WO2017006848A1 - 光学式測定装置、光学式測定装置の校正方法及び光学式測定方法 - Google Patents

光学式測定装置、光学式測定装置の校正方法及び光学式測定方法 Download PDF

Info

Publication number
WO2017006848A1
WO2017006848A1 PCT/JP2016/069598 JP2016069598W WO2017006848A1 WO 2017006848 A1 WO2017006848 A1 WO 2017006848A1 JP 2016069598 W JP2016069598 W JP 2016069598W WO 2017006848 A1 WO2017006848 A1 WO 2017006848A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
optical
rotation
optical path
measurement
Prior art date
Application number
PCT/JP2016/069598
Other languages
English (en)
French (fr)
Inventor
大志 山崎
絵理 福島
拓也 舘山
隆文 淺田
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2017527419A priority Critical patent/JP6755553B2/ja
Publication of WO2017006848A1 publication Critical patent/WO2017006848A1/ja
Priority to US15/860,204 priority patent/US10422621B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02023Indirect probing of object, e.g. via influence on cavity or fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/0205Interferometers characterised by particular mechanical design details of probe head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light by interferometric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2453Optical details of the proximal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/35Mechanical variable delay line

Definitions

  • the present invention inserts an optical sensor into a deep hole of an object having a deep hole, such as a machine part, and captures the reflected light three-dimensionally and observes the geometry such as the depth and flatness of the depth of the deep hole.
  • the present invention relates to an optical measuring device for measuring academic accuracy.
  • image diagnostic technology optical imaging technology
  • dimensions dimensions and captures interference light from the reflected light.
  • Dimensional accuracy is measured by performing numerical processing of the three-dimensional shape by such methods.
  • X-ray CT capable of observing tomographic images, nuclear magnetic resonance, and near-infrared light with excellent transparency are emitted to capture the reflected light to observe the affected area inside the human body.
  • Patent Documents 1 to 3 A typical structure of an observation apparatus to which a technique for observing or measuring the inner surface by irradiating light to the inner peripheral surface of a mechanical device or machine part is as shown in Patent Documents 1 to 3, for example.
  • the rotational force of a motor is transmitted to a rotating shaft through a belt, and further comprises an optical fiber that passes through a tubular optical sheath. Transmission is made to the lens unit via a flexible shaft.
  • a two-dimensional tomographic image shown in FIG. 26 in the literature can be obtained, but a three-dimensional image cannot be obtained.
  • the motor (7, 8) rotates the outer tube (5, 6) and the wedge prism (3, 4) to change the direction of the radiation optical axis forward.
  • the endoscope which can change freely the location observed in in-vivo observation is shown.
  • the rotation speeds of the two motors are not synchronized, and the rotation detection pulse from the motor is not used, so that only the direction of the light beam can be changed. Therefore, since the light beam cannot be emitted spirally, the reflected light obtained from the front cannot be captured and calculated to obtain a stereoscopic image.
  • the outer tube is rotatable, but is rotated while vibrating in the axial direction because it is provided with rotational play and play (for example, 10 microns) in the axial direction (longitudinal direction). For this reason, the distance between the sensor unit and the subject changes by the amount of play or play, so the correct distance to the subject cannot be measured and the resolution of the image is poor.
  • the present invention has been made in view of the above-described conventional circumstances, and the problem is that a light beam is emitted forward, for example, in a spiral shape, as programmed, and the reflected light is captured to capture a three-dimensional shape into a computer.
  • the present invention provides an optical measuring device that detects a backlash in the axial direction of a rotating body that emits light rays and an amount of play (a minute distance) and cancels this to obtain a highly accurate stereoscopic image.
  • the probe includes a translucent reference plate, a plurality of motors, and the motor.
  • a rotation-side optical fiber and / or an optical path changing unit that rotate integrally with the rotation axis of the rotation axis, and a displacement detection unit that detects a minute displacement in the axial direction of the rotation shaft.
  • an axial backlash and play amount (a minute distance) of a rotary scanning mechanism that emits light rays are detected, and this is canceled out from the collected stereoscopic image data so that a correct and accurate stereoscopic image can be obtained.
  • An optical measuring device can be provided.
  • the first feature of the optical measurement device is that in the optical measurement device that obtains a three-dimensional image by emitting light rays three-dimensionally from the tip side of the probe, the probe includes a translucent reference plate,
  • the present invention has a displacement detection means that includes a motor, a rotation-side optical fiber that rotates integrally with the rotation shafts of these motors, and / or an optical path conversion means, and detects a minute displacement in the axial direction of the rotation shaft. According to this configuration, the rotational vibration of the motor can be detected in real time, and the measurement error caused by the shake in the rotary scanning unit can be corrected. Therefore, measurement with high accuracy is possible.
  • the second feature is that the displacement detection means of the optical measuring device uses the predetermined three-dimensional position information of the translucent reference plate, that is, the three-dimensional distance information to each point of the translucent reference plate as a reference value. A difference between an actual measurement value of measurement distance data obtained during rotation of the motor and a predetermined reference value is detected as a displacement amount.
  • the main body exterior of the probe of the optical measuring device is a tube, and the first motor and the second motor are disposed therein.
  • the optical path conversion means includes first optical path conversion means that rotates integrally with the rotation shaft of the first motor, and second optical path conversion means that rotates together with the rotation shaft of the second motor.
  • a fixed-side optical fiber is built in the tube, and the fixed-side optical fiber and the rotating-side optical fiber are optically connected by a rotating optical connector.
  • the first optical path changing means is located on the distal end side of the fixed-side optical fiber, is driven to rotate by the first motor, and rotates and emits the light beam forward at an angle with respect to the rotation center.
  • the second optical path conversion means is integrally disposed on the distal end side of the rotation-side optical fiber, is positioned between the fixed-side optical fiber and the first optical path conversion means, and is rotationally driven by the second motor to rotate the light beam as the rotation center. Irradiates the first optical path means by rotating and radiating the optical path at a slight angle. Then, the light beam is transmitted from the fixed-side optical fiber in the order of the rotating optical connector, the second optical path conversion unit, and the first optical path conversion unit, and is emitted forward. According to this configuration, the backlash and rotational vibration in the axial direction of the first motor or the second motor can be detected in real time, and the measurement error associated with the shake of the rotary scanning unit can be corrected. Is possible.
  • the first pulse generating means for generating at least one pulse per rotation according to the rotation angle of the first motor, and at least once per rotation according to the rotation angle of the second motor.
  • the emission angle with respect to the rotation center is changed. According to this configuration, a light beam can be emitted in a wide range in front by a combination of rotation angles of the first optical path conversion unit and the second optical path conversion unit.
  • the fifth feature is a method for calibrating an optical measuring device having the features described above.
  • a calibration block made of a flat plate or the like is arranged in front of the probe of the optical measuring device.
  • the true distance to the known calibration block at each point is Ds
  • the measured value of each point by the probe before calibration is D2
