WO2017006516A1 - 帯域通過フィルタ及びその制御方法 - Google Patents

帯域通過フィルタ及びその制御方法 Download PDF

Info

Publication number
WO2017006516A1
WO2017006516A1 PCT/JP2016/002795 JP2016002795W WO2017006516A1 WO 2017006516 A1 WO2017006516 A1 WO 2017006516A1 JP 2016002795 W JP2016002795 W JP 2016002795W WO 2017006516 A1 WO2017006516 A1 WO 2017006516A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric resonators
dielectric
resonators
pass filter
bandpass filter
Prior art date
Application number
PCT/JP2016/002795
Other languages
English (en)
French (fr)
Inventor
宮本 貴裕
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/742,187 priority Critical patent/US10559865B2/en
Publication of WO2017006516A1 publication Critical patent/WO2017006516A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • H01P1/2086Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators multimode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • H01P7/105Multimode resonators

Definitions

  • the present invention relates to a band pass filter (BPF: Band Pass Filter) and a control method thereof.
  • BPF Band Pass Filter
  • a band-pass filter that passes only high-frequency signals in a desired frequency band and attenuates signals in unnecessary frequency bands is used.
  • a communication system when a communication system is constructed, there is an increasing demand for a configuration in which the center frequency of a pass band of a band pass filter used in a communication device can be changed from the outside.
  • Patent Documents 1 to 3 describe a technique in which a bandpass filter is configured using a TE01 ⁇ mode dielectric resonator (DR: Dielectric Resonator), and the resonance frequency of the dielectric resonator is adjusted from the outside.
  • DR Dielectric Resonator
  • a conductor plate is disposed between a dielectric resonator and a housing that covers the dielectric resonator, and a gap between the conductor plate and the dielectric resonator.
  • the technique disclosed in Patent Document 3 inserts an adjustment screw from an adjustment hole provided on the upper surface of the casing covering the dielectric resonator and above the dielectric resonator, and changes the amount of insertion to change the resonance frequency. Adjust.
  • the techniques described in Patent Documents 1 and 2 adjust the resonance frequency by changing the gap between the TE01 ⁇ mode dielectric resonator and the conductor plate.
  • the resonance frequency of the dielectric resonator greatly depends on the shape and dielectric constant of the dielectric resonator. Therefore, even if the gap between the dielectric resonator and the conductor plate is changed as in the techniques described in Patent Documents 1 and 2, the resonance frequency of the dielectric resonator does not vary greatly.
  • the techniques described in Patent Documents 1 and 2 have an error adjustment degree of adjusting the shape error and mounting error of the dielectric resonator and the housing as described in Patent Documents 1 and 2. Can only be used for purposes.
  • the technique described in Patent Documents 1 and 2 is not suitable because a wide adjustment range of the center frequency is required.
  • the technique described in Patent Document 3 adjusts the resonance frequency by changing the gap between the dielectric resonator and the adjusting screw, similarly to the techniques described in Patent Documents 1 and 2. For this reason, the technique described in Patent Document 3 can also be used only for the purpose of error adjustment, and is not suitable for the purpose of making the center frequency of the passband of the bandpass filter variable.
  • an object of the present invention is to solve the above-described problems and provide a bandpass filter suitable for an application for changing the center frequency of the passband and a control method thereof.
  • the bandpass filter is A TE01 ⁇ mode first and second dielectric resonators disposed opposite each other; A metal casing covering the periphery of the first and second dielectric resonators, The facing distance between the first and second dielectric resonators is variable.
  • a method for controlling a bandpass filter includes: A TE01 ⁇ mode first and second dielectric resonators disposed opposite each other; A metal casing covering the periphery of the first and second dielectric resonators, The facing distance between the first and second dielectric resonators is changed.
  • FIG. 1 is a perspective view which shows schematic structural example of the band pass filter of this embodiment.
  • FIG. 1 shows a transparent housing (the same applies to FIGS. 2 to 4 and 6 to 9 described later).
  • the bandpass filter of the present embodiment is provided with two dielectric resonators 10 and 20 that resonate one TE01 ⁇ mode on the top and bottom, and are arranged opposite to each other. Further, the periphery of the two dielectric resonators 10 and 20 is covered with a metal case 30.
  • Each of the dielectric resonators 10 and 20 has a shape obtained by dividing a hollow cylinder into two equal parts along a cross section substantially parallel to the bottom surface (that is, the same hollow cylinder shape). The surfaces are arranged to face each other.
  • the dielectric resonators 10 and 20 are made of the same dielectric material.
  • One of the dielectric resonators 10 and 20 is a first dielectric resonator and the other is a second dielectric resonator.
  • the facing gap G between the dielectric resonators 10 and 20 is variable.
  • the left side of FIG. 1 is an example when the facing distance G is 0.5 mm, and the right side of FIG. 1 is an example when the facing distance G is 1.5 mm.
  • Any mechanism can be used as the distance adjusting mechanism for changing the facing distance G.
  • the lower dielectric resonator 20 has a fixed position in the direction in which the dielectric resonators 10 and 20 face each other (first direction; in the present embodiment, the vertical direction; hereinafter referred to as the vertical direction).
  • An interval adjusting mechanism that is fixed by a member and that moves the upper dielectric resonator 10 forward and backward by a moving mechanism is conceivable.
  • the fixing member may be configured by a pedestal that is installed inside the lower surface of the housing 30 and on which the dielectric resonator 20 is mounted and fixed in a state where the opposite surface of the opposing surface is in contact.
  • the moving mechanism is, for example, a support rod that is inserted into the housing 30 from above and is fixed with the dielectric resonator 10 in contact with the opposite surface of the opposing surface, and the support rod is advanced and retracted in the vertical direction. It may be configured with a drive unit composed of a motor to be moved. In the case of this configuration, the facing distance G is changed by fixing the dielectric resonator 20 to the pedestal and moving the support rod inserted from above the housing 30 in the vertical direction by the drive unit.
  • FIGS. 2 to 4 are diagrams showing more detailed configuration examples of the band-pass filter of the present embodiment.
  • 2 is a perspective view
  • FIG. 3 is a plan view
  • FIG. 4 is a front view.
  • input / output ports 40, 50 made of coaxial lines are respectively inserted into the opposite side surfaces of the casing 30 from the outside, and the inner conductors of these coaxial lines are connected to each other.
  • the dielectric resonators 10 and 20 extend inside the housing 30 so as to be sandwiched from the side.
  • the input / output ports 40 and 50 are ports for inputting and outputting a high-frequency signal, and an internal conductor extending inside the housing 30 serves as an antenna and is connected to the dielectric resonators 10 and 20 by electromagnetic coupling.
  • a high frequency signal is input to the input / output port 40, only the high frequency signal in the frequency band that matches the resonance frequency of the dielectric resonators 10 and 20 as a whole is output from the input / output port 50.
  • the facing interval G between the two dielectric resonators 10 and 20 in the TE01 ⁇ mode is made variable.
  • the dielectric resonators 10 and 20 expand and contract in the vertical direction as a whole.
  • the resonance frequency of the dielectric resonators 10 and 20 as a whole changes.
  • the present embodiment changes the shape of the dielectric resonators 10 and 20 as a whole by changing the facing distance G, and thereby the resonance frequency of the dielectric resonators 10 and 20 as a whole. Is going to change.
  • FIG. 5 is a graph showing an example of the resonance frequency of the dielectric resonators 10 and 20 as a whole when the facing distance G between the dielectric resonators 10 and 20 is changed. Since the present embodiment has a single-stage bandpass filter configuration, the resonance frequency of the TE01 ⁇ mode shown in FIG. 5 corresponds to the center frequency of the passband of the bandpass filter.
  • the outer radius of the hollow cylinder is 4 mm
  • the inner radius (the radius of the hollow portion) is 1.5 mm
  • the height is 1.5 mm
  • the dielectric constant is 29.8. It is assumed that it is made of a dielectric material. As shown in FIG.
  • the resonance frequency of the TE01 ⁇ mode becomes higher as the facing interval G becomes wider.
  • the resonance frequency is about 8.5 GHz to 10.3 GHz. It turns out that it changes greatly.
  • the resonance frequencies of the higher-order modes # 1 and # 2 that are unnecessary for the band-pass filter hardly change. Therefore, it is not necessary to consider the influence of the higher-order modes # 1 and # 2 when designing the band pass filter, which can contribute to the simplification of the design.
  • the facing gap G between the two dielectric resonators 10 and 20 in the TE01 ⁇ mode is made variable.
  • the shape of the dielectric resonators 10 and 20 as a whole changes. Therefore, by changing the facing distance G, the shape of the dielectric resonators 10 and 20 as a whole changes, and as a result, the resonance frequency can be changed greatly. Therefore, it is possible to realize a band pass filter suitable for an application for changing the center frequency of the pass band.
  • a separate component having a low Q value is not added as a mechanism used to change the facing distance G, the original high Q value of the TE01 ⁇ mode dielectric resonators 10 and 20 can be realized. It is also possible to realize a band pass filter that minimizes the deterioration of the value.
