WO2017008231A1 - 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法 - Google Patents

基于铁磁材料磁弹性相位时延效应的应力检测系统及方法 Download PDF

Info

Publication number
WO2017008231A1
WO2017008231A1 PCT/CN2015/083915 CN2015083915W WO2017008231A1 WO 2017008231 A1 WO2017008231 A1 WO 2017008231A1 CN 2015083915 W CN2015083915 W CN 2015083915W WO 2017008231 A1 WO2017008231 A1 WO 2017008231A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
strip
sensor
tested
stress
Prior art date
Application number
PCT/CN2015/083915
Other languages
English (en)
French (fr)
Inventor
徐立坪
曾杰伟
张清东
缪存孝
毕佳
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to PCT/CN2015/083915 priority Critical patent/WO2017008231A1/zh
Publication of WO2017008231A1 publication Critical patent/WO2017008231A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Definitions

  • the invention relates to the technical field of metal material detection, in particular to a stress detection system and method based on the magnetoelastic phase delay effect of a ferromagnetic material.
  • Plate and strip is an important raw material widely used in various sectors of national economic production, and is the leading product in the production of steel industry. With the development of social productivity and the advancement of industrial technology, extremely strict requirements are imposed on the production of strips. The products must not only have excellent surface quality and good performance, but also have precise geometrical dimensions and flatness of the flatness. .
  • the cold rolled strip develops toward a thinner and wider direction, which puts forward higher technical requirements for the shape control of the cold rolled strip.
  • the rolling conditions are the main external factors affecting the shape of the cold rolled strip.
  • the application of tension is an important means to adjust the shape of the plate and ensure the smooth progress of the rolling process.
  • the cold strip is hidden, and the strip shape of the strip is hidden. The control by manual experience can easily lead to the stability of the shape stability of the whole strip. It is difficult to quantitatively control the bad shape.
  • the strip After unwinding or annealing, the strip is potentially poorly plate-shaped and exhibits a variety of apparent plate-shaped defects (side waves, medium waves or composite waves, etc.). Therefore, the key to improving the shape quality of cold rolled strip steel is to accurately detect the true strip shape.
  • the plate type inspection devices purchased by China's steel producers are imported from abroad, which are expensive and extremely expensive to maintain; foreign companies have formed a monopoly on the price of the industry in the rolling equipment market in China; The technological monopoly has caused the rolling equipment independently researched and developed by Chinese enterprises to fall behind in online monitoring and automatic control technology.
  • the main method of shape detection is to detect the stress distribution of the strip by the shape meter.
  • the current mainstream products for the cold rolled strip adopt the split roller contact pressure detection scheme.
  • the detection scheme has low sensitivity and contact. Type measurement is easy to cause slippage and scratching, steel, mold and tooling investment is huge, and the total cost performance is low;
  • the sensor is placed at four equal points around the split roll, and continuous measurement of the strip is not possible.
  • the technical problem to be solved by the present invention is to provide a stress detecting system and method based on the magnetoelastic phase delay effect of a ferromagnetic material, so as to solve the problem that the contact measurement existing in the prior art is easy to cause slipping and scratching strips, molds and tooling.
  • the investment is huge, the total cost performance is low, the sensitivity is low, and the sensor is arranged at four equal points of the split roller roll, and the problem of continuous measurement of the strip material cannot be realized.
  • an embodiment of the present invention provides a stress detecting system based on a magnetoelastic phase delay effect of a ferromagnetic material, comprising: an excitation sensor located at an upper portion of the strip to be tested, and an induction at a lower portion of the strip to be tested. a sensor, a current module, and a stress determination module;
  • the current module is configured to provide an excitation current for the excitation sensor
  • the excitation sensor is configured to generate an alternating magnetic field in an upper surface space of the strip to be tested when the excitation current is connected;
  • the inductive sensor is configured to perform a magnetoelastic phase delay effect based on a ferromagnetic material when the strip to be tested in the alternating magnetic field is subjected to an external force or residual stress exists in the strip of the strip to be tested.
  • the magnetization of the strip will change, producing an induced electromotive force in the induction coil of the inductive sensor;
  • the stress determining module is configured to process the generated induced electromotive force, and determine a real-time stress of the strip to be tested according to a phase difference between the phase of the induced electromotive force and the initial phase of the inductive sensor.
  • the current module comprises: an alternating current power source, a regulated power source, an excitation system, and a resonant circuit;
  • the AC power source is connected to the excitation system after being stepped down by the regulated power supply, and the excitation system provides a sinusoidal excitation power source with adjustable excitation current;
  • the excitation system provides an excitation current of a certain excitation frequency to the excitation sensor through a resonance circuit, and the certain excitation frequency is a preset value.
  • the stress determining module comprises: a filter amplifying circuit, a DSP control module, an ARM module and a host computer;
  • the filter amplifying circuit is configured to filter and amplify the generated induced electromotive force
  • the DSP control module is configured to perform analog-to-digital conversion on the induced electromotive force after filtering and amplification processing;
  • the ARM module is configured to compare a phase of the induced electromotive force after analog-to-digital conversion with an initial phase of an inductive sensor, and output a phase difference;
  • the upper computer is configured to determine a real-time stress of the strip to be tested according to a proportional relationship between the phase difference of the output and the stress of the strip to be tested.
  • the excitation sensor and the inductive sensor are mounted on the clamping ends of the pre-configured sensor brackets, respectively located at the upper and lower portions of the strip of the tested board, and the gap between the strip and the surface of the strip to be tested is constant;
  • the centers of the excitation sensor and the inductive sensor are aligned with each other, and an angle between the excitation sensor and the inductive sensor is a preset value, and an angle between the excitation sensor, the inductive sensor, and the rolling direction of the strip to be tested is Also a preset value;
  • the excitation sensor comprises: a U-shaped magnetic core and an excitation coil
  • the induction sensor comprises: a U-shaped magnetic core and an induction coil
  • the components of the U-shaped magnetic core probe include: ferrite, silicon steel sheet and amorphous alloy.
  • the upper computer is configured to store the processed induced electromotive force, and determine the strip of the tested strip according to a phase difference between the processed phase of the induced electromotive force and the initial phase of the inductive sensor
  • the real-time stress is also used to store the phase difference between the phase of the induced electromotive force and the initial phase of the inductive sensor, and display the stress curve of each position of the strip to be tested in real time, wherein the stress comprises: the strip to be tested The average stress and the residual stress at each point.
  • the system further comprises: an oscilloscope connected to the filter amplifying circuit for monitoring the waveform of the processed induced electromotive force outputted by the filter amplifying circuit in real time.
  • an oscilloscope connected to the filter amplifying circuit for monitoring the waveform of the processed induced electromotive force outputted by the filter amplifying circuit in real time.
  • Embodiments of the present invention also provide a stress detecting method based on a magnetoelastic phase delay effect of a ferromagnetic material, including:
  • the magnetization of the strip to be tested will occur based on the magnetoelastic phase delay effect of the ferromagnetic material. Changing, generating an induced electromotive force in an induction coil of the inductive sensor;
  • the excitation sensor and the inductive sensor are respectively located at an upper portion and a lower portion of the strip of the board to be tested.
  • the generating an alternating magnetic field in the upper surface space of the strip to be tested by the excitation sensor comprises:
  • the AC power is stepped down by a regulated power supply
  • the stepped AC power source is connected to the excitation system, and the excitation system provides a sinusoidal excitation power source with adjustable excitation current;
  • the sinusoidal excitation power source is connected to the resonance circuit, and the excitation circuit is provided with an excitation current of a certain excitation frequency through the resonance circuit, and the certain excitation frequency is a preset value;
  • the processing the induced electromotive force, determining the stress acting on the strip of the tested board according to the phase difference between the phase of the processed induced electromotive force and the initial phase of the inductive sensor comprises:
  • the induced electromotive force generated in the induction coil of the inductive sensor is filtered and amplified, and the waveform of the induced electromotive force after filtering and amplification processing is monitored in real time by an oscilloscope;
  • the real-time stress of the strip to be tested is determined according to the phase difference of the output, wherein the stress comprises: an average stress of the strip to be tested and a residual stress at each point.
  • the excitation sensor and the inductive sensor are mounted on the clamping ends of the pre-configured sensor brackets, respectively located at the upper and lower portions of the strip of the tested board, and the gap between the strip and the surface of the strip to be tested is constant;
  • the centers of the excitation sensor and the inductive sensor are aligned with each other, and an angle between the excitation sensor and the inductive sensor is a preset value, and an angle between the excitation sensor, the inductive sensor, and the rolling direction of the strip to be tested is Also a preset value;
  • the excitation sensor comprises: a U-shaped magnetic core and an excitation coil
  • the induction sensor comprises: a U-shaped magnetic core and an induction coil
  • the components of the U-shaped magnetic core probe include: ferrite, silicon steel sheet and amorphous alloy.
  • the current module provides an excitation current for the excitation sensor located at the upper part of the strip to be tested, and when the excitation sensor is connected to the excitation current, an alternating magnetic field is generated in the upper surface space of the strip to be tested.
  • the magnetization of the strip to be tested will change based on the magnetoelastic phase delay effect of the ferromagnetic material.
  • FIG. 1 is a schematic structural diagram of a stress detecting system based on a magnetoelastic phase delay effect of a ferromagnetic material according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of arrangement of an excitation sensor and an inductive sensor probe according to an embodiment of the present invention