  • the reference plate The measurement distance until is L2.
  • the numerical value Ls of Ls (Ds ⁇ T) was used as the reference value of the translucent reference plate.
  • a sixth feature is an optical measurement method for obtaining a stereoscopic image by emitting light three-dimensionally. Specifically, the light path is emitted to the subject (measurement object) through the translucent reference plate while changing the direction of the light beam by driving the optical path changing means. Then, a measurement distance signal to the translucent reference plate and a measurement distance signal to the subject are obtained from the reflected light. Then, the measurement distance to the subject is corrected using the difference between the value of the measurement distance signal to the subject and a reference value, which is predetermined three-dimensional distance information, as a displacement amount. According to this measurement method, the measurement error can be corrected, so that highly accurate three-dimensional measurement is possible.
  • FIG. 1 is a cross-sectional view of an optical probe of an optical measuring apparatus according to an embodiment of the present invention. It is inserted through the approximate center inside.
  • Rotating side optical fiber 2 is rotatably provided at the distal end side of fixed side optical fiber 1.
  • a first optical path conversion means 3 made of a lens or a rhythm having a shape obtained by cutting both surfaces of a substantially cylindrical transparent body with a non-parallel substantially plane is provided on the rotation side of the rotation side optical fiber 2 by a first motor 12.
  • the first optical path changing means 3 is rotated independently of the optical fiber 2 so that the light beam is rotated and emitted forward at an angle of ⁇ 1 + ⁇ 2 with respect to the axis in the figure.
  • the second optical path changing means 20 for rotating radiation is attached.
  • the second optical path changing means 20 is formed by combining, for example, a conical condensing lens 20c and a prism 20d.
  • the rotation-side optical fiber 2 and the fixed-side optical fiber 1 have their end faces processed at right angles.
  • the rotation-side optical connector 22 includes the rotating light-shielding plate 5 and the optical-fiber fixing tool 4 facing each other with a minute distance of about 5 ⁇ m. Is configured. A high transmittance can be maintained between the rotation-side optical fiber 2 and the fixed-side optical fiber 1, and the optical connection is made with almost no loss.
  • the first motor 12 is built in the tube 6, the rotor magnet 11 is attached, and the hollow rotary shaft 10 supported by the first bearings 9a and 9b rotates.
  • a voltage is applied to the first motor 12 through the electric wire 23 to the motor coil 7 attached to the inside of the motor case 8, and the first optical path changing means 3 is integrally attached to the holder portion 10 a of the hollow rotary shaft 10 and rotated. I am letting.
  • the second rotating shaft 13 supported by the second bearings 18 a and 18 b is lightly press-fitted into a hole formed in the approximate center of the vibration element 14, and the second rotation is performed by the elasticity or spring property of the vibration element 14.
  • a stable frictional force is generated between the shaft 13 and the shaft 13.
  • the second rotating shaft 13 of the second motor 19 fixes the rotation-side optical fiber 2 in the center hole, and a voltage is applied to the pattern electrode 16 and the electrostrictive element 15 through the wired electric wire 17, and the second optical path conversion means 20.
  • the vibrating element 14 is prevented from rotating with respect to the motor case 8.
  • the electric wire 17 functions to prevent rotation.
  • the second motor may be the same rotor magnet and coil motor as the first motor, and the first motor may be the same vibrator as the second motor.
  • the first motor 12 is provided with first pulse generating means 25 comprising a rotating member 25a and a fixed member 25b shown in FIG. 4, and similarly, the second motor 19 has a rotating member 24a and a fixed member shown in FIG.
  • a second pulse generating means 24 comprising 24b is provided, and generates a pulse signal once per rotation or a plurality of times according to the rotation of the first and second motors, respectively.
  • the generation principle of these pulses is a magnetic sensor such as an induction coil or a Hall element, or an optical sensor using an optical shutter and an optical sensor.
  • a translucent reference plate 21 made of a material such as glass, quartz, sapphire or the like capable of transmitting light is integrally attached to the tube 6 in front of the first optical path changing means 3 that emits light. ing.
  • the translucent reference plate 21 is formed with a flat plate portion 21a or a substantially spherical portion as required.
  • the thickness of the flat plate portion 21a is not constant if necessary, and the thickness of the flat plate portion 21a is changed to provide a lens function. I am letting.
  • the translucent reference plate 4 is coated with a coating or the like for reducing surface reflection as necessary, minimizing total reflection of light rays and increasing transmittance.
  • the tip of the tube 6 is inserted into the hole 27 of the measured objects 26 and 100 as shown in FIG. Radiate. Electric power is supplied from the motor driver circuit 86 in FIG. 2 to be rotated, and the second motor 19 is rotated by being applied with a voltage from the second motor driver circuit 87.
  • the first motor 12 adjusts the rotation speed by the pulse signal from the first pulse generation means 25 shown in FIG. 4, and the second motor 19 rotates by the pulse signal from the second pulse generation means 24 shown in FIG. Can be adjusted to a preset value.
  • a stand 81 of a base 80 has a slider 82 that is moved up and down by a slider motor 83, and light rays such as near infrared light or laser emitted from a light source in a main body 85 pass through a connecting portion 84 and enter the slider 82. To pass through the fixed-side optical fiber 1 in the tube 6.
  • the light beam is radiated from the fixed optical fiber 1 through the rotating optical connector 22 and radiated to the rotating optical fiber 2 ⁇ the second optical path converting means 20 ⁇ the first optical path converting means 3a.
  • the near-infrared ray further passes through the light-transmitting reference plate 21, and the light reflected from the surface of the object to be measured is transmitted in the opposite direction along the same optical path as above.
  • Optical path changing means 20a ⁇ rotation side optical fiber 2 ⁇ rotation optical connector 22 ⁇ fixed side optical fiber 1 is passed to the optical interference analysis unit 88 of FIG.
  • the angle ⁇ 1 180 degrees of the first pulse generating means 24 of the first motor 12 and the angle of the second pulse generating means 24 of the second motor 22 are also 180 degrees, and the phase difference between these two angles ( ⁇ 1 ⁇ ⁇ 2) is the same as FIG. 6 and is 0 degree.
  • the radiation direction of the light beam is greatly bent with respect to the axis, and the radiation angle is an upward direction of ( ⁇ 1 + ⁇ 2).
  • the angle Q of the substantially planar portion of the first optical path conversion means 3b and the angle S of the surface of the prism 20d of the second optical path conversion means 20 are never parallel, and have an angle of, for example, 5 degrees or more. Yes. This is because if this becomes parallel, the three-dimensional image data from which the light rays can be totally reflected may deteriorate. If the first and second optical path conversion units are designed so that the phase difference ( ⁇ 1 ⁇ 2) of the rotation angles of the first and second optical path conversion units is 0 degrees and the first and second optical path conversion units are not parallel, the first and second optical path conversion units There is no fear of parallelism between the first and second optical path changing means, and a good image can be obtained. 6 to 8, the translucent reference plate is a hemispherical surface, it may be a flat plate.
  • FIG. 7 illustrates a state in which the phase angle is changed by changing the rotation speeds of the first optical path changing means 3a and the second optical path changing means 20a.
  • the light beam emitted from the second optical path changing means 20b at an angle with respect to the axis is reflected by the substantially flat portion of the first optical path changing means 3a and returns in the opposite angular direction, so that the light ray is almost The light is rotated and radiated on the axis almost parallel to the axis.
  • the angle phase difference ( ⁇ 1 ⁇ 2) is +180 degrees. In this state, the radiation angle of the light beam is ( ⁇ 1 + ⁇ 2) ⁇ 0 degrees.