  • the band pass filter of the present embodiment can make the Q value change very small even when the facing distance G is changed from 0 mm to 2.0 mm.
  • the first embodiment has a configuration of a one-stage band-pass filter in which one set of two dielectric resonators is provided.
  • the present embodiment is an example in which three sets of two dielectric resonators are provided to form a three-stage bandpass filter.
  • 6 to 8 are diagrams showing configuration examples of the bandpass filter of the present embodiment. 6 is a perspective view, FIG. 7 is a plan view, and FIG. 8 is a front view.
  • the bandpass filter according to the present embodiment is a set of two dielectric resonators 10 and 20 according to the first embodiment, with the dielectric resonators 10 and 20 facing each other.
  • the band-pass filter of this embodiment includes a set of two dielectric resonators 10a and 20a, a set of two dielectric resonators 10b and 20b, and two dielectric resonators 10c and 20c.
  • the set is provided along the arrangement direction substantially orthogonal to the vertical direction.
  • the dielectric resonators 10a, 10b, and 10c are not specified, they are appropriately referred to as the dielectric resonator 10, and when the dielectric resonators 20a, 20b, and 20c are not specified, the dielectric resonators are referred to. 20 will be referred to as appropriate.
  • the bandpass filter of the present embodiment covers the periphery of the dielectric resonators 10a and 20a with the metal casing 30a, covers the periphery of the dielectric resonators 10b and 20b with the metal casing 30b, and The body resonators 10c and 20c are covered with a metal housing 30c.
  • a coupling window 60 is provided between the adjacent casings 30a and 30b to couple the space inside the casings 30a and 30b, and between the adjacent casings 30b and 30c, the casing 30b.
  • 30c is provided with a coupling window 70 for coupling the spaces inside.
  • the input / output ports 40 and 50 are the same as those in the first embodiment except that the input / output ports 40 and 50 are inserted into the casings 30a and 30c at both ends in the arrangement direction, respectively, and thus description thereof is omitted. To do.
  • the facing gap G between the dielectric resonators 10a and 20a, between the dielectric resonators 10b and 20b, and between the dielectric resonators 10c and 20c. Is variable.
  • an interval adjusting mechanism for changing the facing interval G will be described.
  • 9 and 10 are diagrams illustrating a configuration example of an interval adjusting mechanism used in the band pass filter of the present embodiment. 9 is a perspective view, and FIG. 10 is a cross-sectional view taken along the line AA ′ of FIG. As shown in FIGS.
  • the bandpass filter of the present embodiment includes a fixing member for fixing the vertical position of the lower dielectric resonators 20a, 20b, and 20c in each group,
  • An interval adjusting mechanism is configured by a moving mechanism for moving the upper and lower dielectric resonators 10a, 10b, and 10c together in a vertical direction.
  • pedestals 80a, 80b, and 80c are provided as fixing members.
  • the bases 80a, 80b, and 80c are installed inside the lower surfaces of the casings 30a, 30b, and 30c, and the dielectric resonators 20a, 20b, and 20c on the lower side of each set are in contact with the opposite surfaces of the opposing surfaces. In the state, each is placed and fixed.
  • the bases 80a, 80b, 80c are made of forsterite or the like.
  • the shape of the bases 80a, 80b, and 80c is a hollow cylindrical shape, it is not limited to this.
  • a moving plate 90, support rods 100 and 110, and a driving unit (not shown) including a motor and the like are provided as a moving mechanism.
  • the movable plate 90 is disposed so as to extend in the arrangement direction in the internal space of the housings 30a, 30b, 30c, and the upper dielectric resonators 10a, 10b, 10c of each set are opposite to the opposing surfaces. It is fixed with the surfaces in contact. Further, the support rods 100 and 110 are inserted from above the housings 30a and 30c through holes formed in the upper surfaces of the housings 30a and 30c, respectively, through which the support rods pass.
  • the moving plate 90 is supported by 100 and 110.
  • the moving plate 90 is made of an alumina plate or the like, and the support rods 100 and 110 are made of zirconia or the like. Further, the drive unit moves the moving plate 90 and the support rods 100 and 110 forward and backward.
  • the driving unit may be realized by any configuration as long as the above operation is possible, and may have a well-known configuration.
  • the upper dielectric resonators 10a, 10b, and 10c fixed to the moving plate 90 can be moved forward and backward together. Therefore, the facing gap G between the dielectric resonators 10a and 20a, between the dielectric resonators 10b and 20b, and between the dielectric resonators 10c and 20c can be changed collectively.
  • the facing distance G between the dielectric resonators 10a and 20a, between the dielectric resonators 10b and 20b, and between the dielectric resonators 10c and 20c is changed using the above-described distance adjusting mechanism.
  • the method will be described.
  • the lower dielectric resonators 20a, 20b, and 20c of each group are fixed to the pedestals 80a, 80b, and 80c, respectively, and the upper dielectric resonators 10a, 10b, and 10c of each group are moved to the movable plate 90. It is assumed that it is already fixed to
  • the arrangement state of the dielectric resonators 20a, 20b, and 20c on the lower side of each group is adjusted. It is known that the dielectric resonator has the highest Q value when it is in the center (vertical, horizontal, height) inside the casing. Therefore, when designing a multi-stage bandpass filter, the coupling coefficient of each stage is calculated according to a design parameter such as a Chebyshev distribution, and the physical dimensions of each stage are designed so as to match the calculated coupling coefficient. As a method and a mechanism (arrangement adjustment mechanism) for adjusting the lower dielectric resonators 20a, 20b, and 20c of each set to be arranged with physical dimensions according to design parameters, the dielectric resonators 20a, 20b are arranged.
  • the electromagnetic field distribution adjusting mechanism shown in FIG. 11 adjusts the electromagnetic field distribution of the dielectric resonator 20a by inserting / removing the adjusting screw 31a from the outside of the lower surface of the housing 30a.
  • the adjusting screw 31a can be made of a metal material or a dielectric material. Further, in FIG. 11, the adjusting screw 31a is fixed by the nut 32a joined to the housing 30a, but may be fixed by an adhesive.
  • the electromagnetic field distribution of the dielectric resonators 20b and 20c can also be adjusted by the same mechanism as in FIG. Further, as a position adjustment mechanism for adjusting the vertical position of the dielectric resonators 20a, 20b, 20c, a mechanism for installing a pedestal having a height corresponding to the position to be adjusted, or an adjustment configured integrally with the lower surface of the pedestal A mechanism for inserting and removing screws from the outside of the lower surface of the housing and a mechanism shown in FIG. 12 are conceivable.
  • the position adjusting mechanism shown in FIG. 12 forms bottomed counterbores 33b and 33c on which the dielectric resonators 20b and 20c are installed inside the lower surfaces of the casings 30b and 30c.
  • the vertical position of the dielectric resonators 20b and 20c is adjusted according to the depth of.
  • the pedestals 80a, 80b, and 80c have the same height in the vertical direction.
  • the vertical position of the central dielectric resonator 20b is higher than the dielectric resonator 20a (not shown) and the dielectric resonator 20c at both ends.
  • An example is shown.
  • the vertical position of the dielectric resonator 20a can also be adjusted by the same mechanism as in FIG.
  • the design parameters used for the design of the band pass filter are not limited to the Chebyshev distribution, but Butterworth, elliptic functions, or the like may be used. In designing a bandpass filter, which design parameter is used may be selected each time according to the design purpose.
  • the lower dielectric resonators 20a, 20b, and 20c of each set are adjusted to be arranged with physical dimensions according to the design parameters. Subsequently, the moving plate 90 and the support rods 100 and 110 are moved up and down by the drive unit in the vertical direction, and the upper dielectric resonators 10a, 10b, and 10c fixed to the moving plate 90 are collectively moved in the vertical direction. Move forward and backward. Thereby, the opposing gap G between the dielectric resonators 10a and 20a, between the dielectric resonators 10b and 20b, and between the dielectric resonators 10c and 20c can be changed collectively.
  • FIG. 13 shows the pass of the band pass filter when the facing distance G between the dielectric resonators 10a and 20a, between the dielectric resonators 10b and 20b, and between the dielectric resonators 10c and 20c is changed. It is a graph which shows the example of the center frequency of a zone
  • the conditions of these dielectric resonators 10 and 20 are the same as those in FIG.
  • the center frequencies of the passbands of the bandpass filters when the facing gap G is 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm are 9.35 GHz and 9.8 GHz, respectively. 10.3 GHz and 10.7 GHz.
  • the center frequency of the pass band of the bandpass filter increases as the facing distance G increases, and the center frequency is changed from 9.35 GHz to 10 mm by changing the facing distance G from 0.5 mm to 2.0 mm. It can be seen that it varies greatly with .7 GHz.
  • the facing gap G between the three sets of the dielectric resonators 10 and 20 is made variable.
  • the shape of the three sets of dielectric resonators 10 and 20 as a whole changes, and as a result, the resonance frequency changes greatly. Can be made. Therefore, it is possible to realize a band pass filter suitable for an application for changing the center frequency of the pass band.
  • a bandpass filter that minimizes deterioration of the Q value can also be realized.
  • the band pass filter of the present embodiment can make the Q value change very small even when the facing distance G is changed from 0 mm to 2.0 mm.
