WO2017006943A1 - 燃料電池 - Google Patents
燃料電池 Download PDFInfo
- Publication number
- WO2017006943A1 WO2017006943A1 PCT/JP2016/069942 JP2016069942W WO2017006943A1 WO 2017006943 A1 WO2017006943 A1 WO 2017006943A1 JP 2016069942 W JP2016069942 W JP 2016069942W WO 2017006943 A1 WO2017006943 A1 WO 2017006943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air electrode
- concentration
- ratio
- electrode
- fuel cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/725—Metal content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8668—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell.
- a fuel cell including a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode is known.
- a material for the air electrode a perovskite oxide represented by the general formula ABO 3 and containing La (lanthanum) and Sr (strontium) at the A site is suitable (for example, see Patent Document 1).
- the output of the fuel cell may decrease as power generation is repeated.
- the inventors of the present invention are one of the causes of the output decrease due to the deterioration of the air electrode, and the presence of excessive Sr exceeding the stoichiometric ratio on the surface of the air electrode is a cause of the deterioration of the air electrode. I found a new thing.
- the present invention is based on such new knowledge and aims to provide a fuel cell capable of suppressing a decrease in output.
- the fuel cell according to the present invention includes a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode.
- the air electrode is represented by the general formula ABO 3 and contains a perovskite oxide containing La and Sr as a main component at the A site.
- the air electrode has a surface opposite to the solid electrolyte layer.
- the first ratio of the Sr concentration to the La concentration detected by X-ray photoelectron spectroscopic analysis on the surface of the air electrode is detected by X-ray photoelectron spectroscopic analysis on the exposed surface exposed by subjecting the surface of the air electrode to surface treatment. It is 4 times or less of the second ratio of the Sr concentration to the La concentration.
- the exposed surface is located 5 nm from the surface in the thickness direction.
- Sectional view showing the configuration of the fuel cell Sectional view showing the surface of the air electrode Sectional view showing exposed surface of air electrode Sectional drawing which shows the other structure of a fuel cell
- the fuel cell 10 is a so-called solid oxide fuel cell (SOFC).
- SOFC solid oxide fuel cell
- the fuel cell 10 may take the form of a vertical stripe type, a horizontal stripe type, a fuel electrode support type, an electrolyte flat plate type, or a cylindrical type.
- FIG. 1 is a cross-sectional view showing the configuration of the fuel cell 10.
- the fuel cell 10 includes a fuel electrode 20, a solid electrolyte layer 30, a barrier layer 40, and an air electrode 50.
- the fuel electrode 20 functions as an anode of the fuel cell 10. As illustrated in FIG. 1, the fuel electrode 20 includes a fuel electrode current collecting layer 21 and a fuel electrode active layer 22.
- the anode current collecting layer 21 is a porous body excellent in gas permeability.
- materials conventionally used for SOFC anode current collecting layers can be used.
- NiO nickel oxide
- -8YSZ 8 mol% yttria is stabilized).
- Zirconia and NiO—Y 2 O 3 (yttria).
- NiO nickel oxide
- Y 2 O 3 yttria
- the thickness of the anode current collecting layer 21 can be set to 0.1 mm to 5.0 mm, for example.
- the anode active layer 22 is disposed on the anode current collecting layer 21.
- the anode active layer 22 is a denser porous body than the anode current collecting layer 21.
- materials conventionally used for the anode active layer of SOFC can be used, for example, NiO-8YSZ.
- NiO-8YSZ materials conventionally used for the anode active layer of SOFC
- the thickness of the anode active layer 22 can be set to 5.0 ⁇ m to 30 ⁇ m, for example.
- the solid electrolyte layer 30 is disposed between the fuel electrode 20 and the air electrode 50. In the present embodiment, the solid electrolyte layer 30 is sandwiched between the fuel electrode 20 and the barrier layer 40. The solid electrolyte layer 30 has a function of transmitting oxygen ions generated at the air electrode 50. The solid electrolyte layer 30 is denser than the fuel electrode 20 and the air electrode 50.
- the solid electrolyte layer 30 may contain ZrO 2 (zirconia) as a main component.
- the solid electrolyte layer 30 may contain additives such as Y 2 O 3 (yttria) and / or Sc 2 O 3 (scandium oxide) in addition to zirconia. These additives function as stabilizers.
- the molar composition ratio of the stabilizer to zirconia can be about 3:97 to 20:80. Therefore, examples of the material of the solid electrolyte layer 30 include 3YSZ, 8YSZ, 10YSZ, or ScSZ (scandia-stabilized zirconia).
- the thickness of the solid electrolyte layer 30 can be set to 3 ⁇ m to 30 ⁇ m, for example.
- the phrase “the composition X contains the substance Y as a main component” means that the substance Y occupies 70% by weight or more in the entire composition X, and more preferably 90% by weight or more. Means to occupy.
- the barrier layer 40 is disposed between the solid electrolyte layer 30 and the air electrode 50.
- the barrier layer 40 suppresses the formation of a high resistance layer between the solid electrolyte layer 30 and the air electrode 50.
- the barrier layer 40 is denser than the fuel electrode 20 and the air electrode 50.
- the barrier layer 40 can contain a ceria-based material such as GDC (gadolinium doped ceria) or SDC (samarium doped ceria) as a main component.
- the thickness of the barrier layer 40 can be set to 3 ⁇ m to 20 ⁇ m, for example.
- the air electrode 50 is disposed on the barrier layer 40.
- the air electrode 50 functions as a cathode of the fuel cell 10.
- the air electrode 50 is a porous body.
- the air electrode 50 is represented by the general formula ABO 3 and contains a perovskite oxide containing La (lanthanum) and Sr (strontium) at the A site as a main component.
- a perovskite oxide (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite), (La, Sr) FeO 3 (lanthanum strontium ferrite), (La, Sr) CoO 3 ( Lanthanum strontium cobaltate), (La, Sr) MnO 3 (lanthanum strontium manganate), and the like, but are not limited thereto.
- Impurities may be inevitably mixed into the A site of the perovskite oxide constituting the air electrode 50, but the amount of impurities in the air electrode 50 is preferably low.
- Ba, Ca, Na, and K can be inevitably mixed in the A site, but the total concentration of Ba, Ca, Na, and K in the air electrode 50 is preferably 2000 ppm or less. Accordingly, it is possible to further suppress the concentration of Sr on the first surface 50S of the air electrode 50 in the firing step of the air electrode 50.
- the respective concentrations of Ba, Ca, Na, and K are obtained by, for example, secondary ion mass spectrometry (Secondary Ion Mass Spectrometry).