  • FIG. 3 is a graph showing the relationship between the output of the inductive sensor and the cyclic loading force according to an embodiment of the present invention.
  • the invention is directed to the existing contact type measurement, which is easy to cause slippage and scratching, has large investment in the steel strip, the mold and the tooling, has low total cost performance, low sensitivity, and the sensor is arranged at four equal points of the split roller roll.
  • the problem of continuous measurement of strip and strip is provided, and a stress detecting system and method based on the magnetoelastic phase delay effect of the ferromagnetic material is provided.
  • a stress detecting system based on a magnetoelastic phase delay effect of a ferromagnetic material an excitation sensor 1 located at an upper portion of a strip to be tested, and an inductive sensor 2 located at a lower portion of the strip to be tested , current module and stress determination module;
  • the current module is configured to provide an excitation current for the excitation sensor 1;
  • the excitation sensor 1 is configured to generate an alternating magnetic field in an upper surface space of the strip to be tested when the excitation current is connected;
  • the inductive sensor 2 is configured to perform a magnetoelastic phase delay effect based on a ferromagnetic material when the strip to be tested in the alternating magnetic field is subjected to an external force or residual stress exists in the strip of the strip to be tested.
  • the magnetization of the strip material will change, and an induced electromotive force is generated in the induction coil of the inductive sensor 2;
  • the stress determining module is configured to process the generated induced electromotive force, and determine a real-time stress of the strip to be tested according to a phase difference between the phase of the induced electromotive force and the initial phase of the inductive sensor 2 .
  • the stress detecting system based on the magnetoelastic phase delay effect of the ferromagnetic material provides the excitation current for the excitation sensor 1 located at the upper part of the strip to be tested by the current module, and when the excitation sensor 1 is connected to the excitation current An alternating magnetic field is generated in the upper surface space of the strip to be tested. At this time, when the strip to be tested in the alternating magnetic field is subjected to an external force or residual stress is present inside the strip to be tested, based on the ferromagnetic material.
  • the magnetoelastic phase delay effect the magnetization of the strip to be tested will change, and an induced electromotive force is generated in the induction coil of the inductive sensor 2 located at the lower portion of the strip to be tested, by the stress determining module pair
  • the induced electromotive force is processed, and the real-time stress of the strip to be tested is determined according to the phase difference between the phase of the induced electromotive force after processing and the initial phase of the inductive sensor 2.
  • the non-contact on-line non-destructive testing of the stress generated by the external force of the strip under test or the residual stress inside the strip to be tested is realized by arranging the sensor on both sides of the strip to be tested, and the detection result is not subjected to tension. Fluctuation effect, high detection accuracy, low loss of equipment such as molds and tooling during use, long service life, low maintenance cost, and continuous inspection and automation for real-time monitoring Measure the stress of the strip to be tested.
  • the excitation sensor 1 located at the upper portion of the strip to be tested is connected to the current module; the inductive sensor 2 located at the lower portion of the strip to be tested is connected to the stress determination module, and the current module is connected to the stress determination module. .
  • the excitation sensor 1 and the inductive sensor 2 are mounted on the clamping ends of the preset sensor brackets, respectively The upper and lower parts of the strip to be tested, and the gap between the strip and the surface of the strip to be tested is constant;
  • the centers of the excitation sensor 1 and the inductive sensor 2 are aligned with each other, and the angle between the excitation sensor 1 and the inductive sensor 2 is a preset value, and the excitation sensor 1, the inductive sensor 2, and the strip to be tested are rolled.
  • the angle between the directions is also a preset value;
  • the excitation sensor 1 includes: a U-shaped magnetic core and an excitation coil
  • the induction sensor 2 includes: a U-shaped magnetic core and an induction coil
  • the components of the U-shaped magnetic core probe include: ferrite, silicon steel sheet and amorphous alloy.
  • different sizes of sensors can be selected according to different specifications of the strip to be tested, and because the sensor is disposed on both sides of the strip to be tested, the sensor can be avoided when winding the sensor coil. The mechanical contact between them increases the size and size of the available sensor cores.
  • the sensor includes: an excitation sensor 1 and an inductive sensor 2; the excitation sensor 1 and the inductive sensor 2 are mounted on a clamping end of a pre-commissioned sensor holder; the excitation sensor 1 and the inductive sensor 2 are respectively disposed on the board to be tested
  • the upper part and the lower part of the strip are non-contact measurement on the stress of the strip to be tested, no damage to the surface of the strip to be tested, low investment in mold and tooling, low loss during use, long service life, maintenance and repair The cost is low, and the equipment installation and calibration operation is simple and convenient.
  • the centers of the excitation sensor 1 and the inductive sensor 2 are aligned with each other, and the gap between the excitation sensor 1 and the upper surface of the strip to be tested is constant, and at the same time, the inductive sensor 2 and the strip to be tested are The gap between the lower surfaces is constant.
  • the strip to be tested is taken as an example of a cold-rolled strip.
  • the cold-rolled strip may be shaken, causing a gap change between the sensor and the strip surface, and the gap compensation is easy to realize by using the double-sided arrangement;
  • the intensity range is basically determined, the number of turns of the exciting coil in the excitation sensor 1 is expressed by the equation (1) Calculation:
  • N e is the number of turns of the exciting coil
  • H is the magnetic field strength of the predetermined exciting coil
  • I e is the exciting current of a certain exciting frequency
  • l is the average length of the magnetic circuit.
  • the speed monitoring of different test plate samples, the stress monitoring of different rolling stages and the residual stress detection can be realized by different arrangement or array mode of the sensors.
  • the angle between the excitation sensor 1 and the inductive sensor 2 is adjusted by adjusting the clamping device of the sensor holder, and the clamping between the excitation sensor 1, the inductive sensor 2 and the strip rolling direction of the strip to be tested
  • the strip of the strip to be tested is exemplified by a strip steel, and the excitation sensor 1 and the inductive sensor 2 are at an angle of 90° to each other by adjusting the clamping device of the sensor holder, and the strip rolling direction and the excitation sensor 1 are
  • the inductive sensor 2 is at an angle of 45°, as shown in FIG.
  • the clamping device of the sensor holder can be adjusted so that the excitation sensor 1 and the induction sensor 2 are at an angle of 85°-95° to each other, and the strip rolling direction and the excitation sensor 1 and the inductive sensor 2 are simultaneously In the angle of 42.5 ° -47.5 °.
  • the excitation sensor 1 includes: a U-shaped magnetic core and an excitation coil
  • the induction sensor 2 includes: a U-shaped magnetic core and an induction coil
  • the U-shaped magnetic core of the excitation sensor 1 and the induction sensor 2 The probe is made of ferrite, silicon steel sheet, amorphous alloy and other materials with good magnetic permeability, which not only meets the requirements of production conditions on the rolling site, but also improves the detection accuracy.
  • the corresponding working condition parameters are also set according to different operating conditions of the strip to be tested, and the working condition parameters include: rolling line speed, strip thickness, strip width, field temperature, etc. .
  • the current module comprises: an alternating current source 6, a regulated power supply 5, an excitation system 4, and a resonant circuit 3;
  • the AC power source 6 is stepped down by the regulated power supply 5 and then connected to the excitation system 4, and the excitation system 4 provides a sinusoidal excitation power source with adjustable excitation current;
  • the excitation system 4 supplies the excitation sensor 1 with excitation of a certain excitation frequency through the resonance circuit 3 Current, the certain excitation frequency is a preset value.
  • the AC power source 6 is connected to the excitation system 4 through the regulated power supply 5
  • the excitation system 4 is connected to the excitation sensor 1 through the resonant circuit 3 .
  • the exciting coil in the exciting sensor 1 is connected to the resonant circuit 3.
  • the resonant circuit 3 uses the power frequency AC power supply 6 as a power supply source, and the excitation current is stepped down by the linear regulated power supply 5 and then connected to the excitation system 4, and the excitation system 4 supplies the excitation sensor 1 with a sinusoidal excitation power source with an adjustable excitation current.
  • the excitation coil on the excitation sensor 1 obtains an excitation current of a certain excitation frequency, and generates an alternating magnetic field of the north and south poles of the probe of the U-shaped magnetic core of the excitation sensor 1 in the space near the upper surface of the strip to be tested.
  • Ground the certain excitation frequency is 1-5000 Hz, and the excitation current is adjustable.
  • the stress determining module includes: a filter amplifying circuit 7, a DSP control module 9, an ARM module 10, and a host computer 11 ;
  • the filter amplifying circuit 7 is configured to filter and amplify the generated induced electromotive force
  • the DSP control module 9 is configured to perform analog-to-digital conversion on the induced electromotive force after filtering and amplification processing;
  • the ARM module 10 is configured to compare the phase of the induced electromotive force after the analog-to-digital conversion with the initial phase of the inductive sensor 2, and output a phase difference;
  • the upper machine 11 is configured to determine the real-time stress of the strip to be tested according to the proportional relationship between the phase difference of the output and the stress of the strip to be tested.
  • the inductive sensor 2 is connected to the DSP control module 9 through a filter amplifying circuit 7 , and the DSP control module 9 is further connected to the excitation system 4 and the ARM module 10 , the ARM module 10 is connected to the upper computer 11; specifically, the induction coil in the inductive sensor 2 is connected to the filter amplifying circuit 7, and the DSP control module 9 is connected to the ARM module 10 through a circuit bus interface, and adopts an embedded system design idea.
  • ARM control plus DSP operation dual-core mode using ARM's excellent management and control capabilities, combined with DSP's high-performance digital computing capabilities, to further improve the system's integration.
  • the DSP control module 9 provides an excitation signal for the excitation system 4 to achieve an excitation frequency change.
  • the filter amplifying circuit 7 may be a band pass filter circuit, and the induction coil is connected to the band pass filter circuit, and the induced electromotive force detected by the inductive sensor 2 is passed through the band pass filter circuit.