  • FIG. 8 illustrates a state in which the first optical path conversion unit 3a and the second optical path conversion unit 20a are rotated from the state of FIG.
  • the light beam emitted from the second optical path changing unit 20a at an angle with respect to the axis is reflected by the substantially plane portion of the first optical path changing unit 3b and returns in the opposite angular direction, so that the light beam is almost It is rotated and radiated on the axis almost parallel to the axis.
  • the angle ⁇ 1 180 degrees of the first pulse generating means 25 of the first motor 12 and the angle of the second pulse generating means 24 of the second motor 22 are 0 degrees due to a delay in rotation.
  • the phase difference ( ⁇ 1 ⁇ 2) is +180 degrees. Even in this state, the radiation angle of the light beam is ( ⁇ 1 + ⁇ 2) ⁇ 0 degrees as in FIG.
  • FIG. 9 is a plan view illustrating the rotational phase angle ( ⁇ 1 ⁇ 2) described with reference to FIGS. 1 to 8 and the radiation direction of the light beam forward.
  • the irradiation direction changes depending on the phase difference ( ⁇ 1 ⁇ 2) between the angle ⁇ 1 of the first pulse generating means 25 of the first motor 12 and the angle ⁇ 2 of the second pulse generating means 24 of the second motor 22, and the light beam is forward. Is emitted over the front surface in the range indicated by the radius R in the figure.
  • FIG. 10 is a diagram showing the radiation range of light in a three-dimensional manner. Since the light beam is focused so as to be focused in a range of about 5 millimeters around the position of the front L of the tube 6, it is emitted in a substantially conical shape indicated by an angle ( ⁇ 1 + ⁇ 2) within a radius R in the figure. The subject is scanned three-dimensionally.
  • FIG. 11 is a pulse timing chart generated by the first motor 12 and the second motor 19 of the optical invention imaging probe.
  • the upper diagram in the figure shows the generation from the first pulse generating means 25 of the first motor 12.
  • the pulse, the lower diagram in the figure shows the pulse generated by the second pulse generating means 24 of the second motor 19, and the horizontal axis shows the time axis.
  • the time zone indicated by Stand by in the figure is a state in which the first motor 12 and the second motor 19 are waiting for a scanning start signal while rotating at the same rotational speed.
  • the first motor 12 simultaneously has a speed (e.g., N pulses / second) ( The digital observation image data of the object to be measured is started to be accumulated in the computer 89.
  • a speed e.g., N pulses / second
  • the second motor 19 rotates at a speed of, for example, (N-1) pulses / second (for example, 29 rotations / second), so that the radiation angle is 0.5 seconds from ⁇ 1 to ⁇ 2, as shown in the figure. After 1 second, the angle returns to ⁇ 1 again, completing the three-dimensional emission of light.
  • the computer captures a total of two times (one set for two times) of three-dimensional data within a time when the radiation angle reciprocates between ⁇ 1 and ⁇ 2, and obtains clear, three-dimensional image data without omissions.
  • the first motor 12 and the second motor 19 are again in the Stand-by state, and rotate while waiting for the next Start signal.
  • a more practical usage of the optical measuring apparatus of the present invention is, for example, that a three-dimensional image is captured by the pulse signals from the first pulse generating means 25, 25a, 25b shown in FIG. 4 and the second signal shown in FIG. Triggered by the moment when both pulse signals from the pulse generating means 24, 24a, and 24b are simultaneously output, they are taken into the computer 89 and displayed on the monitor 90.
  • the fixed-side optical fiber 1 is not rotated inside the long tube 6 inside the entire length from the rear to the tip of the tube 6, so that it is not rubbed, and the occurrence of rotation transmission delay, torque loss, etc. can be prevented.
  • the rotation side optical fiber 2 is also rotatably arranged in the hole of the hollow rotary shaft 1 and there is no sliding loss, so that the rotation unevenness of the motor 12 is very small.
  • the performance of the rotation speed is expressed by a rotation angle as a percentage in a general evaluation scale, but a high performance of 0.01% can be achieved in the present invention.
  • the rotation unevenness of the endoscope probe of the conventional type in which the optical fiber is rubbed has only obtained a bad performance of about 100 times or more.
  • the most important required performance in the optical measuring instrument shown in FIGS. 1, 2, 12, and 13 is to obtain a three-dimensional image, and from the deep hole deep part of the measured object obtained from the three-dimensional image digital data.
  • Factors that cause measurement accuracy and variation in geometric accuracy include axial play and vibration of the rotating shaft of the first motor 12, radial deflection accuracy of the hollow rotating shaft 10, the first optical path conversion element 3, and the second optical path.
  • the accuracy and surface roughness of the conversion means 20 are present, but the greatest influence among them is a minute displacement caused by axial backlash and vibration of the first motor 12.
  • the signal Ls is transmitted through the axial backlash or vibration as shown in FIG.
  • the signal Ls obtained by measuring the distance to the optical reference plate may not be a straight line without change.
  • the same distance of the signal Ls is added to the Lm waveform in which the distance to the subject is detected, and smooth measurement data is not obtained. Therefore, when (signal Lm ⁇ signal Ls) is obtained, smooth and correct data can be obtained as shown as post-calibration data in the figure.
  • FIG. 13 illustrates the irradiation range of near-infrared rays.
  • the near-infrared rays are transmitted through the translucent reference plate 21 and irradiated to the entire inner surface of the object 26 to be measured.
  • the axial play and vibration amount of the first motor and the second motor are detected from the waveform and change amount of the measurement distance (signal) Ls to the translucent reference plate 21. Then, the measurement distance (signal) Lm is corrected.
  • FIG. 16 is an explanatory diagram of each measurement dimension at the time of calibration
  • FIG. 17 is an explanatory diagram at the time of each measurement.
  • Ds True distance to known calibration block 30
  • D2 Measurement value of each point by probe before calibration
  • L2 Measurement distance to translucent reference plate 21
  • Distance between targets: T 1, T (D 2 -L2)
  • Reference values of translucent reference plate: Ls, Ls (Ds + T).
  • L2 Measurement distance to the light-transmitting reference plate 21
  • the correction value D can be obtained by the above equation by storing in advance the Ls value of each point of the translucent reference plate 21 by calibration, and simultaneously measuring D2 and L2 at the time of measurement.
  • the difference between the reference value obtained in the calibration operation and the distance to the translucent reference plate at the actual measurement is the motor unit. It is a minute displacement (backlash, vibration) in the whole axial direction.
  • a reference value Ls indicating a reference position at each point of the transparent reference plate 21 shown in FIG. 16 is obtained in advance, and then in the actual measurement, the object to be measured shown in FIG.
  • the true displacement: D D2 ⁇ (L2 ⁇ Ls) is obtained by canceling the axial displacement amount (Ls ⁇ L2) from the measured value D2 of the distance to each of the 26 points.
  • This “translucent reference plate provided in front and displacement detection and correction algorithm” is the displacement detection means, and the true value of each point up to the object to be measured 26 obtained in this way is combined on the computer. Build correct 3D data.
  • the displacement detection means detects these three total values.
  • the axial backlash and rotational vibration of the first motor or the second motor can be detected in real time in this way, and the measurement error caused by the shake can be corrected in the rotary scanning unit. Can be measured. Further, the axial backlash and vibration amount can be detected from the waveform and change amount of the measurement distance (signal) Ls to the translucent reference plate 21.
  • the optical measuring instrument of the present invention can irradiate light on the injection nozzle for automobile engines having a deep hole and the inner surface and the inner part of a slide bearing having a small diameter hole, and obtain a three-dimensional shape observation image. Precise measurement of geometric accuracy such as the size and flatness of the part is possible. In particular, it is expected to be used for industrial and medical measuring devices and inspection devices.

