorption data obtained by the above-mentioned CO 2 adsorption / desorption measurement, and the obtained amount of adsorption is plotted against the pore diameter to obtain an integral curve. Got. And the pore distribution curve was calculated
  • the true density was measured by a gas substitution method at 25 ° C. using a dry automatic densimeter (Acupick II 1340, manufactured by Micromeritics) and He gas.
  • the applied voltage and current to the X-ray tube are 50 kV and 300 mA, the sampling interval is 0.1 ° or 0.01 °, the scanning speed is 1 ° / min, and the measurement angle range (2 ⁇ ) was 5 to 90 °. Further, CuK ⁇ rays were used as incident X-rays. And based on the obtained X-ray diffraction diagram, the top position of the diffraction peak which appears in the range where the diffraction angle 2 ⁇ is 18 ° or more and 26 ° or less was specified.
  • the procedure of the analysis method proposed by Diamond basically consists of (1) intensity measurement of 11 bands of a sample, (2) correction of measured intensity, and (3) model network surface expected to exist in the sample. (4) Calculation of theoretical scattering intensity from assumed model network surface, (5) Least-square fitting of calculated actual intensity by theoretical scattering intensity, and (6) Model network surface from weight of each theoretical scattering intensity The weight fraction and the average network surface size are calculated in six steps. Therefore, first, data to be analyzed was read, and smoothing processing and absorption correction were performed. The smoothing process was performed with 7 smoothing points, and the absorption correction was performed using the theoretical absorption coefficient 4.219.
  • the two-dimensional lattice constant is generally set to a value between the lattice constants of benzene and ideal graphite, approximately 0.240 to 0.24612 nm.
  • the Ruland coefficient indicates the integral width of the function representing the passband of the energy of the used monochromator, and generally takes a value of 0 to 1.
  • model network surface was selected.
  • the theoretical strength can be calculated and executed using three types of model network surfaces: a benzene / coronene base model, a pyrene base model, and a mixed model.
  • a benzene and coronene base model was used.
  • this model is to calculate the scattering intensity of the model network surface (approximately 0.25 nm ⁇ 7 nm) of an odd multiple sizes of the two-dimensional lattice constant a 0 (1, 3, 5 ... 25, 27, and 29-fold) Is possible.
  • diffraction line intensity correction and background correction were performed on diffraction data of 5 ° to 40 ° obtained by X-ray diffraction measurement.
  • the linear absorption coefficient ⁇ of carbon was 4.219
  • the sample thickness t was 0.2 mm
  • the divergence slit width ⁇ was 2/3 °
  • the goniometer radius R was 285 mm.
  • Background correction was performed by the spline interpolation method with the base point near 15 ° and 35 °.
  • This Hirsch method was applied to the correction data in the diffraction angle range of 5 ° to 40 °, and the Patterson function was calculated. Furthermore, the validity of the Patterson function was evaluated by performing inverse Fourier transform on the obtained Patterson function and restoring the diffraction pattern.
  • This Hirsch method is a method proposed by Hirsch in 1954 in order to evaluate the average number of layers and the distribution of the number of layers in a carbon network surface in a sample having a relatively small surface size such as coal or pitch. is there.
  • the remaining calculation process calculated the average Lc, the average number of layers, the distribution of the number of layers, and the average interplanar spacing d 002 according to the standard procedure of the software.
  • the peak due to gaseous hydrogen (hydrogen gas: gas phase hydrogen existing between sample particles) that increases when the sample of carbon material is filled to a half of the high-pressure NMR quartz sample tube
  • the chemical shift of the peak (second peak) shifted to the high magnetic field side with respect to the first peak was evaluated using the position of the peak) as a reference (0 ppm).
  • Hydrogen existing on the plane of the aromatic ring is shifted to the high magnetic field side, that is, the low ppm side by the effect of the ring current of the aromatic ring.
  • This shift amount corresponds to the degree of development of the carbon network structure, and hydrogen occluded in the carbon material surface and pores with the developed carbon network structure shows a large shift. Therefore, it was considered that the second peak was caused by hydrogen adsorbed on the carbon material, and the peak shift amount was changed depending on the change in the structure of the occlusion site.
  • FIG. 1 shows the carbonization temperature (° C.), specific surface area (m 2 / g), micropore volume (cm 3 / g), ultramicro for the carbon materials according to Examples 1 to 3 and Comparative Examples 1 to 5.
  • the pore volume (cm 3 / g) and the ratio (%) of the ultra micro pore volume to the micro pore volume are shown.
  • a specific surface area and a pore volume were not able to be measured appropriately. The reason may be that the pore size was too small to be suitable for CO 2 adsorption / desorption measurement.
  • carbonization temperature was 800 ° C. ⁇ 1200 ° C. at 580m 2 / g ⁇ 726m 2 / g
  • the carbonization temperature was higher than those of Comparative Examples 1 to 3 having 600 ° C., 1500 ° C. and 2000 ° C.
  • the ratio of the ultra micro pore volume to the micro pore volume was 70.6% to 91.7% in Examples 1 to 3, which was larger than that of Comparative Examples 1 to 5. That is, the micropores of the carbon materials according to Examples 1 to 3 contained ultramicropores in a volume ratio of 70% or more and 95% or less.
  • the carbon materials according to Examples 1 to 3 having a large proportion of ultra-micro pores are particularly suitable for hydrogen storage. It was thought to have a structure.
  • FIG. 2 shows the XRD peak top position (2 ⁇ / °), average La (nm), average Lc (nm), and average interplanar spacing d 002 for the carbon materials according to Examples 1 to 3 and Comparative Examples 1 to 5. nm).
  • the top position of the diffraction peak (XRD peak top position) where the diffraction angle 2 ⁇ obtained by powder X-ray diffraction measurement appears in the range of 18 ° to 26 ° is the same as in Examples 1 to 3. It was 21.6 ° to 22.1 °.
  • the peak top positions of Comparative Examples 3 and 4 were 24.4 ° and 26.0 °, respectively.
  • the diffraction peak that appears at a diffraction angle 2 ⁇ of around 25 ° is a peak derived from a carbon structure with high crystallinity.
  • the crystallinity of the carbon material is higher than that of the carbon materials according to Comparative Examples 3 and 4. Was considered low.
  • the average La of the carbon materials according to Examples 1 to 3 was 1.49 nm to 1.90 nm. That is, it is considered that the carbon network surface in the a-axis direction of the carbon materials according to Examples 1 to 3 has a relatively small spread, and a large number of edges are formed by the carbon network surface being interrupted.
  • the average Lc of the carbon materials according to Examples 1 to 3 was 0.37 nm to 0.42 nm.
  • the average Lc of the carbon material according to Comparative Example 1 obtained by carbonization at 600 ° C. was 0.34, which was smaller than that of Examples 1 to 3.