- the concentrations of Ba, Ca, Na and K are not particularly limited, but the concentration of Ba is 10 to 1400 ppm, the concentration of Ca is 10 to 400 ppm, the concentration of Na is 10 to 100 ppm, and the concentration of K is 10 to 100 ppm. Can do.
- the air electrode 50 has a first surface 50S and a second surface 50T.
- the first surface 50 ⁇ / b> S is a surface opposite to the solid electrolyte layer 30.
- the fine structure of the air electrode 50 in the vicinity of the first surface 50S will be described later.
- the second surface 50T is a surface on the solid electrolyte layer 30 side.
- the air electrode 50 since the fuel cell 10 includes the barrier layer 40, the air electrode 50 is in contact with the barrier layer 40 on the second surface 50T. That is, in the present embodiment, the second surface 50T is an interface between the air electrode 50 and the barrier layer 40.
- the second surface 50T can be defined as a line in which the concentration distribution of a predetermined component changes abruptly when the component concentration is mapped in a cross section parallel to the thickness direction of the barrier layer 40 and the air electrode 50. Specifically, a line where the concentration of an element substantially contained only in one of the barrier layer 40 or the air electrode 50 is 10% of the maximum concentration inside the one is defined as the second surface 50T.
- FIG. 2 is a diagram schematically showing a cross section of the air electrode 50.
- the air electrode 50 is formed by stacking air electrode particles 51 in the thickness direction.
- the thickness direction is a direction perpendicular to the air electrode side surface 30 ⁇ / b> S of the solid electrolyte layer 30.
- the air electrode particle 51 is represented by the general formula ABO 3 and is composed of a perovskite oxide containing La and Sr at the A site.
- Such an element distribution on the first surface 50S of the air electrode 50 can be detected by X-ray photoelectron spectroscopy (XPS) analysis.
- XPS X-ray photoelectron spectroscopy
- the first ratio (referred to as “Sr concentration”) (Sr concentration / La concentration) R1 is not particularly limited and may vary depending on the material composition of the air electrode 50.
- the air electrode 50 is composed of (La 0.6 Sr 0.4 ) (Co 0.2 Fe 0.8 ) O 3
- the first ratio R1 is set to 1.0 or more and 4.0 or less. be able to.
- the Sr concentration is not particularly limited, but can be 8 atm% or more and 12 atm% or less
- the La concentration is not particularly limited, but can be 3 atm% or more and 8 atm% or less.
- the first ratio R1 is a value obtained by arithmetically averaging the ratios (Sr concentration / La concentration) detected at each of five arbitrary locations on the first surface 50S.
- the positions of any five locations for detecting the Sr concentration and La concentration are not particularly limited, but may be set at equal intervals so as to cover the entire surface of the first surface 50S as much as possible.
- the X-ray photoelectron spectroscopic analysis in this embodiment uses MgK ⁇ (400 W, 1254.6 eV) as an X-ray source, an analysis diameter of 800 ⁇ m ⁇ , an angle between the X-ray and the sample of 45 °, and an angle between the X-ray and the spectrometer. It shall carry out using the XPS spectrum obtained when it is set to 54.7 degrees.
- X-ray photoelectron spectroscopy analyzer includes Physical Electronics Inc. The model ESCA-5700ci manufactured by the company can be used.
- the element distribution on the exposed surface 51S inside the air electrode particle 51 is also X It can be detected by linear photoelectron spectroscopy.
- FIG. 3 a state in which X-rays are applied to the exposed surfaces 51 ⁇ / b> S of the air electrode particles 51 is schematically illustrated by broken lines.
- the exposed surface 51S is located 5 nm from the first surface 50S in the thickness direction.
- ion etching using an argon ion gun is suitable for the surface treatment for forming the exposed surface 51S.
- the exposed surface is exposed to a position 5 nm from the first surface 50S by adjusting the ion etching time (0.1 to 10 minutes) and the acceleration voltage (0.5 keV to 5 keV).
- 51S can be formed with high accuracy.
- the second ratio of Sr concentration to the detected La concentration (Sr concentration / La concentration) R2 is particularly limited Instead, it may vary depending on the material composition of the air electrode 50.
- the air electrode 50 is composed of (La 0.6 Sr 0.4 ) (Co 0.2 Fe 0.8 ) O 3
- the second ratio R2 is set to 1.0 or more and 1.5 or less. be able to.
- the Sr concentration is not particularly limited, but can be 10 atm% or more and 12 atm% or less
- the La concentration is not particularly limited, but can be 8 atm% or more and 10 atm% or less.
- the second ratio R2 is a value obtained by arithmetically averaging the ratios (Sr concentration / La concentration) detected at each of five arbitrary locations on the exposed surface 51S.
- the positions of any five locations for detecting the Sr concentration and the La concentration are not particularly limited, but may be set at equal intervals so as to cover the entire exposed surface 51S as much as possible.
- the first ratio R1 on the first surface 50S is not more than four times the second ratio R2 on the exposed surface 51S. That is, R1 ⁇ 4 ⁇ R2 is established.
- R1 ⁇ 4 ⁇ R2 is established.
- 1st ratio R1 in the 1st surface 50S can be 0.8 times or more of 2nd ratio R2 in the exposed surface 51S.
- the first ratio R1 is preferably 1.0 times or more of the second ratio R2.
- a molded body of the anode current collecting layer 21 is formed by molding the anode current collecting layer material powder by a die press molding method.
- a fuel electrode active layer slurry is prepared by adding PVA (polyvinyl alcohol) as a binder to a mixture of the fuel electrode active layer material powder and a pore-forming agent (for example, PMMA).
- PVA polyvinyl alcohol
- a pore-forming agent for example, PMMA
- the solid electrolyte layer 30 molded body is formed by applying the solid electrolyte layer slurry on the molded body of the fuel electrode active layer 22 by a printing method or the like.
- terpineol and a binder are mixed with the barrier layer material powder to prepare a barrier layer slurry.
- the molded object of the barrier layer 40 is formed by apply
- the fuel electrode 20, the solid electrolyte layer 30, and the barrier layer 40 are fired (1350 ° C. to 1450 ° C., 1 hour to 20 hours) to form the fuel electrode 20, the solid electrolyte layer 30, and the barrier layer 40. Form.
- a perovskite oxide material represented by the general formula ABO 3 and containing La and Sr at the A site is prepared.
- the total concentration of impurities (Ba, Ca, Na, K) at the A site of the perovskite oxide is preferably 2000 ppm or less. This makes it easier to suppress the concentration of Sr on the first surface 50 ⁇ / b> S of the air electrode 50 in the firing step described later.
