WO2017008776A1 - Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche - Google Patents

Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche Download PDF

Info

Publication number
WO2017008776A1
WO2017008776A1 PCT/DE2016/000145 DE2016000145W WO2017008776A1 WO 2017008776 A1 WO2017008776 A1 WO 2017008776A1 DE 2016000145 W DE2016000145 W DE 2016000145W WO 2017008776 A1 WO2017008776 A1 WO 2017008776A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning device
cleaning
missile
cleaned
pose
Prior art date
Application number
PCT/DE2016/000145
Other languages
English (en)
French (fr)
Inventor
Uwe Böhme
Original Assignee
Gebäudereinigung Lissowski GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015008859.9A external-priority patent/DE102015008859A1/de
Application filed by Gebäudereinigung Lissowski GmbH filed Critical Gebäudereinigung Lissowski GmbH
Priority to RU2018105188A priority Critical patent/RU2705979C2/ru
Priority to EP16727930.6A priority patent/EP3322323B1/de
Priority to CA2991541A priority patent/CA2991541C/en
Priority to DE112016003158.0T priority patent/DE112016003158A5/de
Priority to US15/743,393 priority patent/US20180208307A1/en
Priority to JP2017568247A priority patent/JP6728548B2/ja
Priority to SG11201800248PA priority patent/SG11201800248PA/en
Priority to BR112018000530-4A priority patent/BR112018000530B1/pt
Publication of WO2017008776A1 publication Critical patent/WO2017008776A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/002Arrangements for cleaning building facades
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the invention relates to a free-floating cleaning device for cleaning a surface without a firm connection between the cleaning device and the surface.
  • the invention relates to a device for cleaning flat surfaces, such as glass surfaces or facade elements.
  • the uniform design of external facades has according to that in addition to the glass surfaces of the windows and other flat surfaces of the inside of buildings must be cleaned regularly. [04] The cleaning of these areas is complex and leads to high costs for the maintenance of buildings.
  • WO 2013/076 711 A2 describes a helicopter for cleaning facade surfaces. However, this is not suitable to float freely and therefore requires a cable connection to a fixed point. [07] The invention is therefore based on the object, such a cleaning device in such a way that it is easier for the glass and / or facade cleaner to clean even less accessible windows or façade surfaces.
  • This object is achieved with a cleaning device having a missile with rotors and a cleaning device attached to the missile for cleaning a surface.
  • the invention is based on the knowledge that not the glass and / or facade cleaner with his cleaning device must be brought to the surface to be cleaned, but that it is sufficient to transport only the cleaning device to the surface to be cleaned. If this cleaning device is attached to a missile as a cleaning device, the missile can be brought into the vicinity of the surface to be cleaned with a remote control, so that by means of the cleaning device, the surface to be cleaned can be cleaned. In this case missiles with rotors are suitable for positioning the cleaning device. These missiles can also operate autonomously or partially autonomously.
  • Such missiles with rotors are known as UAV or Multicopter.
  • Semi-autonomous multicopters for glass and façade cleaning indoors and outdoors are particularly suitable.
  • the surfaces to be cleaned are in particular vertical surfaces in the interior and exterior of buildings.
  • tilted, horizontal or curved surfaces can also be cleaned by means of the cleaning device.
  • a simple embodiment of such a cleaning device is a quadrocopter or hexacopter with a center distance of the rotors of about 1100 mm.
  • the entire flying object thus has a horizontal extent of 80 cm to 120 cm and a height of 60 cm to 80 cm.
  • the missile is lightweight and compact and designed to save weight.
  • the implementation of the brush system and the sensors used is carried out under aerodynamic aspects.
  • the additional entrained Components that is especially the cleaning device designed so that the influence on the maneuverability is minimized.
  • the cleaner can spray deionized water.
  • the cleaning device may include a sprayer for water, dry ice, demineralized / deionized water. It is advantageous if the cleaning device has at least one rotating brush. This makes it possible, in addition to the movement of the cleaning device relative to the surface to be cleaned, to increase the abrasive effect of the cleaning device, thereby achieving a higher cleaning performance. A scraper or scraper can help to remove particularly stubborn dirt.
  • the cleaning device has a camera. This makes it possible to check a window cleaner, which is far away from the missile on a screen cleaning.
  • a development of the cleaning device provides that the missile has a safety frame to protect the rotors. This safety frame not only protects the rotors, but also the surface to be cleaned and the operator of the cleaning device. It is advantageous if the complete frame of the multicopper is equipped with a styrofoam core, which functions as a frame.
  • the missile has a sensor for distance measurement and / or contact detection. This sensor is preferably located on the safety frame of the missile.
  • proximity and tactile sensors are provided to react actively to the approach to an object or to a direct contact of the missile with an object.
  • the object can also be made of glass too be cleansing surface.
  • special sensors can be used to detect glass, such as ultrasonic sensors.
  • a particularly good cleaning effect can be achieved with a brush system, which is firmly connected to the missile.
  • This brush system preferably consists of several rotating roller brushes whose axes are driven by electric motors.
  • the cleaning device has a movable on rollers or balls device.
  • a fixed distance between the axes of roller brushes and a cleaning surface can be ensured, for example, by free-running plastic rollers.
  • the contact points between the missile and the surface to be cleaned is determined by the fixed spatial arrangement of the rollers.
  • the arrangement of the rollers can be chosen so that, in the case of a contact, a fixation of the pose of the missile relative to the cleaning surface takes place.
  • the cleaning device even during the movement of the missile, ensure a constant cleaning performance.
  • a special design of the cleaning device provides that the cleaning device is arranged to be movable relative to the missile and the missile has a distance meter which measures the distance of the cleaning device to the missile.
  • the cleaning device is also arranged to be movable relative to the missile, and the missile has a pressure measuring device which measures the pressure acting on the missile by the cleaning device.
  • the cleaning device may include the following additional sensors: inertial measurement units (EVIU), GPS, magnetometer, camera, 1D LIDAR, 2D LIDAR, mechanical limit switches and proximity switches as well as ultrasonic measuring devices.
  • EVIU inertial measurement units
  • GPS global positioning
  • magnetometer magnetometer
  • camera 1D LIDAR
  • 2D LIDAR mechanical limit switches and proximity switches
  • ultrasonic measuring devices The data from these sensors can be used to control and localize and navigate the missile along the cleaning surface.
  • the evaluation Camera images also allow a qualitative assessment of the cleaning process.
  • the object underlying the invention is also achieved with a method for cleaning surfaces, in particular facades and glass fronts in the outer area, in which a cleaning medium is used to apply a cleaning medium to the surface to be cleaned.
  • a teilautonome control of the missile which allows an automatic or semi-automatic take-off and landing.
  • the controller can stabilize the missile after the first start at a fixed distance to the cleaning surface. The operator then only has to determine the area to be cleaned on the basis of this pose. The controller calculates a corresponding path and stabilizes the missile along the cleaning surface.
  • an automatic landing is initiated to replace or replenish the batteries.
  • the missile automatically returns to its previous pose relative to the cleaning surface.
  • a missile can work with its cleaning device, the cleaning surface to the Acculadung or the water supply is exhausted. Then, the first cleaning device with missile and cleaning device flies back to fill Accus and / or the water supply, and a second cleaning device flies to the point at which the first cleaning device has finished processing. For larger areas to be cleaned, the second cleaning device can already fly while the first is still working, so as little time between editing with him first cleaning device and the processing with the second cleaning device and a quasi-continuous cleaning is achieved.
  • a pool of missiles and a pool of cleaning facilities can also be provided. This makes it possible to couple missile and cleaning device as needed.
  • a cleaning device with a brush and another cleaning device with a water spray device can be equipped. The missile can then be coupled as needed with the appropriate cleaning device.
  • several missiles and several preferably different cleaning devices allow an effective cleaning process.
  • Deionized water can be used as the cleaning medium. Although it is known, for example from DE 20 2004 009 740 U1, to use ionized water for cleaning surfaces so that stripping and drying can be omitted. The use of ionized water in conjunction with a free-flying cleaning device, however, leads to the advantage that when cleaning from top to bottom, the lower areas can already be pre-cleaned by the water flowing down and by the wind of the rotors of the missile a very fast drying of the adhering water film is achieved. A brush system can be supplied with this water in order to moisten and rinse the area to be cleaned.
  • dry ice can be used as cleaning medium.
  • Dry ice C0 2 pellets
  • DE 20 2013 105 041 Ul describes the basic use of dry ice for cleaning particularly heavily soiled surfaces by means of a spray gun. Especially the use in conjunction with a missile and a brush causes the dry ice with the wind of the rotors is pressed to the surface, there reacts and leaves no residue.
  • the dry ice dissolves when hitting an obstacle such as a glass or a facade in gaseous components, so that no moisture is created or left behind.
  • the absolute pose of the missile be measured in relation to the facade to be cleaned.
  • stationary fixed points can serve, for example, on the floor or on the façade as a reference system in order to determine the pose of the surfaces to be cleaned on a building.
  • Fixed points on the facade can be, for example, corner points of the building. But it can also be designed in front of the building a carpet with defined points. The pose of the cleaning device can then be determined during flight relative to these defined points. This makes it possible, when in contact with a surface to be cleaned, to determine the contact points in relation to the defined points.
  • such a carpet in front of the building facilitates the automatic starting and landing of the cleaning device on this carpet.
  • the controller keeps the multicopter at a certain angle of inclination in relation to the cleaning surface of a few degrees. This is also referred to as the pitch angle.