  • the output is output to the DSP control module 9.
  • the DSP control module 9 performs analog-to-digital conversion on the induced electromotive force after filtering and amplification processing, and then the phase of the induced electromotive force after the analog-to-digital conversion is performed by the ARM module 10.
  • the initial phase of the inductive sensor 2 is compared, and the phase difference is output.
  • the real-time stress of the strip to be tested is determined by the host computer 11 according to the proportional relationship between the phase difference of the output and the stress of the strip to be tested.
  • the strip to be tested is a ferromagnetic material.
  • the magnetization of the ferromagnetic material in the alternating magnetic field is affected by the external force of tension and compression. Changes, ferromagnetic materials produce anisotropy.
  • the strip steel as an example, for a positive magnetostrictive material represented by a strip steel, the magnetic permeability is increased and decreased in the direction of the tensile and compressive stresses respectively, so that the magnetic field generated by the excitation coil excitation is distorted.
  • the two ends of the U-shaped magnetic core probe of the inductive sensor 2 are no longer located on the equal-intensity magnetic potential line of the magnetic field, and a part of the changed magnetic flux flows through the U-shaped magnetic core, and then the inductive sensor 2
  • An induced electromotive force is generated in the induction coil to phase shift the initial phase thereof, and an induced electromotive force is generated in the induction coil, that is, there is a phase difference between the phase of the induced electromotive force generated by the inductive sensor 2 and the initial phase in the inductive sensor 2,
  • the phase difference is proportional to the stress of the strip to be tested.
  • the principle of determining the real-time stress of the strip to be tested is described in detail.
  • an excitation current of a certain excitation frequency is passed through the excitation coil, an alternating magnetic field is generated in the excitation core, and There will be a magnetic flux flowing inside, so that an alternating magnetic field of a certain strength will also be formed on the surface of the strip to be tested.
  • the strip to be tested is an isotropic ferromagnetic material, ignoring the influence of factors such as the leakage magnetic field, the magnetic field strength of the two magnetic poles of the inductive sensor 2 is equal and the change is the same when the test piece is not subjected to force. .
  • the phase of the exciting current passing through the U-shaped core of the inductive sensor 2 is equal to the phase of the exciting current in the exciting coil, and no phase difference is generated in the inductive sensor 2, so that the output phase signal of the inductive sensor 2 is also equal to zero.
  • the magnetic permeability of the ferromagnetic material changes due to stress.
  • the stress acts on the external force of tension and compression.
  • the magnetic permeability is increased and decreased in the direction, so that the alternating magnetic field generated by the excitation sensor 1 is distorted, so that the two magnetic poles of the inductive sensor 2 are no longer located on the equal-intensity magnetic potential line of the alternating magnetic field, A partially varying magnetic flux flows through the U-shaped core of the inductive sensor 2, and an induced electromotive force is generated in the inductive coil to cause a phase shift of the initial phase. Thereby a phase difference signal is generated which is proportional to the stress.
  • the upper computer 11 is configured to store the processed induced electromotive force according to the processed a phase difference between the phase of the induced electromotive force and the initial phase of the inductive sensor 2, determining a real-time stress of the strip to be tested, and also for storing a phase difference between a phase of the induced electromotive force and an initial phase of the inductive sensor 2, And the stress curve of each position of the strip to be tested is displayed in real time, wherein the stress includes: the average stress of the strip to be tested and the residual stress at each point.
  • the upper computer 11 may be an industrial computer, and the processed induced electromotive force is saved to the industrial computer, and the industrial computer is also used for phase comparison of the ARM module 10 and output.
  • the phase difference is saved, and the linear interpolation method is used to determine the average stress of the strip to be tested and the residual stress at each point according to the proportional relationship between the phase difference outputted by the ARM module 10 and the strip to be tested.
  • the stress curve of each position of the strip to be tested can also be displayed in real time, so that the real-time stress of the strip to be tested can be monitored in real time, and the system provided by the invention can realize the continuous and automatic detection and monitoring, and the response time is short. .
  • the system further includes: an oscilloscope 8 connected to the filtering amplifying circuit 7 for real-time monitoring The waveform of the processed induced electromotive force output from the filter amplifier circuit 7.
  • the system further includes: an oscilloscope 8, wherein the oscilloscope 8 is connected to the filter amplifying circuit 7 during the whole detecting process, and monitors the waveform of the processed induced electromotive force outputted by the filter amplifying circuit 7 in real time to confirm The correctness of the output.
  • a carbon steel of Q235 material can be selected as the strip material to be tested for tensile force detection:
  • the strip to be tested is made of Q235 ordinary carbon steel with a thickness of 2mm, and the size is 80mm ⁇ 200mm; the static tensile testing machine is selected as the experimental loading device, the loading method is the static loading of the weight, the excitation sensor 1 and the inductive sensor 2 Located on both sides of the strip of the tested board, the distance between the probe of the U-shaped magnetic core of the two sensors and the strip of the tested board is 0.3-0.5 mm, and the length direction of the U-shaped core of the excitation sensor 1 and the strip of the tested board are The stretching direction is at an angle of 45 degrees, and the excitation sensor 1 and the inductive sensor 2 are in a vertical state, and the output data of the inductive sensor 2 is recorded from the zero stress state, and then the increment is 1000N.
  • the present invention also provides a specific embodiment of a stress detecting method based on a magnetoelastic phase delay effect of a ferromagnetic material, the stress detecting method based on the magnetoelastic phase delay effect of a ferromagnetic material provided by the present invention and the foregoing ferromagnetic material based
  • the stress detecting method based on the magnetoelastic phase delay effect of the ferromagnetic material can achieve the object of the present invention by performing the flow steps in the specific embodiment of the above method.
  • Embodiments of the present invention also provide a stress detecting method based on a magnetoelastic phase delay effect of a ferromagnetic material, including:
  • An alternating magnetic field is generated by the excitation sensor 1 in the upper surface space of the strip to be tested;
  • the magnetization of the strip to be tested will occur based on the magnetoelastic phase delay effect of the ferromagnetic material. Changing, generating an induced electromotive force in the induction coil of the inductive sensor 2;
  • the excitation sensor 1 and the inductive sensor 2 are respectively located at an upper portion and a lower portion of the strip of the board to be tested.
  • the stress detecting method based on the magnetoelastic phase delay effect of the ferromagnetic material generates the space on the upper surface of the strip to be tested by the excitation sensor 1 located on the upper portion of the strip to be tested An alternating magnetic field; when the strip to be tested in the alternating magnetic field is subjected to an external force or residual stress exists in the strip of the strip to be tested, based on the magnetoelastic phase delay effect of the ferromagnetic material, the strip of the strip to be tested The magnetization will change, and an induced electromotive force is generated in the induction coil of the inductive sensor 2 located at the lower portion of the strip to be tested; the induced electromotive force is processed according to the phase of the induced induced electromotive force and the initial phase of the inductive sensor 2 The phase difference between the two determines the stress acting on the strip of the board to be tested.
  • the non-contact on-line non-destructive testing of the stress generated by the external force of the strip under test or the residual stress inside the strip to be tested is realized by arranging the sensor on both sides of the strip to be tested, and the detection result is not subjected to tension.
  • the generating the alternating magnetic field in the upper surface space of the strip to be tested by the excitation sensor 1 includes:
  • the AC power source 6 is stepped down by the regulated power supply 5;
  • the stepped AC power source 6 is connected to the excitation system 4, and the excitation system 4 provides a sinusoidal excitation power source with adjustable excitation current;
  • the sinusoidal excitation power supply is connected to the resonant circuit 3, and the excitation current is supplied to the excitation sensor 1 by a certain excitation frequency, and the predetermined excitation frequency is a preset value;
  • an alternating magnetic field in which the both ends of the probe of the U-shaped magnetic core of the exciting sensor 1 are north and south is generated in the upper surface space of the strip to be tested.
  • the induced electromotive force is processed according to the phase of the processed induced electromotive force and the initial phase of the inductive sensor 2 The phase difference between the two determines the stress acting on the strip to be tested:
  • the induced electromotive force generated in the induction coil of the inductive sensor 2 is filtered and amplified, and the waveform of the induced electromotive force after filtering and amplification processing is monitored in real time by the oscilloscope 8;
  • the real-time stress of the strip to be tested is determined according to the phase difference of the output, wherein the stress comprises: an average stress of the strip to be tested and a residual stress at each point.
  • the excitation sensor 1 and the inductive sensor 2 are mounted on the clamping ends of the preset sensor brackets, respectively The upper and lower parts of the strip to be tested, and the gap between the strip and the surface of the strip to be tested is constant;
  • the centers of the excitation sensor 1 and the inductive sensor 2 are aligned with each other, and the angle between the excitation sensor 1 and the inductive sensor 2 is a preset value, and the excitation sensor 1, the inductive sensor 2, and the strip to be tested are rolled.
  • the angle between the directions is also a preset value;
  • the excitation sensor 1 includes: a U-shaped magnetic core and an excitation coil
  • the induction sensor 2 includes: a U-shaped magnetic core and an induction coil
  • the components of the U-shaped magnetic core probe include: ferrite, silicon steel sheet and amorphous alloy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种基于铁磁材料磁弹性相位时延效应的应力检测系统及方法,能够实现板带材应力和残余应力的在线无损检测。所述系统包括:位于被测板带材上部的励磁传感器(1)、位于被测板带材下部的感应传感器(2)、电流模块和应力确定模块;所述电流模块,用于为励磁传感器(1)提供励磁电流;所述励磁传感器(1),用于在被测板带材的上表面空间产生交变磁场;所述感应传感器(2),用于当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,在感应传感器(2)的感应线圈中产生感应电动势;所述应力确定模块,用于根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力。所述检测系统和方法适用于金属材料检测技术领域。