- an air electrode slurry is prepared by mixing the perovskite oxide material, water and a binder in a ball mill for 24 hours.
- the air electrode slurry is applied onto the barrier layer 40 by a printing method or the like to form the air electrode 50 molded body.
- the air electrode 50 is formed by firing (1000 to 1100 ° C., 1 to 10 hours). Under the present circumstances, it can suppress that Sr concentrates on the 1st surface 50S of the air electrode 50 by setting it as the baking atmosphere with high oxygen concentration.
- the first ratio R1 on the first surface 50S is exposed by firing the molded body of the air electrode 50 in a pure oxygen atmosphere or an oxygen-rich air atmosphere having an oxygen concentration of 40% or more. It can be 4 times or less of the second ratio R2 on the surface 51S.
- the exposed surface 51S of the first ratio R1 in the first surface 50S by lowering the temperature of the fired body of the air electrode 50 to room temperature in a pure oxygen atmosphere or an oxygen-rich air atmosphere having an oxygen concentration of 40% or more, the exposed surface 51S of the first ratio R1 in the first surface 50S.
- the ratio with respect to the second ratio R2 can be finely adjusted.
- the fuel cell 10 may include a current collecting layer 60 disposed on the air electrode 50 as shown in FIG.
- the thickness of the current collecting layer 60 is not particularly limited, but can be 30 ⁇ m to 500 ⁇ m.
- the current collecting layer 60 can be made of, for example, a perovskite complex oxide represented by the following composition formula (1), but is not limited thereto.
- Substances other than La may be contained in the A site of the composition formula (1), and substances other than Ni, Fe and Cu may be contained in the B site.
- m and n are 0.95 or more and 1.05 or less
- x (Fe) is 0.03 or more and 0.3 or less
- y (Cu) is 0.05 or more and 0.5 or less.
- ⁇ is 0 or more and 0.8 or less.
- the current collecting layer 60 is formed by forming a current collector layer 60 shaped body on the air electrode 50 shaped body using a current collecting layer slurry obtained by mixing the material of the current collecting layer 60, water, and a binder. And the current collector layer 60 can be produced by firing (1000 to 1100 ° C., 1 to 10 hours).
- the air electrode 50 contacts the current collecting layer 60 on the first surface 50S. That is, the first surface 50 ⁇ / b> S is an interface between the air electrode 50 and the current collecting layer 60.
- the first surface 50 ⁇ / b> S can be defined as a line in which the concentration distribution of a predetermined component changes rapidly when the component concentration is mapped in a cross section parallel to the thickness direction of the air electrode 50. Specifically, a line in which the concentration of an element substantially contained only in one of the air electrode 50 or the current collecting layer 60 is 10% of the maximum concentration in one of the elements is defined as the first surface 50S.
- the current collection layer 60 disposed on the air electrode 50 is removed by mechanical polishing or etching to expose the first surface 50S with high accuracy. be able to.
- the first ratio R1 (Sr concentration / La concentration) on the first surface 50S is changed to the second ratio R2 (on the exposed surface 51S).
- the second ratio R2 on the exposed surface 51S.
- the fuel cell 10 may not include the barrier layer 40.
- the air electrode 50 is disposed on the solid electrolyte layer 30.
- the barrier layer 40 has a single layer structure, it may have a multilayer structure in which a dense barrier layer and a porous barrier layer are laminated (in no particular order).
- NiO powder and Y 2 O 3 powder and the pore former (PMMA) slurry prepared by mixing blended powder and of IPA to prepare a mixed powder by drying under a nitrogen atmosphere.
- the mixed powder is uniaxially pressed (molding pressure 50 MPa) to form a plate 30 mm long ⁇ 30 mm wide and 3 mm thick, and the plate is further consolidated with CIP (molding pressure: 100 MPa) to collect the fuel electrode.
- CIP molding pressure: 100 MPa
- 8YSZ was mixed with terpineol and a binder to prepare a solid electrolyte layer slurry.
- the solid electrolyte layer molded body was formed by applying the slurry for the solid electrolyte layer onto the molded body of the fuel electrode.
- a GDC slurry was prepared, and a molded body of the barrier layer was prepared by applying the GDC slurry onto the molded body of the solid electrolyte layer.
- the molded body of the fuel electrode, the solid electrolyte layer, and the barrier layer was fired (1450 ° C., 5 hours) to form the fuel electrode, the solid electrolyte layer, and the barrier layer.
- air electrode slurry was prepared by mixing terpineol and a binder with the air electrode material shown in Table 1. Then, an air electrode slurry was applied on the barrier layer compact to produce an air electrode compact.
- the air electrode compact was fired (1000 ° C., 1 hour) to form an air electrode.
- the temperature is lowered while maintaining the oxygen-rich air atmosphere having an oxygen concentration of 40 % or more.
- the magnification (R1 / R2) of the first ratio R1 on the surface of the air electrode with respect to the second ratio R2 on the exposed surface was adjusted.
- X-ray photoelectron spectroscopy near the surface of the air electrode First, X-ray photoelectron spectroscopy (manufactured by Physical Electronics Inc., model ESCA-5700ci, X-ray source: MgK ⁇ (400 W, 1254.6 eV), analysis diameter: 800 ⁇ m ⁇ , angle between X-ray and sample: 45 °, X The La concentration and the Sr concentration at any five positions on the outermost surface of the air electrode are detected by the angle between the line and the spectroscope: 54.7 °, and the first ratio R1 of the Sr concentration to the La concentration (at five positions) The arithmetic average value of the ratio was calculated.
- the outermost surface of the air electrode was removed 5 nm in the thickness direction by ion etching using an argon ion gun (etching time: 1 minute, acceleration voltage: 3 keV). Thus, an exposed surface inside the air electrode was formed.
- X-ray photoelectron spectroscopic analysis manufactured by Physical Electronics Inc., model ESCA-5700ci, X-ray source: MgK ⁇ (400 W, 1254.6 eV), analysis diameter: 800 ⁇ m ⁇ , angle between X-ray and sample: 45 °, The La concentration and the Sr concentration at any five locations on the exposed surface of the air electrode are detected by an angle between the X-ray and the spectroscope: 54.7 °, and a second ratio R2 of the Sr concentration to the La concentration R2 (5 locations) The arithmetic average value of the ratio was calculated.
- the magnification (R1 / R2) of the first ratio R1 to the second ratio R2 is as shown in Table 1.
- the voltage drop rate per 1000 hours was measured as the deterioration rate.