  • a pressure is created between the surface to be cleaned and the adjoining cleaning device. This pressure is used, for example, as a contact pressure for cleaning brushes to ensure a permanent contact between cleaning brush and surface to be cleaned. But it can also compensate for the impulse that pushes the cleaning device when spraying a cleaning liquid against the surface to be cleaned away from the surface to be cleaned.
  • the missile can also be flown with momentum against the surface to be cleaned. This increases the pressure of a cleaning brush or a scraper against the surface to be cleaned. However, the momentum can also be reduced by the impulse. weakens, which arises when the cleaning device sprays liquid against the surface to be cleaned.
  • a cleaning system has a cleaning device, several surfaces to be cleaned and a topology surrounding the surfaces to be cleaned. Reference points of the topology are stored in a data store and, on the one hand, the pose of the cleaning device relative to these reference points and, on the other hand, the pose of the cleaning device with respect to the surface to be cleaned are determined in order to automatically guide the cleaning device along the surfaces to be cleaned. This makes it possible to clean with a cleaning device and larger facades autonomous. Depending on the size of the aircraft and the fouling of the façade, the avengers to be cleaned are flown once or several times in order to wet them with cleaning fluid, brush the surface, remove dirt particles, rinse off dirt and possibly even dry with hot air or spray on a dirt-repellent layer.
  • a cleaning device can thus be programmed so that it autonomously gradually cleans all the surfaces to be cleaned and then starts again at the beginning or cleans certain surfaces more frequently and other surfaces less frequently.
  • the missile thereby moves the cleaning device from a detergent receiving station to the surface to be cleaned, then during cleaning relative to the surface to be cleaned and back again to receive new detergent.
  • the cleaning agent receiving station and a protected housing for the missile and the cleaning device can be provided for example on the roof of the skyscraper. It is also possible to couple the missile with different cleaning devices, for example, in a first operation only to spray the surface to be cleaned, so that the dirt dissolves, and in a second working brush the surface to brush off the loosened dirt.
  • the missile is loaded only with the weight that is absolutely necessary for a special cleaning cycle.
  • the missile can thus be coupled, for example, initially only with a liquid tank and an application nozzle and then additionally or alternatively with a brush or a brush system.
  • the locating devices can also be provided in such a way that, depending on the application, different locating devices are coupled to the flying object. This coupling and uncoupling process is preferably carried out automatically. This creates a preferably modular system of a flying cleaning device for cleaning facades.
  • the cleaning device is designed to allow the cleaning process to proceed as autonomously as possible.
  • a cleaner should perform only a monitoring function and be used in an emergency and to fill or replace the cleaning container.
  • a sensor concept is proposed with which the pose of the cleaning device can be determined absolutely and relative to the surface to be cleaned.
  • the cleaners will apply a branded carpet at a fixed distance in front of the façade. These tags are detected by a camera attached to the missile to determine the pose of the cleaner relative to the facade. This pose forms the basis of the entire cleaning process. However, in the vicinity of the cleaning surface or in the case of direct contact, the cleaning device needs more data, since the pose determined with the brand carpet may have small errors.
  • Ultrasound and / or optical distance and speed measuring devices are then used here.
  • LIDAR systems emit laser pulses and detect the backscattered light. From the light transit time of the signals the distance to the location of the scattering is calculated. LIDAR systems are used for object recognition and environment detection and are used in the cleaning device for the exact determination of the distance to the cleaning surface.
  • the tactile sensors are then used in the last step to determine the contact between the cleaning device and the surface. Based on these data, a controller holds the cleaning device in a slightly oblique pose, so that a relatively light force of the cleaning device is exerted against the cleaning surface. Thereby, the speed with which the cleaning device flies forward when abutting on the surface to a pressure exerted by the cleaning device on the surface.
  • An underlying model of the building can be used for localization, ie for determining the pose of the cleaning device.
  • Such a model can either be prepared in advance, or e.g. be integrated by a known CAD file of the building.
  • a cooperative robot floor-air system can be used.
  • the missile can be equipped with a 3D-LIDAR system. This 3D LIDAR system is also used to determine the pose based on the model.
  • Additional sensors are RGB-D depth cameras and wind speed sensors. With RGB-D cameras, the direct area of the cleaning device can be detected three-dimensionally. As a result, autonomous navigation of the cleaning device can also take place in the case of a cleaning surface that is not completely planned. Detecting the area to be cleaned in relation to the topology of the environment also makes it possible to detect flagpoles, sculptures, protrusions, sills, balconies, etc., in order not to collide with these objects and, secondly, to orient themselves on these stationary objects. [45] A measurement of the wind speed preferably at the cleaning device is important, especially at relatively high altitudes. Thus, the cleaning power has the ability to respond to a change in wind speed in the height of the cleaning device promptly. [46] Three embodiments are shown in the drawing and will be described in more detail below. It shows
  • FIG. 1 schematically shows the structure of a cleaning device with four rotors
  • FIG. 2 shows a side view of a cleaning device with eight rotors
  • FIG. 3 shows a plan view of the cleaning device shown in FIG. 2
  • FIG. 4 shows a view from below of a cleaning device with three rotors
  • FIG. 5 shows a top view of the cleaning device shown in FIG. 4,
  • FIG. 6 shows a side view of the cleaning device shown in FIG. 4,
  • FIG. 7 shows a side view of the cleaning device shown in FIG.
  • Figure 8 is a plan view of Figure 7,
  • FIG. 9 shows a perspective top view of the cleaning device shown in FIG. 4,
  • FIG. 10 shows a perspective view of the underside of the cleaning device shown in FIG. 4 and FIG. 11 shows a perspective side view of the cleaning device shown in FIG. [47]
  • the cleaning device 1 has a missile 2 with rotors 3, 4, 5, 6. At this missile 2, a cleaning device 7 for cleaning a surface (not shown) is attached.
  • the cleaning device 7 consists of a base body 8 to which cleaning devices such as a rotating brush 9 are attached. Instead of a rotating brush 9 and a plurality of rotating brushes 9 may be arranged around the base body 8 around.
  • a camera 10 is integrated in the base body 8. Instead of a camera 10, several cameras or a camera with several optics can also be arranged on the missile.
  • a safety frame 1 1 for protecting the rotors 3, 4, 5 and 6 is provided on the missile 2.
  • sensors 12 to 15 are provided on the missile, which together form a sensor.
  • a rollable device 16 is provided, which is arranged between the main body 8 of the surface to be cleaned such that the rollers 17, 18 roll on the surfaces to be cleaned during the cleaning device 7 moves relative to the cleaning surface.
  • only two rollers 17 and 18 are shown. It is advantageous if further rollers are arranged on the circumference of the missile 2.
  • the brushes 9 of the cleaning device 7 can be arranged to be movable relative to the missile 2. Instead of the distance meter or in addition to the distance knives, a pressure measuring device (not shown) may be provided to measure the pressure acting on the missile 2 by the brushes 9 of the cleaning device 7. [54] In the main body electronics 23 is provided, which also has measuring means 24 for controlling the pose of the missile 2.
  • a nozzle 25 allows a cleaning medium such as deionized water or dry ice to be applied to the surface to be cleaned, such as a facade.
  • the cleaning device 30 shown in FIGS. 2 and 3 has a missile 31 and eight rotors 32 to 39. Attached to the missile 31 is a cleaning device 40 which has a rotating brush 41 and three spacer wheels 42, 43 and 44. At the cleaning device, a camera 45 is arranged and over the rotors a safety frame 46 is stretched, which is to avoid a collision of the rotors with a person or a surface to be cleaned.
  • the cleaning device 31 has a detergent reservoir 47, in which deionized water or dry ice can be transported as a cleaning medium.
  • FIG. 4 shows a cleaning device 50 with three rotors 51, 52 and 53.
  • a cleaning brush 54, 55, 56 is arranged on the outside of the main body 57 between these rotors.
  • Each side of the cleaning brushes tact switches 58 to 63 are provided to determine the distance between the base body 57 and a surface 64 to be cleaned.
  • the tactile sensors can each be designed as sensor pair 65, 66 as shown by way of example in FIG.
  • the cleaning brushes are preferably designed as a brush pair 67, 68. This makes it possible to provide a water supply 69, 70 between two brushes, by means of which ionized water can be sprayed against the surface 64 to be cleaned.
  • a retractable landing gear with three landing feet 71, 72 and 73 is provided, which can be unfolded at least during the landing process.
  • a sensor module 74 is provided which has an RGBD camera and a 1 D-LIDAR.
  • a battery replacement system 75, 76 and 77 is provided inside the main body 57 .
  • a water tank (not shown), which is accessible through the opening 78.
  • a further sensor module 79 is provided which has an RGBD camera and a 2D LIDAR.
  • the pose of the cleaning device 50 relative to a marker carpet 80 can be determined and the ultrasonic sensors 81, 82 make it possible to determine the relative pose of the cleaning device 50 with respect to the surface 64 to be cleaned.
  • the cleaning device 50 is slightly inclined to move with the rotors 51 to 53 toward the surface 64 to be cleaned. As the brushes 67, 68 abut the surface 64 to be cleaned, the inclined position of the device 50 determines the contact pressure against the surface 64 to be cleaned.
  • the cleaning brushes are flexibly mounted as shown in FIG. 7, so that the cleaning device 50 is also inclined relative to the surface to be cleaned surface 64 both superimposed brushes 67 and 68 may abut the surface to be cleaned.
  • the marking carpet 80 can be seen in plan view, so that the markings 83, 84 are also visible.
  • the surface 64 to be cleaned is part of a building 85 in front of which the marking carpet 80 can be laid out.
  • a marking carpet it is also possible to use striking existing marking points, for example in the floor area or on the building 85, for positioning the cleaning device 50.
  • the marking carpet also serves as a landing area in the present case, and when the cleaning device 50 lands, the battery change systems 57, 67 and 77 on the upper side 86 of the cleaning device 50 as well as the opening 87 to the water tank are easily accessible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