Description

基于铁磁材料磁弹性相位时延效应的应力检测系统及方法 技术领域
本发明涉及金属材料检测技术领域,特别是指一种基于铁磁材料磁弹性相位时延效应的应力检测系统及方法。
背景技术
板带材是广泛应用于国民经济生产各部门的重要原料,是钢铁工业生产中的主导产品。随着社会生产力的发展和工业技术的进步,对板带生产提出了极其严格的要求,产品不仅要有优良的表面质量和良好的性能,而且还要具有精确的几何尺寸和板形平直度。
以带钢为例,随着冷轧技术的提高,冷轧带钢向着更薄更宽方向发展,这对冷轧带钢的板形控制提出了更高的技术要求。轧制条件是影响冷轧带钢板形的主要外部因素,在轧制生产中,施加张力是调整板形、保证轧制过程顺利进行的重要手段。在实际生产过程中,冷轧带钢在较大的前后张力作用下,带钢不良板形被隐藏,仅凭人工经验进行控制易导致整卷带钢在全长范围内的板形稳定性波动,难以定量控制不良板形。开卷或退火后,带钢潜在不良板形释放,表现出多种多样的表观板形缺陷(边浪、中浪或复合浪等)。因此提高冷轧带钢板形质量的关键在于准确在线检测真实带钢板形状况。然而多年以来,我国的钢铁生产企业购置的板型检测装置均为国外进口,价格昂贵且维护费用极高;国外企业在中国轧制设备市场业已形成对该行业的价格垄断;同时由于其他国家的技术垄断,造成了我国企业自主研发的轧制设备在在线监测和自动控制技术方面的大幅落后。
目前,板形检测的主要方法是通过板形仪检测带钢应力分布,当前用于冷轧带钢的板形仪其主流产品均采用分割辊接触压力检测方案,该类检测方案灵敏度低、接触式测量易造成打滑划伤带钢、模具和工装投资巨大、总性价比低; 传感器布置在分割辊辊周4个等分点处,无法实现对板带材的连续测量。
发明内容
本发明要解决的技术问题是提供一种基于铁磁材料磁弹性相位时延效应的应力检测系统及方法,以解决现有技术所存在的接触式测量易造成打滑划伤带钢、模具和工装投资巨大、总性价比低、灵敏度低、传感器布置在分割辊辊周4个等分点处,无法实现对板带材进行连续测量的问题。
为解决上述技术问题,本发明实施例提供一种基于铁磁材料磁弹性相位时延效应的应力检测系统,包括:位于被测板带材上部的励磁传感器、位于被测板带材下部的感应传感器、电流模块和应力确定模块;
所述电流模块,用于为所述励磁传感器提供励磁电流;
所述励磁传感器,用于接入励磁电流时,在被测板带材的上表面空间产生交变磁场;
所述感应传感器,用于当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器的感应线圈中产生感应电动势;
所述应力确定模块,用于对产生的所述感应电动势进行处理,并根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力。
优选地,所述电流模块包括:交流电源、稳压电源、励磁系统和谐振电路;
所述交流电源通过稳压电源降压后接入励磁系统,由所述励磁系统提供励磁电流可调的正弦励磁电源;
所述励磁系统通过谐振电路为励磁传感器提供一定励磁频率的励磁电流,所述一定励磁频率为预设值。
优选地,所述应力确定模块包括:滤波放大电路,DSP控制模块、ARM模块和上位机;
所述滤波放大电路,用于对产生的感应电动势进行滤波、放大处理;
所述DSP控制模块,用于对滤波、放大处理后感应电动势进行模数转换;
所述ARM模块,用于将模数转换后的所述感应电动势的相位与感应传感器的初始相位进行比较,输出相位差;
所述上位机,用于根据输出的相位差与被测板带材应力之间的比例关系,确定被测板带材的实时应力。
优选地,所述励磁传感器和感应传感器安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
所述励磁传感器和感应传感器的中心相互对齐,且励磁传感器、感应传感器之间的夹角为预设值,同时所述励磁传感器、感应传感器与被测板带材轧制方向之间的夹角也为预设值;
所述励磁传感器包括:U形磁芯和励磁线圈,所述感应传感器包括:U形磁芯和感应线圈;
其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
优选地,所述上位机,用于将处理后的所述感应电动势进行存储,并根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力,还用于存储所述感应电动势的相位与感应传感器初始相位之间的相位差,并实时显示被测板带材各位置的应力曲线,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
优选地,所述系统还包括:示波器,所述示波器与滤波放大电路相连,用于实时监测滤波放大电路输出的处理后的感应电动势的波形。
本发明实施例还提供一种基于铁磁材料磁弹性相位时延效应的应力检测方法,包括:
通过励磁传感器在被测板带材的上表面空间产生交变磁场;
当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器的感应线圈中产生感应电动势;
对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器初始相位之间的相位差,确定作用在被测板带材上的应力;
其中,所述励磁传感器和感应传感器分别位于在被测板带材的上部和下部。
优选地,所述通过励磁传感器在被测板带材的上表面空间产生交变磁场包括:
通过稳压电源对交流电源进行降压;
降压后的交流电源接入励磁系统,由所述励磁系统提供励磁电流可调的正弦励磁电源;
将所述正弦励磁电源接入谐振电路,通过所述谐振电路为励磁传感器提供一定励磁频率的励磁电流,所述一定励磁频率为预设值;
当励磁传感器的励磁线圈获得一定励磁频率的励磁电流时,在被测板带材的上表面空间产生以励磁传感器的U型磁芯的探头的俩端为南北极的交变磁场。
优选地,所述对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器初始相位之间的相位差,确定作用在被测板带材上的应力包括:
对在感应传感器的感应线圈中产生感应电动势进行滤波、放大处理,并通过示波器实时监测滤波、放大处理后的感应电动势的波形;
将滤波、放大处理后的感应电动势进行模数转换;
将模数转换后的所述感应电动势的相位与感应传感器的初始相位进行比较,输出相位差;
根据输出的相位差,确定被测板带材的实时应力,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
优选地,所述励磁传感器和感应传感器安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
所述励磁传感器和感应传感器的中心相互对齐,且励磁传感器、感应传感器之间的夹角为预设值,同时所述励磁传感器、感应传感器与被测板带材轧制方向之间的夹角也为预设值;
所述励磁传感器包括:U形磁芯和励磁线圈,所述感应传感器包括:U形磁芯和感应线圈;
其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
本发明的上述技术方案的有益效果如下:
上述方案中,通过电流模块为位于被测板带材上部的励磁传感器提供励磁电流,当励磁传感器接入励磁电流时,在被测板带材的上表面空间产生交变磁场,此时,当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在位于被测板带材下部的感应传感器的感应线圈中产生感应电动势,通过应力确定模块对产生的所述感应电动势进行处理,并根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力。这样,采用在被测板带材双侧布置传感器方式实现对被测板带材外力作用产生的应力或被测板带材内部存在的残余应力的非接触式在线无损检测,检测结果不受张力波动影响,检测精度高,使用过程中模具和工装等设备损耗小,使用寿命长,维护成本低下,且能够实现检测的连续化和自动化,便于实时监测被测板带材的应力。