- a value at a temperature of 750 ° C. and a rated current density of 0.2 A / cm 2 was used.
- the measurement results are summarized in Table 1. In this example, a sample having a deterioration rate of 1.0% or less is evaluated as a low deterioration state.
- the deterioration rate of the air electrode could be reduced. This suppresses the formation of SrO on the outer surface by suppressing the concentration of Sr on the outer surface of the air electrode (first surface 50S according to the embodiment), and as a result, the SrSO that causes the deterioration of the air electrode. This is because the generation of 4 could be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
Abstract
燃料電池(10)は、燃料極(20)と、空気極(50)と、燃料極(20)および空気極(50)の間に配置される固体電解質層(30)とを備える。空気極(50)は、一般式ABO3で表され、AサイトにLa及びSrを含むペロブスカイト型酸化物を主成分として含有する。空気極(50)は、固体電解質層(30)と反対側の第1表面(50S)を有する。第1表面(50S)におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第1の比(R1)は、第1表面(50S)に表面処理を施して露出した露出面(51S)におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第2の比(R2)の4倍以下である。露出面(51S)は、厚み方向において第1表面(50S)から5nm内部に位置する。
Description
本発明は、燃料電池に関する。
従来、燃料極と、空気極と、燃料極と空気極の間に配置される固体電解質層とを備える燃料電池が知られている。空気極の材料としては、一般式ABO3で表され、AサイトにLa(ランタン)及びSr(ストロンチウム)を含むペロブスカイト型酸化物が好適である(例えば、特許文献1参照)。
しかしながら、発電を繰り返すうちに燃料電池の出力が低下する場合がある。本発明者らは、出力低下の原因の1つが空気極の劣化によるものであり、空気極表面に化学量論比を超えた過剰なSrが存在することが空気極の劣化の一因であることを新たに見出した。
本発明は、このような新たな知見に基づくものであって、出力低下を抑制可能な燃料電池を提供することを目的とする。
本発明に係る燃料電池は、燃料極と、空気極と、燃料極および空気極の間に配置される固体電解質層とを備える。空気極は、一般式ABO3で表され、AサイトにLa及びSrを含むペロブスカイト型酸化物を主成分として含有する。空気極は、固体電解質層と反対側の表面を有する。空気極の表面におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第1の比は、空気極の表面に表面処理を施して露出した露出面におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第2の比の4倍以下である。露出面は、厚み方向において表面から5nm内部に位置する。
本発明によれば、出力低下を抑制可能な燃料電池を提供することができる。
次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。
(燃料電池10の構成)
燃料電池10の構成について、図面を参照しながら説明する。燃料電池10は、いわゆる固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。燃料電池10は、縦縞型、横縞型、燃料極支持型、電解質平板型、或いは円筒型などの形態を取りうる。
燃料電池10の構成について、図面を参照しながら説明する。燃料電池10は、いわゆる固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)である。燃料電池10は、縦縞型、横縞型、燃料極支持型、電解質平板型、或いは円筒型などの形態を取りうる。
図1は、燃料電池10の構成を示す断面図である。燃料電池10は、燃料極20、固体電解質層30、バリア層40及び空気極50を備える。
燃料極20は、燃料電池10のアノードとして機能する。燃料極20は、図1に示すように、燃料極集電層21と燃料極活性層22を有する。
燃料極集電層21は、ガス透過性に優れる多孔質体である。燃料極集電層21を構成する材料としては、従来SOFCの燃料極集電層に用いられてきた材料を用いることができ、例えばNiO(酸化ニッケル)-8YSZ(8mol%のイットリアで安定化されたジルコニア)やNiO‐Y2O3(イットリア)が挙げられる。燃料極集電層21がNiOを含んでいる場合、燃料電池10の作動中においてNiOの少なくとも一部はNiに還元されていてもよい。燃料極集電層21の厚みは、例えば0.1mm~5.0mmとすることができる。
燃料極活性層22は、燃料極集電層21上に配置される。燃料極活性層22は、燃料極集電層21より緻密な多孔質体である。燃料極活性層22を構成する材料としては、従来SOFCの燃料極活性層に用いられてきた材料を用いることができ、例えばNiO‐8YSZが挙げられる。燃料極活性層22がNiOを含んでいる場合、燃料電池10の作動中においてNiOの少なくとも一部はNiに還元されていてもよい。燃料極活性層22の厚みは、例えば5.0μm~30μmとすることができる。
固体電解質層30は、燃料極20と空気極50の間に配置される。本実施形態において、固体電解質層30は、燃料極20とバリア層40に挟まれている。固体電解質層30は、空気極50で生成される酸素イオンを透過させる機能を有する。固体電解質層30は、燃料極20や空気極50よりも緻密質である。
固体電解質層30は、ZrO2(ジルコニア)を主成分として含んでいてもよい。固体電解質層30は、ジルコニアの他に、Y2O3(イットリア)及び/又はSc2O3(酸化スカンジウム)等の添加剤を含んでいてもよい。これらの添加剤は、安定化剤として機能する。固体電解質層30において、安定化剤のジルコニアに対するmol組成比(安定化剤:ジルコニア)は、3:97~20:80程度とすることができる。従って、固体電解質層30の材料としては、例えば、3YSZ、8YSZ、10YSZ、或いはScSZ(スカンジアで安定化されたジルコニア)などが挙げられる。固体電解質層30の厚みは、例えば3μm~30μmとすることができる。
本実施形態において、組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが70重量%以上を占めることを意味し、より好ましくは90重量%以上を占めることを意味する。
バリア層40は、固体電解質層30と空気極50の間に配置される。バリア層40は、固体電解質層30と空気極50の間に高抵抗層が形成されることを抑制する。バリア層40は、燃料極20や空気極50よりも緻密質である。バリア層40は、GDC(ガドリニウムドープセリア)やSDC(サマリウムドープセリア)などのセリア系材料を主成分とすることができる。バリア層40の厚みは、例えば3μm~20μmとすることができる。
空気極50は、バリア層40上に配置される。空気極50は、燃料電池10のカソードとして機能する。空気極50は、多孔質体である。