Eine Reinigungsvorrichtung (1) zum Reinigen von Fassaden weist einen Flugkörper (2) mit Rotoren (3, 4, 5, 6) und eine am Flugkörper (2) befestigte Reinigungseinrichtung (7) auf. Diese Reinigungseinrichtung (7) kann mechanisch mit Bürsten (9) oder mit einem Reinigungsmedium wie beispielsweise entionisiertem Wasser oder Trockeneis auf einfache Art und Weise Fassaden reinigen.

Description

Reinigungseinrichtung sowie Verfahren zum Reinigen einer Fläche
[Ol] Die Erfindung betrifft eine frei schwebende Reinigungsvorrichtung zum Reinigen einer Fläche ohne feste Verbindung zwischen der Reinigungsvorrichtung und der Fläche. Insbesondere betrifft die Erfindung eine Vorrichtung zum Reinigen von ebenen Flächen, wie beispielsweise von Glasflächen oder Fassadeelementen.
[02] Das Reinigen von Glasscheiben an deren Innenseite, insbesondere auch an deren Außenseite, ist bei großen Glasflächen besonders schwierig. In hohen Räumen müssen für die Reinigung von Glasflächen verfahrbare Gestelle aufgebaut werden, die es ermöglichen, die zu reinigenden Flächen zu erreichen. An Außenfassaden werden waage- recht und senkrecht verfahrbare Arbeitskanzeln eingesetzt, um es den Glas- und/oder Fassadenreinigern zu ermöglichen, schwererreichbare Scheiben zu putzen.
[03] Die einheitliche Gestaltung von Außenfassaden hat zufolge, dass neben den Glasflächen der Fensterscheiben auch weitere plane Flächen der Innenseite von Gebäuden regelmäßig gereinigt werden müssen. [04] Die Reinigung dieser Flächen ist aufwändig und führt zu hohen Kosten bei der Instandhaltung von Gebäuden.
[05] Die DE 10 2013 104 447 AI beschreibt eine Reinigungseinrichtung mit einem selbstkletternden Fahrwerk. Derartige Reinigungseinrichtungen sind wegen des hohen mechanischen Aufwands und der Gefahr von Verschmutzungen durch die Saugnäpfe nur für bestimmte Einsatzzwecke geeignet.
[06] Die WO 2013/076 711 A2 beschreibt einen Helikopter zum Reinigen von Fassadenflächen. Dieser ist jedoch nicht dazu geeignet, frei zu schweben und benötigt daher eine Seilverbindung zu einem ortsfesten Punkt. [07] Der Erfindung liegt daher die Aufgabe zu Grunde, eine derartige Reinigungsvorrichtung so auszubilden, dass es für den Glas- und/oder Fassadenreiniger leichter ist, auch schwererreichbare Fenster oder Fassadeflächen zu reinigen.
[08] Diese Aufgabe wird mit einer Reinigungsvorrichtung gelöst, die einen Flugkör- per mit Rotoren und eine am Flugkörper befestigte Reinigungseinrichtung zum Reinigen einer Fläche aufweist.
[09] Der Erfindung liegt die Erkenntnis zu Grunde, dass nicht der Glas- und/oder Fassadenreiniger mit seinem Reinigungsgerät an die zu reinigende Fläche gebracht werden muss, sondern dass es ausreicht, nur das Reinigungsgerät zu der zu reinigenden Fläche zu transportieren. Sofern dieses Reinigungsgerät als Reinigungseinrichtung an einem Flugkörper befestigt ist, kann mit einer Fernsteuerung der Flugkörper in die Nähe der zu reinigenden Fläche gebracht werden, damit mittels der Reinigungseinrichtung die zu reinigende Fläche gereinigt werden kann. Hierbei eignen sich Flugkörper mit Rotoren zur Positionierung der Reinigungseinrichtung. Diese Flugkörper können auch auto- nom oder teilautonom operieren.
[ 10] Derartige Flugkörper mit Rotoren sind als UAV oder Multicopter bekannt. Besonders geeignet sind teilautonome Multicoptersysteme zur Glas- und Fassadenreinigung im Innen- und Außenbereich. Die zu reinigenden Flächen sind insbesondere vertikale Flächen im Innen- und Außenbereich von Gebäuden. Es können jedoch auch ge- neigte, waagerechte oder gebogene Flächen mittels der Reinigungsvorrichtung gereinigt werden. Eine einfache Ausführungsform einer derartigen Reinigungsvorrichtung ist ein Quadro- oder Hexacopter mit einem Achsabstand der Rotoren von etwa 1 100 mm. Das gesamte Flugobjekt hat damit eine waagerechte Ausdehnung von 80 cm bis 120 cm und eine Aufbauhöhe von 60 cm bis 80 cm. [ 1 1 ] Der Flugkörper ist leicht und kompakt aufgebaut und gewichtssparend konzipiert. Die Implementierung des Bürstensystems sowie der verwendeten Sensorik erfolgt unter aerodynamischen Gesichtspunkten. Dabei werden die zusätzlich mitgeführten Komponenten, das heißt insbesondere der Reinigungseinrichtung so konzipiert, dass der Einfluss auf die Manövrierfähigkeit minimiert ist.
[ 12] Die Reinigungseinrichtung kann entionisiertes Wasser sprühen.
[ 13] Die Reinigungseinrichtung kann eine Sprüheinrichtung für Wasser, Trockeneis, entmineralisiertes / entionisiertes Wasser aufweisen. Vorteilhaft ist es, wenn die Reinigungseinrichtung mindestens eine rotierende Bürste aufweist. Dies ermöglicht es, neben der Bewegung der Reinigungseinrichtung relativ zu der zu reinigenden Fläche den abra- siven Effekt der Reinigungsvorrichtung zu verstärken und dadurch eine höhere Reinigungsleistung zu erzielen. Ein Abstreifer oder ein Schaber können helfen, besonders hartnäckigen Schmutz zu entfernen.
[ 14] Um die Pose des Flugkörpers und das Reinigungsergebnis zu überprüfen, wird vorgeschlagen, dass die Reinigungsvorrichtung eine Kamera aufweist. Dies ermöglicht es, einen Fensterreiniger, der sich weitentfernt von dem Flugkörper aufhält, an einem Bildschirm die Reinigung zu überprüfen. [ 15] Eine Weiterbildung der Reinigungsvorrichtung sieht vor, dass der Flugkörper einen Sicherheitsrahmen zum Schutz der Rotoren aufweist. Dieser Sicherheitsrahmen schützt nicht nur die Rotoren, sondern auch die zu reinigende Fläche und den Bediener der Reinigungsvorrichtung. Vorteilhaft ist es, wenn der komplette Frame des Multicop- ters mit einem Styroporkern ausgestattet wird, welcher als Rahmen fungiert. [16] Um den Abstand des Flugkörpers zu der zu reinigenden Fläche zu ermitteln wird vorgeschlagen, dass der Flugkörper eine Sensorik zur Abstandsmessung und / oder Kontaktdetektion aufweist. Diese Sensorik ist vorzugweise am Sicherheitsrahmen des Flugkörpers angeordnet. Hierfür sind Näherungs- und Tastsensoren vorgesehen, um aktiv auf die Annäherung an ein Objekt oder auf eine direkte Berührung des Flugkör- pers mit einem Objekt zu reagieren. Das Objekt kann auch eine aus Glas bestehende zu reinigende Fläche sein. Hierzu können spezielle Sensoren zur Erkennung von Glas genutzt werden, wie z.B. Ultraschallsensoren.
[ 17] Eine besonders gute Reinigungswirkung kann mit einem Bürstensystem erzielt werden, das fest mit dem Flugkörper verbunden ist. Dieses Bürstensystem besteht vor- zugsweise aus mehreren rotierenden Walzenbürsten, deren Achsen von Elektromotoren angetrieben sind.
[ 18] Vorteilhaft ist es, wenn die Reinigungsvorrichtung eine auf Rollen oder Kugeln verfahrbare Einrichtung aufweist. Ein fester Abstand zwischen Achsen von Walzenbürsten und einer Reinigungsfläche kann beispielsweise durch freilaufende Kunststoff- rollen gewährleistet sein. Dies führt dazu, dass die Kontaktpunkte zwischen dem Flugkörper und der zu reinigenden Fläche durch die feste räumliche Anordnung der Rollen vorgegeben ist. Dabei kann die Anordnung der Rollen so gewählt werden, dass bei einem Kontakt eine Fixierung der Pose des Flugkörpers relativ zur Reinigungsfläche stattfindet. Hierdurch kann die Reinigungsvorrichtung, auch während der Bewegung des Flugkörpers, eine konstante Reinigungsleistung gewährleisten.