Abstract

【課題】 高精度な立体画像を得ることができる光学式測定装置を提供する。 【解決手段】 第1光路変換手段と第2光路変換手段とを各々回転駆動させる2個モータの回転数を制御することで光線の放射角度を変化させ、光線を前方の3次元領域に放射し反射光を得てコンピュータで計算することにより、被測定物の立体データを得る。そして、光線を放射するモータ軸等の回転機構の軸方向のガタや遊びの量(振動量)をリアルタイムで計測し、コンピュータに得られた立体画像にそのガタや遊びの量を差し引きし相殺することで、高精度な立体画像を得る。

Description

[規則37.2に基づきISAが決定した発明の名称] 光学式測定装置、光学式測定装置の校正方法及び光学式測定方法
 本発明は、機械部品等の深穴を有する被測定物の深穴に光学式センサーを挿入し、反射させた光を立体的に取り込んで観察、および深穴奥部の寸法や平面度など幾何学精度を測定するための光学式測定装置に関するものである。
 例えば自動車用エンジンのシリンダーや燃料噴射ノズルの加工仕上がり寸法、幾何学精度の良否などは、自動車の動力性能と燃料消費効率に大きく影響するが、これらの検査は一般には真円度測定機、表面粗さ計等の接触式測定機を用いて検査されていた。しかし近年、被測定物に傷を付けない目的から光学式の非接触式測定機が登場している。
 非接触で被測定物内面の形状データを取得する手段として、画像診断技術(光イメージング技術)は、例えばレーザ光を立体的に放射し、その反射光から干渉光を捉えて、一般にはヘテロダイン方式などの方法で立体形状の数値処理を行い、寸法精度の測定を行っている。
 一方、医療の分野では人体内部の患部の観察に断層画像が観察可能なX線CT、核磁気共鳴、透過性にすぐれた近赤外光を放射し反射光を捉えて、光の干渉性を利用して立体形状の数値データを取込むOCT画像(光干渉断層撮影)などの方式が研究されると共に活用されている。
 機械装置や機械部品の内周面に光線を照射して、内面の観察または測定を行う技術を適用した観察装置の代表的な構造は、例えば、特許文献1から3に示すとおりである。
 特許文献1に示すOCT内視鏡では、該文献中図8に示すように、モータの回転力を、ベルトを介して回転シャフトに伝達し、さらにチューブ状の光学シース内を通る光ファイバー等からなるフレキシブルシャフトを介してレンズユニットへ伝達するようにしている。しかし、この構成では文献中図26に示す2次元の断層画像は得られるが、3次元の画像は得る事ができなかった。
 また、特許文献2に示すOCT内視鏡では、該文献中図1に示される環状のガイドカテーテルの内部に細長のチューブ状のカテーテルが挿入され、カテーテル内部には、回転および摺動可能で光学的に接続された光ファイバーまたはコアを有し、光ファイバーを回転させると共に、文献中図3に示すように長さ方向に移動させて身体組織に照射を行い、解析画像を観察するOCTの3次元画像システムである。しかしながらこの構成では、カテーテルの内周面と駆動軸外周面との擦れにより摩耗粉が発生する問題があった。また、駆動軸の擦れ、撓み、ねじれ等に起因して、回転速度ムラや、回転伝達遅れ、トルク損失の変動等を生じるため、得られる解析画像が乱れ、要求される空間分解能や、解像度の精度が得られなかった。
 また、特許文献3に記載される発明では、モータ(7,8)が外套管(5,6)とウェッジプリズム(3,4)をそれぞれ回転することで前方に放射光軸の方向を変えて、体内観察において観察する箇所を自在に変更可能な内視鏡を示している。
 しかしながらこの構成では、2個のモータの回転数を同期させておらず、また、モータからの回転検出パルスを利用していないため、光線の方向を変えることしか行えない。したがって、光線を螺旋状に放射することができないため、前方から得られた反射光をコンピュータに捉え、計算して立体画像を得る事ができなかった。また、外套管は回転自在ではあるが軸方向(長手方向)に回転ガタや遊び(例えば10ミクロン)が設けられているために軸方向に振動しながら回転する。そのため、ガタや遊びの距離分だけ、センサーユニットと被検体の距離が変わってしまうために、被検体までの正しい距離が測定できず、画像の解像度も悪かった。
特許第3885114号公報 特許第4520993号公報 特開2002-550号公報
 本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、光線を前方に例えばスパイラル状に、プログラミングどおりに放射し、その反射光を捉えて3次元形状をコンピュータに取り込むと共に、光線を放射する回転体の軸方向のガタや遊びの量(微小距離)を検出しこれを相殺することで高精度な立体画像を得る、光学式測定装置を提供するものである。
 上記課題を解決するための一手段は、プローブの先端側から光線を3次元放射して立体画像を得る光学式測定装置において、プローブは、透光性基準板と、複数のモータと、このモータの回転軸と一体に回転する回転側光ファイバー及び/又は光路変換手段と、を備え、回転軸の軸方向の微小変位を検出する変位検出手段を有することを特徴とする。
 本発明によれば、光線を放射する回転走査機構の軸方向のガタや遊びの量(微小距離)を検出し、収集した立体画像データから、これを相殺することで正しく高精度な立体画像を得る、光学式測定装置が提供できる。 
本発明光学式測定装置の実施形態に係る光プローブ主要部の断面図 本発明光学式測定装置の構成図 本発明光学式測定装置の光プローブによる深穴走査説明図 本発明光学式測定装置の光プローブの第1モータの回転パルス発生部説明図 本発明光学式測定装置の光プローブの第2モータの回転パルス発生部説明図 本発明光学式測定装置の光プローブの動作説明図 本発明光学式測定装置の光プローブの動作説明図 本発明光学式測定装置の光プローブの動作説明図 本発明光学式測定装置の光プローブの放射範囲説明図 本発明光学式測定装置の光プローブの3次元走査範囲説明図 本発明光学式測定装置の光プローブの動作タイミングチャ-ト 本発明光学式測定装置の光プローブの動作説明図 本発明光学式測定装置の光プローブの放射範囲説明図 本発明光学式測定装置の振動が無い場合の取得データの図 本発明光学式測定装置の振動が有る場合の取得データの図 本発明光学式測定装置の校正時の測定長さ説明図 本発明光学式測定装置の測定時の測定長さ説明図
 本実施の形態の光学式測定装置の第1の特徴は、プローブの先端側から光線を3次元放射して立体画像を得る光学式測定装置において、プローブは、透光性基準板と、複数のモータと、これらのモータの回転軸と一体に回転する回転側光ファイバー及び/又は光路変換手段とを備え、回転軸の軸方向の微小変位を検出する変位検出手段を有することにある。
 この構成によれば、モータの回転振動をリアルタイムで検出して、回転走査部に振れに伴う測定誤差を補正することができるので、高精度での測定が可能である。
 第2の特徴は、光学式測定装置の変位検出手段が、予め定めた透光性基準板の3次元位置情報、すなわち透光性基準板の各点までの3次元距離情報を基準値とし、モータの回転中に得られる測定距離データの実際の測定値と、予め定めた基準値との差を変位量として検出することにある。
 この構成により、被検査物底面の形状データの中から、軸方向のガタや振動量を簡単な構成で、リアルタイムで除去し、正しく精密な穴底面の精度測定が可能である。
 第3の特徴としては、光学式測定装置のプローブの本体外装はチューブであって、第1モータと第2モータとが、その内部に配置されている。そして、光路変換手段は、第1モータの回転軸と一体に回転する第1光路変換手段と、第2モータの回転軸と一体に回転する第2光路変換手段とがある。そして、チューブ内に、固定側光ファイバーを内蔵し、この固定側光ファイバーと回転側光ファイバーとは、回転光コネクターにより光学的に接続されている。そして、第1光路変換手段は、固定側の光ファイバーの先端側に位置し、第1モータにより回転駆動させられ、光線を回転中心に対して角度を傾けて前方に回転放射する。そして、第2光路変換手段は、回転側光ファイバーの先端側に一体に配置され、固定側光ファイバーと第1光路変換手段の間に位置し、第2モータにより回転駆動させられて、光線を回転中心に対して光路を微小角度傾けて回転放射して第1光路手段に向けて照射する。そして、光線を固定側光ファイバーから、回転光コネクター、第2光路変換手段、第1光路変換手段の順に透過させ、前方に放射させる。
 この構成によれば、第1モータまたは第2モータの軸方向のガタおよび回転振動がリアルタイムで検出でき、回転走査部の振れに伴う測定誤差を補正することができるので、高精度での測定が可能である。
 第4の特徴としては、第1モータの回転角に応じて少なくとも1回転に1回以上のパルスを発生する第1パルス発生手段と、第2モータの回転角に応じて少なくとも1回転に1回以上のパルスを発生する第2パルス発生手段を有する。そして、第1及び第2のパルス発生手段からのパルスにより第1及び第2モータの回転速度を調整する制御手段を有し、第1モータの回転速度N1と第2モータの回転速度N2の関係を、N2=N1-X[回転/秒]で回転させることで、第1光路変換手段からN1[回転/秒]の回転速度で前方に放出させる共に、X[往復/秒]の速度で光線の回転中心に対する放出角を変化させている。
 この構成によれば、第1光路変換手段、及び第2光路変換手段の回転角度の組合せにより光線を前方の広範囲に放射することができる。