空気極50は、一般式ABO3で表され、AサイトにLa(ランタン)及びSr(ストロンチウム)を含むペロブスカイト型酸化物を主成分として含有する。このようなペロブスカイト型酸化物としては、(La,Sr)(Co,Fe)O3(ランタンストロンチウムコバルトフェライト)、(La,Sr)FeO3(ランタンストロンチウムフェライト)、(La,Sr)CoO3(ランタンストロンチウムコバルタイト)、(La,Sr)MnO3(ランタンストロンチウムマンガネート)などが挙げられるが、これに限られるものではない。
空気極50を構成するペロブスカイト型酸化物のAサイトには、不純物が不可避的に混入する場合があるが、空気極50における不純物量は低いことが好ましい。具体的に、Aサイトには、不純物としてBa、Ca、Na及びKが不可避的に混入しうるが、空気極50におけるBa、Ca、Na及びKの合計濃度は2000ppm以下であることが好ましい。これによって、空気極50の焼成工程において、空気極50の第1表面50SにSrが濃化することをより抑制することができる。
Ba、Ca、Na及びKの各濃度は、例えば、二次イオン質量分析法(Secondary Ion Mass Spectrometry)によって得られる。Ba、Ca、Na及びKの各濃度は特に制限されないが、Baの濃度は10~1400ppm、Caの濃度は10~400ppm、Naの濃度は10~100ppm、Kの濃度は10~100ppmとすることができる。
空気極50は、第1表面50Sと第2表面50Tとを有する。第1表面50Sは、固体電解質層30と反対側の表面である。第1表面50S付近における空気極50の微構造については後述する。第2表面50Tは、固体電解質層30側の表面である。本実施形態では、燃料電池10がバリア層40を備えているため、空気極50は第2表面50Tにおいてバリア層40と接触する。すなわち、本実施形態において、第2表面50Tは空気極50とバリア層40との界面である。
第2表面50Tは、バリア層40と空気極50の厚み方向に平行な断面において成分濃度をマッピングした場合に所定成分の濃度分布が急激に変化するラインに規定することができる。具体的には、実質的にバリア層40又は空気極50の一方にのみ含まれる元素の濃度が、その一方の内部における最大濃度の10%となるラインを第2表面50Tとする。
(空気極50の微構造)
空気極50の微構造について、図面を参照しながら説明する。図2は、空気極50の断面を模式的に示す図である。
空気極50の微構造について、図面を参照しながら説明する。図2は、空気極50の断面を模式的に示す図である。
図2に示すように、空気極50は、厚み方向に空気極粒子51が積層されることによって形成される。本実施形態において厚み方向とは、固体電解質層30の空気極側表面30Sに垂直な方向である。空気極粒子51は、一般式ABO3で表され、AサイトにLa及びSrを含むペロブスカイト型酸化物によって構成される。
このような空気極50の第1表面50Sにおける元素分布は、X線光電子分光(XPS:X-ray Photoelectron Spectroscopy)分析で検出することができる。図2では、X線が空気極粒子51の最表面に照射された様子が破線で模式的に図示されている。
第1表面50Sにおいて、X線光電子分光分析でLa及びSrそれぞれの原子濃度を検出した場合、検出されるLaの原子濃度(以下、「La濃度」という。)に対するSrの原子濃度(以下、「Sr濃度」という。)の第1の比(Sr濃度/La濃度)R1は特に制限されるものではなく、空気極50の材料組成によって変動しうる。例えば、空気極50が(La0.6Sr0.4)(Co0.2Fe0.8)O3によって構成される場合、第1の比R1は1.0以上4.0以下とすることができる。この場合、Sr濃度は特に制限されないが8atm%以上12atm%以下とすることができ、La濃度も特に制限されないが3atm%以上8atm%以下とすることができる。
本実施形態において、第1の比R1は、第1表面50S上の任意の5箇所それぞれにおいて検出された比(Sr濃度/La濃度)を算術平均した値である。Sr濃度及びLa濃度を検出する任意の5箇所の位置は特に制限されないが、第1表面50S上の全体をできるだけカバーするよう等間隔に設定すればよい。
本実施形態におけるX線光電子分光分析は、X線源としてMgKα(400W、1254.6eV)を用い、分析径800μmφ、X線と試料との角度を45°、X線と分光器との角度を54.7°とした場合に得られるXPSスペクトルを用いて実施するものとする。X線光電子分光分析装置には、Physical Electronics Inc.社製の型式ESCA-5700ciを用いることができる。
また、図3に示すように、空気極50の第1表面50Sに表面処理を施して空気極粒子51の内部を露出させることによって、空気極粒子51内部の露出面51Sにおける元素分布も、X線光電子分光分析で検出することができる。図3では、X線が空気極粒子51の露出面51Sに照射された様子が破線で模式的に図示されている。図3に示すように、露出面51Sは、厚み方向において第1表面50Sから5nm内部に位置している。
露出面51Sを形成するための表面処理には、アルゴンイオン銃を用いたイオンエッチングが好適である。アルゴンイオン銃を用いたイオンエッチングでは、イオンエッチング時間(0.1分~10分)、加速電圧(0.5keV~5keV)を調整することによって、第1表面50Sから5nm内部の位置に露出面51Sを精度良く形成することができる。
露出面51Sにおいて、X線光電子分光分析でLa及びSrそれぞれの原子濃度を検出した場合、検出されるLa濃度に対するSr濃度の第2の比(Sr濃度/La濃度)R2は特に制限されるものではなく、空気極50の材料組成によって変動しうる。例えば、空気極50が(La0.6Sr0.4)(Co0.2Fe0.8)O3によって構成される場合、第2の比R2は1.0以上1.5以下とすることができる。この場合、Sr濃度は特に制限されないが10atm%以上12atm%以下とすることができ、La濃度も特に制限されないが8atm%以上10atm%以下とすることができる。
本実施形態において、第2の比R2は、露出面51S上の任意の5箇所それぞれにおいて検出された比(Sr濃度/La濃度)を算術平均した値である。Sr濃度及びLa濃度を検出する任意の5箇所の位置は特に制限されないが、露出面51S上の全体をできるだけカバーするよう等間隔に設定すればよい。
ここで、本実施形態において、第1表面50Sにおける第1の比R1は、露出面51Sにおける第2の比R2の4倍以下である。すなわち、R1≦4×R2が成立する。このように、第1の比R1と第2の比R2の差を抑えることによって、第1表面50SにSrが濃化することを抑制できる。これにより、第1表面50SにSrOが生成されることを抑えることができるため、例えば酸化剤ガス(例えば、空気)に微量に含まれるS(硫黄)がSrOと反応して空気極50の劣化原因となるSrSO4が生成されることを抑制できる。その結果、燃料電池10の出力低下を抑えることができる。
第1表面50Sにおける第1の比R1は、露出面51Sにおける第2の比R2の0.8倍以上とすることができる。第1の比R1は、第2の比R2の1.0倍以上であることが好ましい。これによって、焼成後の空気極の外表面にクラックが発生することを抑制することができる。
(燃料電池10の製造方法)
次に、燃料電池10の製造方法の一例について説明する。
次に、燃料電池10の製造方法の一例について説明する。
まず、金型プレス成形法で燃料極集電層用材料粉末を成形することによって、燃料極集電層21の成形体を形成する。
次に、燃料極活性層用材料粉末と造孔剤(例えばPMMA)との混合物にバインダーとしてPVA(ポリビニルアルコール)を添加して燃料極活性層用スラリーを作製する。そして、印刷法などによって燃料極活性層用スラリーを燃料極集電層21の成形体上に印刷することによって、燃料極活性層22の成形体を形成する。以上により燃料極20の成形体が形成される。
次に、固体電解質層用材料粉末にテルピネオールとバインダーを混合して固体電解質層用スラリーを作製する。そして、印刷法などによって固体電解質層用スラリーを燃料極活性層22の成形体上に塗布することによって、固体電解質層30の成形体を形成する。
次に、バリア層用材料粉末にテルピネオールとバインダーを混合してバリア層用スラリーを作製する。そして、印刷法などでバリア層用スラリーを中間層40の成形体上に塗布することによってバリア層40の成形体を形成する。