  • the vertical position of the lower dielectric resonator 20 of each group is fixed, and the upper dielectric resonator 10 of each group is moved forward and backward in the vertical direction.
  • the facing distance G between the pair of dielectric resonators 10 and 20 is changed collectively. Therefore, the number of drive units composed of motors and the like can be reduced as compared with a configuration in which the facing distance G between the three sets of dielectric resonators 10 and 20 is individually changed one by one.
  • the adjustment process of G can be simplified.
  • the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
  • the number of sets of two dielectric resonators is one set in the first embodiment and three sets in the second embodiment, but is not limited to this and may be one or more sets. .
  • the lower dielectric resonator of each group is adjusted to a state of being arranged with physical dimensions according to the design parameters, and then the upper dielectric body of each group is adjusted.
  • the opposing gap G was changed by moving the resonators together in the vertical direction.
  • the upper dielectric resonators of each set are collectively moved up and down to change the facing distance G, and then the lower dielectric resonators of each set are changed, You may adjust to the state arrange
  • the vertical position of the central dielectric resonator is An example in which the height is higher than the dielectric resonators at both ends is shown.
  • the facing distance is different between the center and both ends, but either facing distance may be used as the facing distance G.
  • the upper and lower dielectric resonators of each set are fixed in the vertical direction, and the upper dielectric resonators of each set are moved forward and backward in the vertical direction to face each other.
  • the interval G was changed.
  • the upper and lower dielectric resonators in each group are fixed in the vertical direction, and the lower dielectric resonators in each group are moved forward and backward to change the opposing gap G. You may let them.
  • a fixing member substantially the same as that of the second embodiment is provided for the upper dielectric resonator of each set, and the second embodiment is used for the lower dielectric resonator of each set.
  • a substantially similar movement mechanism may be provided.
  • the upper dielectric resonators of each set are collectively moved forward and backward, and the lower dielectric resonators of each set are moved forward and backward together to change the facing distance G. Also good.
  • the moving mechanisms substantially the same as those of the second embodiment are provided for the upper dielectric resonators of each set and the lower dielectric resonators of each set, respectively. It only has to be provided. In the case of this configuration, the adjustment range of the facing interval G can be widened.
  • the two dielectric resonators have the same hollow cylindrical shape formed by dividing the hollow cylinder into two equal parts along a cross section substantially parallel to the bottom surface.
  • the shape of the two dielectric resonators may be a shape obtained by dividing a column (straight column) into two along a cross section substantially parallel to the bottom surface as long as it resonates in the TE01 ⁇ mode. The height in the direction may be different.
  • the shape of the two dielectric resonators may or may not have a hollow portion. Therefore, the shape of the two dielectric resonators may be a cylindrical shape, a polygonal column shape (a quadrangular column or an octagonal column), or the like.
  • the shape of the dielectric resonator is preferably a shape having a hollow portion.
  • the two dielectric resonators are formed by dividing the column into two equal parts (that is, the height in the vertical direction is substantially the same). In this case, as shown in FIG.
  • the adjustment range of the center frequency of the pass band of the band pass filter (the adjustment range of the center frequency in FIG. 13 is 9.35 GHz to 10.7 GHz) can be expanded. Therefore, it is preferable that the heights of the two dielectric resonators in the vertical direction are substantially the same.
  • the facing gap G between the two dielectric resonators has been expanded to 2 mm, but is not limited to this. Since the facing distance G depends on the size of the housing, such as not being increased beyond the height of the housing, the facing distance G may be set as appropriate according to the size of the housing.
  • the dielectric constant of the dielectric resonator is 29.8, but is not limited to this. Since the resonance frequency of the dielectric resonator depends not only on the shape but also on the dielectric constant, the dielectric constant may be appropriately set according to a desired resonance frequency or the like.
  • the two dielectric resonators are arranged to face each other in the vertical direction.
  • the present invention is not limited to this. The invention is applicable.
  • the band-pass filter of the present invention has the first and second dielectrics (for example, the dielectric resonators 10 and 20 described above) facing each other, and the first and second dielectrics facing each other.
  • the center frequency of the pass band is changed by adjusting the adjusting means (for example, the above-described interval adjusting mechanism).
  • the adjusting means for example, the above-described interval adjusting mechanism.
  • the band-pass filter according to appendix 1 wherein the plurality of sets of the first and second dielectric resonators are covered with the casing.
  • Appendix 3 A fixing member for fixing the position of the first dielectric resonator of each set in the first direction;
  • the fixing member is The first dielectric resonator of each set is installed on the inner surface of the housing, and includes a plurality of pedestals that are fixed in a state where the opposite surfaces of the opposing surfaces are in contact with each other,
  • the moving mechanism is A moving plate that is disposed so as to extend in the second direction in the internal space of the housing, and to which the second dielectric resonators of each set are fixed in a state where the opposite surfaces of the opposing surfaces are in contact with each other.
  • the bandpass filter according to appendix 3, further comprising: a drive unit that moves the moving plate forward and backward in the first direction.
  • the first moving mechanism includes: The first dielectric resonators are arranged so as to extend in the second direction in the internal space of the casing, and the first dielectric resonators of each set are fixed in a state where the opposite surfaces of the opposing surfaces are in contact with each other.
  • a moving board of A first drive unit that moves the first moving plate forward and backward in the first direction includes: The second dielectric resonator is disposed in the internal space of the housing so as to extend in the second direction, and the second dielectric resonator of each set is fixed in a state where the opposite surface of the opposing surface is in contact with the second dielectric resonator.
  • a moving board of The bandpass filter according to appendix 8 further comprising: a second driving unit that moves the second moving plate forward and backward in the first direction.
  • the first and second dielectric resonators each have a shape obtained by dividing the column body into two along a cross section substantially parallel to the bottom surface, and the divided surfaces are arranged to face each other as an opposing surface.
  • the bandpass filter according to any one of 1 to 9.
  • the bandpass filter according to appendix 10 wherein the first and second dielectric resonators have substantially the same height in a first direction where the first and second dielectric resonators face each other.
  • a method for controlling a bandpass filter comprising: A TE01 ⁇ mode first and second dielectric resonators disposed opposite each other; A metal casing covering the periphery of the first and second dielectric resonators, A method for controlling a band-pass filter, wherein a facing distance between the first and second dielectric resonators is changed.
  • a plurality of sets of the first and second dielectric resonators are provided along a second direction substantially orthogonal to the first direction in which the first and second dielectric resonators face each other. , Surrounding the plurality of sets of the first and second dielectric resonators with the housing, 14.
  • each set of the first dielectric resonator is fixed in a state where the opposite surface of the opposing surface is in contact
  • Each set of the second dielectric resonators is fixed to the moving plate arranged to extend in the second direction in the internal space of the casing in a state where the opposite surface of the opposing surface is in contact with the moving plate.
  • each set of the first dielectric resonators is arranged with physical dimensions according to the design parameters. 18.
  • the first dielectric resonators of each group are collectively advanced and retracted in the first direction, and the second dielectric resonators of each group are collectively advanced and retracted in the first direction. 15.
  • the first moving plate arranged to extend in the second direction in the internal space of the housing is in contact with the first dielectric resonator of each set on the opposite surface of the opposing surface.
  • the second moving plate arranged to extend in the second direction in the internal space of the casing is in contact with the second dielectric resonator of each set on the opposite surface of the opposing surface.
  • the first and second moving plates are moved forward and backward in the first direction by a driving unit to change a facing distance between the plurality of sets of the first and second dielectric resonators.
  • the first and second dielectric resonators each have a shape obtained by dividing the column body into two along a cross section substantially parallel to the bottom surface, and the divided surfaces are arranged to face each other as an opposing surface.
  • (Appendix 23) The bandpass filter according to appendix 22, wherein the first and second dielectric resonators have substantially the same height in the first direction where the first and second dielectric resonators face each other. Control method.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