 第5の特徴は、上述した特徴を持つ光学式測定装置の校正方法にある。具体的には、光学式測定装置のプローブの前方に平板等からなる校正ブロックを配置する。そして、光線を3次元放射してプローブを回転させた時、各点における、既知である校正ブロックまでの真の距離をDs、校正前のプローブによる各点の測定値をD2、および、基準板までの測定距離をL2とする。このとき、ターゲット間距離Tは、T=(D2-L2)となり、Ls=(Ds-T)の数値Lsを透光性基準板の基準値とした。
 この校正方法により、測定及び補正を行う上での絶対的な基準を得られるので、光学式測定装置を用いた高精度な測定が可能となる。
 第6の特徴は、光線を3次元放射して立体画像を得る光学式測定方法にある。具体的には、光路変換手段を駆動させて光線の方向を変えながら、透光性基準板を介して被検体(被測定物)に光線を放射する。そして、その反射光から、透光性基準板までの測定距離信号と、被検体までの測定距離信号とを得る。そして、被検体までの測定距離信号の値と予め定めた3次元距離情報である基準値との差を変位量として、被検体までの測定距離を補正する。
 この測定方法によれば、測定誤差を補正することができるので、高精度な3次元測定が可能である。
 次に本発明の好適な実施形態について図面を参照しながら説明する。
 図1~図15は本発明に係る光学式測定装置の実施形態を示している。
 図1は本発明の実施の形態に係る光学式測定装置の光プローブの断面図であり、プローブの後端側から先端側に光線を導く固定側光ファイバー1は十分に長いチューブ(カテーテル)6の内部の略中心に挿通されている。
 固定側光ファイバー1の先端側には、回転側光ファイバー2が回転自在に設けられている。回転側光ファイバー2の先端側には、例えば略円柱状の透明体の両面を非平行な略平面でカットした形状のプレンズまたはリズム等からなる第1光路変換手段3が第1モータ12により回転側光ファイバー2とは独立して回転自在に取り付けられ、第1光路変換手段3が回転する事で光線を例えば図中軸線に対しθ1+θ2の角度を付けて前方に回転放射するよう構成している。
 また、回転側光ファイバー2の先端には、固定側光ファイバー1を透過してきた光線を集光して回転しながら軸線に対し微小の角度(θ1)を付けて、第1光路変換手段3に向けて回転放射する第2光路変換手段20が取り付けられている。図1において第2光路変換手段20は、例えば円錐状の集光レンズ20cとプリズム20dを組み合わせて形成されている。
 回転側光ファイバー2と固定側光ファイバー1は、それぞれその端面は直角に加工されており、5μm程度の微小距離を隔てて対向し、回転する遮光板5、光ファイバー固定具4を含めて回転光コネクター22を構成している。回転側光ファイバー2と固定側光ファイバー1の間は高い透過率が維持でき、ほとんど損失なく光学的に接続されている。
 第1モータ12はチューブ6内に内蔵され、ロータ磁石11が取り付けられ、第1軸受9a、9bに支えられた中空回転軸10が回転する。第1モータ12には電線23を通してモータケース8の内側に取付けられたモータコイル7に電圧が印加され、中空回転軸10のホルダー部10aには第1光路変換手段3が一体的に取り付けられ回転させている。
 第2モータ19は、第2軸受18a、18bに支えられた第2回転軸13が可振子14の略中心に開けられた穴に軽圧入され、可振子14の弾性またはバネ性により第2回転軸13との間で安定した摩擦力が発生している。第2モータ19の第2回転軸13は回転側光ファイバー2を中心穴に固定しており、配線された電線17を通してパターン電極16と電歪素子15に電圧が印加され、第2光路変換手段20を回転させる。可振子14はモータケース8に対し回り止めがされており、最も簡単な構造の場合は電線17が回り止めの機能を果たす。もちろん第2モータは第1モータと同じロータ磁石とコイルによるモータであっても同じであり、第1モータは第2モータと同じ可振子によるモータであっても良い。
 第1モータ12には、図4に示す、回転部材25aと固定部材25bからなる第1パルス発生手段25が設けられ、同様に第2モータ19には、図5に示す回転部材24aと固定部材24bからなる第2パルス発生手段24が設けられ、それぞれ第1及び第2モータの回転に応じて1回転当たり1回、または複数回のパルス信号を発生している。これらパルスの発生原理は、誘起コイルやホール素子等の磁気センサー、または、光学的シャッターと光センサーによる光学センサー等が用いられる。
 図1において、光線が放射される第1光路変換手段3の前方には、光線が透過可能なガラス、石英、サファイヤ等の材料からなる透光性基準板21がチューブ6に一体的に取り付けられている。透光性基準板21には必要に応じて平板部21aまたは略球面部が形成されており、この平板部21aは必要によりその肉厚は一定ではなくレンズの機能を持たせるため厚さを変化させている。また、透光性基準板4は必要に応じて表面反射を減らし、光線の全反射を最小に押さえ透過率を高めるためのコーティング等が施されている。
 図1の第1モータ12には図2に示す光学式測定装置において、図3のようにチューブ6の先端部は被測定物26、100の穴27内に挿入され、先端方向29に光線を放射する。
 図2のモータドライバ回路86から電力が供給されて回転駆動され、第2モータ19は第2モータドライバ回路87から電圧が印加されて回転駆動される。また、第1モータ12は図4に示す第1パルス発生手段25からのパルス信号により回転速度を調整し、第2モータ19は図5に示す第2パルス発生手段24からのパルス信号により回転速度を事前に設定された数値に合わせることができる。 
 次に上述した図1~図5の光学式測定機について、その特徴的な作用効果を詳細に説明する。
 図2において、ベース80のスタンド81にはスライダ用モータ83により昇降するスライダ82があり、本体85内の光源から発光された近赤外またはレーザ等の光線は接続部84を通り、スライダ82内にガイドされて、チューブ6の中の固定側光ファイバー1の中を通過して進む。
 光線は、図1において、固定側光ファイバー1から⇒回転光コネクター22を通過して、回転側光ファイバー2⇒第2光路変換手段20⇒第1光路変換手段3aに放射される。近赤外線の光線はさらに透光性基準板21を通過し,被測定物の表面からから反射した光線を上記と同じ光路を逆方向に透光性基準板21⇒第1光路変換手段3a⇒第2光路変換手段20a⇒回転側光ファイバー2⇒回転光コネクター22⇒固定側光ファイバー1を通過して図2の光干渉解析部88に導いている。
 図12および図13においては、被測定物26の深穴27の奥部に向けて光線を放射することで、表面27aの3次元形状のディジタルデータを取込み、穴の奥部の精度の幾何精度測定と、内部欠陥の有無を立体画像で観察している。
 図1において電線23から電力が供給され、第1モータ12が約900~2万rpmの範囲の一定速度で回転するが、固定側光ファイバー1から導かれた光線は回転光コネクター22と回転側光ファイバー2を通過し,第2光路変換手段20aから放出され、第1光路変換手段3aの略平面部で反射し一定の角度方向(図1においては矢印に示す下向きのθ1+θ2の角度)に方向を変えて回転放射される。この時、図4の第1モータ12の第1パルス発生手段24の角度α1=0度、図5の第2モータ22の第2パルス発生手段24の角度も0度であり、これら2つの角度の位相差を(α1-α2)で表すと0度になっている。
 この状態では、光線の放射方向は軸線に対して大きく曲げられており、放射角度は、(θ1+θ2)の下向きになる。
 次に、図6に示すように、第1光路変換手段3と第2光路変換手段20が同じ回転速度で回転し、図1とは180度反対側の図中3bと20bの位置に変わると、第2光路変換手段20bから放出され、第1光路変換手段3bの略平面部で反射し一定の角度方向(図6においては矢印に示す上向きのθ1+θ2の角度)に方向を変えて回転放射される。この時、第1モータ12の第1パルス発生手段24の角度α1=180度、第2モータ22の第2パルス発生手段24の角度も180度であり、これら2つの角度の位相差(α1-α2)は図6と同じで有り、0度になっている。この状態では、光線の放射方向は軸線に対して大きく曲げられており、放射角度は、(θ1+θ2)の上方向になる。
 図6において、第1光路変換手段3bの略平面部の角度Qと、第2光路変換手段20のプリズム20d表面の角度Sは、決して平行にはせず例えば5度以上の角度を持たせている。これがもし平行になると光線が全反射し得られる3次元画像データが悪化する場合があるからである。第1および第2光路変換手段の回転角度の位相差(α1-α2)が0度の状態で第1および第2光路変換手段が平行でないように設計しておけば、いかなる状態においても、第1および第2光路変換手段の間は平行になる心配が無く、良好な画像が得られる。尚、図6~図8においては透光性基準板は半球面になっているが平板でもかまわない。
 次に図7は、第1光路変換手段3aと第2光路変換手段20aの回転速度を異ならせることにより、位相角度が変わった場合の状態を図示している。
 図7において、第2光路変換手段20bから軸線に対して角度をもって放出された光線は、第1光路変換手段3aの略平面部で反射し逆の角度方向に方向を戻し、その結果光線はほぼ軸線上を軸線とほぼ平行に回転放射される。この時、第1モータ12の第1パルス発生手段25の角度α1=0度、第2モータ22の第2パルス発生手段24の角度は回転に遅れが生じて-180度であり、これら2つの角度の位相差(α1-α2)は+180度になっている。この状態では、光線の放射角度は、(θ1+θ2)≒0度になる。