[ 19] Eine spezielle Ausbildung der Reinigungsvorrichtung sieht vor, dass die Reinigungseinrichtung beweglich zum Flugkörper angeordnet ist und der Flugkörper einen Abstandsmesser aufweist, der den Abstand der Reinigungseinrichtung zum Flugkörper misst. Bei einer Vorrichtungsvariante ist die Reinigungseinrichtung ebenfalls beweglich zum Flugkörper angeordnet und der Flugkörper weist eine Druckmesseinrichtung auf, die den von der Reinigungseinrichtung auf den Flugkörper wirkenden Druck misst.
[20] Die Reinigungsvorrichtung kann neben Kameras folgende weitere Sensoren aufweisen: inertiale Messeinheiten (EVIU), GPS, Magnetometer, Kamera, 1D-LIDAR, 2D-LIDAR, mechanische Endschalter und Näherungsschalter sowie Ultraschallmessge- räte. Die Daten dieser Sensoren können zur Steuerung und zur Lokalisierung und Navigation des Flugkörpers entlang der Reinigungsfläche genutzt werden. Die Auswertung von Kamerabildern ermöglicht außerdem eine qualitative Bewertung des Reinigungsvorgangs.
[21] Die der Erfindung zu Grunde liegende Aufgabe wird auch mit einem Verfahren zum Reinigen von Flächen, insbesondere von Fassaden und von Glasfronten im Außen- bereich, gelöst, bei dem mit einem Flugkörper ein Reinigungsmedium zur Reinigung auf die zu reinigende Fläche aufgebracht wird.
[22] Vorteilhaft ist eine teilautonome Steuerung des Flugkörpers, die einen automatischen oder teilautomatischen Start- und Landevorgang ermöglicht. Hierdurch kann beispielsweise das Auffüllen eines Wassertanks oder das Austauschen eines Akkus schnell vorgenommen werden. Die Steuerung kann den Flugkörper nach dem ersten Start in einer festgelegten Distanz zur Reinigungsfläche stabilisieren. Der Bediener muss dann lediglich ausgehend von dieser Pose den zu reinigenden Bereich festlegen. Die Steuerung berechnet einen entsprechenden Pfad und stabilisiert den Flugkörper entlang der Reinigungsfläche. Wenn der Wasservorrat erschöpft ist oder sich der Ladestand der Akkus einem kritisch niedrigen Wert nähert, wird ein automatischer Landevorgang eingeleitet, um Akkus austauschen bzw. Wasser auffüllen zu können. Wenn der jeweilige Mangel beseitigt ist, kehrt der Flugkörper automatisch an seine vorherige Pose relativ zur Reinigungsfläche zurück.
[23] Vorteilhaft ist es, wenn mehrere Flugkörper verwendet werden. Dann kann ein Flugkörper mit seiner Reinigungseinrichtung die Reinigungsfläche bearbeiten bis die Acculadung oder der Wasservorrat erschöpft ist. Dann fliegt der erste Reinigungsvorrichtung mit Flugkörper und Reinigungseinrichtung zurück, um Accus und/oder den Wasservorrat zu füllen, und eine zweite Reinigungsvorrichtung fliegt an diejenige Stelle, an der die erste Reinigungsvorrichtung die Bearbeitung beendet hat. Bei größeren zu reinigenden Flächen kann die zweite Reinigungsvorrichtung bereits losfliegen, während die erste noch arbeitet, damit möglichst wenig Zeit zwischen der Bearbeitung mit er ersten Reinigungsvorrichtung und der Bearbeitung mit der zweiten Reinigungsvorrichtung liegt und ein quasikontinuierliche Reinigung erreicht wird.
[24] Für sehr große Gebäude wird ein Schwärm an Reinigungsvorrichtungen vorgeschlagen. Dies ermöglicht es gleichzeitig mit mehreren Reinigungs Vorrichtungen zu reinigen. Dabei können auch weniger Landeplätze als Reinigungsvorrichtungen vorhanden sein, da die Verweilzeit am Landeplatz wesentlich kürzer sein sollte als die Reinigungszeit.
[25] Bei mehreren Flugkörpern ist es vorteilhaft, wenn diese direkt miteinander oder über eine zentrale Steuerung kommunizieren. Dadurch wird sichergestellt, dass weder Flächen doppelt gereinigt werden noch Flächen ungereinigt bleiben.
[26] Es kann auch ein Pool an Flugkörpern und ein Pool an Reinigungseinrichtungen bereitgestellt werden. Dies ermöglicht es, Flugkörper und Reinigungseinrichtung je nach Bedarf zu koppeln. Zum Beispiel können eine Reinigungseinrichtung mit einer Bürste und eine andere Reinigungseinrichtung mit einer Wassersprüheinrichtung ausge- rüstet sein. Der Flugkörper kann dann je nach Bedarf mit der passenden Reinigungseinrichtung gekoppelt werden. Insbesondere mehrere Flugkörper und mehrere vorzugsweise unterschiedliche Reinigungseinrichtungen ermöglichen einen effektiven Reinigungsvorgang.
[27] Während eine Reinigungsperson zur Reinigung einer größeren Fassade alle Rei- nigungswerkzeuge und alle Reinigungsmittel bei sich haben sollte, erschließt das erfindungsgemäße Konzept eine Möglichkeit, die Reinigungsvorrichtung bedarfsgerecht auszurüsten und auch schnell umzurüsten. Die Beobachtung der zu reinigenden Fläche während ihrer Bearbeitung und die Speicherung der Daten ermöglicht es, auch Flächen mit hartnäckigem Schmutz als Ort zu definieren, um genau diese Flächen anschließend mit einer anderen Reinigungseinrichtung nachzubearbeiten. Dafür kann ein Flugkörper nach einer ersten Reinigung genau diejenigen Stellen anfliegen, die - vorzugsweise mit einem anderen Reinigungsmittel und/ einer anderen Reinigungseinrichtung - nachbearbeitet werden sollen.
[28] Als Reinigungsmedium kann entionisiertes Wasser eingesetzt werden. Es ist zwar beispielsweise aus der DE 20 2004 009 740 Ul bekannt, zum Reinigen von Ober- flächen ionisiertes Wasser einzusetzen, damit das Abziehen und Trocknen wegfallen kann. Die Verwendung von ionisiertem Wasser in Verbindung mit einer frei fliegenden Reinigungsvorrichtung führt jedoch zu dem Vorteil, dass bei einer Reinigung von oben nach unten die unteren Bereiche durch das herabfließende Wasser bereits vorgereinigt werden können und durch den Wind der Rotoren des Flugkörpers eine sehr schnelle Abtrocknung des anhaftenden Wasserfilms erzielt wird. Mit diesem Wasser kann ein Bürstensystem versorgt werden, um die zu reinigende Fläche zu befeuchten und zu spülen.
[29] Alternativ oder kumulativ kann als Reinigungsmedium Trockeneis eingesetzt werden. Durch Trockeneis (C02-Pellets), welches beispielsweise auf Fassaden aufge- sprüht wird, entsteht eine Unterkühlung. In Verbindung mit rotierenden Bürsten führt dies zum Abplatzen der Verschmutzungen, welche zu Boden fallen. Die DE 20 2013 105 041 Ul beschreibt zwar den prinzipiellen Einsatz von Trockeneis zur Reinigung von besonders stark verschmutzten Oberflächen mittels eine Sprühpistole. Gerade der Einsatz in Verbindung mit einem Flugkörper und einer Bürste führt dazu, dass das Tro- ckeneis mit dem Wind der Rotoren an die Oberfläche gepresst wird, dort reagiert und keine Rückstände hinterläßt.
[30] Das Trockeneis löst sich beim Auftreffen auf ein Hindernis wie beispielsweise eine Glasscheibe oder eine Fassade in gasförmige Bestandteile auf, so dass keine Nässe entsteht oder zurückbleibt. [31 ] Um einerseits keine Scheibe zu beschädigen und andererseits auch einen gewissen Druck von der Reinigungseinrichtung auf die zu reinigende Fläche ausüben zu kön- nen, wird vorgeschlagen, dass die relative Pose des Flugkörpers in Bezug auf die zu reinigende Fläche gemessen wird.
[32] Kumulativ oder alternativ wird vorgeschlagen, dass die absolute Pose des Flugkörpers in Bezug auf die zu reinigende Fassade gemessen wird. Dazu können stationäre Fixpunkte beispielsweise am Boden oder an der Fassade als Bezugssystem dienen, um an einem Gebäude die Pose der zu reinigenden Flächen festzulegen. Fixpunkte an der Fassade können beispielsweise Eckpunkte des Gebäudes sein. Es kann aber auch vor dem Gebäude ein Teppich mit definierten Punkten ausgelegt werden. Die Pose der Reinigungseinrichtung kann dann während des Fluges relativ zu diesen definierten Punkten ermittelt werden. Dies ermöglicht es, bei einem Kontakt mit einer zu reinigenden Fläche die Kontaktpunkte in Relation zu den definierten Punkten zu bestimmen. Außerdem erleichtert ein derartiger Teppich vor dem Gebäude das automatische Starten und Landen der Reinigungsvorrichtung auf diesem Teppich.