次に、燃料極20、固体電解質層30及びバリア層40それぞれの成形体を焼成(1350℃~1450℃、1時間~20時間)することによって、燃料極20、固体電解質層30及びバリア層40を形成する。
次に、一般式ABO3で表され、AサイトにLa及びSrを含むペロブスカイト型酸化物材料を準備する。このペロブスカイト型酸化物のAサイトにおける不純物(Ba、Ca、Na、K)の合計濃度は2000ppm以下であることが好ましい。これによって、後述する焼成工程において、空気極50の第1表面50SにSrが濃化することをより抑制しやすくなる。
次に、上記ペロブスカイト型酸化物材料と水とバインダーをボールミルで24時間混合することによって空気極用スラリーを作製する。
次に、印刷法などによって空気極用スラリーをバリア層40上に塗布することによって空気極50の成形体を形成する。
次に、空気極50の成形体を焼成(1000~1100℃、1~10時間)することによって空気極50を形成する。この際、酸素濃度の高い焼成雰囲気にすることによって、空気極50の第1表面50SにSrが濃化することを抑制することができる。具体的には、純酸素雰囲気又は酸素濃度が40%以上の酸素リッチ空気雰囲気で空気極50の成形体を焼成することによって、上述したように、第1表面50Sにおける第1の比R1を露出面51Sにおける第2の比R2の4倍以下とすることができる。
また、空気極50を焼成した後、降温中も酸素濃度の高い焼成雰囲気を維持することが好ましい。具体的には、純酸素雰囲気又は酸素濃度が40%以上の酸素リッチ空気雰囲気で空気極50の焼成体を常温まで降温させることによって、第1表面50Sにおける第1の比R1の露出面51Sにおける第2の比R2に対する比を微調整することができる。
また、空気極50を焼成した後、降温中も酸素濃度の高い焼成雰囲気を維持することが好ましい。具体的には、純酸素雰囲気又は酸素濃度が40%以上の酸素リッチ空気雰囲気で空気極50の焼成体を常温まで降温させることによって、第1表面50Sにおける第1の比R1の露出面51Sにおける第2の比R2に対する比を微調整することができる。
(他の実施形態)
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
(A)燃料電池10は、図4に示すように、空気極50上に配置される集電層60を備えていてもよい。集電層60の厚みは特に制限されないが、30μm~500μmとすることができる。
集電層60の材料は、空気極50の材料よりも電気抵抗が小さいことが好ましい。集電層60は、例えば次の組成式(1)で表されるペロブスカイト型複合酸化物によって構成することができるが、これに限られるものではない。
Lam(Ni1-x-yFexCuy)nO3-δ・・・(1)
組成式(1)のAサイトにはLa以外の物質が含まれていてもよく、BサイトにはNi、Fe及びCu以外の物質が含まれていてもよい。組成式(1)において、m及びnは0.95以上1.05以下であり、x(Fe)は0.03以上0.3以下であり、y(Cu)は0.05以上0.5以下であり、δは0以上0.8以下である。
Lam(Ni1-x-yFexCuy)nO3-δ・・・(1)
組成式(1)のAサイトにはLa以外の物質が含まれていてもよく、BサイトにはNi、Fe及びCu以外の物質が含まれていてもよい。組成式(1)において、m及びnは0.95以上1.05以下であり、x(Fe)は0.03以上0.3以下であり、y(Cu)は0.05以上0.5以下であり、δは0以上0.8以下である。
集電層60は、集電層60の材料と水とバインダーを混合した集電層用スラリーを用いて空気極50の成形体上に集電層60の成形体を形成した後、空気極50と集電層60それぞれの成形体を焼成(1000~1100℃、1~10時間)することで作製できる。
燃料電池10が集電層60を備えている場合、空気極50は第1表面50Sにおいて集電層60と接触する。すなわち、第1表面50Sは、空気極50と集電層60の界面となる。第1表面50Sは、空気極50の厚み方向に平行な断面において成分濃度をマッピングした場合に所定成分の濃度分布が急激に変化するラインに規定することができる。具体的には、実質的に空気極50又は集電層60の一方にのみ含まれる元素の濃度が、その一方の内部における最大濃度の10%となるラインを第1表面50Sとする。
空気極50の第1表面50SをX線光電子分光分析する場合には、空気極50上に配置された集電層60を機械研磨又はエッチングによって除去することで第1表面50Sを精度良く露出させることができる。
このように、燃料電池10が集電層60を備えている場合であっても、第1表面50Sにおける第1の比R1(Sr濃度/La濃度)を露出面51Sにおける第2の比R2(Sr濃度/La濃度)の4倍以下に抑えることによって、空気極50が劣化することを抑制できる。
(B)燃料電池10は、バリア層40を備えることとしたが、バリア層40を備えていなくてもよい。この場合、空気極50は、固体電解質層30上に配置されることになる。
(C)バリア層40は、単層構造であることとしたが、緻密質のバリア層と多孔質のバリア層が積層(順不同)された複層構造であってもよい。
以下において本発明に係る燃料電池の実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。
(サンプルNo.1~No.10の作製)
以下のようにして、サンプルNo.1~No.10に係る燃料電池を作製した。
以下のようにして、サンプルNo.1~No.10に係る燃料電池を作製した。
まず、NiO粉末とY2O3粉末と造孔材(PMMA)の調合粉末とIPAを混合したスラリーを窒素雰囲気下で乾燥させることによって混合粉末を作製した。
次に、混合粉末を一軸プレス(成形圧50MPa)することで縦30mm×横30mm、厚み3mmの板を成形し、その板をCIP(成形圧:100MPa)でさらに圧密することによって燃料極集電層の成形体を作製した。
次に、NiO‐8YSZとPMMAの調合粉末とIPAを混合したスラリーを燃料極集電層の成形体上に塗布した。
次に、8YSZにテルピネオールとバインダーを混合して固体電解質層用スラリーを作成した。次に、固体電解質層用スラリーを燃料極の成形体上に塗布することによって固体電解質層の成形体を形成した。
次に、GDCスラリーを作製し、固体電解質層の成形体上にGDCスラリーを塗布することによってバリア層の成形体を作製した。
次に、燃料極、固体電解質層及びバリア層の成形体を焼成(1450℃、5時間)して、燃料極、固体電解質層及びバリア層を形成した。
次に、表1に示す空気極材料にテルピネオールとバインダーを混合することによって空気極用スラリーを作製した。そして、バリア層の成形体上に空気極用スラリーを塗布して空気極の成形体を作製した。
次に、空気極の成形体を焼成(1000℃、1時間)して空気極を形成した。この際、酸素濃度が40%以上の酸素リッチ空気雰囲気で焼成した後、酸素濃度が40%以上の酸素リッチ空気雰囲気を維持したまま降温することによって、表1に示すように、空気極内部の露出面における第2の比R2に対する空気極の表面における第1の比R1の倍率(R1/R2)を調整した。
(空気極の外表面におけるクラックの観察)
各サンプル10個ずつについて、空気極の外表面を顕微鏡及び目視で観察することによって、外表面におけるクラックの有無を確認した。確認結果を表1に示す。
各サンプル10個ずつについて、空気極の外表面を顕微鏡及び目視で観察することによって、外表面におけるクラックの有無を確認した。確認結果を表1に示す。
(空気極の表面付近におけるX線光電子分光分析)
まず、X線光電子分光分析(Physical Electronics Inc.社製、型式ESCA-5700ci、X線源:MgKα(400W、1254.6eV)、分析径:800μmφ、X線と試料との角度:45°、X線と分光器との角度:54.7°)によって空気極の最表面上の任意の5箇所におけるLa濃度とSr濃度を検出し、La濃度に対するSr濃度の第1の比R1(5箇所における比の算術平均値)を算出した。