 次に図8は、図7の状態から第1光路変換手段3aと第2光路変換手段20aが同じ回転数で180度反対に位置まで回転した状態を図示している。
 図8において、第2光路変換手段20aから軸線に対して角度をもって放出された光線は、第1光路変換手段3bの略平面部で反射し逆の角度方向に方向を戻し、その結果光線はほぼ軸線上を軸線とほぼ並行に回転放射される。この時、第1モータ12の第1パルス発生手段25の角度α1=180度、第2モータ22の第2パルス発生手段24の角度は回転に遅れが生じて0度であり、これら2つの角度の位相差(α1-α2)は+180度になっている。この状態においても光線の放射角度は、図6と同様に(θ1+θ2)≒0度になる。
 図9は、図1から図8を用いて説明した回転位相角(α1-α2)と、光線の前方への放射方向を平面的に図示したものである。第1モータ12の第1パルス発生手段25の角度α1と、第2モータ22の第2パルス発生手段24の角度α2の角度の位相差(α1-α2)によって照射方向が変化し、光線は前方に向けて図中半径Rに示される範囲に前面にわたり放射される。
 図10は光線の放射範囲を立体的に表した図である。光線はチューブ6の前方Lの位置を中心に約5ミリメートルの範囲で焦点が合うようピントが調整されているため、図中半径Rの範囲で、角度(θ1+θ2)に示す略円錐状に放射され、3次元的に被検体を走査している。
 図11は、光発明イメージング用プローブの第1モータ12と第2モータ19の発生パルスタイミングチャ-トであり、図中上側の線図は第1モータ12の第1パルス発生手段25からの発生パルス、図中下側の線図は第2モータ19の第2パルス発生手段24の発生パルスを示し、横軸は時間軸を示している。
 図中Stand byに示す時間帯は、第1モータ12と第2モータ19が同一の回転数で回転しながら走査開始信号を待っている状態である。
 次に、図1および図2に示す光学式測定機と光プローブの取扱い者の操作によりStart信号が出されると、それと同時に、第1モータ12は、例えばNパルス/秒に表される速度(例えば30回転/秒)で回転し被測定物のディジタル観察画像データをコンピュータ89に蓄積し始める。
 これと同時に第2モータ19は、例えば(N-1)パルス/秒(例えば29回転/秒)の速度で回転するため、図中に示すように放射角度はθ1からθ2まで0.5秒で変化し、1秒後には再度θ1の角度に戻り、光線の3次元放射を完了する。
 この場合、コンピュータは放射角度がθ1~θ2に往復する時間内に計2回(2回で1セット)の3次元データを取り込み、欠落のない鮮明な3次元の画像データを得る。データの取り込みと蓄積が行えた時点で、第1モータ12と第2モータ19は再びStand by状態になり、次のStart信号を待ちながら回転を行う。
 本発明の光学式測定装置の、より実用的な使い方は、例えば、3次元画像の取り込みは図4に示す第1パルス発生手段25、25a、25bからのパルス信号と、図5に示す第2パルス発生手段24、24a、24bからのパルス信号の両方が同時に出された瞬間をトリガーにしてコンピュータ89に取り込まれモニタ90上に表示される。
 本実施形態では、チューブ6の後方から先端までの全長に渡る内部で固定側光ファイバー1は、長いチューブ6の中で回転させないので擦れる事がなく、回転伝達遅れやトルク損失等の発生を防止できる。また、回転側光ファイバー2も中空回転軸1の穴の中で回転自在に配置されており、摺動損失がないので、モータ12の回転ムラは大変少ない。回転速度の性能は一般的な評価尺度では、回転角度をパーセントで表すのであるが、本発明においては0.01%の高性能が達成できている。
 一方、従来の光ファイバーが擦れる方式の内視鏡プローブの回転ムラは、その約100倍以上の悪い性能しか得られていなかった。
 図1、図2、図12、図13に示す光学式測定機において最も重要な要求性能は3次元画像を得ること、3次元画像ディジタルデータから得られた、被測定物の深穴奥部の平面度等の幾何精度の精度を高める事である。幾何精度の測定精度や測定バラツキが起こる要因には、第1モータ12の回転軸の軸方向のガタと振動、中空回転軸10のラジアル方向振れ精度、第1光路変換素子3と、第2光路変換手段20の精度および表面粗さ等があるが、これらの中で影響が最も大きいのは第1モータ12の軸方向のガタと振動などによる微小な変位である。
 図12において、光学式測定機が被測定物26の深穴27の奥部までの距離の信号Lmを検出した場合、第1モータ12および第2モータ19の回転軸10,13に軸方向のガタや振動が無く、図14の取得データにおいて、透光性基準板までの距離を計測した信号Lsが、変化のない直線になる場合は、検出したLmの波形と測定距離に誤差やノイズは含まれておらず、Lmは真の数値を示している。
 しかしながら図12の第1モータ12および第2モータ19の回転軸10,13に軸方向のガタや振動がある場合は、図15に示すように、信号Lsには軸方向のガタや振動により透光性基準板までの距離を計測した信号Lsが、変化のない直線にならない場合がある。この場合は、被検体までの距離を検出したLmの波形には、信号Lsの同等の距離が加算されて、滑らかな測定データにはなっていない。そこで、(信号Lm-信号Ls)を求めると、図中校正後データとして示すように、滑らかであり且つ正しいデ-タを求めることができる。
 図13は近赤外光線の照射範囲を説明したものであるが、近赤外光線は、透光性基準板21を透過して被測定物26の内表面の奥に向けて全体に照射され、被測定物までの測定距離(信号)Lmから、透光性基準板21までの測定距離(信号)Lsの波形や変化量から第1モータ及び第2モータの軸方向ガタや振動量を検出し、測定距離(信号)Lmに補正をかける。
 ここで、測定距離(信号)Lmを補正する上で、測定距離(信号)Lsの基準値を定めるための校正時の方法と、測定時の状態について、図16と図17を用いて、具体的に説明する。
 図16は校正時の各測定寸法の説明図、図17は各測定時の説明図である。
 図16において
 Ds:既知である校正ブロック30までの真の距離
 D2:校正前のプローブによる各点の測定値
 L2:透光性基準板21までの測定距離
  ターゲット間距離  :T  、 T=(D2-L2)
  透光性基準板の基準値:Ls 、 Ls=(Ds+T) である。
 図17において
 L2:透光性基準板21までの測定距離
 D2:被測定物26までの測定距離
 被測定物26までの補正後の真値:D、 D=Ls+(D2-L2)=Ls+T 
 または、
 軸方向変位量は、(Ls-L2)であり、
 補正後の真値D;  D=D2-(L2-Ls) である。
 予め校正により透光性基準板21の各点のLsの値をメモリーしておき、測定時にはD2とL2を同時に測定することにより、上式により補正値Dを得ることができる。
 すなわち、透光性基準板21までの距離を光線により3次元的に計測する時に、校正作業で求めた基準値と、実際の測定時の透光性基準板までの距離の差が、モータ部全体の軸方向の微小な変位(ガタ、振動)である。具体的な補正方法は、予め、校正作業では、図16に示す透明基準板21の各点における基準位置を示す基準値Lsを求めておき、次に実際の測定では、図17の被測定物26の各点までの距離の測定値D2から軸方向の変位量:(Ls-L2)を相殺して真値:D=D2-(L2-Ls)を求めるものである。この「前方に設けた透光性基準板と変位量検出および補正アルゴリズム」が変位検出手段であり、このように得られた被測定物26までの各点の真値を組合わせ、コンピュータ上で正しい3次元データを構築する。
 本実施例の光学式測定装置において、変位は、第1モータ12の軸方向のガタ、第2モータ19の軸方向のガタ、その他回転部分の振動の軸方向成分の3つがある。変位検出手段は、これら3つの合計値を検出する。
 本発明によれば、このように第1モータまたは第2モータの軸方向のガタおよび回転振動がリアルタイムで検出でき、回転走査部に振れに伴う測定誤差を補正することができるので、高精度での測定が可能である。また、透光性基準板21までの測定距離(信号)Lsの波形や変化量から軸方向ガタや振動量を検出することができる。
 本発明の光学式測定機は、深穴を有する自動車エンジン用噴射ノズルや、小径穴を有する滑り軸受内面及び奥部に光線を照射し、3次元の形状観察画像を得ることができると共に、奥部の寸法及び平面度等の幾何精度の精密測定が可能である。特に、工業用および医療用の測定装置や検査装置への活用が期待される。
1,31 固定側光ファイバー
2 回転側光ファイバー
3、3a、3b 第1光路変換手段(プリズムまたはレンズ)
4 光ファイバー固定具
5 遮蔽板
6、チューブ(カテーテル)
7 モータコイル
8 モータケース
9a、9b 第1軸受
10  中空回転軸
10a ホルダー部
11 ロータ磁石
12 第1モータ
13 第2回転軸
14 可振子
15 電歪素子
16 パターン電極
17、23  電線
18a,18b 第2軸受
19 第2モータ
20、20a、20b、120、220 第2光路変換手段
20c、220c 集光レンズ
20d、120a、220d、220e プリズム
21 透光性基準板
21a 平板部
22 回転光コネクター
24、24a、24b 第2パルス発生手段
25、25a、25b 第1パルス発生手段
26 被測定物
27 深穴
29 走査範囲
30 校正ブロック
80 ベース
81 スタンド
82 スライダ
83 スライダ用モータ
84 接続部
85 本体
86 第1モータドライバ回路
87 第2モータドライバ回路
88 光干渉解析部
89 コンピュータ
90 モニタ