[33] Vorteilhaft ist es, wenn der Flugkörper derart gegen die zu reinigende Fläche geflogen wird, dass eine am Flugkörper befestigte Reinigungseinrichtung gegen die zu reinigende Fläche gedrückt und an der Fläche entlang bewegt wird. Hierzu hält die Steuerung den Multicopter in einem bestimmten Neigungswinkel in Relation zur reinigenden Fläche von einigen Grad. Man spricht hierbei auch vom Pitch Winkel.. Beim Aufprall auf der zu reinigenden Fläche entsteht ein Druck zwischen der zu reinigenden Fläche und der anliegenden Reinigungsvorrichtung. Dieser Druck wird beispielsweise als Anpressdruck für Reinigungsbürsten verwendet, um einen dauerhaften Kontakt zwischen Reinigungsbürste und zu reinigender Fläche zu gewährleisten. Er kann aber auch den Impuls ausgleichen, der die Reinigungsvorrichtung beim Sprühen einer Reinigungsflüssigkeit gegen die zu reinigende Fläche von der zu reinigenden Fläche weg drückt. [34] Der Flugkörper kann auch mit Schwung gegen die zu reinigende Fläche geflogen werden. Dies erhöht den Druck einer Reinigungsbürste oder eines Schabers gegen die zu reinigende Fläche. Der Schwung kann jedoch auch durch den Impuls abge- schwächt werden, der entsteht, wenn die Reinigungseinrichtung Flüssigkeit gegen die zu reinigende Fläche sprüht.
[35] Ein Reinigungssystem weist eine Reinigungsvorrichtung, mehrere zu reinigende Flächen und eine die zu reinigenden Flächen umgebende Topologie auf. In einem Da- tenspeicher werden Bezugspunkte der Topologie gespeichert und es werden einerseits die Pose der Reinigungsvorrichtung relativ zu diesen Bezugspunkten und andererseits die Pose der Reinigungsvorrichtung in Bezug auf die zu reinigende Fläche ermittelt, um die Reinigungseinrichtung automatisch an den zu reinigenden Flächen entlang zu führen. [36] Dies ermöglicht es, mit einer Reinigungsvorrichtung auch größere Fassaden autonom zu reinigen. Je nach Größe der Flugeinrichtung und Verschmutzung der Fassade werden die zu reinigenden Rächen einmal oder mehrmals angeflogen, um sie mit Reinigungsflüssigkeit zu benetzen, die Oberfläche zu bürsten, Schmutzpartikel abzulösen, Schmutz abzuspülen und gegebenenfalls sogar mit Warmluft zu trocknen oder eine schmutzabweisende Schicht aufzusprühen.
[37] Für ein Hochhaus kann somit eine Reinigungsvorrichtung derart programmiert werden, dass sie autonom nach und nach alle zu reinigenden Flächen reinigt und dann wieder am Anfang beginnt oder bestimmte Flächen häufiger und andere Flächen weniger häufig reinigt. Der Flugkörper bewegt dabei die Reinigungseinrichtung von einer Reinigungsmittelaufnahmestation zur zu reinigenden Fläche, dann während der Reinigung relativ zur zu reinigenden Fläche und wieder zurück, um neues Reinigungsmittel aufzunehmen. Die Reinigungsmittelaufnahmestation und eine geschützte Behausung für den Flugkörper und die Reinigungseinrichtung können dabei beispielsweise auf dem Dach des Hochhauses vorgesehen werden. [38] Es ist auch möglich, den Flugkörper mit unterschiedlichen Reinigungseinrichtungen zu koppeln, um beispielsweise in einem ersten Arbeitsgang die zu reinigende Fläche nur zu besprühen, sodass sich der Schmutz löst, und in einem zweiten Arbeits- gang die Fläche zu bürsten, um den angelösten Schmutz abzubürsten. Dieser kann dann in einem dritten Arbeitsgang abgespült werden. Dies führt dazu, dass der Flugkörper nur mit dem Gewicht belastet wird, das für einen speziellen Reinigungsgang unbedingt notwendig ist. Der Flugkörper kann somit beispielsweise zunächst nur mit einem Flüs- sigkeitstank und einer Auftragsdüse gekoppelt werden und danach zusätzlich oder alternativ mit einer Bürste oder einem Bürstensystem. Auch die Ortungseinrichtungen können so zur Verfügung gestellt werden, dass je nach Einsatz unterschiedliche Ortungseinrichtungen am Flugobjekt angekoppelt werden. Dieser An- und Abkopplungsvorgang erfolgt vorzugsweise automatisch. Dadurch entsteht ein vorzugsweise modulares Sys- tem einer fliegenden Reinigungseinrichtung zur Reinigung von Fassaden.
[39] Die Reinigungsvorrichtung ist darauf ausgerichtet, den Reinigungsprozess möglichst autonom ablaufen zu lassen. Eine Reinigungskraft sollte nur noch eine überwachende Funktion ausüben und im Notfall und zum Auffüllen oder Austauschen der Reinigungsbehälter eingesetzt werden. [40] Hierfür wird ein Sensorkonzept vorgeschlagen, mit dem die Pose der Reinigungseinrichtung absolut und relativ zur zu reinigenden Fläche ermittelt werden kann.
[41 ] Bei Gebäuden mit einem oder bis zu 10 Stockwerken wird von der Reinigungskraft in einer festen Distanz vor die Fassade ein Marken-Teppich ausgelegt. Diese Marken werden mit einer am Flugkörper befestigten Kamera erfasst, um die Pose der Reini- gungseinrichtung relativ zur Fassade zu bestimmen. Diese Pose bildet die Grundlage des gesamten Reinigungsprozesses. Im Nahbereich zur Reinigungsfläche bzw. bei direktem Kontakt braucht die Reinigungsvorrichtung allerdings mehr Daten, da die mit dem Markenteppich ermittelte Pose kleine Fehler aufweisen kann. Hier werden dann Ultraschall und/oder optische Abstands- und Geschwindigkeitsmesseinrichtungen ver- wendet. LIDAR-Systeme senden Laserimpulse aus und detektieren das zurückgestreute Licht. Aus der Lichtlaufzeit der Signale wird die Entfernung zum Ort der Streuung berechnet. LIDAR-Systeme dienen zur Objekterkennung und Umgebungserfassung und werden bei der Reinigungsvorrichtung zur exakten Bestimmung des Abstandes zur Reinigungsfläche genutzt.
[42] Die Tastsensoren dienen dann im letzten Schritt dazu, den Kontakt zwischen Reinigungsvorrichtung und Fläche festzustellen. Anhand dieser Daten hält ein Regler die Reinigungseinrichtung in einer leicht schrägen Pose, so dass eine relativ leichte Kraft der Reinigungsvorrichtung gegen die Reinigungsfläche ausgeübt wird. Dabei wird die Geschwindigkeit, mit der die Reinigungsvorrichtung nach vorne fliegt beim Anstoßen an der Fläche zu einem Druck, der von der Reinigungsvorrichtung auf die Fläche ausgeübt wird. [43] Bei größeren Gebäuden ist die Erfassung von Marken am Boden nicht mehr möglich. Hierbei werden weitere Sensoren benötigt. Ein zugrunde liegendes Modell des Gebäudes kann dabei zur Lokalisierung, also zur Bestimmung der Pose der Reinigungseinrichtung genutzt werden. Ein solches Modell kann entweder im Vorhinein selbst erstellt werden oder z.B. durch ein bekanntes CAD-File des Gebäudes eingebunden wer- den. Zur Selbst-Erstellung eines solchen Modells kann ein kooperatives Roboter- Boden-Luft System genutzt werden. Hierbei kann der Flugkörper mit einem 3D-LIDAR System ausgestattet sein. Dieses 3D-LIDAR System wird auch zur Bestimmung der Pose anhand des Modells verwendet.