附图说明
图1为本发明实施例提供的基于铁磁材料磁弹性相位时延效应的应力检测系统的结构示意图;
图2为本发明实施例提供的励磁传感器、感应传感器探头的布置示意图;
图3为本发明实施例提供的感应传感器的输出随循环加载力关系曲线图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有的接触式测量易造成打滑划伤带钢、模具和工装投资巨大、总性价比低、灵敏度低、传感器布置在分割辊辊周4个等分点处,无法实 现对板带材进行连续测量的问题,提供一种基于铁磁材料磁弹性相位时延效应的应力检测系统及方法。
实施例一
参看图1所示,本发明实施例提供的基于铁磁材料磁弹性相位时延效应的应力检测系统,位于被测板带材上部的励磁传感器1、位于被测板带材下部的感应传感器2、电流模块和应力确定模块;
所述电流模块,用于为所述励磁传感器1提供励磁电流;
所述励磁传感器1,用于接入励磁电流时,在被测板带材的上表面空间产生交变磁场;
所述感应传感器2,用于当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器2的感应线圈中产生感应电动势;
所述应力确定模块,用于对产生的所述感应电动势进行处理,并根据处理后的所述感应电动势的相位与感应传感器2初始相位之间的相位差,确定被测板带材的实时应力。
本发明实施例所述的基于铁磁材料磁弹性相位时延效应的应力检测系统,通过电流模块为位于被测板带材上部的励磁传感器1提供励磁电流,当励磁传感器1接入励磁电流时,在被测板带材的上表面空间产生交变磁场,此时,当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在位于被测板带材下部的感应传感器2的感应线圈中产生感应电动势,通过应力确定模块对产生的所述感应电动势进行处理,并根据处理后的所述感应电动势的相位与感应传感器2初始相位之间的相位差,确定被测板带材的实时应力。这样,采用在被测板带材双侧布置传感器方式实现对被测板带材外力作用产生的应力或被测板带材内部存在的残余应力的非接触式在线无损检测,检测结果不受张力波动影响,检测精度高,使用过程中模具和工装等设备损耗小,使用寿命长,维护成本低下,且能够实现检测的连续化和自动化,便于实时监 测被测板带材的应力。
本发明实施例中,位于被测板带材上部的励磁传感器1与电流模块相连;位于被测板带材下部的感应传感器2与所述应力确定模块相连,所述电流模块与应力确定模块相连。
在前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式中,可选地,所述励磁传感器1和感应传感器2安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
所述励磁传感器1和感应传感器2的中心相互对齐,且励磁传感器1、感应传感器2之间的夹角为预设值,同时所述励磁传感器1、感应传感器2与被测板带材轧制方向之间的夹角也为预设值;
所述励磁传感器1包括:U形磁芯和励磁线圈,所述感应传感器2包括:U形磁芯和感应线圈;
其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
本发明实施例中,根据被测板带材的不同规格,可以选择不同尺寸的传感器,且由于采用的在被测板带材双侧布置传感器方式,在绕制传感器线圈时能避免了传感器之间的机械接触,因此可供选择的传感器磁芯的大小和规格增多。所述传感器包括:励磁传感器1和感应传感器2;所述励磁传感器1和感应传感器2安装于预先调试好的传感器支架的夹持端;所述励磁传感器1和感应传感器2分别设置在被测板带材的上部与下部,对被测板带材的应力采用非接触测量,对被测板带材的表面无损伤,且模具和工装投资低,使用过程损耗小,使用寿命长,维护及维修成本低,且设备安装及标定操作简单、方便。
本发明实施例中,所述励磁传感器1和感应传感器2的中心相互对齐,所述励磁传感器1与被测板带材上表面间间隙恒定,同时,所述感应传感器2与被测板带材下表面间间隙恒定。
本发明实施例中,被测板带材以冷轧带钢为例,在生产现场,冷轧带钢会产生抖动,造成传感器与带钢表面间隙变化,采用双侧布置易于实现间隙补偿;磁场强度大小范围基本确定之后,励磁传感器1中励磁线圈的匝数由式(1) 进行计算:
Figure PCTCN2015083915-appb-000001
式(1)中:Ne为励磁线圈的匝数,H为预设的励磁线圈的磁场强度,Ie为一定励磁频率的励磁电流,l为磁路的平均长度。
本发明实施例中,还能通过对传感器的不同排列或阵列方式,实现对不同被测板样材的速度、不同轧制阶段的应力监测和残余应力检测。
本发明实施例中,通过调节传感器支架的夹持装置来调节励磁传感器1和感应传感器2之间的夹角,以及励磁传感器1、感应传感器2与被测板带材轧制方向之间的夹角,其中,励磁传感器1和感应传感器2之间的夹角能微调。例如,被测板带材以带钢为例,通过调节传感器支架的夹持装置,使励磁传感器1和感应传感器2相互成90°夹角,同时带钢轧制方向与所述励磁传感器1和感应传感器2成45°夹角,参看图2所示。在检测精度要求不高的情况下,可以调节传感器支架的夹持装置使励磁传感器1和感应传感器2相互成85°-95°夹角,同时带钢轧制方向与励磁传感器1和感应传感器2成42.5°-47.5°夹角。
本发明实施例中,所述励磁传感器1包括:U形磁芯和励磁线圈,所述感应传感器2包括:U形磁芯和感应线圈,所述励磁传感器1和感应传感器2的U形磁芯的探头是由具有良好的导磁特性的铁氧体、硅钢片、非晶态合金等材料制成的,不仅满足轧制现场生产条件要求,还能提高检测精度。
本发明实施例中,还需根据被测板带材不同的运行工况,设置对应的工况参数,所述工况参数包括:轧制线速度、带钢厚度、带钢宽度、现场温度等。
在前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式中,可选地,所述电流模块包括:交流电源6、稳压电源5、励磁系统4和谐振电路3;
所述交流电源6通过稳压电源5降压后接入励磁系统4,由所述励磁系统4提供励磁电流可调的正弦励磁电源;
所述励磁系统4通过谐振电路3为励磁传感器1提供一定励磁频率的励磁 电流,所述一定励磁频率为预设值。
参看图1所示,本发明实施例中,所述交流电源6通过所述稳压电源5与励磁系统4相连,所述励磁系统4通过所述谐振电路3与励磁传感器1相连,具体的,所述励磁传感器1中的励磁线圈与所述谐振电路3相连。谐振电路3使用工频交流电源6作为供电电源,励磁电流先后经线性稳压电源5降压后接入励磁系统4,由励磁系统4为励磁传感器1提供励磁电流可调的正弦励磁电源,使得励磁传感器1上的励磁线圈获得一定励磁频率的励磁电流,并在被测板带材上表面附近空间产生以励磁传感器1的U型磁芯的探头的俩端为南北极的交变磁场,优选地,所述一定励磁频率为1-5000Hz,且励磁电流可调。
在前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式中,可选地,所述应力确定模块包括:滤波放大电路7,DSP控制模块9、ARM模块10和上位机11;
所述滤波放大电路7,用于对产生的感应电动势进行滤波、放大处理;
所述DSP控制模块9,用于对滤波、放大处理后感应电动势进行模数转换;
所述ARM模块10,用于将模数转换后的所述感应电动势的相位与感应传感器2的初始相位进行比较,输出相位差;
所述上位机11,用于根据输出的相位差与被测板带材应力之间的比例关系,确定被测板带材的实时应力。
参看图1所示,本发明实施例中,所述感应传感器2通过滤波放大电路7与DSP控制模块9相连,所述DSP控制模块9还与励磁系统4和ARM模块10相连,所述ARM模块10与所述上位机11相连;具体的,所述感应传感器2中的感应线圈与滤波放大电路7相连,DSP控制模块9通过电路总线接口与ARM模块10连接,采用嵌入式系统设计思路,使用ARM控制加DSP运算的双核心模式,利用ARM优秀的管理和控制能力,结合DSP高性能的数字运算能力,进一步提高系统的集成化程度。所述DSP控制模块9为励磁系统4提供励磁频率的初始信号,能够实现励磁频率的变化。