まず、X線光電子分光分析(Physical Electronics Inc.社製、型式ESCA-5700ci、X線源:MgKα(400W、1254.6eV)、分析径:800μmφ、X線と試料との角度:45°、X線と分光器との角度:54.7°)によって空気極の最表面上の任意の5箇所におけるLa濃度とSr濃度を検出し、La濃度に対するSr濃度の第1の比R1(5箇所における比の算術平均値)を算出した。
次に、アルゴンイオン銃を用いたイオンエッチング(エッチング時間:1分、加速電圧:3keV)によって、空気極の最表面を厚み方向に5nm除去した。これによって、空気極内部の露出面を形成した。
次に、X線光電子分光分析(Physical Electronics Inc.社製、型式ESCA-5700ci、X線源:MgKα(400W、1254.6eV)、分析径:800μmφ、X線と試料との角度:45°、X線と分光器との角度:54.7°)によって空気極の露出面上の任意の5箇所におけるLa濃度とSr濃度を検出し、La濃度に対するSr濃度の第2の比R2(5箇所における比の算術平均値)を算出した。
第1の比R1の第2の比R2に対する倍率(R1/R2)は表1に示すとおりであった。
(耐久性試験)
サンプルNo.1~No.10について、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。
サンプルNo.1~No.10について、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。
その後、1000時間当たりの電圧降下率を劣化率として測定した。温度が750℃で定格電流密度0.2A/cm2での値を使用した。測定結果を表1にまとめて記載する。本実施例では、劣化率が1.0%以下であるサンプルが低劣化状態と評価されている。
表1に示されるように、第1の比R1を第2の比R2の4倍以下としたサンプルでは、空気極の劣化率を低減することができた。これは、空気極の外表面(実施形態に係る第1表面50S)にSrが濃化することを抑制することによって外表面におけるSrOの生成を抑え、その結果、空気極の劣化原因となるSrSO4の生成を抑制できたためである。
また、表1に示されるように、第1の比R1を第2の比R2の1.0倍以上とすることによって、焼成後において空気極の外表面にクラックが発生することを抑制できることが分かった。
10 燃料電池
20 燃料極
30 固体電解質層
40 バリア層
50 空気極
50S 第1表面
51 空気極粒子
51S 露出面
20 燃料極
30 固体電解質層
40 バリア層
50 空気極
50S 第1表面
51 空気極粒子
51S 露出面
Claims (3)
- 燃料極と、
一般式ABO3で表され、AサイトにLa及びSrを含むペロブスカイト型酸化物を主成分として含有する空気極と、
前記燃料極および前記空気極の間に配置される固体電解質層と、
を備え、
前記空気極は、前記固体電解質層と反対側の表面を有し、
前記空気極の前記表面におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第1の比は、前記表面に表面処理を施して露出した露出面におけるX線光電子分光分析で検出されるLa濃度に対するSr濃度の第2の比の4倍以下であり、
前記露出面は、厚み方向において前記表面から5nm内部に位置する、
燃料電池。 - 第1の比は、前記第2の比の1.0倍以上である、
請求項1に記載の燃料電池。 - 前記ペロブスカイト型酸化物のAサイトにおけるBa、Ca、Na及びKの総量は、2000ppm以下である、
請求項1又は2に記載の燃料電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680034709.0A CN107710478B (zh) | 2015-07-07 | 2016-07-05 | 燃料电池 |
DE112016003082.7T DE112016003082T5 (de) | 2015-07-07 | 2016-07-05 | Brennstoffzelle |
US15/862,277 US10644327B2 (en) | 2015-07-07 | 2018-01-04 | Fuel cell cathode containing a perovskite oxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015135821 | 2015-07-07 | ||
JP2015-135821 | 2015-07-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/862,277 Continuation US10644327B2 (en) | 2015-07-07 | 2018-01-04 | Fuel cell cathode containing a perovskite oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017006943A1 true WO2017006943A1 (ja) | 2017-01-12 |
Family
ID=57685699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069942 WO2017006943A1 (ja) | 2015-07-07 | 2016-07-05 | 燃料電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10644327B2 (ja) |
JP (2) | JP6261668B2 (ja) |
CN (1) | CN107710478B (ja) |
DE (1) | DE112016003082T5 (ja) |
WO (1) | WO2017006943A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158339A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
WO2020158341A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
WO2020158346A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6261668B2 (ja) | 2015-07-07 | 2018-01-17 | 日本碍子株式会社 | 燃料電池 |
US11024856B2 (en) * | 2016-08-08 | 2021-06-01 | Morimura Sofc Technology Co., Ltd. | Electrochemical reaction single cell having cathode including cerium oxide and strontium sulfate and electrochemical reaction cell stack including the same |
JP6671331B2 (ja) * | 2017-11-28 | 2020-03-25 | 日本碍子株式会社 | 電気化学セル |
CN112204780B (zh) * | 2018-03-29 | 2024-06-04 | 堺化学工业株式会社 | 固体氧化物型燃料电池的空气极材料粉体 |
WO2020066301A1 (ja) * | 2018-09-27 | 2020-04-02 | 堺化学工業株式会社 | 固体酸化物形燃料電池空気極用の粉体およびその製造方法 |
JP2021051983A (ja) * | 2019-09-26 | 2021-04-01 | 森村Sofcテクノロジー株式会社 | 固体酸化物形燃料電池セル |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191569A (ja) * | 2011-12-19 | 2013-09-26 | Ngk Insulators Ltd | 固体酸化物型燃料電池セル |
JP2014135271A (ja) * | 2012-12-10 | 2014-07-24 | Toto Ltd | 固体酸化物形燃料電池セル |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2846567B2 (ja) | 1993-09-03 | 1999-01-13 | 日本碍子株式会社 | 多孔質焼結体及び固体電解質型燃料電池 |