Claims (6)

  1.  プローブの先端側から光線を3次元放射して立体画像を得る光学式測定装置において、
     プローブは、透光性基準板と、複数のモータと、前記モータの回転軸と一体に回転する回転側光ファイバー及び/又は光路変換手段と、を備え、
     前記回転軸の軸方向の微小変位を検出する変位検出手段を有することを特徴とする光学式測定装置。
  2.  前記変位検出手段は、予め定めた前記透光性基準板までの3次元距離情報を基準値とし、前記モータの回転中に得られる前記測定距離データの実際の測定値と、予め定めた前記基準値との差を変位量として検出することを特徴とする請求項1記載の光学式測定装置。
  3.  前記プローブの本体外装はチューブであって、
     前記モータは、第1モータと第2モータとがあり、
     前記光路変換手段は、前記第1モータの回転軸と一体に回転する第1光路変換手段と、前記第2モータの回転軸と一体に回転する第2光路変換手段とがあり、
     前記チューブ内に、固定側光ファイバーを内蔵し、
     前記固定側光ファイバーと前記回転側光ファイバーとは、回転光コネクターにより光学的に接続され、
     前記第1光路変換手段は、前記固定側の光ファイバーの先端側に位置し、第1モータにより回転駆動させられ、光線を回転中心に対して角度を傾けて前方に回転放射し、
     前記第2光路変換手段は、前記回転側光ファイバーの先端側に一体に配置され、前記固定側光ファイバーと前記第1光路変換手段の間に位置し、第2モータにより回転駆動させられ、光線を回転中心に対して光路を微小角度傾けて回転放射して前記第1光路手段に向けて照射し、
     光線を固定側光ファイバーから、回転光コネクター、第2光路変換手段、第1光路変換手段の順に透過させ、前方に放射させることを特徴とする請求項1又は2記載の光学式測定装置。
  4.  前記第1モータの回転角に応じて少なくとも1回転に1回以上のパルスを発生する第1パルス発生手段と、
     前記第2モータの回転角に応じて少なくとも1回転に1回以上のパルスを発生する第2パルス発生手段を有し、
     前記第1パルス発生手段及び前記第2パルス発生手段からのパルスにより第1及び第2モータの回転速度を調整する制御手段を有し、
     第1モータの回転速度N1と第2モータの回転速度N2の関係を、N2=N1-X[回転/秒]で回転させることで、第1光路変換手段からN1[回転/秒]の回転速度で前方に放出させる共に、X[往復/秒]の速度で光線の回転中心に対する放出角を変化させたことを特徴とする請求項1から3何れか1項記載の光学式測定装置。
  5.  請求項1から4何れか1項に記載の光学式測定装置の前記プローブの前方に平板等からなる校正ブロックを配置し、光線を3次元放射し前記プローブを回転させた時、各点における、既知である校正ブロックまでの真の距離をDs、校正前の前記プローブによる各点の測定値をD2、および、基準板までの測定距離をL2としたとき、
     ターゲット間距離Tは、T=(D2-L2)となり、
     Ls=(Ds-T)の数値Lsを前記透光性基準板の基準値とする光学式測定装置の校正方法。
  6.  光線を3次元放射して立体画像を得る光学式測定方法において、
     光路変換手段を駆動させて光線の方向の変えながら、透光性基準板を介して被検体に光線を放射し、
     その反射光から、前記透光性基準板までの測定距離信号と、前記被検体までの測定距離信号とを得て、
     前記被検体までの測定距離信号の値と予め定めた基準値との差を変位量として、前記被検体までの測定距離を補正することを特徴とする光学式測定方法。
PCT/JP2016/069598 2015-07-03 2016-07-01 光学式測定装置、光学式測定装置の校正方法及び光学式測定方法 WO2017006848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017527419A JP6755553B2 (ja) 2015-07-03 2016-07-01 光学式測定装置
US15/860,204 US10422621B2 (en) 2015-07-03 2018-01-02 Optical measurement device having a plurality of rotary shafts and displacement detectors for detecting axial displacement of each rotary shaft and using the detected axial displacement for three-dimensional image correction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134162 2015-07-03
JP2015-134162 2015-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/860,204 Continuation US10422621B2 (en) 2015-07-03 2018-01-02 Optical measurement device having a plurality of rotary shafts and displacement detectors for detecting axial displacement of each rotary shaft and using the detected axial displacement for three-dimensional image correction