本发明实施例中,所述滤波放大电路7可以为带通滤波电路,感应线圈接入带通滤波电路,将感应传感器2检测到的感应电动势通过所述带通滤波电路 滤波、放大处理后输出给DSP控制模块9,由所述DSP控制模块9对滤波、放大处理后感应电动势进行模数转换,再通过ARM模块10将模数转换后的所述感应电动势的相位与感应传感器2的初始相位进行比较,输出相位差,最后,由上位机11根据输出的相位差与被测板带材应力之间的比例关系,确定被测板带材的实时应力。
本发明实施例中,所述被测板带材为铁磁材料,在基于铁磁材料磁弹性相位时延效应下,处于交变磁场中的铁磁材料受到拉压外力作用后其磁化强度发生变化,铁磁材料产生各向异性。以带钢为例,对于以带钢为代表的正磁致伸缩材料,将在拉、压应力方向上分别使磁导率的增加和减小,从而使得励磁线圈激励所产生的磁场发生扭曲,由此感应传感器2的U型磁芯探头的两端就不再位于磁场的等强度磁势线上,将会有部分变化的磁通流过U型磁芯,此时就会在感应传感器2的感应线圈中产生感应电动势使其初始相位发生相移,并在感应线圈中产生感应电动势,也就是说感应传感器2产生的感应电动势的相位与感应传感器2中的初始相位之间存在相位差,所述相位差与被测板带材应力之间呈一定比例关系。
本发明实施例中,对确定被测板带材的实时应力的原理进行详细说明,当励磁线圈中通以一定励磁频率的励磁电流时,在励磁磁芯中就会有交变磁场产生,而其内部将有磁通流过,从而在被测板带材的表面也将形成一定强度的交变磁场。如果被测板带材是各向同性铁磁性材料,忽略漏磁场等因素的影响,则试件在不受力的情况下,感应传感器2两个磁极所处的磁场强度相等,变化情况也相同。因此,通过感应传感器2的U型磁芯的励磁电流相位等于励磁线圈中的励磁电流相位,感应传感器2中没有相位差产生,从而感应传感器2的输出相位信号也就等于零。而当被测板带材受到外力作用或者内部存在残余应力时,由于应力会造成铁磁材料磁导率的变化,对于铁这样的正磁致伸缩材料,就会在拉、压外力作用的应力方向上分别使磁导率增加和减小,从而使得由励磁传感器1激励产生的交变磁场发生扭曲,这样感应传感器2两个磁极就不再位于交变磁场的等强度磁势线上,将会有部分变化的磁通流过感应传感器2的U型磁芯,此时就会在感应线圈中产生感应电动势使其初始相位发生相移, 从而产生与应力成一定比例关系的相位差信号。
在前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式中,可选地,所述上位机11,用于将处理后的所述感应电动势进行存储,并根据处理后的所述感应电动势的相位与感应传感器2初始相位之间的相位差,确定被测板带材的实时应力,还用于存储所述感应电动势的相位与感应传感器2初始相位之间的相位差,并实时显示被测板带材各位置的应力曲线,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
本发明实施例中,所述上位机11可以为工业计算机,将处理后的所述感应电动势进行保存至所述工业计算机中,所述工业计算机,还用于将ARM模块10进行相位比较后输出相位差进行保存,并利用线性插补法,根据ARM模块10输出的相位差与被测板带材之间的比例关系,确定被测板带材的平均应力及各点处的残余应力,同时还能实时显示被测板带材各位置的应力曲线,便于对被测板带材的实时应力进行实时监测,且本发明提供的系统,能够实现检测和监测的连续化和自动化,响应时间短。
在前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式中,可选地,所述系统还包括:示波器8,所述示波器8与滤波放大电路7相连,用于实时监测滤波放大电路7输出的处理后的感应电动势的波形。
本发明实施例中,所述系统还包括:示波器8,在整个检测过程中,所述示波器8与滤波放大电路7相连,实时监测滤波放大电路7输出的处理后的感应电动势的波形,以确认输出结果的正确性。
接着,对本发明提供的检测系统的检测效果进行验证,例如,可以选取一块材料为Q235的碳素钢作为被测板带材进行拉力检测:
所述被测板带材采用厚度为2mm的Q235普通碳素钢,尺寸为80mm×200mm;选用静态拉伸试验机作为实验加载装置,加载方式为砝码式静态加载,励磁传感器1与感应传感器2位于被测板带材两侧,两传感器的U型磁芯的探头与被测板带材的间距为0.3-0.5mm,励磁传感器1的U型磁芯长度方向与被测板带材被拉伸方向成45度角,励磁传感器1与感应传感器2之间成垂直状态,从零受力状态开始记录感应传感器2输出数据,而后依次递增1000N 拉力,保持几秒钟时间至传感器数据稳定并记录感应电动势,至拉力增大到8000N(即被测板带材受最大拉应力100Mpa),然后开始卸载,依次减少1000N拉力并记录感应电动势,至拉力减小到零。在激励励磁电流为200mA情况下,对被测板带材重复加载卸载十次,经均化处理得到曲线为图3所示的实验结果,图3中Stress表示拉力,Sensor Output表示感应传感器2的输出。由图3可以看出,在加载过程中检测到的相位差信号随着应力变化基本为线性上升变化。根据电磁应力测量基本原理,可知在拉伸方向磁导率逐渐增大。
实施例二
本发明还提供一种基于铁磁材料磁弹性相位时延效应的应力检测方法的具体实施方式,由于本发明提供的基于铁磁材料磁弹性相位时延效应的应力检测方法与前述基于铁磁材料磁弹性相位时延效应的应力检测系统的具体实施方式相对应,该基于铁磁材料磁弹性相位时延效应的应力检测方法可以通过执行上述方法具体实施方式中的流程步骤来实现本发明的目的,因此上述基于铁磁材料磁弹性相位时延效应的应力检测系统具体实施方式中的解释说明,也适用于本发明提供的基于铁磁材料磁弹性相位时延效应的应力检测方法的具体实施方式,在本发明以下的具体实施方式中将不再赘述。
本发明实施例还提供一种基于铁磁材料磁弹性相位时延效应的应力检测方法,包括:
通过励磁传感器1在被测板带材的上表面空间产生交变磁场;
当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器2的感应线圈中产生感应电动势;
对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器2初始相位之间的相位差,确定作用在被测板带材上的应力;
其中,所述励磁传感器1和感应传感器2分别位于在被测板带材的上部和下部。
本发明实施例所述的基于铁磁材料磁弹性相位时延效应的应力检测方法,通过位于在被测板带材上部的励磁传感器1在被测板带材的上表面空间产生 交变磁场;当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在位于在被测板带材下部的感应传感器2的感应线圈中产生感应电动势;对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器2初始相位之间的相位差,确定作用在被测板带材上的应力。这样,采用在被测板带材双侧布置传感器方式实现对被测板带材外力作用产生的应力或被测板带材内部存在的残余应力的非接触式在线无损检测,检测结果不受张力波动影响,检测精度高,使用过程中模具和工装等设备损耗小,使用寿命长,维护成本低下,且能够实现检测的连续化和自动化,便于实时监测被测板带材的应力。
在前述基于铁磁材料磁弹性相位时延效应的应力检测方法的具体实施方式中,可选地,所述通过励磁传感器1在被测板带材的上表面空间产生交变磁场包括:
通过稳压电源5对交流电源6进行降压;
降压后的交流电源6接入励磁系统4,由所述励磁系统4提供励磁电流可调的正弦励磁电源;
将所述正弦励磁电源接入谐振电路3,通过所述谐振电路3为励磁传感器1提供一定励磁频率的励磁电流,所述一定励磁频率为预设值;