  • the average Lc of the carbon material according to Comparative Examples 2 and 3 obtained by carbonization at 1500 ° C. or 2000 ° C. and the carbon material according to Comparative Example 4 obtained by carbonization of a raw material containing a metal is 0.00. It was 50 nm to 0.69 nm, which was larger than that of Examples 1 to 3. That is, it was confirmed that the laminated structure of the carbon network surfaces of the carbon materials according to Examples 1 to 3 was developed more than Comparative Example 1 and was not developed as much as Comparative Examples 2 to 4.
  • the average spacing d 002 of the carbon materials according to Examples 1 to 3 was 0.40 nm to 0.41 nm.
  • the average interplanar spacing d 002 of the carbon material according to Comparative Example 1 obtained by carbonization at 600 ° C. was 0.49 nm, which was larger than that of Examples 1 to 3.
  • the average interplanar spacing d 002 of the carbon material according to Comparative Examples 2 and 3 obtained by carbonization at 1500 ° C. or 2000 ° C. and the carbon material according to Comparative Example 4 obtained by carbonization of a raw material containing a metal is 0.34 nm to 0.39 nm, which was smaller than that of Examples 1 to 3.
  • the average interplanar spacing d 002 of the activated carbon according to Comparative Example 5 was 0.36. That is, the average interplanar distance d 002 of Comparative Examples 2 to 4 was almost the same as that of the graphite crystal in Comparative Example 5, whereas the average interplanar distance d 002 of Examples 1 to 3 was the same as that of Comparative Examples 2 to Greater than that of 5. In addition, it was considered that the average interplanar spacing d 002 of the carbon material according to Comparative Example 2 was larger than that of the carbon materials according to Examples 1 to 3, and the crystallinity thereof was lower.
  • FIG. 3 shows the hydrogen storage capacity (wt%) at a bulk density (g / cm 3 ), a true density (g / cm 3 ), and a hydrogen pressure of 10 MPa for the carbon materials according to Examples 1 to 3 and Comparative Examples 1 to 5. ), Hydrogen storage amount per unit surface area ( ⁇ 10 ⁇ 5 g / m 2 ), hydrogen storage amount per unit volume based on the bulk density or true density (mg / cm 3 ), and peaks in 1 H-NMR measurement The chemical shift (ppm) of is shown.
  • the carbon materials according to Examples 1 to 3 have a bulk density of 0.73 g / cm 3 to 0.88 g / cm 3 and a true density of 2.11 g / cm 3 to 2.21 g / cm 3. It was larger than those of Comparative Examples 1 and 3-5. Further, the hydrogen storage amount of the carbon materials according to Examples 1 to 3 was 0.39 wt% to 0.42 wt%, which was larger than that of the carbon materials according to Comparative Examples 1 to 5.
  • the hydrogen storage amount per unit surface area of the carbon materials according to Examples 1 to 3 is 0.57 ⁇ 10 ⁇ 5 g / m 2 to 0.67 ⁇ 10 ⁇ 5 g / m 2 , and Comparative Example 1, It was larger than that of 4 and 5.
  • the hydrogen storage amount per unit volume based on the bulk density of the carbon materials according to Examples 1 to 3 is 2.85 mg / cm 3 to 3.70 mg / cm 3 , and the hydrogen per unit volume based on the true density
  • the occlusion amount was 8.23 mg / cm 3 to 8.90 mg / cm 3 , all of which were significantly larger than those of the carbon materials according to Comparative Examples 1 to 5.
  • 4A and 4B show NMR spectra obtained by subjecting the carbon materials according to Examples 1 to 3 and the carbon materials according to Comparative Examples 1 to 5 to Fourier transform of signals in 1 H-NMR measurement, respectively.
  • 4A and 4B the horizontal axis indicates chemical shift (ppm), and the vertical axis indicates signal intensity.
  • Comparative Example 2 also showed a second peak in addition to the first peak.