通過帯域の中心周波数を可変する用途に好適な帯域通過フィルタ及び帯域通過フィルタの制御方法が提供される。本発明の帯域通過フィルタは、互いに対向配置されたTE01δモードの2個の誘電体共振器(10)及び誘電体共振器(20)と、2個の誘電体共振器(10)及び誘電体共振器(20)の周囲を覆う金属製の筐体(30)と、を備える。ここで、2個の誘電体共振器(10)及び誘電体共振器(20)の間の対向間隔は可変になっている。

Description

帯域通過フィルタ及びその制御方法
 本発明は、帯域通過フィルタ(BPF:Band Pass Filter)及びその制御方法に関する。
 マイクロ波通信やミリ波通信を行う通信機においては、所望の周波数帯域の高周波信号のみを通過させ、不要な周波数帯域の信号を減衰させる帯域通過フィルタが用いられている。近年、通信システムを構築する上で、通信機に用いられる帯域通過フィルタの通過帯域の中心周波数を、外部から可変な構成にしたいという要求が増えている。
 関連技術として、特許文献1~3には、TE01δモードの誘電体共振器(DR:Dielectric Resonator)を用いて帯域通過フィルタを構成し、その誘電体共振器の共振周波数を、外部から調整する技術が記載されている。具体的には、特許文献1,2に記載の技術は、誘電体共振器と誘電体共振器を覆う筐体との間に導体板を配置し、その導体板と誘電体共振器との間隙を変化させて、共振周波数を調整する。また、特許文献3に記載の技術は、誘電体共振器を覆う筐体の上面かつ誘電体共振器の上方に設けた調整穴から調整ネジを挿入し、その挿入量を変化させて、共振周波数を調整する。
特開2002-050902号公報 特開2004-129146号公報 国際公開第2005/062415号
 上述したように、特許文献1,2に記載の技術は、TE01δモードの誘電体共振器と導体板との間隙を変化させて、共振周波数を調整するものである。しかし、誘電体共振器の共振周波数は、誘電体共振器の形状及び誘電率に大きく依存する。そのため、特許文献1,2に記載の技術のように、誘電体共振器と導体板との間隙を変化させたとしても、誘電体共振器の共振周波数は大きく変動しない。このことから、特許文献1,2に記載の技術は、特許文献1,2にも記載されているように、誘電体共振器や筐体の形状誤差や取り付け誤差を調整するといった誤差調整程度の用途にしか使用できない。上述した帯域通過フィルタの通過帯域の中心周波数を可変にする用途には、中心周波数の調整範囲を広くとることが要求されるため、特許文献1,2に記載の技術は適さない。
 また、特許文献3に記載の技術も、特許文献1,2に記載の技術と同様に、誘電体共振器と調整ネジとの間隙を変化させて、共振周波数を調整するものである。そのため、特許文献3に記載の技術も、誤差調整程度の用途にしか使用できず、帯域通過フィルタの通過帯域の中心周波数を可変にする用途には適さない。
 そこで本発明の目的は、上述した課題を解決し、通過帯域の中心周波数を可変にする用途に好適な帯域通過フィルタ及びその制御方法を提供することにある。
 一態様において、帯域通過フィルタは、
 互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
 前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を備え、
 前記第1及び第2の誘電体共振器の間の対向間隔が可変である。
 一態様において、帯域通過フィルタの制御方法は、
 互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
 前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を設け、
 前記第1及び第2の誘電体共振器の間の対向間隔を変化させる。
 上述の態様によれば、通過帯域の中心周波数を可変する用途に好適な帯域通過フィルタ及びその制御方法を提供することができるという効果が得られる。
本発明の第1の実施形態の帯域通過フィルタの概略構成例を示す斜視図である。 本発明の第1の実施形態の帯域通過フィルタの構成例を示す斜視図である。 本発明の第1の実施形態の帯域通過フィルタの構成例を示す平面図である。 本発明の第1の実施形態の帯域通過フィルタの構成例を示す正面図である。 本発明の第1の実施形態の帯域通過フィルタを構成する誘電体共振器の共振周波数の例を示す図である。 本発明の第2の実施形態の帯域通過フィルタの構成例を示す斜視図である。 本発明の第2の実施形態の帯域通過フィルタの構成例を示す平面図である。 本発明の第2の実施形態の帯域通過フィルタの構成例を示す正面図である。 本発明の第2の実施形態の帯域通過フィルタに用いられる間隔調整機構の構成例を示す斜視図である。 本発明の第2の実施形態の帯域通過フィルタに用いられる間隔調整機構の構成例を示す断面図である。 本発明の第2の実施形態の帯域通過フィルタに用いられる電磁界分布調整機構の構成例を示す断面図である。 本発明の第2の実施形態の帯域通過フィルタに用いられる位置調整機構の構成例を示す断面図である。 本発明の第2の実施形態の帯域通過フィルタの通過帯域の中心周波数の例を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。
(1)第1の実施形態
 図1は、本実施形態の帯域通過フィルタの概略構成例を示す斜視図である。なお、図1は、筐体を透明化して表している(後述する図2~図4、図6~図9において同じ)。図1に示されるように、本実施形態の帯域通過フィルタは、1つのTE01δモードを共振する2個の誘電体共振器10,20を上下に設け、互いに対向配置させている。また、2個の誘電体共振器10,20の周囲を金属製の筐体30で覆っている。誘電体共振器10,20は、中空円柱を底面に略平行な断面に沿って2等分に分割してなる形状(すなわち、同一の中空円柱形状)を各々が具備しており、その分割した面を対向面として対向配置されている。また、誘電体共振器10,20は、同一の誘電体材料で構成されている。なお、誘電体共振器10,20は、一方が第1の誘電体共振器、他方が第2の誘電体共振器となる。
 誘電体共振器10,20の間の対向間隔Gは可変になっている。図1の左側は、対向間隔Gが0.5mmである場合の例であり、図1の右側は、対向間隔Gが1.5mmである場合の例である。対向間隔Gを変化させる間隔調整機構としては、任意の機構が利用可能である。例えば、下側の誘電体共振器20は、誘電体共振器10,20が対向している方向(第1の方向。本実施形態においては上下方向。以下、上下方向と称す)の位置を固定部材により固定し、上側の誘電体共振器10は、移動機構により上下方向に進退移動させる間隔調整機構が考えられる。固定部材は、例えば、筐体30の下面の内側に設置され、誘電体共振器20が対向面の反対面が接触した状態で載置され固着される台座で構成することが考えられる。また、移動機構は、例えば、筐体30の上方から内部に挿入され、誘電体共振器10が対向面の反対面が接触した状態で固着される支持棒と、その支持棒を上下方向に進退移動させるモーター等からなる駆動部と、で構成することが考えられる。この構成の場合、誘電体共振器20を台座に固定し、筐体30の上方から挿入させた支持棒を駆動部により上下方向に進退移動させることで、対向間隔Gを変化させる。
 図2~図4は、本実施形態の帯域通過フィルタのより詳細な構成例を示す図である。図2は斜視図、図3は平面図、図4は正面図である。図2~図4に示されるように、筐体30の互いに対向する両側面には、同軸線路で構成された入出力ポート40,50がそれぞれ外部から挿入され、それらの同軸線路の内部導体が、誘電体共振器10,20を側方から挟み込むように、筐体30の内部に伸びている。入出力ポート40,50は、高周波信号を入出力するためのポートであり、筐体30の内部に伸びた内部導体がアンテナとなって誘電体共振器10,20と電磁結合により接続される。例えば、入出力ポート40に高周波信号が入力された場合は、誘電体共振器10,20全体としての共振周波数と一致する周波数帯域の高周波信号のみが入出力ポート50から出力されることになる。
 本実施形態においては、TE01δモードの2個の誘電体共振器10,20の間の対向間隔Gを可変にしている。ここで、対向間隔Gが変化すると、誘電体共振器10,20は全体として上下方向に伸縮する。その結果、誘電体共振器10,20全体としての形状が変化することになるため、誘電体共振器10,20全体としての共振周波数が変化する。これを利用して、本実施形態は、対向間隔Gを変化させることで、誘電体共振器10,20全体としての形状を変化させ、それによって、誘電体共振器10,20全体としての共振周波数を変化させることとしている。
 図5は、誘電体共振器10,20の間の対向間隔Gを変化させた場合の誘電体共振器10,20全体としての共振周波数の例を示すグラフである。本実施形態は、1段の帯域通過フィルタの構成であるため、図5に示されるTE01δモードの共振周波数が帯域通過フィルタの通過帯域の中心周波数に相当する。ここでは、誘電体共振器10,20は、中空円柱の外半径が4mm、内半径(中空部の半径)が1.5mm、高さが1.5mmであり、また、誘電率が29.8の誘電体材料で構成されているものとする。図5に示されるように、TE01δモードの共振周波数は、対向間隔Gが広くなるにしたがって高くなり、対向間隔Gを0mm~2.0mmに変化させることで、約8.5GHz~10.3GHzと大きく変化することがわかる。また、このとき、TE01δモードの共振周波数は変化するが、帯域通過フィルタに不要な高次モード#1,#2の共振周波数はほとんど変化しない。そのため、帯域通過フィルタの設計時に、高次モード#1,#2の影響を考慮する必要がないため、設計の容易化に寄与し得る。
 上述したように本実施形態においては、TE01δモードの2個の誘電体共振器10,20の間の対向間隔Gを可変にしている。ここで、対向間隔Gが変化すると、誘電体共振器10,20全体としての形状が変化する。そのため、対向間隔Gを変化させることで、誘電体共振器10,20全体としての形状が変化し、その結果、共振周波数を大きく変化させることができる。したがって、通過帯域の中心周波数を可変する用途に好適な帯域通過フィルタを実現することができる。また、対向間隔Gを変化させるために用いる機構としてQ値の低い別部品を追加していないため、TE01δモードの誘電体共振器10,20の本来の高いQ値を実現でき、それにより、Q値の劣化を最小限に抑えた帯域通過フィルタを実現することもできる。また、本実施形態の帯域通過フィルタは、対向間隔Gを0mm~2.0mmに変化させた場合にも、Q値の変化を非常に小さくすることができる。
(2)第2の実施形態
 第1の実施形態は、2個の誘電体共振器の組を1組設けた1段の帯域通過フィルタの構成であった。これに対して本実施形態は、2個の誘電体共振器の組を3組設け、3段の帯域通過フィルタを構成する例である。図6~図8は、本実施形態の帯域通過フィルタの構成例を示す図である。図6は斜視図、図7は平面図、図8は正面図である。図6~図8に示されるように、本実施形態の帯域通過フィルタは、第1の実施形態の2個の誘電体共振器10,20の組を、誘電体共振器10,20が対向している方向(第1の方向。本実施形態においては上下方向。以下、上下方向と称す)とは略直交する配列方向(第2の方向。本実施形態においては水平方向)に沿って3組設けた構成に相当する。すなわち、本実施形態の帯域通過フィルタは、2個の誘電体共振器10a,20aの組、2個の誘電体共振器10b,20bの組、及び、2個の誘電体共振器10c,20cの組を、上下方向とは略直交する配列方向に沿って設けている。なお、以下では、誘電体共振器10a,10b,10cを特定しない場合には、誘電体共振器10と適宜称し、誘電体共振器20a,20b,20cを特定しない場合には、誘電体共振器20と適宜称す。