Publications (1)

Publication Number Publication Date
WO2017006848A1 true WO2017006848A1 (ja) 2017-01-12

Family

ID=57685358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069598 WO2017006848A1 (ja) 2015-07-03 2016-07-01 光学式測定装置、光学式測定装置の校正方法及び光学式測定方法

Country Status (3)

Country Link
US (1) US10422621B2 (ja)
JP (1) JP6755553B2 (ja)
WO (1) WO2017006848A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303011A (zh) * 2018-03-20 2018-07-20 宁波恒帅微电机有限公司 电机轴向间隙自动检测和修正设备
US10900773B2 (en) 2017-06-06 2021-01-26 Hitachi, Ltd. Distance measuring device and three-dimensional shape measuring apparatus
CN114353690A (zh) * 2021-12-13 2022-04-15 燕山大学 大型铝合金环形锻件圆度在线检测装置及其检测方法
WO2022202533A1 (ja) * 2021-03-25 2022-09-29 株式会社東京精密 光回転プローブの校正方法
CN117722943A (zh) * 2024-02-05 2024-03-19 中国科学技术大学 一种集成高精度电容位移传感器的压电驱动机械式移相器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299843B (zh) * 2022-06-17 2023-04-07 中山市微视医用科技有限公司 一种内窥镜镜头平面度调节系统及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272929A (ja) * 1992-03-24 1993-10-22 Toyoda Mach Works Ltd 光学的測定装置
JPH11281331A (ja) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc 内壁測定装置
JP2011017615A (ja) * 2009-07-09 2011-01-27 High Energy Accelerator Research Organization 白色干渉法による管内面の形状測定装置及び方法
JP2015232539A (ja) * 2014-05-12 2015-12-24 並木精密宝石株式会社 光学式内面測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134003A (en) * 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
JP3345645B2 (ja) 2000-06-20 2002-11-18 東京大学長 体腔内観察装置
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
US20110164255A1 (en) * 2008-09-12 2011-07-07 Kenji Konno Rotation Optical Fiber Unit and Optical Coherence Tomography Image Forming Apparatus
US8493567B2 (en) * 2008-09-25 2013-07-23 Terumo Kabushiki Kaisha Optical tomographic image acquisition apparatus and method of acquiring optical tomographic image which adjusts reference position that acquires optical tomographic image based on sheath interference signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272929A (ja) * 1992-03-24 1993-10-22 Toyoda Mach Works Ltd 光学的測定装置
JPH11281331A (ja) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc 内壁測定装置
JP2011017615A (ja) * 2009-07-09 2011-01-27 High Energy Accelerator Research Organization 白色干渉法による管内面の形状測定装置及び方法
JP2015232539A (ja) * 2014-05-12 2015-12-24 並木精密宝石株式会社 光学式内面測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900773B2 (en) 2017-06-06 2021-01-26 Hitachi, Ltd. Distance measuring device and three-dimensional shape measuring apparatus
CN108303011A (zh) * 2018-03-20 2018-07-20 宁波恒帅微电机有限公司 电机轴向间隙自动检测和修正设备
CN108303011B (zh) * 2018-03-20 2023-11-14 宁波恒帅股份有限公司 电机轴向间隙自动检测和修正设备
WO2022202533A1 (ja) * 2021-03-25 2022-09-29 株式会社東京精密 光回転プローブの校正方法
CN114353690A (zh) * 2021-12-13 2022-04-15 燕山大学 大型铝合金环形锻件圆度在线检测装置及其检测方法
CN117722943A (zh) * 2024-02-05 2024-03-19 中国科学技术大学 一种集成高精度电容位移传感器的压电驱动机械式移相器
CN117722943B (zh) * 2024-02-05 2024-04-16 中国科学技术大学 一种集成高精度电容位移传感器的压电驱动机械式移相器

Also Published As

Publication number Publication date
US10422621B2 (en) 2019-09-24
US20180143000A1 (en) 2018-05-24
JPWO2017006848A1 (ja) 2018-06-07
JP6755553B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6755553B2 (ja) 光学式測定装置
US9869821B2 (en) Probe for optical imaging
JP6232552B2 (ja) 光学式内面測定装置
JP6739780B2 (ja) 光学式内面測定装置
JP6232550B2 (ja) 光学式内面測定装置
US9574870B2 (en) Probe for optical imaging
EP3029415B1 (en) Optical inner surface measuring device
US20130070255A1 (en) Probe for optical tomograpic image measurement device and method for adjusting probe
CN106289055B (zh) 光学式内面测量装置
JP6755557B2 (ja) 光学式内面測定装置
JP6439098B2 (ja) 光イメージング用プローブ
JP6980266B2 (ja) 光イメージング用プローブ
JP6865441B2 (ja) 光学式内面測定装置
JP6980267B2 (ja) 光イメージング用プローブ
JP2017215211A (ja) 内面測定機用校正装置
JP6610090B2 (ja) 非接触内面形状測定装置
JP2019191417A (ja) 光イメージング用プローブ
JP2015100569A (ja) 光イメージング用プローブ
JP2012052863A (ja) 光断層画像化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821317

Country of ref document: EP

Kind code of ref document: A1