  • the carbon material according to Comparative Example 2 has a specific surface area and a ratio of ultramicropores smaller than those of Examples 1 to 3, and has a sufficient carbon structure suitable for hydrogen storage. I thought it was not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

水素吸蔵に適した炭素構造を有する水素吸蔵炭素材料及びその製造方法を提供する。本実施形態に係る水素吸蔵炭素材料は、ミクロ孔容積に対するウルトラミクロ孔容積の割合が60%以上であり、吸蔵された水素が、H-NMR測定において、気体状の水素に起因する第一のピークに対する化学シフト-2ppm~-20ppmの位置に第二のピークを示す炭素構造を有する。

Description

水素吸蔵炭素材料
 本発明は、水素吸蔵炭素材料に関する。
 水素は、燃焼しても二酸化炭素を発生しないクリーンなエネルギー源として注目されている。水素を燃料として利用するため、水素を貯蔵及び運搬する方法の検討が行われている。水素を貯蔵及び運搬する方法としては、高圧ガスボンベによるものが一般的であるが、ガスボンベは重く、またガスボンベの単位容積当たりの貯蔵効率も実用上の限界があり、大きな貯蔵効率の向上は期待できない。
 ガスボンベに代わる水素貯蔵方法として、従来から様々な材料について水素吸蔵が検討されてきており、例えば、水素吸蔵合金を利用する方法が知られている。しかし、水素吸蔵合金はそれ自身が重いという欠点があり、水素放出の際に熱が必要であることなどから、応用範囲が限られる。よって、水素吸蔵合金よりも軽量で水素貯蔵能力の高い材料の開発が求められている。
 この点、特許文献1には、直径1nm以下の細孔の容積が0.2cm/gを超え、且つ、全細孔容積に対する当該直径1nm以下の細孔の容積の割合が85%以上を占める多孔質炭素材料が記載されている。
特開2009-249222号公報
 しかしながら、従来の炭素材料は、必ずしも水素吸蔵に適した炭素構造を有していなかった。
 本発明は、上記課題に鑑みて為されたものであり、水素吸蔵に適した炭素構造を有する水素吸蔵炭素材料及びその製造方法を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る水素吸蔵炭素材料は、ミクロ孔容積に対するウルトラミクロ孔容積の割合が60%以上であり、吸蔵された水素が、H-NMR測定において、気体状の水素に起因する第一のピークに対する化学シフト-2ppm~-20ppmの位置に第二のピークを示す炭素構造を有することを特徴とする。本発明によれば、水素吸蔵に適した炭素構造を有する水素吸蔵炭素材料が提供される。
 また、前記水素吸蔵炭素材料は、内部に金属を含まないこととしてもよい。また、前記炭素構造のa軸方向の平均結晶子サイズLaが、1.00nm以上、2.50nm以下であることとしてもよい。また、前記ミクロ孔容積が、0.19cm/g以上、0.40cm/g以下であることとしてもよい。また、前記水素吸蔵炭素材料は、真密度が、1.40g/cm以上、3.00g/cm以下であることとしてもよい。また、前記水素吸蔵炭素材料は、粉末X線回折において、ピークトップ位置が18.0°以上、25.0°以下のピークを示す前記炭素構造を有することとしてもよい。
 本発明によれば、水素吸蔵に適した炭素構造を有する水素吸蔵炭素材料及びその製造方法が提供される。
本発明の一実施形態に係る実施例において、炭素材料のウルトラミクロ孔容積等の特性を評価した結果を示す説明図である。 本発明の一実施形態に係る実施例において、炭素材料の炭素構造のa軸方向の平均結晶子サイズLa等の特性を評価した結果を示す説明図である。 本発明の一実施形態に係る実施例において、H-NMR測定における化学シフト等の特性を評価した結果を示す説明図である。 本発明の一実施形態に係る実施例において、H-NMR測定により得られたNMRスペクトルの一例を示す説明図である。 本発明の一実施形態に係る実施例において、H-NMR測定により得られたNMRスペクトルの他の例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態で示す例に限られない。
 本実施形態に係る水素吸蔵炭素材料(以下、「本炭素材料」という。)は、ミクロ孔容積に対するウルトラミクロ孔容積の割合が60%以上であり、吸蔵された水素が、H-NMR測定において、気体状の水素に起因する第一のピークに対する化学シフト-2ppm~-20ppmの位置に第二のピークを示す炭素構造を有する。
 本炭素材料は、水素吸蔵能を有する炭素材料である。すなわち、本炭素材料は、水素を燃料として利用する種々の装置やシステムに好ましく適用される。したがって、本実施形態は、水素吸蔵における本炭素材料の使用、及び本炭素材料を水素吸蔵に使用する方法を含む。本炭素材料による水素吸蔵は、例えば、燃料として使用される水素と当該本炭素材料とを高圧で接触させて、当該水素を当該本炭素材料に吸蔵させる。また、水素の圧力を下げることにより、水素を吸蔵した本炭素材料から水素を放出させることとしてもよい。
 本炭素材料の炭素構造は、ミクロ孔を含み、当該ミクロ孔は、ウルトラミクロ孔を含む。ミクロ孔は、孔径が2nm以下(例えば、二酸化炭素吸着により測定される孔径は0.48nm以上、2nm以下)の細孔である。ウルトラミクロ孔は、孔径が0.7nm以下(例えば、二酸化炭素吸着により測定される孔径は0.48nm以上、0.7nm以下)の細孔である。
 そして、本炭素材料は、ミクロ孔容積に対するウルトラミクロ孔容積の割合が60%以上(60%以上、100%以下)である当該ウルトラミクロ孔を有する。すなわち、本炭素材料においては、ミクロ孔に占めるウルトラミクロ孔の割合が比較的大きい。
 本炭素材料におけるミクロ孔容積に対するウルトラミクロ孔容積の割合は、65%以上(65%以上、100%以下)であることが好ましく、70%以上(70%以上、100%以下)であることが特に好ましい。
 また、本炭素材料は、さらに、吸蔵された水素が、H-NMR測定において、気体状の水素に起因する第一のピークに対する化学シフト-2ppm~-20ppmの位置に第二のピークを示す炭素構造を有する。
 すなわち、水素を吸蔵した本炭素材料のH-NMR測定により得られるNMRスペクトルは、気体状の水素に起因する第一のピークと、当該第一のピークの位置から高磁場側に2ppm~20ppmシフトした位置の第二のピークとを含む。
 このように、水素を吸蔵した本炭素材料のH-NMR測定を行うと、特定範囲の化学シフトの位置に、気体状の水素(水素ガス)とは異なる、当該本炭素材料に吸着した水素に特有の第二のピークが現れる。
 本炭素材料の第二のピークの化学シフトは、例えば、-3ppm~-15ppmであってもよいし、-3ppm~-12ppmであってもよいし、-4ppm~-12ppmであってもよいし、-4ppm~-10ppmであってもよい。
 本炭素材料は、上述のとおり、ウルトラミクロ孔を高い割合で含み、且つ吸蔵された水素が特定範囲の化学シフトを示す、水素吸蔵に適した特有の炭素構造を有する。すなわち、本炭素材料は、吸蔵された水素が特定範囲の化学シフトを示すようなウルトラミクロ孔を高い割合で有する。
 本炭素材料は、有機化合物を含む原料を、50℃/h未満の昇温速度で温度を上昇させながら加熱し、300℃以上、2000℃以下の温度で炭素化することを含む方法により製造される。
 炭素化の原料に含まれる有機化合物は、炭素化できるもの(炭素源として使用できるもの)であれば特に限られず、有機低分子化合物及び/又は有機高分子化合物が使用され、有機高分子材料が好ましく使用される。
 有機高分子化合物は、特に限られないが、例えば、フェノール樹脂、ポリアクリロニトリル、ポリビニルピリジン、キレート樹脂、セルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリフルフリルアルコール、フラン樹脂、フェノールホルムアルデヒド樹脂、ポリイミダゾール、メラミン樹脂、エポキシ樹脂、ピッチ、褐炭、ポリ塩化ビニリデン、ポリカルボジイミド、リグニン、無煙炭、バイオマス、タンパク質、フミン酸、ポリスルフォン、ポリアミノビスマレイミド、ポリイミド、ポリアニリン、ポリピロール、及びアイオノマーからなる群より選択される1種以上が使用されてもよい。
 炭素化は、原料を加熱して、当該原料に含有される有機化合物が炭素化される所定の温度(炭素化温度)で保持することにより行う。炭素化温度は、原料に含有される有機化合物が炭素化される温度であれば特に限られないが、例えば、300℃以上、2000℃以下であってもよく、600℃超、1500℃未満であってもよく、700℃以上、1400℃以下であってもよい。