 また、本実施形態の帯域通過フィルタは、誘電体共振器10a,20aの周囲を金属製の筐体30aで覆い、誘電体共振器10b,20bの周囲を金属製の筐体30bで覆い、誘電体共振器10c,20cの周囲を金属製の筐体30cで覆っている。また、隣接する筐体30a,30bの間には、筐体30a,30bの内部の空間を結合するための結合窓60が設けられ、隣接する筐体30b,30cの間には、筐体30b,30cの内部の空間を結合するための結合窓70が設けられている。
 なお、入出力ポート40,50は、配列方向の両端の筐体30a,30cにそれぞれ入出力ポート40,50を挿入していること以外は第1の実施形態と同様であるため、説明を省略する。
 本実施形態においても、第1の実施形態と同様に、誘電体共振器10a,20aの間、誘電体共振器10b,20bの間、及び、誘電体共振器10c,20cの間の対向間隔Gは可変になっている。ここで、対向間隔Gを変化させる間隔調整機構について説明する。図9及び図10は、本実施形態の帯域通過フィルタに用いられる間隔調整機構の構成例を示す図である。図9は斜視図、図10は図9のA-A'に沿った断面図である。図9及び図10に示されるように、本実施形態の帯域通過フィルタは、各組の下側の誘電体共振器20a,20b,20cの上下方向の位置を固定するための固定部材と、各組の上側の誘電体共振器10a,10b,10cをまとめて上下方向に進退移動させるための移動機構と、で間隔調整機構を構成する。
 まず、上述した固定部材について説明する。本実施形態においては、固定部材として、台座80a,80b,80cを設けている。台座80a,80b,80cは、筐体30a,30b,30cのそれぞれの下面の内側に設置され、各組の下側の誘電体共振器20a,20b,20cが、対向面の反対面が接触した状態で、それぞれ載置され、固着される。なお、台座80a,80b,80cはフォルステライト等で構成される。また、台座80a,80b,80cの形状は、中空円柱形状としているが、これには限定されない。
 次に、上述した移動機構について説明する。本実施形態においては、移動機構として、移動板90と、支持棒100,110と、モーター等からなる不図示の駆動部と、を設けている。移動板90は、筐体30a,30b,30cの内部空間にて配列方向に延在するように配置されており、各組の上側の誘電体共振器10a,10b,10cが、対向面の反対面が接触した状態で固着される。また、筐体30a,30cの上方から、筐体30a,30cのそれぞれの上面に形成された、支持棒を通すための穴を介して、支持棒100,110がそれぞれ挿入されており、支持棒100,110により移動板90が支持される。なお、移動板90はアルミナ板等で構成され、支持棒100,110はジルコニア等で構成される。また、駆動部は、移動板90及び支持棒100,110を上下方向に進退移動させる。駆動部は、上記動作が可能であればいかなる構成で実現しても良く、周知構成でも構わない。駆動部の上記動作によって、移動板90に固着された各組の上側の誘電体共振器10a,10b,10cをまとめて上下方向に進退移動させることができる。そのため、誘電体共振器10a,20aの間、誘電体共振器10b,20bの間、及び、誘電体共振器10c,20cの間の対向間隔Gをまとめて変化させることができる。
 次に、上述した間隔調整機構を用いて、誘電体共振器10a,20aの間、誘電体共振器10b,20bの間、及び、誘電体共振器10c,20cの間の対向間隔Gを変化させる方法を説明する。ここでは、各組の下側の誘電体共振器20a,20b,20cが、台座80a,80b,80cにそれぞれ固着され、各組の上側の誘電体共振器10a,10b,10cが、移動板90に固着された状態に既にあるものとする。
 まず、各組の下側の誘電体共振器20a,20b,20cの配置状態を調整する。誘電体共振器は、筐体の内部の中央(縦、横、高さ)にある時にQ値が最も高くなることが知られている。そのため、複数段の帯域通過フィルタの設計にあたっては、チェビシェフ分布等の設計パラメータに従って各段の結合係数を算出し、算出した結合係数に合致するように各段の物理寸法を設計する。各組の下側の誘電体共振器20a,20b,20cを、設計パラメータに従った物理寸法で配置された状態に調整する方法及び機構(配置調整機構)としては、誘電体共振器20a,20b,20cの電磁界分布や上下方向の位置を調整する方法及び機構が考えられる。誘電体共振器20a,20b,20cの電磁界分布を調整する電磁界分布調整機構としては、図11に示される機構が考えられる。図11に示される電磁界分布調整機構は、筐体30aの下面の外側から調整ビス31aを挿抜して、誘電体共振器20aの電磁界分布を調整するものである。なお、調整ビス31aは、金属材料や誘電体材料で構成することができる。また、調整ビス31aは、図11においては、筐体30aに接合されたナット32aで固定しているが、接着剤で固定しても良い。図示していないが、誘電体共振器20b,20cの電磁界分布も、図11と同様の機構によって調整することができる。また、誘電体共振器20a,20b,20cの上下方向の位置を調整する位置調整機構としては、調整する位置に応じた高さの台座を設置する機構や、台座の下面と一体に構成した調整ビスを、筐体の下面の外側から挿抜する機構や、図12に示される機構が考えられる。図12に示される位置調整機構は、筐体30b,30cのそれぞれの下面の内側に、誘電体共振器20b,20cが設置される、有底のザグリ33b,33cを形成し、ザグリ33b,33cの深さによって誘電体共振器20b,20cの上下方向の位置を調整するものである。なお、図12の場合、台座80a,80b,80cの上下方向における高さは同一である。また、図12は、設計パラメータに従った結果、中央の誘電体共振器20bの上下方向の位置が、両端の誘電体共振器20a(図示していない)及び誘電体共振器20cよりも高くなった例を示している。図示していないが、誘電体共振器20aの上下方向の位置も、図12と同様の機構によって調整することができる。なお、帯域通過フィルタの設計に用いる設計パラメータは、チェビシェフ分布に限定されず、バタワースや楕円関数等を用いても良い。帯域通過フィルタの設計において、どの設計パラメータを用いるかは、設計目的に応じてその都度選択すれば良い。
 以上のようにして、各組の下側の誘電体共振器20a,20b,20cを、設計パラメータに従った物理寸法で配置された状態に調整する。続いて、駆動部により移動板90及び支持棒100,110を上下方向に進退移動させて、移動板90に固着された各組の上側の誘電体共振器10a,10b,10cをまとめて上下方向に進退移動させる。これにより、誘電体共振器10a,20aの間、誘電体共振器10b,20bの間、及び、誘電体共振器10c,20cの間の対向間隔Gをまとめて変化させることができる。
 図13は、誘電体共振器10a,20aの間、誘電体共振器10b,20bの間、及び、誘電体共振器10c,20cの間の対向間隔Gを変化させた場合の帯域通過フィルタの通過帯域の中心周波数の例を示すグラフである。ここでは、これら誘電体共振器10,20の条件は図5と同様とする。図13に示されるように、対向間隔Gを0.5mm、1.0mm、1.5mm、2.0mmとした場合の帯域通過フィルタの通過帯域の中心周波数は、それぞれ9.35GHz、9.8GHz、10.3GHz、10.7GHzとなる。このように、対向間隔Gが広くなるにしたがって帯域通過フィルタの通過帯域の中心周波数が高くなり、対向間隔Gを0.5mm~2.0mmに変化させることで、中心周波数が9.35GHz~10.7GHzと大きく変化することがわかる。
 上述したように本実施形態においては、2個の誘電体共振器10,20の組を3組設け、3組の誘電体共振器10,20の間の対向間隔Gを可変にしている。ここで、3組の誘電体共振器10,20の間の対向間隔Gを変化させると、3組の誘電体共振器10,20全体としての形状が変化し、その結果、共振周波数を大きく変化させることができる。したがって、通過帯域の中心周波数を可変する用途に好適な帯域通過フィルタを実現することができる。また、対向間隔Gを変化させるために用いる機構としてQ値の低い別部品を追加していないため、Q値の劣化を最小限に抑えた帯域通過フィルタを実現することもできる。また、本実施形態の帯域通過フィルタは、対向間隔Gを0mm~2.0mmに変化させた場合にも、Q値の変化を非常に小さくすることができる。
 また、本実施形態においては、各組の下側の誘電体共振器20の上下方向の位置を固定し、各組の上側の誘電体共振器10をまとめて上下方向に進退移動させて、3組の誘電体共振器10,20の間の対向間隔Gをまとめて変化させている。したがって、3組の誘電体共振器10,20の間の対向間隔Gを、1組づつ個別に変化させる構成と比較して、モーター等からなる駆動部の数を減らすことができると共に、対向間隔Gの調整工程の簡略化を図ることができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 例えば、2個の誘電体共振器の組数は、第1の実施形態は1組とし、第2の実施形態は3組としたが、これには制限されず、1組以上であれば良い。
 また、第2の実施形態においては、各組の下側の誘電体共振器の上下方向の位置を調整する幾つかの機構を示したが、各組の下側の誘電体共振器の上下方向の位置は、各組の下側の誘電体共振器の高さ(厚み)で調整しても良い。
 また、第2の実施形態においては、まず、各組の下側の誘電体共振器を、設計パラメータに従った物理寸法で配置された状態に調整し、その後に、各組の上側の誘電体共振器をまとめて上下方向に進退移動させて、対向間隔Gを変化させていた。これとは逆に、まず、各組の上側の誘電体共振器をまとめて上下方向に進退移動させて、対向間隔Gを変化させ、その後に、各組の下側の誘電体共振器を、設計パラメータに従った物理寸法で配置された状態に調整しても良い。
 また、第2の実施形態においては、各組の下側の誘電体共振器を設計パラメータに従った物理寸法で配置された状態に調整した結果、中央の誘電体共振器の上下方向の位置が、両端の誘電体共振器よりも高くなった例を示した。この例の場合、中央と両端とで対向間隔が異なることになるが、どちらの対向間隔を対向間隔Gとしても良い。
 また、第2の実施形態においては、各組の下側の誘電体共振器の上下方向の位置を固定し、各組の上側の誘電体共振器をまとめて上下方向に進退移動させて、対向間隔Gを変化させていた。これとは逆に、各組の上側の誘電体共振器の上下方向の位置を固定し、各組の下側の誘電体共振器をまとめて上下方向に進退移動させて、対向間隔Gを変化させても良い。この構成の場合、各組の上側の誘電体共振器用に、第2の実施形態と略同様の固定部材を設け、また、各組の下側の誘電体共振器用に、第2の実施形態と略同様の移動機構を設ければ良い。また、各組の上側の誘電体共振器をまとめて上下方向に進退移動させると共に、各組の下側の誘電体共振器をまとめて上下方向に進退移動させて、対向間隔Gを変化させても良い。この構成の場合、各組の上側の誘電体共振器用及び各組の下側の誘電体共振器用に、それぞれ第2の実施形態と略同様の移動機構(第1及び第2の移動機構)を設ければ良い。この構成の場合、対向間隔Gの調整範囲を広くすることができる。