当励磁传感器1的励磁线圈获得一定励磁频率的励磁电流时,在被测板带材的上表面空间产生以励磁传感器1的U型磁芯的探头的俩端为南北极的交变磁场。
在前述基于铁磁材料磁弹性相位时延效应的应力检测方法的具体实施方式中,可选地,所述对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器2初始相位之间的相位差,确定作用在被测板带材上的应力包括:
对在感应传感器2的感应线圈中产生感应电动势进行滤波、放大处理,并通过示波器8实时监测滤波、放大处理后的感应电动势的波形;
将滤波、放大处理后的感应电动势进行模数转换;
将模数转换后的所述感应电动势的相位与感应传感器2的初始相位进行比较,输出相位差;
根据输出的相位差,确定被测板带材的实时应力,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
在前述基于铁磁材料磁弹性相位时延效应的应力检测方法的具体实施方式中,可选地,所述励磁传感器1和感应传感器2安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
所述励磁传感器1和感应传感器2的中心相互对齐,且励磁传感器1、感应传感器2之间的夹角为预设值,同时所述励磁传感器1、感应传感器2与被测板带材轧制方向之间的夹角也为预设值;
所述励磁传感器1包括:U形磁芯和励磁线圈,所述感应传感器2包括:U形磁芯和感应线圈;
其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种基于铁磁材料磁弹性相位时延效应的应力检测系统,其特征在于,包括:位于被测板带材上部的励磁传感器、位于被测板带材下部的感应传感器、电流模块和应力确定模块;
    所述电流模块,用于为所述励磁传感器提供励磁电流;
    所述励磁传感器,用于接入励磁电流时,在被测板带材的上表面空间产生交变磁场;
    所述感应传感器,用于当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器的感应线圈中产生感应电动势;
    所述应力确定模块,用于对产生的所述感应电动势进行处理,并根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力。
  2. 根据权利要求1所述的系统,其特征在于,所述电流模块包括:交流电源、稳压电源、励磁系统和谐振电路;
    所述交流电源通过稳压电源降压后接入励磁系统,由所述励磁系统提供励磁电流可调的正弦励磁电源;
    所述励磁系统通过谐振电路为励磁传感器提供一定励磁频率的励磁电流,所述一定励磁频率为预设值。
  3. 根据权利要求2所述的系统,其特征在于,所述应力确定模块包括:滤波放大电路,DSP控制模块、ARM模块和上位机;
    所述滤波放大电路,用于对产生的感应电动势进行滤波、放大处理;
    所述DSP控制模块,用于对滤波、放大处理后感应电动势进行模数转换;
    所述ARM模块,用于将模数转换后的所述感应电动势的相位与感应传感器的初始相位进行比较,输出相位差;
    所述上位机,用于根据输出的相位差与被测板带材应力之间的比例关系,确定被测板带材的实时应力。
  4. 根据权利要求1所述的系统,其特征在于,所述励磁传感器和感应传感器安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
    所述励磁传感器和感应传感器的中心相互对齐,且励磁传感器、感应传感器之间的夹角为预设值,同时所述励磁传感器、感应传感器与被测板带材轧制方向之间的夹角也为预设值;
    所述励磁传感器包括:U形磁芯和励磁线圈,所述感应传感器包括:U形磁芯和感应线圈;
    其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
  5. 根据权利要求1所述的系统,其特征在于,所述上位机,用于将处理后的所述感应电动势进行存储,并根据处理后的所述感应电动势的相位与感应传感器初始相位之间的相位差,确定被测板带材的实时应力,还用于存储所述感应电动势的相位与感应传感器初始相位之间的相位差,并实时显示被测板带材各位置的应力曲线,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
  6. 根据权利要求1所述的系统,其特征在于,还包括:示波器,所述示波器与滤波放大电路相连,用于实时监测滤波放大电路输出的处理后的感应电动势的波形。
  7. 一种基于铁磁材料磁弹性相位时延效应的应力检测方法,其特征在于,包括:
    通过励磁传感器在被测板带材的上表面空间产生交变磁场;
    当处于交变磁场中的被测板带材受到外力作用或被测板带材内部存在残余应力时,基于铁磁材料磁弹性相位时延效应,所述被测板带材的磁化强度将发生变化,在感应传感器的感应线圈中产生感应电动势;
    对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器初始相位之间的相位差,确定作用在被测板带材上的应力;
    其中,所述励磁传感器和感应传感器分别位于在被测板带材的上部和下部。
  8. 根据权利要求7所述的方法,其特征在于,所述通过励磁传感器在被测板带材的上表面空间产生交变磁场包括:
    通过稳压电源对交流电源进行降压;
    降压后的交流电源接入励磁系统,由所述励磁系统提供励磁电流可调的正弦励磁电源;
    将所述正弦励磁电源接入谐振电路,通过所述谐振电路为励磁传感器提供一定励磁频率的励磁电流,所述一定励磁频率为预设值;
    当励磁传感器的励磁线圈获得一定励磁频率的励磁电流时,在被测板带材的上表面空间产生以励磁传感器的U型磁芯的探头的俩端为南北极的交变磁场。
  9. 根据权利要求7所述的方法,其特征在于,所述对所述感应电动势进行处理,根据处理后的感应电动势的相位与感应传感器初始相位之间的相位差,确定作用在被测板带材上的应力包括:
    对在感应传感器的感应线圈中产生感应电动势进行滤波、放大处理,并通过示波器实时监测滤波、放大处理后的感应电动势的波形;
    将滤波、放大处理后的感应电动势进行模数转换;
    将模数转换后的所述感应电动势的相位与感应传感器的初始相位进行比较,输出相位差;
    根据输出的相位差,确定被测板带材的实时应力,其中,所述应力包括:被测板带材的平均应力及各点处的残余应力。
  10. 根据权利要求7所述的方法,其特征在于,所述励磁传感器和感应传感器安装于预先设置的传感器支架的夹持端,分别位于在被测板带材的上部与下部,且与被测板带材表面间的间隙恒定;
    所述励磁传感器和感应传感器的中心相互对齐,且励磁传感器、感应传感器之间的夹角为预设值,同时所述励磁传感器、感应传感器与被测板带材轧制方向之间的夹角也为预设值;
    所述励磁传感器包括:U形磁芯和励磁线圈,所述感应传感器包括:U形磁芯和感应线圈;
    其中,U形磁芯探头的成分包括:铁氧体、硅钢片及非晶态合金。
PCT/CN2015/083915 2015-07-13 2015-07-13 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法 WO2017008231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083915 WO2017008231A1 (zh) 2015-07-13 2015-07-13 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083915 WO2017008231A1 (zh) 2015-07-13 2015-07-13 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法