 炭素化温度で原料を保持する時間は、原料に含有される有機化合物が炭素化される温度であれば特に限られないが、例えば、5分以上、24時間以内であってもよい。炭素化は、窒素等の不活性ガスの流通下で行うことが好ましい。
 本炭素材料の製造における炭素化においては、50℃/h未満という比較的小さい昇温速度を採用する。具体的に、例えば、炭素化温度が1000℃以下の場合、当該炭素化温度まで、50℃/h未満の昇温速度で加熱し、また、炭素化温度が1000℃超の場合には、少なくとも1000℃まで50℃/h未満の昇温速度で加熱することとしてもよい。
 昇温速度は、例えば、45℃/h以下であってもよい。より具体的に、昇温速度は、例えば、20℃/h以上、50℃/h未満であってもよく、20℃/h以上、45℃/h以下であってもよく、30℃/h以上、45℃/h以下であってもよい。
 本炭素材料の製造においては、比較的高い炭素化温度と、比較的小さな昇温速度とを採用することが好ましい。すなわち、本炭素材料の製造においては、例えば、原料を、50℃/h未満の昇温速度で温度を上昇させながら加熱し、600℃超、1500℃未満の温度で炭素化してもよいし、50℃/h未満の昇温速度で温度を上昇させながら加熱し、700℃以上、1400℃以下の温度で炭素化してもよい。
 このような小さい昇温速度で加熱しながら炭素化を行うことにより、上述したような水素吸蔵に適した炭素構造を有する本炭素材料を効率よく製造することができる。
 本炭素材料は、内部に金属を含まないこととしてもよい。すなわち、この場合、本炭素材料は、有機化合物を含み金属を含まない原料を、50℃/h未満の昇温速度で温度を上昇させながら加熱し、300℃以上、2000℃以下の温度で炭素化することを含む方法により製造される。
 本炭素材料は、ミクロ孔容積が、0.19cm/g以上、0.40cm/g以下であることとしてもよい。この場合、本炭素材料のミクロ孔の容積は、例えば、0.20cm/g以上、0.30cm/g以下であってもよい。
 本炭素材料は、ウルトラミクロ孔容積が、0.12cm/g以上、0.39cm/g以下であることとしてもよい。この場合、本炭素材料のウルトラミクロ孔の容積は、例えば、0.12cm/g以上、0.36cm/g以下であってもよく、0.12cm/g以上、0.29cm/g以下であってもよい。
 本炭素材料は、その炭素構造のa軸方向の平均結晶子サイズLa(平均La)が、1.00nm以上、2.50nm以下であることとしてもよい。この場合、本炭素材料の平均Laは、例えば、1.10nm以上、2.40nm以下であってもよく、1.30nm以上、2.00nm以下であってもよい。
 平均Laは、炭素構造に含まれる炭素網面が二次元的に広がって形成される平面を円に近似した場合の直径に相当し、当該平面広がりの程度を示す。平均Laが上記いずれかの範囲内である場合、本炭素材料の炭素構造は、炭素網面のa軸方向の広がりが比較的小さく、当該炭素網面が頻繁に途切れて形成される多くのエッジ面を含むことになる。
 本炭素材料は、その炭素構造のc軸方向の平均結晶子サイズLc(平均Lc)が、0.20nm以上、0.65nm以下であることとしてもよい。この場合、本炭素材料の平均Lcは、例えば、0.30nm以上、0.60nm以下であってもよく、0.35nm以上、0.45nm以下であってもよい。
 平均Lcは、炭素構造に含まれる平行に積層した炭素網面群のc軸方向の厚さを示す。平均Lcが上記範囲内である場合、本炭素材料は、c軸方向の積層構造が発達した炭素構造を有することになる。平均Lcが大きくなるほど、本炭素材料は、炭素網面の積層数がより多い炭素構造を有することになる。
 本炭素材料は、その炭素構造の平均(002)面間隔d002(平均面間隔d002)が、0.35nm以上、0.50nm以下であることとしてもよい。この場合、本炭素材料の平均面間隔d002は、例えば、0.37nm以上、0.45nm以下であってもよく、0.40nm以上、0.42nm以下であってもよい。平均面間隔d002は、炭素構造を構成する炭素(002)面間の平均距離である。
 本炭素材料は、二酸化炭素吸着により求められる比表面積が20m/g以上、1000m/g以下であることとしてもよい。この場合、本炭素材料の上記比表面積は、例えば、200m/g以上、900m/g以下であってもよく、560m/g以上、800m/g以下であってもよい。
 本炭素材料は、嵩密度が、0.60g/cm以上、3.00g/cm以下であることとしてもよい。この場合、本炭素材料の嵩密度は、例えば、0.70g/cm以上、1.50g/cm以下であってもよく、0.72g/cm以上、0.90g/cm以下であってもよい。
 本炭素材料は、真密度が、1.40g/cm以上、3.00g/cm以下であることとしてもよい。この場合、本炭素材料の真密度は、例えば、1.50g/cm以上、2.50g/cm以下であってもよく、2.10g/cm以上、2.25g/cm以下であってもよい。
 本炭素材料は、粉末X線回折において、ピークトップ位置が18.0°以上、25.0°以下のピークを示す炭素構造を有することとしてもよい。すなわち、本炭素材料の粉末X線回折を行うと、回折角2θが18°以上、26°以下の範囲において、ピークトップ位置が18.0°以上、25.0°以下のピークが観測される。このピークトップの位置は、例えば、19.0°以上、25.0°以下であってもよいし、21.0°以上、23.0°以下であってもよい。
 本炭素材料は、JIS H 7201に準拠した方法で、298Kにて、水素圧力10MPaにおいて測定される水素吸蔵量が、0.05wt%以上であることとしてもよい。具体的に、本炭素材料の上記水素吸蔵量は、例えば、0.30wt%以上であってもよいし、0.33wt%以上であってもよい。
 本炭素材料は、上記水素吸蔵量を上記比表面積で除して算出される、単位表面積あたりの水素吸蔵量が、0.40×10-5g/m以上であることとしてもよい。具体的に、本炭素材料の上記単位表面積あたりの水素吸蔵量は、例えば、0.46×10-5g/m以上であってもよいし、0.53×10-5g/m以上であってもよい。
 本炭素材料は、上記水素吸蔵量を上記嵩密度で除して算出される、単位体積あたりの水素吸蔵量が、0.50mg/cm以上であることとしてもよい。具体的に、本炭素材料の上記嵩密度に基づく体積あたりの水素吸蔵量は、例えば、1.00mg/cm以上であってもよいし、2.80mg/cm以上であってもよい。
 本炭素材料は、上記水素吸蔵量を上記真密度で除して算出される、単位体積あたりの水素吸蔵量が、1.00mg/cm以上であることとしてもよい。具体的に、本炭素材料の上記真密度に基づく体積あたりの水素吸蔵量は、例えば、5.00mg/cm以上であってもよいし、8.20mg/cm以上であってもよい。
 次に、本実施形態に係る具体的な実施例について説明する。
[水素吸蔵炭素材料の製造]
 実施例1においては、有機化合物を含み金属を含まない原料を炭素化することにより、水素吸蔵炭素材料を製造した。すなわち、フェノール樹脂製のビーズ(100μm、群栄化学工業株式会社製)を真空下で加熱して、その温度を昇温速度48℃/hで室温から800℃まで上昇させ、その後、800℃の炭素化温度で1時間保持することにより、炭素化を行った。炭素化後、自然冷却により温度を室温まで低下させた。こうして得られた内部に金属を含まない炭素材料を、実施例1に係る水素吸蔵炭素材料として使用した。実施例2においては、炭素化温度を1000℃としたこと以外は、上述の実施例1と同様にして、水素吸蔵炭素材料を製造した。
 実施例3においては、フェノール樹脂製のビーズ(100μm、群栄化学工業株式会社製)を真空下で加熱して、その温度を昇温速度48℃/hで室温から1000℃まで上昇させ、さらに、その温度を昇温速度100℃/hで1000℃から1200℃まで上昇させ、その後、1200℃の炭素化温度で1時間保持することにより、炭素化を行った。炭素化後、自然冷却により温度を室温まで低下させた。こうして得られた内部に金属を含まない炭素材料を、実施例3に係る水素吸蔵炭素材料として使用した。
 比較例1においては、炭素化温度を600℃としたこと以外は、上述の実施例1と同様にして、水素吸蔵炭素材料を製造した。比較例2においては、炭素化温度を1500℃としたこと以外は、上述の実施例3と同様にして、水素吸蔵炭素材料を製造した。比較例3においては、炭素化温度を2000℃としたこと以外は、上述の実施例3と同様にして、水素吸蔵炭素材料を製造した。