 また、第1及び第2の実施形態においては、2個の誘電体共振器の形状は、中空円柱を底面に略平行な断面に沿って2等分に分割してなる同一の中空円柱形状としたが、これには限定されない。2個の誘電体共振器の形状は、柱体(直柱体)を底面に略平行な断面に沿って2分割してなる形状であって、TE01δモードで共振する形状であれば良く、上下方向における高さは異なっていても良い。また、2個の誘電体共振器の形状は、中空部の有無は問わない。そのため、2個の誘電体共振器の形状は、円柱形状、多角柱形状(四角柱や、八角柱)等でも良い。ただし、第1及び第2の実施形態のように、誘電体共振器を中空部を有する形状とした場合、誘電体共振器の軽量化を図れることから、誘電体共振器を上下方向に進退移動させる駆動部の負荷を軽減でき、また、図5に示されるように、TE01δモードの共振周波数から、不要な高次モードの共振周波数を遠ざけることができる。そのため、誘電体共振器の形状は、中空部を有する形状とするのが好適である。また、第1及び第2の実施形態のように、2個の誘電体共振器を、柱体を2等分に分割してなる形状とした場合(すなわち、上下方向における高さを略同一とした場合)、図13に示されるように、帯域通過フィルタの通過帯域の中心周波数の調整範囲(図13の中心周波数の調整範囲は9.35GHz~10.7GHz)を広げることができる。そのため、2個の誘電体共振器の上下方向における高さは略同一とするのが好適である。
 また、第1及び第2の実施形態においては、2個の誘電体共振器の間の対向間隔Gは、2mmまで広げていたが、これには限定されない。対向間隔Gは、筐体の高さ以上には広げられないなど、筐体のサイズに依存するため、対向間隔Gも、筐体のサイズに応じて適宜設定すれば良い。
 また、第1及び第2の実施形態においては、誘電体共振器の誘電率は、29.8としたが、これには限定されない。誘電体共振器の共振周波数は、形状だけでなく誘電率にも依存するため、誘電率は、所望の共振周波数等に応じて適宜設定すれば良い。
 また、第1及び第2の実施形態においては、2個の誘電体共振器を上下方向に対向配置したが、これには限定されず、水平方向等の別方向に対向配置する構成にも本発明は適用可能である。
 以下、本発明の概要を説明する。上述の通り、本発明の帯域通過フィルタは、第1及び第2の誘電体(例えば、上述した誘電体共振器10,20)を対向対置し、第1及び第2の誘電体の対向間隔を調整手段(例えば、上述した間隔調整機構)によって調整することにより、通過帯域の中心周波数を変更する。このように、第1及び第2の誘電体の対向間隔を変化させることで、第1及び第2の誘電体全体としての形状が変化し、その結果、共振周波数を大きく変化させることができるため、通過帯域の中心周波数を可変する用途に好適な帯域通過フィルタを実現することができる。
 また、上記実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
 前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を備え、
 前記第1及び第2の誘電体共振器の間の対向間隔が可変である、帯域通過フィルタ。
(付記2)
 前記第1及び第2の誘電体共振器の組を、前記第1及び第2の誘電体共振器が対向している第1の方向とは略直交する第2の方向に沿って複数組備え、
 前記複数組の前記第1及び第2の誘電体共振器の周囲は、前記筐体によって覆われる、付記1に記載の帯域通過フィルタ。
(付記3)
 各組の前記第1の誘電体共振器の前記第1の方向の位置を固定するための固定部材と、
 各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させるための移動機構と、をさらに備える、付記2に記載の帯域通過フィルタ。
(付記4)
 前記固定部材は、
 前記筐体の内面に設置されると共に、各組の前記第1の誘電体共振器が、対向面の反対面が接触した状態でそれぞれ固着される複数の台座を備え、
 前記移動機構は、
 前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第2の誘電体共振器が、対向面の反対面が接触した状態で固着される移動板と、
 前記移動板を前記第1の方向に進退移動させる駆動部と、を備える、付記3に記載の帯域通過フィルタ。
(付記5)
 各組の前記第1の誘電体共振器を、前記帯域通過フィルタの設計に用いる設計パラメータに従った物理寸法で配置された状態に調整する配置調整機構を備える、付記4に記載の帯域通過フィルタ。
(付記6)
 前記配置調整機構は、各組の前記第1の誘電体共振器の電磁界分布を調整する機構である、付記5に記載の帯域通過フィルタ。
(付記7)
 前記配置調整機構は、各組の前記第1の誘電体共振器の前記第1の方向の位置を調整する機構である、付記5に記載の帯域通過フィルタ。
(付記8)
 各組の前記第1の誘電体共振器をまとめて前記第1の方向に進退移動させるための第1の移動機構と、
 各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させるための第2の移動機構と、をさらに備える、付記2に記載の帯域通過フィルタ。
(付記9)
 前記第1の移動機構は、
 前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第1の誘電体共振器が、対向面の反対面が接触した状態で固着される第1の移動板と、
 前記第1の移動板を前記第1の方向に進退移動させる第1の駆動部と、を備え、
 前記第2の移動機構は、
 前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第2の誘電体共振器が、対向面の反対面が接触した状態で固着される第2の移動板と、
 前記第2の移動板を前記第1の方向に進退移動させる第2の駆動部と、を備える、付記8に記載の帯域通過フィルタ。
(付記10)
 前記第1及び第2の誘電体共振器は、柱体を底面に略平行な断面に沿って2分割してなる形状をそれぞれ具備し、その分割した面が対向面として対向配置される、付記1から9のいずれか1項に記載の帯域通過フィルタ。
(付記11)
 前記第1及び第2の誘電体共振器は、前記第1及び第2の誘電体共振器が対向している第1の方向における高さが略同一である、付記10に記載の帯域通過フィルタ。
(付記12)
 前記第1及び第2の誘電体共振器は、中空部を備える形状である、付記10又は11に記載の帯域通過フィルタ。
(付記13)
 帯域通過フィルタの制御方法であって、
 互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
 前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を設け、
 前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、帯域通過フィルタの制御方法。
(付記14)
 前記第1及び第2の誘電体共振器の組を、前記第1及び第2の誘電体共振器が対向している第1の方向とは略直交する第2の方向に沿って複数組備え、
 前記複数組の前記第1及び第2の誘電体共振器の周囲を、前記筐体によって覆い、
 前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、付記13に記載の帯域通過フィルタの制御方法。
(付記15)
 各組の前記第1の誘電体共振器の前記第1の方向の位置を固定し、
 各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、付記14に記載の帯域通過フィルタの制御方法。
(付記16)
 前記筐体の内面に設置した複数の台座に、各組の前記第1の誘電体共振器を、対向面の反対面が接触した状態でそれぞれ固着し、
 前記筐体の内部空間にて前記第2の方向に延在するように配置された移動板に、各組の前記第2の誘電体共振器を、対向面の反対面が接触した状態で固着し、
 前記移動板を、駆動部により前記第1の方向に進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、付記15に記載の帯域通過フィルタの制御方法。
(付記17)
 前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる前又は後に、各組の前記第1の誘電体共振器を、前記帯域通過フィルタの設計に用いる設計パラメータに従った物理寸法で配置された状態に調整する、付記16に記載の帯域通過フィルタの制御方法。
(付記18)
 各組の前記第1の誘電体共振器の電磁界分布を調整することで、各組の前記第1の誘電体共振器を、前記設計パラメータに従った物理寸法で配置された状態に調整する、付記17に記載の帯域通過フィルタの制御方法。
(付記19)
 各組の前記第1の誘電体共振器の前記第1の方向の位置を調整することで、各組の前記第1の誘電体共振器を、前記設計パラメータに従った物理寸法で配置された状態に調整する、付記17に記載の帯域通過フィルタの制御方法。
(付記20)
 各組の前記第1の誘電体共振器をまとめて前記第1の方向に進退移動させると共に、各組の前記第2の誘電体共振器をまとめて前記第1の方向にそれぞれ進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、付記14に記載の帯域通過フィルタの制御方法。
(付記21)
 前記筐体の内部空間にて前記第2の方向に延在するように配置された第1の移動板に、各組の前記第1の誘電体共振器を、対向面の反対面が接触した状態で固着し、
 前記筐体の内部空間にて前記第2の方向に延在するように配置された第2の移動板に、各組の前記第2の誘電体共振器を、対向面の反対面が接触した状態で固着し、
 前記第1及び第2の移動板を、駆動部により前記第1の方向に進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、付記20に記載の帯域通過フィルタの制御方法。
(付記22)
 前記第1及び第2の誘電体共振器は、柱体を底面に略平行な断面に沿って2分割してなる形状をそれぞれ具備し、その分割した面が対向面として対向配置される、付記13から21のいずれか1項に記載の帯域通過フィルタの制御方法。
(付記23)
 前記第1及び第2の誘電体共振器は、前記第1及び第2の誘電体共振器が対向している第1の方向における高さが略同一である、付記22に記載の帯域通過フィルタの制御方法。
(付記24)
 前記第1及び第2の誘電体共振器は、中空部を備える形状である、付記22又は23に記載の帯域通過フィルタの制御方法。
(付記25)
 第1及び第2の誘電体と、
 前記第1及び第2の誘電体の対向間隔を調整する調整手段と、
を備え、
 前記調整手段により通過帯域の中心周波数を変更する
帯域通過フィルタ。
 この出願は、2015年7月7日に出願された日本出願特願2015-135819を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10 誘電体共振器
 10a,10b,10c 誘電体共振器
 20 誘電体共振器
 20a,20b,20c 誘電体共振器
 30 筐体
 30a,30b,30c 筐体
 31a 調整ビス
 32a ナット
 33b,33c ザグリ
 40 入出力ポート
 50 入出力ポート
 60 結合窓
 70 結合窓
 80a,80b,80c 台座
 90 移動板
 100 支持棒
 110 支持棒