JP3471890B2 (ja) | 1994-04-13 | 2003-12-02 | 日本碍子株式会社 | 多孔質焼結体、耐熱性電極及び固体電解質型燃料電池 |
CN1248349C (zh) * | 2003-06-06 | 2006-03-29 | 中国科学院过程工程研究所 | 一种中温固体氧化物燃料电池材料组合系统 |
JP2006032132A (ja) | 2004-07-16 | 2006-02-02 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池 |
WO2006016627A1 (ja) * | 2004-08-10 | 2006-02-16 | Central Research Institute Of Electric Power Industry | 成膜物およびその製造方法 |
CN102044678B (zh) * | 2010-11-26 | 2012-10-03 | 中国科学院上海硅酸盐研究所 | 固体氧化物燃料电池阴极侧电流收集材料及其制备方法 |
FR2984305B1 (fr) * | 2011-12-15 | 2015-01-30 | Air Liquide | Procede de preparation d'un sol-gel d'au moins trois sels de metaux et mise en œuvre du procede pour preparer une membrane ceramique |
CN104103837B (zh) * | 2013-04-02 | 2016-09-07 | 中国科学院大连化学物理研究所 | 抗二氧化碳的中低温固体氧化物燃料电池阴极材料及应用 |
JP6261668B2 (ja) * | 2015-07-07 | 2018-01-17 | 日本碍子株式会社 | 燃料電池 |
-
2016
- 2016-07-05 JP JP2016133297A patent/JP6261668B2/ja active Active
- 2016-07-05 WO PCT/JP2016/069942 patent/WO2017006943A1/ja active Application Filing
- 2016-07-05 DE DE112016003082.7T patent/DE112016003082T5/de active Pending
- 2016-07-05 CN CN201680034709.0A patent/CN107710478B/zh active Active
-
2017
- 2017-04-14 JP JP2017080448A patent/JP6267386B2/ja active Active
-
2018
- 2018-01-04 US US15/862,277 patent/US10644327B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013191569A (ja) * | 2011-12-19 | 2013-09-26 | Ngk Insulators Ltd | 固体酸化物型燃料電池セル |
JP2014135271A (ja) * | 2012-12-10 | 2014-07-24 | Toto Ltd | 固体酸化物形燃料電池セル |
Non-Patent Citations (1)
Title |
---|
DONGJO OH ET AL.: "Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation", J.MATERIALS RESEARCH SOCIETY, vol. 27, no. 15, 14 August 2012 (2012-08-14), pages 1992 - 1999, XP055345877 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158339A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
WO2020158341A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
WO2020158346A1 (ja) * | 2019-01-30 | 2020-08-06 | 日本碍子株式会社 | 電気化学セル |
JP6789448B1 (ja) * | 2019-01-30 | 2020-11-25 | 日本碍子株式会社 | 電気化学セル |
JP6789450B1 (ja) * | 2019-01-30 | 2020-11-25 | 日本碍子株式会社 | 電気化学セル |
JP6789449B1 (ja) * | 2019-01-30 | 2020-11-25 | 日本碍子株式会社 | 電気化学セル |
US10903502B2 (en) | 2019-01-30 | 2021-01-26 | Ngk Insulators, Ltd. | Electrochemical cell |
US11189842B2 (en) | 2019-01-30 | 2021-11-30 | Ngk Insulators, Ltd. | Electrochemical cell |
US11637342B2 (en) | 2019-01-30 | 2023-04-25 | Ngk Insulators, Ltd. | Electrochemical cell |
Also Published As
Publication number | Publication date |
---|---|
US10644327B2 (en) | 2020-05-05 |
JP2017022105A (ja) | 2017-01-26 |
JP6261668B2 (ja) | 2018-01-17 |
US20180131007A1 (en) | 2018-05-10 |
CN107710478B (zh) | 2020-08-25 |
CN107710478A (zh) | 2018-02-16 |
JP2017147234A (ja) | 2017-08-24 |
JP6267386B2 (ja) | 2018-01-24 |
DE112016003082T5 (de) | 2018-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6267386B2 (ja) | 燃料電池 | |
JP6340492B1 (ja) | 電気化学セル | |
WO2017002559A1 (ja) | 燃料電池 | |
JP5981066B1 (ja) | 燃料電池 | |
JP6060303B1 (ja) | 燃料電池 | |
JP6051328B1 (ja) | 燃料電池 | |
WO2018021490A1 (ja) | 電気化学セル | |
WO2018083856A1 (ja) | 燃料電池 | |
WO2017002556A1 (ja) | 燃料電池 | |
CN109478648B (zh) | 燃料电池 | |
JP5395295B1 (ja) | 燃料電池セル | |
JP6182286B1 (ja) | 燃料電池 | |
WO2018021430A1 (ja) | 電気化学セル | |
JP6808010B2 (ja) | 電気化学セル | |
JP6671331B2 (ja) | 電気化学セル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16821412 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016003082 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16821412 Country of ref document: EP Kind code of ref document: A1 |