 比較例4においては、有機化合物及び金属を含む原料を炭素化することにより、水素吸蔵炭素材料を製造した。すなわち、フェノール樹脂10g、フタロシアニン鉄3.05g、及び溶媒としてのアセトンを混合し、得られた溶液を乾燥して固形物を得た。この固形物を窒素雰囲気下で加熱して、その温度を昇温速度10℃/分で室温から800℃まで上昇させ、その後、800℃の炭素化温度で1時間保持することにより、炭素化を行った。炭素化後、自然冷却により温度を室温まで低下させた。こうして得られた、炭素材料を粉砕し、粉砕された、内部に金属(鉄)を含む当該炭素材料を、比較例4に係る水素吸蔵炭素材料として使用した。比較例5に係る水素吸蔵炭素材料としては、市販の活性炭(4H、株式会社ツルミコール製)を使用した。
[比表面積の測定]
 273KにてCO吸脱着測定を行った。すなわち、上述のようにして得られた各炭素材料の比表面積、ミクロ孔容積及びウルトラミクロ孔容積を、高圧ガス吸着量測定装置(BELSORP-HP、日本ベル株式会社)を用いて測定した。
 具体的に、まず、1gの炭素材料を、300℃、1Pa以下の圧力で、2時間保持することにより、当該炭素材料に吸着している水分を取り除いた。次いで、COガス圧力0~3.45MPaの範囲での吸着測定を行い、得られた吸着等温線を用いBET法により、炭素材料の比表面積を算出した。さらに、HK法により、炭素材料のミクロ孔(サイズが2nm以下の細孔)の容積と、ウルトラミクロ孔(サイズが0.7nm以下の細孔)の容積とを算出した。
 HK法は、スリット状マイクロポアの細孔分布を求める為にHorvathとKawazoeが考え出した手法で、吸着等温線から細孔径分布を計算することができ、ミクロ孔の解析に有効であると考えられている。(“Method for the Caluculation of Effective Pore Size Distribution in Molecular Sieve Carbon”,Geza Horvath and Kunitaro Kawazoe,J.Chem.Eng.Japan,16,470(1983))。彼らは、グラファイト層間又はスリット状細孔にガス分子が満たされた場合の自由エネルギーの変化を求め、相対圧とグラファイト層間距離(スリット状細孔)の関係を次の式で表現した:RTln(P/P)=L(N+N)/(σ(l-d))×[σ/(3(l-d/2))-σ10/(9(l-d/2))-σ/(3(d/2))+σ10/(9(d/2))]。
 ここで、上記式において、Rは、理想ガス定数であり、Tは絶対温度であり、Lはアボガドロ数であり、Nは吸着剤の単位表面積あたりの原子数であり、Aは吸着質のLennard-Jones定数であり、Nは吸着状態にある吸着質の単位表面積あたりの分子数であり、Aは相互作用エネルギーがゼロでの吸着質に対するLennard-Jones定数であり、lはスリット状細孔の層間距離(細孔径)であり、dは吸着質分子の直径dA(nm)と吸着剤分子の直径da(nm)との和であり、σは相互作用エネルギーがゼロでの吸着剤表面と吸着質原子間の距離である。
 上記高圧ガス吸着量測定装置解析に付属の解析ソフトウエアを使用した解析では、まず細孔径を決定し、次いで、当該細孔径に相当する相対圧を計算した。次に、その相対圧での吸着量を、上述のCO吸脱着測定により得られた吸着データの直線補間で算出し、得られた吸着量を細孔径に対してプロットすることにより、積分曲線を得た。そして、この積分曲線を微分することにより、細孔分布曲線を求めた。この結果から、ミクロ孔(2nm以下の細孔)の容積と、ウルトラミクロ孔(0.7nm以下の細孔)の容積とを算出した。なお、解析には低圧領域(相対圧0.530以下)のデータを用いた。
[嵩密度の測定]
 秤量した炭素材料を圧縮せずに乾いたメスシリンダーに静かに入れ、次いで、粉体層の上面を圧縮せずに注意深くならし、その体積を最小目盛単位まで読み取ることにより、当該炭素材料の嵩密度(g/cm)を求めた。
[真密度の測定]
 乾式自動密度計(アキュピックII1340、マイクロメリティクス社製)及びHeガスを用い、25℃にて、ガス置換法により真密度を測定した。
[粉末X線回折測定]
 まず、炭素材料の試料を、ガラス試料板の凹部に入れるとともにスライドガラスで押さえ、当該試料をその表面と基準面とが一致するように当該凹部に均一に充填した。次いで、この充填された試料の形態が崩れないように、ガラス試料板を広角X線回折試料台に固定した。そして、X線回折装置(RigakuRINT2100/PC、株式会社リガク)を用いて各試料の粉末X回折測定を実施して回折ピークを測定し、積算を5回行うことで解析対象となるX線回折データを得た。なお、X線管球への印加電圧及び電流はそれぞれ50kV及び300mAであり、サンプリング間隔は0.1°又は0.01°であり、走査速度は1°/分であり、測定角度範囲(2θ)は5~90°であった。また、入射X線としてはCuKα線を用いた。そして、得られたX線回折図に基づき、回折角2θが18°以上、26°以下の範囲に現れる回折ピークのトップの位置を特定した。
[炭素網面の広がりに関する評価]
 上述の粉末X線回折で得られたX線回折データに基づいて、結晶子サイズLaに関する評価を行った。すなわち、平均La及びLa分布を、Diamond法を用いて解析した。この解析には、コンピュータにインストールされた解析用ソフトウェア(CarbonAnalyzer Dseries、藤本宏之)を用いた。解析対象データは、CuKα線をX線源としてカウンターグラファイトモノクロメータを用いて測定された炭素材料の11バンド強度に限定した。解析可能な最大網面サイズは約7nmであった。
 ここで、Diamondの提案した解析方法の手順は、基本的に、(1)試料の11バンドの強度測定、(2)実測強度の補正、(3)試料中に存在すると予想されるモデル網面の想定、(4)想定したモデル網面からの理論散乱強度の計算、(5)求めた実測強度の理論散乱強度による最小二乗フィッティング、及び(6)各理論散乱強度の重みからのモデル網面の重量分率及び平均網面サイズの算出の6つのステップから構成される。そこで、まず解析するデータを読み込み、平滑化処理及び吸収補正を行った。平滑化処理は平滑化点数7点として行い、吸収補正は理論吸収係数4.219を用いて実行した。
 次に、理論散乱強度計算を行った。計算式として、下記の式(I)を用いた。この式(I)において、Iは実測強度であり、wは質量分率であり、Bは理論X線散乱強度であり、Pは偏向因子であり、v及びsは網面モデル因子である。
Figure JPOXMLDOC01-appb-M000001
 ここで、すべてのパラメータがnの関数として表現できる(藤本宏之、炭素、192(2000)125-129参照)。理論散乱強度の計算には、初期条件の設定として二次元格子定数a及びRuland係数の決定、モデル網面の選定が必要になる。二次元格子定数は、一般にベンゼン及び理想黒鉛の格子定数の間の値、約0.240~0.24612nmを設定する。Rulandの係数は、使用したモノクロメータのエネルギーのパスバンドを表す関数の積分幅を示しており、一般に0~1の値を取る。本解析では二次元格子定数aの初期設定値として、一般的な炭素材料の格子定数に近い値として0.24412nmを選択した。Rulandの係数の初期設定値としては0.05を選択した。
 次に、モデル網面の選定を行った。上記ソフトウェアでは、ベンゼン・コロネンベースモデル、ピレンベースモデル、混合モデルの3種類のモデル網面を用いて理論強度を計算実行できる。この点、本解析では、ベンゼン・コロネンベースモデルを用いた。このモデルの場合には、二次元格子定数aの奇数倍サイズ(1、3、5…25、27、29倍)のモデル網面(およそ0.25nm~7nm)の散乱強度を計算することが可能である。
 こうしてすべての選択条件を決定し、理論散乱強度計算を行った。計算が終了すると、下記の式(II)に基づく最小二乗法による反復計算を1000回行い、フィッティング角度範囲2θを60~100°として、実測プロファイルと理論プロファイルのフィッティングを行った。フィッティングが終了すると、コンピュータのディスプレイに、フィッティング結果、網面サイズ分布、及び平均網面サイズが表示された。
Figure JPOXMLDOC01-appb-M000002
[炭素網面の積層構造に関する評価]
 また、上述の粉末X線回折で得られたX線回折データに基づいて、炭素構造における炭素網面の積層構造に関する評価を行った。すなわち、平均Lc、炭素網面の積層数とその分布、及び平均面間隔d002を、コンピュータにインストールされた上述の解析用ソフトウェア(CarbonAnalyzer Dseries、藤本宏之)を用いて解析した。
 このソフトウェアを用いた計算工程においては、(1)回折線の強度補正、(2)バックグラウンドの補正、(3)Patterson関数の計算、(4)逆Fourier変換による妥当性の評価、及び(5)Patterson関数を用いた平均Lc、平均積層数、積層数分布、及び平均面間隔d002の計算、の5つのステップを実施した。