Claims (16)

  1.  互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
     前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を備え、
     前記第1及び第2の誘電体共振器の間の対向間隔が可変である、帯域通過フィルタ。
  2.  前記第1及び第2の誘電体共振器の組を、前記第1及び第2の誘電体共振器が対向している第1の方向とは略直交する第2の方向に沿って複数組備え、
     前記複数組の前記第1及び第2の誘電体共振器の周囲は、前記筐体によって覆われる、請求項1に記載の帯域通過フィルタ。
  3.  各組の前記第1の誘電体共振器の前記第1の方向の位置を固定するための固定部材と、
     各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させるための移動機構と、をさらに備える、請求項2に記載の帯域通過フィルタ。
  4.  前記固定部材は、
     前記筐体の内面に設置されると共に、各組の前記第1の誘電体共振器が、対向面の反対面が接触した状態でそれぞれ固着される複数の台座を備え、
     前記移動機構は、
     前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第2の誘電体共振器が、対向面の反対面が接触した状態で固着される移動板と、
     前記移動板を前記第1の方向に進退移動させる駆動部と、を備える、請求項3に記載の帯域通過フィルタ。
  5.  各組の前記第1の誘電体共振器を、設計パラメータに従った物理寸法で配置された状態に調整する配置調整機構を備える、請求項4に記載の帯域通過フィルタ。
  6.  各組の前記第1の誘電体共振器をまとめて前記第1の方向に進退移動させるための第1の移動機構と、
     各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させるための第2の移動機構と、をさらに備える、請求項2に記載の帯域通過フィルタ。
  7.  前記第1の移動機構は、
     前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第1の誘電体共振器が、対向面の反対面が接触した状態で固着される第1の移動板と、
     前記第1の移動板を前記第1の方向に進退移動させる第1の駆動部と、を備え、
     前記第2の移動機構は、
     前記筐体の内部空間にて前記第2の方向に延在するように配置され、各組の前記第2の誘電体共振器が、対向面の反対面が接触した状態で固着される第2の移動板と、
     前記第2の移動板を前記第1の方向に進退移動させる第2の駆動部と、を備える、請求項6に記載の帯域通過フィルタ。
  8.  前記第1及び第2の誘電体共振器は、柱体を底面に略平行な断面に沿って2分割してなる形状をそれぞれ具備し、その分割した面が対向面として対向配置される、請求項1から7のいずれか1項に記載の帯域通過フィルタ。
  9.  前記第1及び第2の誘電体共振器は、前記第1及び第2の誘電体共振器が対向している第1の方向における高さが略同一である、請求項8に記載の帯域通過フィルタ。
  10.  前記第1及び第2の誘電体共振器は、中空部を備える形状である、請求項8又は9に記載の帯域通過フィルタ。
  11.  帯域通過フィルタの制御方法であって、
     互いに対向配置されたTE01δモードの第1及び第2の誘電体共振器と、
     前記第1及び第2の誘電体共振器の周囲を覆う金属製の筐体と、を設け、
     前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、帯域通過フィルタの制御方法。
  12.  前記第1及び第2の誘電体共振器の組を、前記第1及び第2の誘電体共振器が対向している第1の方向とは略直交する第2の方向に沿って複数組備え、
     前記複数組の前記第1及び第2の誘電体共振器の周囲を、前記筐体によって覆い、
     前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、請求項11に記載の帯域通過フィルタの制御方法。
  13.  各組の前記第1の誘電体共振器の前記第1の方向の位置を固定し、
     各組の前記第2の誘電体共振器をまとめて前記第1の方向に進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、請求項12に記載の帯域通過フィルタの制御方法。
  14.  前記筐体の内面に設置した複数の台座に、各組の前記第1の誘電体共振器を、対向面の反対面が接触した状態でそれぞれ固着し、
     前記筐体の内部空間にて前記第2の方向に延在するように配置された移動板に、各組の前記第2の誘電体共振器を、対向面の反対面が接触した状態で固着し、
     前記移動板を、駆動部により前記第1の方向に進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、請求項13に記載の帯域通過フィルタの制御方法。
  15.  各組の前記第1の誘電体共振器をまとめて前記第1の方向に進退移動させると共に、各組の前記第2の誘電体共振器をまとめて前記第1の方向にそれぞれ進退移動させて、前記複数組の前記第1及び第2の誘電体共振器の間の対向間隔を変化させる、請求項12に記載の帯域通過フィルタの制御方法。
  16.  第1及び第2の誘電体と、
     前記第1及び第2の誘電体の対向間隔を調整する調整手段と、
    を備え、
     前記調整手段により通過帯域の中心周波数を変更する
    帯域通過フィルタ。
PCT/JP2016/002795 2015-07-07 2016-06-09 帯域通過フィルタ及びその制御方法 WO2017006516A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/742,187 US10559865B2 (en) 2015-07-07 2016-06-09 Band pass filter comprising sets of first and second dielectric resonators disposed within a housing, where the first and second dielectric resonators have an adjustable interval there between