Publications (1)

Publication Number Publication Date
WO2017008231A1 true WO2017008231A1 (zh) 2017-01-19

Family

ID=57757814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083915 WO2017008231A1 (zh) 2015-07-13 2015-07-13 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法

Country Status (1)

Country Link
WO (1) WO2017008231A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696467A (zh) * 2019-01-29 2019-04-30 中国人民解放军国防科技大学 一种基于磁弹效应的f轨应力检测方法及装置
CN111207868A (zh) * 2020-01-19 2020-05-29 山东大学 一种基于磁弹效应的平面残余应力自动检测装置及方法
CN112858460A (zh) * 2021-01-06 2021-05-28 西华大学 一种测量固液两相流体中的固相介质浓度的方法
CN113176017A (zh) * 2021-04-29 2021-07-27 重庆交通大学 钢绞线体内预应力分布监测方法、监测系统及其使用方法
CN113739960A (zh) * 2021-09-27 2021-12-03 北京科技大学 一种基于透射式磁弹效应的圆锯片应力检测系统
CN116618432A (zh) * 2023-07-26 2023-08-22 中国重型机械研究院股份公司 一种铝合金板带材轧制加工设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018428A1 (de) * 1979-05-07 1980-11-12 Magyar Tudományos Akadémia Müszaki Fizikai Kutato Intézete Vorrichtung zur kontaktlosen Messung des elastischen Spannungszustandes in ferromagnetischen Körpern
CN1441247A (zh) * 2002-02-12 2003-09-10 山阳特殊制钢株式会社 利用涡流的钢制品的非破坏检查方法及所用装置
CN202185457U (zh) * 2011-04-25 2012-04-11 宝山钢铁股份有限公司 透射式电磁板形测量仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018428A1 (de) * 1979-05-07 1980-11-12 Magyar Tudományos Akadémia Müszaki Fizikai Kutato Intézete Vorrichtung zur kontaktlosen Messung des elastischen Spannungszustandes in ferromagnetischen Körpern
CN1441247A (zh) * 2002-02-12 2003-09-10 山阳特殊制钢株式会社 利用涡流的钢制品的非破坏检查方法及所用装置
CN202185457U (zh) * 2011-04-25 2012-04-11 宝山钢铁股份有限公司 透射式电磁板形测量仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SONG, CHUNHUA ET AL.: "Development and Research Overview on Torque Sensor", SMALL & SPECIAL ELECTRICAL MACHINES, vol. 40, no. 11, 30 November 2012 (2012-11-30), pages 58 - 60, ISSN: 1004-7018 *
ZENG, JIEWEI ET AL.: "Research on the Stress Measurement of Stcel Plate Based on Inverse Magnetostrictive Effect", CHINESE JOURNAL OF MECHANICAL ENGINEERING, vol. 50, no. 8, 30 April 2014 (2014-04-30), pages 17 - 21, ISSN: 0577-6686 *
ZENG, JIEWEI ET AL.: "Stress Nondestructive Testing of Strip Steel Based on Transmissive Magnetoelastic Effect", CHINESE JOURNAL OF ENGINEERING, vol. 37, 31 May 2015 (2015-05-31), pages 13 - 16, ISSN: 2095-9389 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696467A (zh) * 2019-01-29 2019-04-30 中国人民解放军国防科技大学 一种基于磁弹效应的f轨应力检测方法及装置
CN111207868A (zh) * 2020-01-19 2020-05-29 山东大学 一种基于磁弹效应的平面残余应力自动检测装置及方法
CN111207868B (zh) * 2020-01-19 2021-03-12 山东大学 一种基于磁弹效应的平面残余应力自动检测装置及方法
CN112858460A (zh) * 2021-01-06 2021-05-28 西华大学 一种测量固液两相流体中的固相介质浓度的方法
CN112858460B (zh) * 2021-01-06 2023-07-18 西华大学 一种测量固液两相流体中的固相介质浓度的方法
CN113176017A (zh) * 2021-04-29 2021-07-27 重庆交通大学 钢绞线体内预应力分布监测方法、监测系统及其使用方法
CN113739960A (zh) * 2021-09-27 2021-12-03 北京科技大学 一种基于透射式磁弹效应的圆锯片应力检测系统
CN113739960B (zh) * 2021-09-27 2022-04-19 北京科技大学 一种基于透射式磁弹效应的圆锯片应力检测系统
CN116618432A (zh) * 2023-07-26 2023-08-22 中国重型机械研究院股份公司 一种铝合金板带材轧制加工设备
CN116618432B (zh) * 2023-07-26 2023-11-17 中国重型机械研究院股份公司 一种铝合金板带材轧制加工设备

Similar Documents

Publication Publication Date Title
WO2017008231A1 (zh) 基于铁磁材料磁弹性相位时延效应的应力检测系统及方法
JP5186837B2 (ja) 微小凹凸表面欠陥の検出方法及び装置
WO2020259070A1 (zh) 一种基于宽带激励的铁磁性材料大范围损伤低频电磁检测方法
CN103499636B (zh) 基于测静磁力的薄板类铁磁材料中微缺陷的无损检测方法
US20110199081A1 (en) Barkhausen noise inspection apparatus and inspection method
JP2009052903A5 (zh)
JP4512079B2 (ja) 薄鋼板の磁気特性及び機械的強度測定装置並びに測定方法
JP2014219205A (ja) 交番磁場を使用した非破壊検査の方法または装置
JP6607242B2 (ja) 方向性電磁鋼板の加工状態評価方法、加工状態評価装置、及び製造方法
CN109696467A (zh) 一种基于磁弹效应的f轨应力检测方法及装置
CN104833720A (zh) 单一线圈电磁谐振检测金属管道损伤的方法
Angelopoulos et al. Steel health monitoring device based on Hall sensors
JPS58102148A (ja) 鋼板のオンライン硬度測定方法
CN111380948A (zh) 一种磁巴克豪森噪声与连续拉压应力关系的标定方法
JPH07128295A (ja) 鋼板の結晶粒径測定方法
KR101358452B1 (ko) 강판 결함 탐상 장치
KR20140117983A (ko) 강판 결함 탐상 장치
Lindgren et al. Application of a novel type Barkhausen noise sensor to continuous fatigue monitoring
JPS61277051A (ja) 磁気特性測定装置
JP2009052997A (ja) 金属疲労識別装置および金属疲労識別方法
WO2007053519A2 (en) Non-destructive evaluation via measurement of magnetic drag force
JP4893360B2 (ja) 微小凹凸表面欠陥の検出方法及び装置
Zhang et al. A novel MFL detection method based on low frequency AC magnetization for identification defect
CN103940902B (zh) 利用涡流阻抗平面检测仪检测非金属材料不连续性方法
CN203216901U (zh) 一种应力检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897959

Country of ref document: EP

Kind code of ref document: A1