 まず、X線回折測定で得た5°から40°の回折データについて、回折線強度補正及びバックグラウンド補正を行った。回折線強度補正においては、炭素の線吸収係数μを4.219とし、試料厚みtを0.2mmとし、発散スリット幅βを2/3°とし、ゴニオメーター半径Rを285mmとした。バックグラウンド補正は15°付近および35°付近を基点とし、スプライン補間法で行った。
 次いで、この補正データに対して、5°~40°の回折角範囲でHirschの方法を適用し、Patterson関数を計算した。さらに、得られたPatterson関数に対し、逆Fourier変換を行い、回折図形を復元することで、Patterson関数の妥当性を評価した。なお、このHirschの方法は、石炭やピッチのような比較的網面サイズの小さな試料中の炭素網面の平均積層数及び積層数分布を評価するためにHirschによって1954年に提案された方法である。
 こうして計算したPatterson関数を用い、残りの計算過程はソフトウェアの標準手順に従って平均Lc、平均積層数、積層数分布、及び平均面間隔d002を算出した。
[水素吸蔵量測定]
 JIS H 7201に準拠した方法で、298Kにて、水素圧力0MPa~11.5MPaにおける水素吸蔵量を測定した。また、こうして得られた水素圧力10MPaにおける水素吸蔵量(重量%)を、炭素材料1g当たりの水素吸蔵量(g)に換算し、得られた値を嵩密度又は真密度で除することにより、単位体積積あたりの水素吸蔵量(mg/cm)を算出した。
H-NMR測定]
 炭素材料の試料を高圧NMR石英製試料管に入れた。次いで、排気・ガス導入用の配管及びバルブを取り付けた後、温度573K、最終到達圧力1×10-4torrで24時間脱気処理をした。脱気処理後の試料は減圧状態のまま速やかにプローブに設置し、水素を3.5MPaとなるまで導入して測定に供した。H-NMR測定は高圧温度可変型プローブを装着したFT-NMR装置(Apollo Pulse NMR Spectrometer、38MHz、Tecmag社製)を用いて行った。パルス系列は90°パルス法とした。測定温度は173Kとした。なお、炭素材料の試料を高圧NMR石英製試料管の半分の充てん量としたときに増加する気体状の水素(水素ガス:試料粒子間に存在する気相水素)に起因するピーク(第一のピーク)の位置を基準(0ppm)とし、当該第一のピークに対して高磁場側にシフトしたピーク(第二のピーク)の化学シフトを評価した。芳香族環の平面上に存在する水素は芳香族環の環電流の効果により高磁場側、即ち低ppm側へシフトする。このシフト量は炭素網面構造の発達の程度に対応し、炭素網面構造が発達した炭素材料表面や細孔に吸蔵した水素は大きなシフトを示す。したがって、第二のピークは炭素材料に吸着した水素に起因すると考えられ、吸蔵サイトの構造の変化に依存してピークシフト量が変化すると考えられた。
[結果]
 図1には、実施例1~3及び比較例1~5に係る炭素材料について、炭素化温度(℃)、比表面積(m/g)、ミクロ孔容積(cm/g)、ウルトラミクロ孔容積(cm/g)、及び当該ミクロ孔容積に対するウルトラミクロ孔容積の割合(%)を示す。なお、比較例3に係る炭素材料については、比表面積及び孔容積を適切に測定できなかった。その理由としては、孔サイズがCO吸脱着測定に適さないほど小さかった可能性が考えられる。
 図1に示すように、COガス吸着によるBET法により測定された比表面積は、炭素化温度が800℃~1200℃であった実施例1~3において580m/g~726m/gであり、炭素化温度が600℃、1500℃及び2000℃であった比較例1~3のそれに比べて大きかった。
 また、ミクロ孔容積に対するウルトラミクロ孔容積の割合は、実施例1~3において、70.6%~91.7%であり、比較例1~5のそれに比べて大きかった。すなわち、実施例1~3に係る炭素材料のミクロ孔は、70%以上、95%以下の容積割合でウルトラミクロ孔を含んでいた。
 サイズが0.7nm以下であるウルトラミクロ孔は、常温での水素吸蔵に適しているため、当該ウルトラミクロ孔の割合が大きい実施例1~3に係る炭素材料は、特に水素吸蔵に適した炭素構造を有していると考えられた。
 図2には、実施例1~3及び比較例1~5に係る炭素材料について、XRDピークトップ位置(2θ/°)、平均La(nm)、平均Lc(nm)及び平均面間隔d002(nm)を示す。
 図2に示すように、粉末X線回折測定で得られた回折角2θが18°~26°の範囲に現れる回折ピークのトップの位置(XRDピークトップ位置)は、実施例1~3において、21.6°~22.1°であった。これに対し、比較例3及び4のピークトップ位置は、それぞれ24.4°及び26.0°であった。
 ここで、X線回折において、回折角2θが25°付近に現れる回折ピークは、結晶性の高い炭素構造に由来するピークである。この点、上述のとおり、実施例1~3に係る炭素材料のXRDピークトップ位置は、25°より小さいことから、当該炭素材料の結晶性は、比較例3及び4に係る炭素材料のそれに比べて低いと考えられた。
 また、実施例1~3に係る炭素材料の平均Laは、1.49nm~1.90nmであった。すなわち、実施例1~3に係る炭素材料のa軸方向における炭素網面の広がりは比較的小さく、当該炭素網面が途切れることにより多数のエッジが形成されていると考えられた。
 また、実施例1~3に係る炭素材料の平均Lcは、0.37nm~0.42nmであった。これに対し、600℃の炭素化により得られた比較例1に係る炭素材料の平均Lcは0.34であり、実施例1~3のそれより小さかった。
 また、1500℃又は2000℃の炭素化により得られた比較例2及び3に係る炭素材料、及び金属を含む原料の炭素化により得られた比較例4に係る炭素材料の平均Lcは、0.50nm~0.69nmであり、実施例1~3のそれより大きかった。すなわち、実施例1~3に係る炭素材料が有する炭素網面の積層構造は、比較例1より発達しており、比較例2~4ほどには発達していないことが確認された。
 また、実施例1~3に係る炭素材料の平均面間隔d002は、0.40nm~0.41nmであった。これに対し、600℃の炭素化により得られた比較例1に係る炭素材料の平均面間隔d002は0.49nmであり、実施例1~3のそれより大きかった。
 また、1500℃又は2000℃の炭素化により得られた比較例2及び3に係る炭素材料、及び金属を含む原料の炭素化により得られた比較例4に係る炭素材料の平均面間隔d002は、0.34nm~0.39nmであり、実施例1~3のそれより小さかった。
 また、比較例5に係る活性炭の平均面間隔d002は0.36であった。すなわち、比較例2~4の平均面間隔d002は、比較例5における黒鉛結晶のそれと同程度であったのに対し、実施例1~3の平均面間隔d002は、当該比較例2~5のそれより大きかった。また、比較例2に係る炭素材料の平均面間隔d002は、実施例1~3に係る炭素材料のそれよりもさらに大きく、その結晶性がより低いと考えられた。
 図3には、実施例1~3及び比較例1~5に係る炭素材料について、嵩密度(g/cm)、真密度(g/cm)、水素圧力10MPaにおける水素吸蔵量(wt%)、単位表面積あたりの水素吸蔵量(×10-5g/m)、当該嵩密度又は真密度に基づく単位体積あたりの水素吸蔵量(mg/cm)、及びH-NMR測定におけるピークの化学シフト(ppm)を示す。
 図3に示すように、実施例1~3に係る炭素材料の嵩密度は0.73g/cm~0.88g/cm、真密度は2.11g/cm~2.21g/cmであり、比較例1、3~5のそれらより大きかった。また、実施例1~3に係る炭素材料の水素吸蔵量は、0.39wt%~0.42wt%であり、比較例1~5に係る炭素材料のそれより大きかった。
 実施例1~3に係る炭素材料の、単位表面積あたりの水素吸蔵量は、0.57×10-5g/m~0.67×10-5g/mであり、比較例1、4、5のそれに比べて大きかった。実施例1~3に係る炭素材料の、嵩密度に基づく単位体積あたりの水素吸蔵量は2.85mg/cm~3.70mg/cmであり、また、真密度に基づく単位体積あたりの水素吸蔵量は8.23mg/cm~8.90mg/cmであり、いずれも、比較例1~5に係る炭素材料のそれらより顕著に大きかった。
 図4A及び図4Bには、それぞれ実施例1~3に係る炭素材料及び比較例1~5に係る炭素材料について、H-NMR測定においてシグナルをフーリエ変換して得られたNMRスペクトルを示す。図4A及び図4Bにおいて、横軸は化学シフト(ppm)を示し、縦軸はシグナルの強度を示す。
 図4Bに示すように、比較例1及び比較例3に係る炭素材料に導入された水素は、NMRスペクトルにおいて、水素ガスのみの場合と同様に単一のピーク(第一のピーク)を示した。この第一のピークは、基準周波数からのずれが比較的小さいことから、試料内の空隙に存在する気体状の水素(水素ガス)に起因するものと考えられた。
 一方、図4Aに示すように、実施例1~3に係る炭素材料に導入された水素は、第一のピークに加え、当該第一のピークより高磁場側にシフトした位置に第二のピークを示した。この第二のピークは、化学シフトが比較的大きいこと、及び単位表面積当たりの水素吸蔵量に依存することから、炭素材料に吸着した水素に起因すると考えられた。
 なお、図4Bに示すように、比較例2についても、第一のピークに加え、第二のピークが示された。ただし、上述のとおり、比較例2に係る炭素材料は、実施例1~3に係る炭素材料に比べて、比表面積及びウルトラミクロ孔の割合が小さく、水素吸蔵に適した炭素構造を十分に備えていないと考えられた。
 以上より、実施例1~3に係る炭素材料が高い水素吸蔵能を示す理由の一つとして、当該炭素材料が、水素吸蔵に適した特有の炭素構造を有していることが考えられた。

Claims (6)

  1.  ミクロ孔容積に対するウルトラミクロ孔容積の割合が60%以上であり、吸蔵された水素が、H-NMR測定において、気体状の水素に起因する第一のピークに対する化学シフト-2ppm~-20ppmの位置に第二のピークを示す炭素構造を有する
     ことを特徴とする水素吸蔵炭素材料。
  2.  内部に金属を含まない
     ことを特徴とする請求項1に記載の水素吸蔵炭素材料。
  3.  前記炭素構造のa軸方向の平均結晶子サイズLaが、1.00nm以上、2.50nm以下である
     ことを特徴とする請求項1又は2に記載の水素吸蔵炭素材料。
  4.  前記ミクロ孔容積が、0.19cm/g以上、0.40cm/g以下である
     ことを特徴とする請求項1乃至3のいずれかに記載の水素吸蔵炭素材料。
  5.  真密度が、1.40g/cm以上、3.00g/cm以下である
     ことを特徴とする請求項1乃至4のいずれかに記載の水素吸蔵炭素材料。
  6.  粉末X線回折において、ピークトップ位置が18.0°以上、25.0°以下のピークを示す前記炭素構造を有する
     ことを特徴とする請求項1乃至5のいずれかに記載の水素吸蔵炭素材料。
PCT/JP2016/068187 2015-07-10 2016-06-17 水素吸蔵炭素材料 WO2017010235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16824215.4A EP3320968A4 (en) 2015-07-10 2016-06-17 CARBONACEOUS STORAGE SUBSTANCE OF HYDROGEN
US15/735,777 US10392249B2 (en) 2015-07-10 2016-06-17 Hydrogen storage carbon material
CN201680037567.3A CN107709230B (zh) 2015-07-10 2016-06-17 储氢碳材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138774A JP6572033B2 (ja) 2015-07-10 2015-07-10 水素吸蔵炭素材料
JP2015-138774 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010235A1 true WO2017010235A1 (ja) 2017-01-19

Family

ID=57756977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068187 WO2017010235A1 (ja) 2015-07-10 2016-06-17 水素吸蔵炭素材料

Country Status (5)

Country Link
US (1) US10392249B2 (ja)
EP (1) EP3320968A4 (ja)
JP (1) JP6572033B2 (ja)
CN (1) CN107709230B (ja)
WO (1) WO2017010235A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565401B (zh) * 2018-05-18 2020-12-15 国家能源投资集团有限责任公司 无定形碳材料及制备方法与用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335596A (ja) * 2005-06-01 2006-12-14 Tohoku Univ 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法
WO2011084994A1 (en) * 2010-01-05 2011-07-14 Sigma-Aldrich Co. Carbon molecular sieve for hydrogen storage and adsorption of other light gases
WO2011105336A1 (ja) * 2010-02-26 2011-09-01 国立大学法人群馬大学 水素吸蔵炭素材料
JP2013112572A (ja) * 2011-11-29 2013-06-10 Nagaoka Univ Of Technology 水素吸蔵方法及び水素吸蔵材料

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614460A (en) 1995-08-23 1997-03-25 Syracuse University Microporous carbons for fuel gas storage
US6670304B2 (en) 1998-03-09 2003-12-30 Honeywell International Inc. Enhanced functionalized carbon molecular sieves for simultaneous CO2 and water removal from air
US6294501B1 (en) 1998-03-09 2001-09-25 Alliedsignal Inc. Special adsorbent for carbon dioxide acquisition on mars
EP1115130A4 (en) * 1998-08-25 2007-05-02 Fuji Heavy Ind Ltd MATERIAL FOR ELECTRODES AND PROCESS FOR PRODUCING THE SAME
US20050260118A1 (en) * 2004-05-20 2005-11-24 Yunfeng Lu Mesoporous carbon films and methods of preparation thereof
RU2008132758A (ru) * 2006-02-15 2010-03-20 Рудьярд Лайле ИСТВАН (US) Мезопористый активированный углерод
WO2008058231A2 (en) * 2006-11-08 2008-05-15 Curators Of The University Of Missouri High surface area carbon and process for its production
CA2669223A1 (en) * 2006-11-15 2008-05-22 Energ2, Llc Electric double layer capacitance device
US8657923B2 (en) * 2008-02-26 2014-02-25 Nissan Motor Co., Ltd. Microporous carbon material, manufacturing method thereof, and hydrogen storage method using microporous carbon material
JP2009249222A (ja) 2008-04-04 2009-10-29 Tokuyama Corp 多孔質炭素材
CN102089241A (zh) * 2008-06-10 2011-06-08 加拿大国家研究委员会 多孔碳球的受控合成及其电化学应用
JP5795309B2 (ja) * 2009-07-01 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超高純度の合成炭素材料
TWI400195B (zh) * 2010-01-08 2013-07-01 Iner Aec Executive Yuan 儲氫結構形成方法
WO2011112992A1 (en) * 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
US8654507B2 (en) * 2010-09-30 2014-02-18 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US9597656B2 (en) * 2012-01-11 2017-03-21 William Marsh Rice University Porous carbon materials for CO2 separation in natural gas
WO2013120011A1 (en) * 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
JP5683536B2 (ja) * 2012-06-08 2015-03-11 株式会社豊田自動織機 電動圧縮機
KR101438433B1 (ko) * 2012-10-09 2014-09-12 고려대학교 산학협력단 메조 다공성 탄소 구조체 및 그 제조방법
EP2800724A1 (en) * 2012-11-16 2014-11-12 Politechnika Poznanska Production of activated carbon from tobacco leaves by simultaneous carbonization and self-activation and the activated carbon thus obtained
KR102636894B1 (ko) * 2015-08-28 2024-02-19 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335596A (ja) * 2005-06-01 2006-12-14 Tohoku Univ 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法
WO2011084994A1 (en) * 2010-01-05 2011-07-14 Sigma-Aldrich Co. Carbon molecular sieve for hydrogen storage and adsorption of other light gases
WO2011105336A1 (ja) * 2010-02-26 2011-09-01 国立大学法人群馬大学 水素吸蔵炭素材料
JP2013112572A (ja) * 2011-11-29 2013-06-10 Nagaoka Univ Of Technology 水素吸蔵方法及び水素吸蔵材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROBERT J. ANDERSON ET AL.: "NMR Methods for Characterizing the Pore Structures and Hydrogen Storage Properties of Microporous Carbons", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 25, 30 June 2010 (2010-06-30), pages 8618 - 8626, XP055345426 *
See also references of EP3320968A4 *

Also Published As

Publication number Publication date
CN107709230B (zh) 2021-05-04
JP2017019693A (ja) 2017-01-26
US20180179057A1 (en) 2018-06-28
EP3320968A1 (en) 2018-05-16
CN107709230A (zh) 2018-02-16
EP3320968A4 (en) 2019-01-16
JP6572033B2 (ja) 2019-09-04
US10392249B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US12064747B2 (en) Carbon-based compositions with highly efficient volumetric gas sorption
Fu et al. Development and characterization of micropores in carbon molecular sieve membrane for gas separation
Lu et al. A novel 3D covalent organic framework membrane grown on a porous α-Al 2 O 3 substrate under solvothermal conditions
Lamond et al. The surface properties of carbon—III the process of activation of carbons
Kaneko et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons
Barrer The sorption of polar and non-polar gases by zeolites
Vafaeinia et al. Oxygen and nitrogen enriched pectin-derived micro-meso porous carbon for CO 2 uptake
JP5695147B2 (ja) 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
WO2007061761A1 (en) Carbon cryogles and related methods
Sing Adsorption by active carbons
Alam et al. Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons
Hou et al. Densification of ordered microporous carbons and controlling their micropore size by hot-pressing
JP6572033B2 (ja) 水素吸蔵炭素材料
Wijiyanti et al. Hydrogen adsorption characteristics for zeolite-Y templated carbon
Chen et al. Fabrication of strong solid base FeO–MgO for warm CO2 capture
WO2003014018A1 (fr) Matiere carbonee, matiere d'occlusion de gaz renfermant ladite matiere carbonee et procede de stockage de gaz a l'aide de cette matiere d'occlusion de gaz
Kapsi et al. Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation
Shkolin et al. Isotropic and anisotropic properties of adsorption-induced deformation of porous carbon materials
JP5388051B2 (ja) メソポーラスカーボン(mc−mcm−48)およびその製造方法
CN117007751A (zh) 测试孔径对多孔炭吸附有机物分子效能影响的方法和模型
JP5021409B2 (ja) メタン吸着剤またはその製造方法
KR20220010861A (ko) 화학적 활성화 및 규소 제거법에 의한 코코넛껍질 기반의 수소저장용 활성탄소 제조 방법
Ma et al. MgO modified nanoporous carbon composites for methanol separation
JP2010275140A (ja) 水素吸蔵炭素材料及びその製造方法
Mukti et al. Preparation of porous carbon as ethylene adsorbent by pyrolysis of extraction waste Mangosteen rinds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824215

Country of ref document: EP