[44] Zusätzliche Sensorik stellen RGB-D Tiefenkameras und Windgeschwindigkeits- Sensoren dar. Mit RGB-D Kameras kann der direkte Bereich der Reinigungseinrichtung dreidimensional erfasst werden. Dadurch kann eine autonome Navigation der Reinigungseinrichtung auch bei einer nicht komplett planen Reinigungsfläche erfolgen. Eine Erfassung der zu reinigenden Fläche in Bezug auf die Topologie der Umgebung ermöglicht es auch Fahnenmasten, Skulpturen, Vorsprünge, Fensterbänke, Balkone usw. zu erfassen, um einerseits mit diesen Objekten nicht zu kollidieren und andererseits sich an diesen stationären Objekten zu orientieren. [45] Eine Messung der Windgeschwindigkeit bevorzugt an der Reinigungseinrichtung ist gerade in relativ großen Höhen wichtig. Somit hat die Reinigungskraft die Möglichkeit, auf eine Veränderung der Windgeschwindigkeit in der Höhe der Reinigungseinrichtung zeitnah zu reagieren. [46] Drei Ausführungsbeispiele sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigt
Figur 1 schematisch den Aufbau einer Reinigungsvorrichtung mit vier Rotoren,
Figur 2 eine Seitenansicht einer Reinigungsvorrichtung mit acht Rotoren,
Figur 3 eine Draufsicht auf die in Figur 2 gezeigte Reinigungsvorrichtung, Figur 4 eine Ansicht von unten auf eine Reinigungseinrichtung mit drei Rotoren,
Figur 5 eine Ansicht von oben auf die in Figur 4 gezeigte Reinigungseinrichtung,
Figur 6 eine Seitenansicht der in Figur 4 gezeigten Reinigungseinrichtung,
Figur 7 eine Seitenansicht der in Figur 4 gezeigten Reinigungseinrichtung mit
Markerteppich, Figur 8 eine Draufsicht gemäß Figur 7,
Figur 9 eine perspektivische Draufsicht auf die in Figur 4 gezeigte Reinigungseinrichtung,
Figur 10 eine perspektivische Ansicht der Unterseite der in Figur 4 gezeigten Reinigungseinrichtung und Figur 1 1 eine perspektivische Seitenansicht der in Figur 4 gezeigten Reinigungseinrichtung. [47] Die Reinigungsvorrichtung 1 weist einen Flugkörper 2 mit Rotoren 3, 4, 5, 6 auf. An diesem Flugkörper 2 ist eine Reinigungseinrichtung 7 zum Reinigen einer Räche (nicht gezeigt) angebracht.
[48] Die Reinigungseinrichtung 7 besteht aus einem Grundkörper 8, an den Reini- gungsgeräte wie beispielsweise eine rotierende Bürste 9 angebracht sind. Anstelle einer rotierenden Bürste 9 können auch mehrere rotierende Bürsten 9 um den Grundkörper 8 herum angeordnet sein.
[49] Darüber hinaus ist in den Grundkörper 8 eine Kamera 10 integriert. Anstelle einer Kamera 10 können auch mehrere Kameras oder eine Kamera mit mehreren Opti- ken am Flugkörper angeordnet sein.
[50] Um Kollisionen mit Menschen und Gegenständern zu vermeiden ist am Flugkörper 2 ein Sicherheitsrahmen 1 1 zum Schutz der Rotoren 3, 4, 5 und 6 vorgesehen.
[51] Zur Abstandsmessung und/oder Kontaktdetektion sind am Flugkörper 2 Sensoren 12 bis 15 vorgesehen, die gemeinsam eine Sensorik bilden. [52] Um einen konstanten Abstand zu einer zu reinigenden Fläche einzuhalten, ist eine auf Rollen fahrbare Einrichtung 16 vorgesehen, die zwischen dem Grundkörper 8 der zu reinigenden Fläche derart angeordnet ist, dass die Rollen 17, 18 auf der zu reinigenden Flächen abrollen, während sich die Reinigungsvorrichtung 7 relativ zur reinigenden Fläche bewegt. In der Figur sind nur zwei Rollen 17 und 18 gezeigt. Vorteilhaft ist es wenn am Umfang des Flugkörpers 2 noch weitere Rollen angeordnet sind.
[53] Die Bürsten 9 der Reinigungseinrichtung 7 können beweglich zum Flugkörper 2 angeordnet sein. Hierzu dienen Pufferelemente 19, 20 mit Abstandsmessern 21 , 22. Anstelle der Abstandsmesser oder zusätzlich zu den Abstandsmessern kann auch eine Druckmesseinrichtung (nicht gezeigt) vorgesehen sein, um den von den Bürsten 9 der Reinigungseinrichtung 7 auf den Flugkörper 2 wirkenden Druck zu messen. [54] Im Grundkörper ist eine Elektronik 23 vorgesehen, die auch Messeinrichtungen 24 zur Steuerung der Pose des Flugkörpers 2 aufweist.
[55] Eine Düse 25 erlaubt es ein Reinigungsmedium wie beispielsweise entionisiertes Wasser oder Trockeneis auf die zu reinigende Fläche wie beispielsweise eine Fassade aufzubringen.
[56] Die in den Figuren 2 und 3 gezeigte Reinigungsvorrichtung 30 hat einen Flugkörper 31 und acht Rotoren 32 bis 39. Am Flugkörper 31 ist eine Reinigungseinrichtung 40 angebracht, die eine rotierende Bürste 41 und drei Abstandshalteräder 42, 43 und 44 aufweist. An der Reinigungseinrichtung ist eine Kamera 45 angeordnet und über die Rotoren ist ein Sicherheitsrahmen 46 gespannt, der eine Kollision der Rotoren mit einer Person oder einer zu reinigenden Fläche vermeiden soll. Die Reinigungseinrichtung 31 weist ein Reinigungsmittelreservoir 47 auf, in dem als Reinigungsmedium entionisiertes Wasser oder Trockeneis transportiert werden kann.
[57] Die Figur 4 zeigt eine Reinigungsvorrichtung 50 mit drei Rotoren 51 , 52 und 53. Zwischen diesen Rotoren ist jeweils eine Reinigungsbürste 54, 55, 56 an der Außenseite des Grundkörpers 57 angeordnet. Seitlich der Reinigungsbürsten sind jeweils Tastsensoren 58 bis 63 vorgesehen, um den Abstand zwischen dem Grundkörper 57 und einer zu reinigenden Fläche 64 zu ermitteln. Die Tastsensoren können jeweils als Sensorpaar 65, 66 wie in Figur 7 exemplarisch dargestellt ausgebildet sein. Auch die Reinigungsbürsten sind vorzugsweise als Bürstenpaar 67, 68 ausgebildet. Dies ermöglicht es, zwischen zwei Bürsten eine Wasserzuführung 69, 70 vorzusehen, durch die ionisiertes Wasser gegen die zu reinigende Fläche 64 gesprüht werden kann.
[58] An der Unterseite der Reinigungsvorrichtung 50 ist auch ein einklappbares Landegestell mit drei Landefüßen 71 , 72 und 73 vorgesehen, die zumindest beim Landevor- gang ausgeklappt werden können. In der Mitte des Grundkörpers 57 ist ein Sensormodul 74 vorgesehen, das eine RGBD-Kamera und ein 1 D-LIDAR aufweist. [59] In der Draufsicht erkennt man die entgegengesetzt rotierenden Rotoren 51, 52 und 53 und dazwischen jeweils ein Batteriewechselsystem 75, 76 und 77. Im Inneren des Grundkörpers 57 befindet sich ein Wassertank (nicht gezeigt), der durch die Öffnung 78 zugänglich ist. An der Oberseite des Grundkörpers 57 ist ein weiteres Sensor- modul 79 vorgesehen, das eine RGBD-Kamera und ein 2D-LIDAR aufweist.
[60] Mit dem Sensormodul 74 kann die Pose der Reinigungsvorrichtung 50 relativ zu einem Markerteppich 80 bestimmt werden und die Ultraschallsensoren 81 , 82 ermöglichen es, die relative Pose der Reinigungsvorrichtung 50 in Bezug auf die zu reinigende Fläche 64 festzulegen. [61] Beim Anflug der Reinigungsvorrichtung 50 an die zu reinigende Fläche 64 ist die Reinigungsvorrichtung 50 leicht geneigt, um sich mit den Rotoren 51 bis 53 zur zu reinigenden Fläche 64 hin zu bewegen. Sowie die Bürsten 67, 68 an der zu reinigenden Fläche 64 anliegen, bestimmt die Schräglage der Vorrichtung 50 den Anpressdruck an die zu reinigende Fläche 64. Die Reinigungsbürsten sind wie in Figur 7 gezeigt flexibel gelagert, sodass auch bei einer Schräglage der Reinigungsvorrichtung 50 relativ zur zu reinigenden Fläche 64 beide übereinander liegenden Bürsten 67 und 68 an der zu reinigenden Fläche anliegen können.
[62] In Figur 8 ist der Markierungsteppich 80 in der Draufsicht zu erkennen, sodass auch die Markierungen 83, 84 sichtbar sind. Die zu reinigende Fläche 64 ist ein Teil eines Gebäudes 85, vor dem der Markierungsteppich 80 ausgelegt werden kann. Anstelle eines Markierungsteppichs können auch markante vorhandene Markierungspunkte, beispielsweise im Bodenbereich oder am Gebäude 85, für die Positionierung der Reinigungsvorrichtung 50 verwendet werden. Der Markierungsteppich dient im vorliegenden Fall auch als Landefläche und bei gelandeter Reinigungsvorrichtung 50 sind die Batte- riewechselsysteme 57, 67 und 77 an der Oberseite 86 der Reinigungsvorrichtung 50 ebenso wie die Öffnung 87 zum Wassertank leicht zugänglich.

Claims

Patentansprüche:
1. Reinigungsvorrichtung (1) zum Reinigen einer Fläche frei schwebend ohne feste Verbindung zwischen der Reinigungsvorrichtung und der Fläche, dadurch gekennzeichnet, dass sie einen Flugkörper (2) mit Rotoren (3, 4, 5, 6) und eine am Flugkörper (2) befestigte Reinigungseinrichtung (7) zum Reinigen der Fläche aufweist.
2. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reinigungseinrichtung (7) mindestens eine rotierende Bürste (9) aufweist.
3. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Kamera (10) aufweist.
4. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Flugkörper (2) einen Sicherheitsrahmen (1 1) zum Schutz der Rotoren (3, 4, 5, 6) aufweist.
5. Reinigungs Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Flugkörper (2) eine Sensorik (12, 13, 14, 15) zur Abstandsmessung und/oder Kontaktdetektion aufweist.
6. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine auf Rollen (17, 18) verfahrbare Einrichtung (16) aufweist.
7. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reinigungseinrichtung (7) beweglich zum Flugkörper (2) angeordnet ist und der Flugkörper (2) einen Abstandsmesser (21 , 22) aufweist, der den Abstand der Reinigungseinrichtung (7) zum Flugkörper misst.
8. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reinigungseinrichtung (7) beweglich zum Flugkörper (2) angeordnet ist und der Flugkörper (2) eine Druckmesseinrichtung aufweist, die den von der Reinigungseinrichtung (7) auf den Flugkörper (2) wirkenden Druck misst.
9. Reinigungsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie Messeinrichtungen (24) aufweist, die die Steuerung der Pose des Flugkörpers (2) beeinflussen.
10. Verfahren zum Reinigen von Flächen, insbesondere von Fassaden und von Glasfronten im Außenbereich, bei dem mit einem Flugkörper (2) ein Reinigungsmedium zur Reinigung auf die zu reinigende Fläche aufgebracht wird.
1 1. Verfahren nach dem vorhergehenden Verfahrensanspruch, dadurch gekennzeichnet, dass das Reinigungsmedium entionisiertes Wasser ist.
12. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass das Reinigungsmedium Trockeneis ist.
13. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die relative Pose des Flugkörpers (2) in Bezug auf die zu reinigende Fläche gemessen wird.
14. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die absolute Pose des Flugkörpers seine in Bezug auf die zu reinigende Fläche gemessen wird.
15. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass der Flugkörper derart gegen die zu reinigende Fläche geflogen wird, dass eine am Flugkörper (2) befestigte Reinigungseinrichtung (7) gegen die zu reinigende Fläche gedrückt und an der Fläche entlang bewegt wird. Reinigungssystem aus einer Reinigungsvorrichtung gemäß einem der Ansprüche 1 bis 9, mehreren zu reinigenden Flächen und einer die zu reinigenden Flächen umgebenden Topologie, bei dem in einem Datenspeicher Bezugspunkte der To- pologie gespeichert werden, die Pose der Reinigungsvorrichtung relativ zu diesen Bezugspunkten und die Pose der Reinigungsvorrichtung in Bezug auf die zu reinigende Fläche ermittelt werden, um die Reinigungseinrichtung automatisch an den zu reinigenden Flächen entlang zu führen.
PCT/DE2016/000145 2015-07-14 2016-04-07 Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche WO2017008776A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2018105188A RU2705979C2 (ru) 2015-07-14 2016-04-07 Чистящее устройство, а также способ очищения поверхности
EP16727930.6A EP3322323B1 (de) 2015-07-14 2016-04-07 Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche
CA2991541A CA2991541C (en) 2015-07-14 2016-04-07 Cleaning apparatus and method for cleaning a surface
DE112016003158.0T DE112016003158A5 (de) 2015-07-14 2016-04-07 Reinigungseinrichtung sowie Verfahren zum Reinigen einer Fläche
US15/743,393 US20180208307A1 (en) 2015-07-14 2016-04-07 Cleaning apparatus and method for cleaning a surface
JP2017568247A JP6728548B2 (ja) 2015-07-14 2016-04-07 表面をきれいにするための清掃装置及びその方法
SG11201800248PA SG11201800248PA (en) 2015-07-14 2016-04-07 Cleaning device and method for cleaning a surface
BR112018000530-4A BR112018000530B1 (pt) 2015-07-14 2016-04-07 Dispositivo de limpeza, método para limpar uma superfície e sistema de limpeza

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015008859.9A DE102015008859A1 (de) 2015-04-28 2015-07-14 Flugobjekt mit Fernsteuerung und einer daran befestigten Reinigungseinrichtung sowie Verfahren zum Reinigen einer Fläche
DE102015008859.9 2015-07-14
DE102016000295 2016-01-15
DE102016000295.6 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017008776A1 true WO2017008776A1 (de) 2017-01-19

Family

ID=61021875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/000145 WO2017008776A1 (de) 2015-07-14 2016-04-07 Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche

Country Status (2)

Country Link
CA (1) CA2991541C (de)
WO (1) WO2017008776A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986026A (zh) * 2017-04-24 2017-07-28 南京理工大学 一种高空玻璃清洁飞行器
CN107361705A (zh) * 2017-07-18 2017-11-21 深圳市雷凌广通技术研发有限公司 一种基于物联网的具有擦玻璃功能的智能化无人机
JP2018181014A (ja) * 2017-04-14 2018-11-15 株式会社Ihi 飛行体
CN109313455A (zh) * 2017-11-16 2019-02-05 深圳市大疆创新科技有限公司 智能眼镜及其控制云台的方法、云台、控制方法和无人机
WO2019052593A2 (de) 2017-09-18 2019-03-21 Gebäudereinigung Lissowski GmbH Reinigungseinrichtung sowie verfahren zum reinigen von flächen
CN109549575A (zh) * 2017-09-24 2019-04-02 呼木吉勒 一种户外幕墙清洗无人机
DE102017010319A1 (de) * 2017-11-08 2019-05-09 Rauch Landmaschinenfabrik Gmbh Landwirtschaftliche Verteilmaschine auf der Basis eines autonomen Fluggerätes und Befüll- und Ladestation für eine solche Verteilmaschine
WO2020114195A1 (zh) * 2018-12-06 2020-06-11 北京工业大学 一种高空作业特种服务机器人
CN111572792A (zh) * 2020-05-20 2020-08-25 广东电网有限责任公司 一种喷射方向可调节的无人机挂载喷火装置及清障无人机
CN114433517A (zh) * 2021-12-22 2022-05-06 合肥阳光智维科技有限公司 光伏组件清洁方法、装置、设备及计算机可读存储介质
CN115281567A (zh) * 2022-09-01 2022-11-04 圣同智能机械设备(上海)有限公司 一种墙体表面清洁用激光清理设备
WO2022261691A1 (de) * 2021-06-17 2022-12-22 Lilleg Staudenherz Ronald Fluggerät und verfahren zur reinigung von flächen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746209A (zh) * 2019-02-14 2019-05-14 浙江中控太阳能技术有限公司 一种定日镜清洗设备及其清洗方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890250A (en) * 1996-02-02 1999-04-06 Sky Robitics, Inc. Robotic washing apparatus
JP2003026097A (ja) * 2001-07-17 2003-01-29 Yoshikazu Kikuoka ヘリコプター
KR20030025662A (ko) * 2001-09-22 2003-03-29 김종율 소형 무인 헬기를 이용한 청소장치
DE202004009740U1 (de) 2004-06-17 2004-11-11 Schmidt Innovative Technik Gmbh Anordnung zum Reinigen von Fassaden
EP2211002A1 (de) * 2009-01-26 2010-07-28 Niederberger Engineering AG Reinigungsanlage für eine Fassade eines Gebäudes
DE102009048778A1 (de) * 2009-10-08 2011-04-14 HERGENRÖDER, Jörn Hubschrauberbasiertes Reinigungsgerät
WO2013076711A2 (en) 2013-03-07 2013-05-30 Wasfi Alshdaifat Aerobotic glass cleaner
DE202013105041U1 (de) 2013-11-08 2014-01-17 Bendel Werkzeuge Inh. Frank Bendel Reinigungsgerät
DE102013104447A1 (de) 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automatisiertes und flexibel einsetzbares selbstkletterndes Fahrwerk mit Flugeigenschaften
WO2016004914A1 (de) * 2014-07-05 2016-01-14 Ridha Azaiz Verfahren zur steuerung eines flugkoerpers zur reinigung von oberflaechen
US20160052026A1 (en) * 2014-08-20 2016-02-25 Elwha Llc Surface cleaning unmanned aerial vehicle
EP3031538A1 (de) * 2014-12-02 2016-06-15 Marcus Fritzsche Verfahren zum steuern eines unbemannten drehflügelfluggeräts zur reinigung weitgehend glatter flächen

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890250A (en) * 1996-02-02 1999-04-06 Sky Robitics, Inc. Robotic washing apparatus
JP2003026097A (ja) * 2001-07-17 2003-01-29 Yoshikazu Kikuoka ヘリコプター
KR20030025662A (ko) * 2001-09-22 2003-03-29 김종율 소형 무인 헬기를 이용한 청소장치
DE202004009740U1 (de) 2004-06-17 2004-11-11 Schmidt Innovative Technik Gmbh Anordnung zum Reinigen von Fassaden
EP2211002A1 (de) * 2009-01-26 2010-07-28 Niederberger Engineering AG Reinigungsanlage für eine Fassade eines Gebäudes
DE102009048778A1 (de) * 2009-10-08 2011-04-14 HERGENRÖDER, Jörn Hubschrauberbasiertes Reinigungsgerät
WO2013076711A2 (en) 2013-03-07 2013-05-30 Wasfi Alshdaifat Aerobotic glass cleaner
DE102013104447A1 (de) 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automatisiertes und flexibel einsetzbares selbstkletterndes Fahrwerk mit Flugeigenschaften
DE202013105041U1 (de) 2013-11-08 2014-01-17 Bendel Werkzeuge Inh. Frank Bendel Reinigungsgerät
WO2016004914A1 (de) * 2014-07-05 2016-01-14 Ridha Azaiz Verfahren zur steuerung eines flugkoerpers zur reinigung von oberflaechen
US20160052026A1 (en) * 2014-08-20 2016-02-25 Elwha Llc Surface cleaning unmanned aerial vehicle
EP3031538A1 (de) * 2014-12-02 2016-06-15 Marcus Fritzsche Verfahren zum steuern eines unbemannten drehflügelfluggeräts zur reinigung weitgehend glatter flächen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181014A (ja) * 2017-04-14 2018-11-15 株式会社Ihi 飛行体
CN106986026A (zh) * 2017-04-24 2017-07-28 南京理工大学 一种高空玻璃清洁飞行器
CN107361705A (zh) * 2017-07-18 2017-11-21 深圳市雷凌广通技术研发有限公司 一种基于物联网的具有擦玻璃功能的智能化无人机
CN107361705B (zh) * 2017-07-18 2019-12-13 河北三丰航空科技股份有限公司 一种基于物联网的具有擦玻璃功能的智能化无人机
WO2019052593A2 (de) 2017-09-18 2019-03-21 Gebäudereinigung Lissowski GmbH Reinigungseinrichtung sowie verfahren zum reinigen von flächen
WO2019052593A3 (de) * 2017-09-18 2019-05-16 Gebäudereinigung Lissowski GmbH Reinigungseinrichtung sowie verfahren zum reinigen von flächen
CN109549575A (zh) * 2017-09-24 2019-04-02 呼木吉勒 一种户外幕墙清洗无人机
DE102017010319A1 (de) * 2017-11-08 2019-05-09 Rauch Landmaschinenfabrik Gmbh Landwirtschaftliche Verteilmaschine auf der Basis eines autonomen Fluggerätes und Befüll- und Ladestation für eine solche Verteilmaschine
CN109313455A (zh) * 2017-11-16 2019-02-05 深圳市大疆创新科技有限公司 智能眼镜及其控制云台的方法、云台、控制方法和无人机
CN109313455B (zh) * 2017-11-16 2021-09-28 深圳市大疆创新科技有限公司 智能眼镜及其控制云台的方法、云台、控制方法和无人机
WO2020114195A1 (zh) * 2018-12-06 2020-06-11 北京工业大学 一种高空作业特种服务机器人
CN111572792A (zh) * 2020-05-20 2020-08-25 广东电网有限责任公司 一种喷射方向可调节的无人机挂载喷火装置及清障无人机
WO2022261691A1 (de) * 2021-06-17 2022-12-22 Lilleg Staudenherz Ronald Fluggerät und verfahren zur reinigung von flächen
AT525227A1 (de) * 2021-06-17 2023-01-15 Ronald Lilleg Staudenherz Fluggerät und Verfahren zur Reinigung von Flächen
AT525227B1 (de) * 2021-06-17 2023-04-15 Ronald Lilleg Staudenherz Fluggerät und Verfahren zur Reinigung von Flächen
CN114433517A (zh) * 2021-12-22 2022-05-06 合肥阳光智维科技有限公司 光伏组件清洁方法、装置、设备及计算机可读存储介质
CN115281567A (zh) * 2022-09-01 2022-11-04 圣同智能机械设备(上海)有限公司 一种墙体表面清洁用激光清理设备

Also Published As

Publication number Publication date
CA2991541C (en) 2023-09-26
CA2991541A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
EP3322323B1 (de) Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche
WO2017008776A1 (de) Reinigungsvorrichtung sowie verfahren zum reinigen einer fläche
DE102015008859A1 (de) Flugobjekt mit Fernsteuerung und einer daran befestigten Reinigungseinrichtung sowie Verfahren zum Reinigen einer Fläche
EP3077882B1 (de) Verfahren zur steuerung eines flugkoerpers zur reinigung von oberflächen
EP2982285B1 (de) Bodenreinigungsgerät zur trocken- und feuchtreinigung sowie verfahren zum betrieb eines selbstfahrenden bodenreinigungsgerätes
DE19520532C2 (de) Verfahren zum schnellen Messen der Richtung von einer autonomen Vorrichtung zu einem Transponder sowie selbstfahrende autonome Vorrichtung ####
DE10390349B4 (de) Verfahren und Vorrichtung zum Auftragen von Farben oder Lacken
DE102014012811B4 (de) Bodenreinigungsgerät und Verfahren und System zum Ermitteln eines Wohnungsgrundrisses durch ein selbstfahrendes Bodenreinigungsgerät
EP2752726A1 (de) Bodenbehandlungsmaschine und Verfahren zum Behandeln von Bodenflächen
EP2504637B1 (de) Reinigungsanlage für eine solaranlage
DE202012100128U1 (de) Erfassungssystem zur Informationsgewinnung in rohrartigen Elementen
DE102015110466B4 (de) Prüf- und/oder Arbeitsvorrichtung
CN112318479A (zh) 外墙维护设备
DE102016120362A1 (de) Reinigungssystem zur zumindest teilweise automatischen Reinigung von wenigstens einem Objekt im Überbodenbereich
EP3559773A1 (de) Verfahren zur navigation und selbstlokalisierung eines sich autonom fortbewegenden bearbeitungsgerätes
WO2019052593A2 (de) Reinigungseinrichtung sowie verfahren zum reinigen von flächen
EP3435030A1 (de) Verfahren zur erstellung eines 3d-modells von einem objekt
EP3676733A1 (de) Verfahren zur raumvermessung mittels eines messfahrzeugs
DE102020001193A1 (de) Vorrichtung zum Bewegen, Führen und Bedienen einer Spritzvorrichtung und Verfahren zum Betrieb einer derartigen Vorrichtung
DE112020000170T5 (de) Unbemanntes Luftfahrzeug und Prüfverfahren
DE10212964A1 (de) Kletterroboter für die Bewegung auf einem glatten Untergrund
DE202004003324U1 (de) Roboterfuß mit Saugnäpfen zur Fortbewegung auf beliebig geneigten, glatten Flächen
DE10212965B4 (de) Kletterroboter für die sichere Bewegung auf einem glatten Untergrund
AT525227B1 (de) Fluggerät und Verfahren zur Reinigung von Flächen
WO2023222445A1 (de) Verfahren zur kalibrierung eines bauroboters und bauroboter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16727930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568247

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2991541

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15743393

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201800248P

Country of ref document: SG

Ref document number: 112016003158

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2018105188

Country of ref document: RU

Ref document number: 2016727930

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112016003158

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000530

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000530

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180110