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-135819 2015-07-07
JP2015135819 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006516A1 true WO2017006516A1 (ja) 2017-01-12

Family

ID=57684943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002795 WO2017006516A1 (ja) 2015-07-07 2016-06-09 帯域通過フィルタ及びその制御方法

Country Status (2)

Country Link
US (1) US10559865B2 (ja)
WO (1) WO2017006516A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693115A (en) * 1970-12-28 1972-09-19 American Electronic Lab Mechanical tunable bandpass filter
JPS5776901A (en) * 1980-08-29 1982-05-14 Thomson Csf Ultrahigh frequency wave filter with tunable dielectric resonator over wide band
JPH0955606A (ja) * 1995-08-11 1997-02-25 Fujitsu Ltd 無線装置用フィルタ装置並びに無線装置用フィルタ装置の誘電体配置用治具並びに治具を用いた無線装置用フィルタ装置の誘電体配置方法
US6147577A (en) * 1998-01-15 2000-11-14 K&L Microwave, Inc. Tunable ceramic filters
JP2001156546A (ja) * 1999-11-26 2001-06-08 Nec Corp 電圧制御発振器及びその発振周波数調整方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015824B2 (ja) 2000-05-23 2007-11-28 松下電器産業株式会社 誘電体共振器フィルタ
JP2004129146A (ja) 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd 誘電体共振器フィルタ
KR100611486B1 (ko) 2003-12-24 2006-08-09 가부시키가이샤 무라타 세이사쿠쇼 유전체 공진기 및 이것을 사용한 통신기 장치
US20050200437A1 (en) * 2004-03-12 2005-09-15 M/A-Com, Inc. Method and mechanism for tuning dielectric resonator circuits
US7583164B2 (en) * 2005-09-27 2009-09-01 Kristi Dhimiter Pance Dielectric resonators with axial gaps and circuits with such dielectric resonators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693115A (en) * 1970-12-28 1972-09-19 American Electronic Lab Mechanical tunable bandpass filter
JPS5776901A (en) * 1980-08-29 1982-05-14 Thomson Csf Ultrahigh frequency wave filter with tunable dielectric resonator over wide band
JPH0955606A (ja) * 1995-08-11 1997-02-25 Fujitsu Ltd 無線装置用フィルタ装置並びに無線装置用フィルタ装置の誘電体配置用治具並びに治具を用いた無線装置用フィルタ装置の誘電体配置方法
US6147577A (en) * 1998-01-15 2000-11-14 K&L Microwave, Inc. Tunable ceramic filters
JP2001156546A (ja) * 1999-11-26 2001-06-08 Nec Corp 電圧制御発振器及びその発振周波数調整方法

Also Published As

Publication number Publication date
US20180198182A1 (en) 2018-07-12
US10559865B2 (en) 2020-02-11

Similar Documents

Publication Publication Date Title
US8884722B2 (en) Inductive coupling in transverse electromagnetic mode
US9190705B2 (en) Dual mode dielectric resonator filter having plural holes formed therein for receiving tuning and coupling screws
JP4178264B2 (ja) チューナブルフィルタ
US7183881B2 (en) Cross-coupled dielectric resonator circuit
FI123439B (fi) Säädettävä resonaattorisuodin ja menetelmä resonaattorionteloiden välisen kytkennän säätämiseksi
FI125652B (fi) Säädettävä resonaattorisuodin
EP2741364B1 (en) Radio frequency filter employing notch structure
EP2913884B1 (en) Tunable band-pass filter
US10056664B2 (en) Three dimensional tunable filters with an absolute constant bandwidth and method
EP3208885B1 (en) Multi-mode resonator
EP3583656B1 (en) A microwave resonator, a microwave filter and a microwave multiplexer
KR101386941B1 (ko) 조립식 대역 저지 필터
KR20100105286A (ko) 대역 저지 필터
US7705694B2 (en) Rotatable elliptical dielectric resonators and circuits with such dielectric resonators
US6052041A (en) TM mode dielectric resonator and TM mode dielectric filter and duplexer using the resonator
KR20110097723A (ko) 입출력 포트를 이용하여 너치를 구현하는 rf캐비티 필터
US11152676B2 (en) Tunable band-pass filter and control method therefor
KR101115323B1 (ko) 대역 저지 필터 및 그에 의한 대역 저지 필터 회로
US20160049716A1 (en) Coupling arrangement between cavity filter resonators
US11139547B2 (en) Tunable bandpass filter and method of forming the same
WO2017006516A1 (ja) 帯域通過フィルタ及びその制御方法
US20080211603A1 (en) Filter Coupled by Conductive Plates Having Curved Surface
KR101274031B1 (ko) 통과 대역의 반사 손실을 제어하기 위한 대역 저지 필터
JP7207193B2 (ja) 導波管フィルタ
WO2014101320A1 (en) An adjustable coupling for use with an input resonator and/or an output resonator of a bandpass filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP