WO2017006510A1 - 樹脂フィルム - Google Patents

樹脂フィルム Download PDF

Info

Publication number
WO2017006510A1
WO2017006510A1 PCT/JP2016/002630 JP2016002630W WO2017006510A1 WO 2017006510 A1 WO2017006510 A1 WO 2017006510A1 JP 2016002630 W JP2016002630 W JP 2016002630W WO 2017006510 A1 WO2017006510 A1 WO 2017006510A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
holes
hole
density
diameter
Prior art date
Application number
PCT/JP2016/002630
Other languages
English (en)
French (fr)
Inventor
山本 元
司 宮崎
雄希 武田
了 古山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP16820990.6A priority Critical patent/EP3321075A4/en
Priority to US15/741,612 priority patent/US20180193804A1/en
Publication of WO2017006510A1 publication Critical patent/WO2017006510A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0034Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/08Removing material, e.g. by cutting, by hole drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0872Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate

Definitions

  • the present invention relates to a resin film in which a plurality of through holes penetrating in the thickness direction are formed.
  • Patent Document 1 describes forming a plurality of through holes in a resin film by ion beam irradiation and etching.
  • the resin film in which a plurality of through holes penetrating in the thickness direction is formed the characteristic variation due to the position in the in-plane direction (direction perpendicular to the thickness direction) of the resin film. Exists. It is desirable that the variation in characteristics is small.
  • the present invention provides A resin film in which a plurality of through holes penetrating in the thickness direction is formed,
  • the through hole has a columnar shape,
  • the average value of the density of the through holes is 1 ⁇ 10 6 to 1 ⁇ 10 12 holes / cm 2 ,
  • the average value of the diameters of the through holes is 1 to 310 nm,
  • a resin film in which a variation rate of the diameter of the through hole obtained by multiplying a value obtained by dividing the standard deviation of the diameter of the through hole by an average value of the diameters of the through holes is 100% or less.
  • the variation rate of the through-hole diameter is low. For this reason, this invention is advantageous to suppression of the variation in the characteristic by the position of a resin film.
  • the resin film 2 is formed with a plurality of through holes 21 penetrating in the thickness direction.
  • the resin film 2 has a solid portion 22 whose inside is filled with resin, and a plurality of through holes 21.
  • the resin film 2 is a resin film that does not have a path that allows ventilation in the thickness direction other than the through hole 21.
  • the resin film 2 is a non-porous resin film except for the through holes 21.
  • the through hole 21 is a straight hole having a columnar shape (a cylindrical shape in FIGS. 1 and 2).
  • the through hole 21 has openings on both main surfaces of the resin film 2.
  • Resin film 2 contains at least one resin selected from, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), and polyvinylidene fluoride (PVdF).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PC polycarbonate
  • PVdF polyvinylidene fluoride
  • the direction in which the through hole 21 extends is a direction perpendicular to the main surface of the resin film 2.
  • the direction in which the through hole 21 extends may be inclined from a direction perpendicular to the main surface of the resin film 2.
  • the average diameter of the through holes 21 is 1 to 310 nm.
  • the average diameter of the through holes 21 may be 1 to 100 nm, 1 to 45 nm, 1 to 30 nm, or 1 to 10 nm.
  • the variation rate of the diameter of the through hole 21 obtained by multiplying the value obtained by dividing the standard deviation of the diameter of the through hole 21 by the average value of the diameters of the through holes 21 is 30% or less.
  • the variation rate of the diameter of the through hole 21 is an index of the variation in diameter.
  • the variation rate of the diameter of the through hole 21 may be 25% or less, 17% or less, or 10% or less.
  • the standard deviation of the diameter of the through hole 21 is an index of the variation in diameter.
  • the standard deviation of the diameter of the through hole 21 is 20 nm or less.
  • the standard deviation of the diameter of the through hole 21 may be 16 nm or less, 6 nm or less, or 2 nm or less.
  • the average value, standard deviation, and variation rate of the diameter of the through-hole 21 in this specification are specified as follows.
  • the predetermined size is, for example, a size of 1 cm ⁇ 1 cm when observed along the film thickness direction, but is not limited thereto.
  • the number of small pieces is, for example, ten, but is not limited thereto.
  • the plurality of small pieces constitute one grouped area of the resin film 2.
  • a plurality of cut pieces are stacked to obtain a stacked body.
  • the same operation is repeated to obtain a plurality of laminated bodies.
  • the number of laminated bodies is 30, for example, it is not limited to this.
  • Each laminate is subjected to transmission measurement based on the X-ray small angle scattering method to obtain a plurality of measurement values related to the diameter of the through hole 21.
  • the average value of the plurality of measured values is set as the average value of the diameters of the through holes 21.
  • the standard deviation of the plurality of measured values is taken as the standard deviation of the diameter of the through hole 21.
  • the variation rate of the diameter of the through hole 21 is obtained by multiplying the value obtained by dividing the standard deviation of the diameter of the through hole 21 thus determined by the average value of the diameters of the through holes 21 by 100.
  • the average value of the density (number of holes) of the through holes 21 is 1 ⁇ 10 6 to 1 ⁇ 10 12 holes / cm 2 .
  • the average density of the through holes 21 may be 1 ⁇ 10 6 to 1 ⁇ 10 10 pieces / cm 2 , or may be 1 ⁇ 10 7 to 1 ⁇ 10 12 pieces / cm 2 .
  • the standard deviation of the density of the through holes 21 is 1 ⁇ 10 11 pieces / cm 2 or less.
  • the standard deviation may be 1 ⁇ 10 9 pieces / cm 2 or less, 1 ⁇ 10 8 pieces / cm 2 or less, or 7.0 ⁇ 10 7 pieces / cm 2 or less. Good.
  • the variation rate of the density of the through hole 21 obtained by multiplying the value obtained by dividing the standard deviation of the density of the through hole 21 by the average value of the density of the through hole 21 by 100 is 40% or less.
  • the variation rate may be 30% or less, or 20% or less.
  • the average value, standard deviation, and variation rate of the density of the through holes 21 in this specification are specified as follows. First, each of a plurality of regions adjacent to each other is observed with a scanning electron microscope (SEM). Each size of the plurality of regions is, for example, a size of 800 nm ⁇ 800 nm when observed along the film thickness direction, but is not limited thereto. The number of the plurality of regions is, for example, 30, but is not limited thereto. Next, the number of through holes in each acquired SEM image is visually counted. Next, the number is converted into the density (unit: piece / cm 2 ) of the through-hole 21 to obtain a measured value of the density.
  • SEM scanning electron microscope
  • the average value of the obtained several measured value be an average value of the density of the through-hole 21.
  • FIG. The standard deviation of the plurality of measured values obtained is taken as the standard deviation of the density of the through holes 21. Further, by multiplying the value obtained by dividing the standard deviation of the density of the through holes 21 thus determined by the average value of the density of the through holes 21 by 100, the variation rate of the density of the through holes 21 is obtained.
  • the thickness of the resin film 2 is 3 to 50 ⁇ m.
  • the thickness of the resin film 2 may be 4 to 30 ⁇ m or 5 to 20 ⁇ m.
  • Resin film 2 may be colored. Coloring can be performed by, for example, dyeing the resin film 2 or adding a colorant to the resin film 2. The coloring may be performed, for example, so that light included in a wavelength range of 380 nm to 500 nm is absorbed. That is, the resin film 2 may be colored so as to absorb light included in a wavelength range of 380 nm to 500 nm. For that purpose, for example, the resin film 2 includes a colorant having the ability to absorb light included in the wavelength range of 380 nm to 500 nm, or the resin film 2 is included in the wavelength range of 380 nm to 500 nm. Or may be dyed with a dye having the ability to absorb light.
  • the resin film 2 can be colored blue, gray, brown, pink, green, yellow or the like.
  • the resin film 2 may be colored black, gray, brown or pink.
  • the color of the resin film 2 which is not colored is transparent or white, for example.
  • the through-hole 21 can be formed by, for example, ion beam irradiation and etching on a resin film (typically a non-porous film) that is an original film.
  • a resin film typically a non-porous film
  • a large number of through holes 21 having the same opening diameter and axial direction (direction in which the through holes extend) can be formed in the resin film 2.
  • the irradiation density at the time of irradiating the original film with the ion beam is adjusted according to the density of the through holes 21 that the resin film 2 should have.
  • the irradiation density is, for example, 1 ⁇ 10 6 to 1 ⁇ 10 12 pieces / cm 2 .
  • the irradiation density may be 1 ⁇ 10 6 to 1 ⁇ 10 10 pieces / cm 2 or 1 ⁇ 10 7 to 1 ⁇ 10 12 pieces / cm 2 .
  • the ion species of the ion beam include at least one selected from the group consisting of xenon (Xe), argon (Ar), and krypton (Kr).
  • the acceleration energy is 100 to 1000 MeV.
  • the acceleration energy may be 200 to 500 MeV.
  • the original film contains, for example, at least one resin selected from polyethylene terephthalate, polyethylene naphthalate, polyimide, polycarbonate, and polyvinylidene fluoride. These resins can be hydrolyzed by an etching solution containing an alkaline solution.
  • the alkaline solution is, for example, a solution containing potassium hydroxide and / or sodium hydroxide, and may further contain a solvent (for example, an inorganic solvent such as water, an organic solvent such as ethanol), an oxidizing agent, or the like.
  • etching for forming the through hole 21 proceeds slowly.
  • concentration of the alkali component in the etching solution When a mixed solvent composed of ethanol and water having a weight ratio of ethanol and water of about 21:79 is used as a solvent for the etching treatment liquid and sodium hydroxide is used as an alkali component in the etching treatment liquid, The concentration may be about 1 to 5% by weight.
  • the preferable temperature of the etching treatment solution is 70 to 90 ° C., and the preferable etching time is 15 to 120 minutes.
  • etching using an etching treatment liquid having a higher concentration of alkali component has been sometimes performed.
  • etching using an etching treatment solution having a high concentration of alkali component it is not possible to obtain a resin film having through-holes having a small diameter and small variations in diameter to the above extent.
  • Resin film 2 is expected to be used in various technical fields.
  • the resin film 2 can be used for filtration.
  • the resin film 2 can function well as a semipermeable membrane. Further, the small variation in the diameter of the through hole 21 is advantageous for ensuring uniform filtration performance over the entire film surface of the resin film 2.
  • the filtrate moves linearly in the through hole 21. This can contribute to a reduction in energy (electric power) required for driving the supply pump and a reduction in pressure loss in the filtration system.
  • the resin film 2 can be generally applied to filtration membranes including nanofiltration membranes, ultrafiltration membranes, microfiltration membranes and the like. For the filtration membrane in the filtration application, see Patent Document 2 and the like.
  • a low refractive index layer is provided on the electroluminescence layer.
  • the resin film 2 can also be used as such a low refractive index layer.
  • the through-hole 21 has a high density and a small diameter as described above, it can bring the resin film 2 with a refractive index for suitably functioning as a low refractive index layer.
  • the small diameter of the through hole 21 is advantageous from the viewpoint of ensuring transparency. Further, the small variation in the diameter of the through hole 21 as described above is advantageous in ensuring a uniform refractive index over the entire film surface of the resin film 2.
  • Patent Document 3 For the technology relating to the low refractive index layer for increasing the light extraction rate, refer to Patent Document 3 and the like.
  • the resin film 2 can be used as a scaffold for cell culture.
  • the through-hole 21 of the resin film 2 has a high density, a small diameter, and a small variation in diameter as described above, and therefore can suitably function as a scaffold for cell culture.
  • the selective permeability of cells can be suitably exhibited.
  • Patent Document 4 For the technology relating to the scaffold for cell culture, refer to Patent Document 4 and the like.
  • the resin film 2 can also function as a waterproof gas-permeable membrane that allows gas to pass while preventing water from passing.
  • ⁇ Average value of pore diameter, standard deviation ⁇ 1 and fluctuation rate> The sample was cut to obtain 30 sets of 10 pieces. The size of each piece is 1 cm ⁇ 1 cm. The ten small pieces included in each set constitute one grouped area in the sample. Further, the set of 30 sets constitutes one grouped area in the sample. By laminating 10 pieces for each set, 30 laminates composed of 10 pieces were produced. Transmission measurement (X-ray small angle scattering method) was performed on each of the 30 laminates.
  • the diameter of the through hole (hole diameter) from the diffraction pattern when irradiated with X-rays (small angle X-rays) using a nanoscale X-ray structure evaluation apparatus (small angle scattering measurement apparatus) NANO-Viewer manufactured by Rigaku Corporation. ) was obtained. From the 30 measured values, the average value of the pore diameter and the standard deviation ⁇ 1 of the pore diameter were calculated. Also, the variation rate of the pore diameter was calculated by multiplying the value obtained by dividing the standard deviation ⁇ 1 of the pore diameter by the average value of the pore diameters by 100. In the transmission measurement using the above apparatus, the following measurement conditions were used.
  • the pore density was specified as follows for 30 regions adjacent to each other on the main surface of each sample, each of which was a region of 800 nm ⁇ 800 nm. That is, each of the 30 regions was observed with a scanning electron microscope (SEM: manufactured by JEOL (JEOL Ltd., JSM-6510LV)) to obtain an SEM image. The number of through holes in the SEM image was visually counted and converted to the density of the through holes (hole density, unit: pieces / cm 2 ). Thus, the pore density of each of the 30 regions was identified. The average value of the pore density and the standard deviation ⁇ 2 of the pore density were calculated from the identified 30 pore densities. Also, the variation rate of the pore density was calculated by multiplying the value obtained by dividing the standard deviation ⁇ 2 of the pore density by the average value of the pore density by 100.
  • Examples 1 to 6 A non-porous PET film (made by it4ip) irradiated with an ion beam was prepared. The thickness of this PET film was 12 ⁇ m. This PET film has been subjected to ion beam irradiation with an irradiation density of 3.0 ⁇ 10 8 pieces / cm 2 . By etching, a plurality of through holes were formed in this PET film. Table 1 shows the etching conditions. As shown in Table 1, in the etching treatment solutions used in Examples 1 to 6, the concentration of sodium hydroxide was 3% by weight, the concentration of ethanol was 20% by weight, and the temperature was maintained at 80 ° C.
  • Table 2 shows the film thickness, the average value of the pore diameter, the standard deviation of the pore diameter, the fluctuation rate of the pore diameter, the average value of the pore density, the standard deviation of the pore density, and the fluctuation rate of the pore density of the samples of Examples 1 to 6.
  • ⁇ Comparative Example 1> The same non-porous PET film as the non-porous PET film prepared in Examples 1 to 6 was prepared. By etching, a plurality of through holes were formed in this PET film. Table 1 shows the etching conditions. As shown in Table 1, the etching treatment liquid used in Comparative Example 1 is an aqueous solution having a sodium hydroxide concentration of 11% by weight, an ethanol concentration of 10% by weight, and a temperature maintained at 80 ° C. Yes (when the total of water, ethanol and sodium hydroxide is 100 parts by weight, ethanol is 10 parts by weight, water is 79 parts by weight, and sodium hydroxide is 11 parts by weight). In Comparative Example 1, the etching time was 15 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

樹脂フィルム(2)には、厚さ方向に貫通する複数の貫通孔(21)が形成されている。貫通孔(21)は柱状形状を有する。貫通孔(21)の密度の平均値は、1×106~1×1012個/cm2である。貫通孔(21)の径の平均値は、1~310nmである。貫通孔(21)の径の標準偏差を貫通孔(21)の径の平均値で割った値に100を掛けて得た貫通孔(21)の径の変動率は、30%以下である。

Description

樹脂フィルム
 本発明は、厚さ方向に貫通する複数の貫通孔が形成された樹脂フィルムに関する。
 フィルムおよび/または孔に関する種々の検討がなされている(例えば、特許文献1~4参照)。例えば、特許文献1には、イオンビーム照射およびエッチングによって、樹脂フィルムに複数の貫通孔を形成することが記載されている。
特開2015-65639号公報 特開2009-28714号公報 特開2005-183048号公報 特表2009-519042号公報
 本発明者らの検討によれば、厚さ方向に貫通する複数の貫通孔が形成された樹脂フィルムには、樹脂フィルムの面内方向(厚さ方向に垂直な方向)の位置による特性のバラツキが存在する。特性のバラツキは、小さいことが望ましい。
 そこで、本発明は、
 厚さ方向に貫通する複数の貫通孔が形成された樹脂フィルムであって、
 前記貫通孔は柱状形状を有し、
 前記貫通孔の密度の平均値は、1×106~1×1012個/cm2であり、
 前記貫通孔の径の平均値は、1~310nmであり、
 前記貫通孔の径の標準偏差を前記貫通孔の径の平均値で割った値に100を掛けて得た前記貫通孔の径の変動率は、30%以下である、樹脂フィルムを提供する。
 本発明の樹脂フィルムでは、貫通孔の径の変動率が低い。このため、本発明は、樹脂フィルムの位置による特性のバラツキの抑制に有利である。
樹脂フィルムの一例を模式的に示す断面図である。 樹脂フィルムの一例を模式的に示す上面図である。
 以下、添付の図面を参照しつつ本発明の実施形態について説明するが、以下は本発明の実施形態の例示に過ぎず、本発明を制限する趣旨ではない。
 図1および図2を用いて、本実施形態に係る樹脂フィルムを説明する。樹脂フィルム2には、厚さ方向に貫通する複数の貫通孔21が形成されている。具体的に、樹脂フィルム2は、内部が樹脂で詰まった中実の部分22と、複数の貫通孔21とを有している。樹脂フィルム2は、貫通孔21以外に、その厚さ方向に通気可能となる経路を有さない樹脂フィルムである。典型的には、樹脂フィルム2は、貫通孔21を除いて無孔の樹脂フィルムである。貫通孔21は、柱状形状(図1および2では円柱形状)を有するストレート孔である。貫通孔21は、樹脂フィルム2の双方の主面に開口を有する。
 樹脂フィルム2は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリカーボネート(PC)およびポリフッ化ビニリデン(PVdF)から選ばれる少なくとも1種の樹脂を含む。
 本実施形態では、貫通孔21が延びる方向は、樹脂フィルム2の主面に垂直な方向である。ただし、樹脂フィルム2の厚さ方向に貫通している限り、貫通孔21が延びる方向は、樹脂フィルム2の主面に垂直な方向から傾いていてもよい。
 貫通孔21の径の平均値は、1~310nmである。貫通孔21の径の平均値は、1~100nmであってもよく、1~45nmであってもよく、1~30nmであってもよく、1~10nmであってもよい。
 貫通孔21の径の標準偏差を貫通孔21の径の平均値で割った値に100を掛けて得た貫通孔21の径の変動率は、30%以下である。貫通孔21の径の変動率は、径のバラツキの指標となる。貫通孔21の径の変動率は、25%以下であってもよく、17%以下であってもよく、10%以下であってもよい。
 貫通孔21の径の変動率と同様に、貫通孔21の径の標準偏差も径のバラツキの指標となる。本実施形態では、貫通孔21の径の標準偏差は、20nm以下である。貫通孔21の径の標準偏差は、16nm以下であってもよく、6nm以下であってもよく、2nm以下であってもよい。
 本明細書の貫通孔21の径の平均値、標準偏差および変動率は、以下のように特定したものである。まず、樹脂フィルム2をカットして所定サイズの小片を複数枚得る。所定サイズは、膜厚方向に沿って観察したときに例えば1cm×1cmのサイズであるが、これに限定されない。小片の枚数は、例えば10枚であるが、これに限定されない。複数枚の小片は、樹脂フィルム2の1つのまとまった領域を構成していたものである。次に、カットした複数枚の小片を積層して積層体を得る。同様の作業を繰り返し、複数個の積層体を得る。積層体の数は、例えば30個であるが、これに限定されない。複数個の積層体を構成する小片(例えば10×30=300枚の小片)は、膜厚方向に沿って観察したときに樹脂フィルム2の300cm2以下の1つの領域に含まれていたものである。各積層体についてX線小角散乱法に基づいて透過測定を実施して、貫通孔21の径に関する複数の測定値を得る。複数の測定値の平均値を、貫通孔21の径の平均値とする。複数の測定値の標準偏差を、貫通孔21の径の標準偏差とする。また、このようにして特定した貫通孔21の径の標準偏差を貫通孔21の径の平均値で割って得た値に100を掛けることによって、貫通孔21の径の変動率を得る。
 貫通孔21の密度(孔数)の平均値は、1×106~1×1012個/cm2である。貫通孔21の密度の平均値は、1×106~1×1010個/cm2であってもよく、1×107~1×1012個/cm2であってもよい。
 本実施形態では、貫通孔21の密度の標準偏差は、1×1011個/cm2以下である。同標準偏差は、1×109個/cm2以下であってもよく、1×108個/cm2以下であってもよく、7.0×107個/cm2以下であってもよい。
 本実施形態では、貫通孔21の密度の標準偏差を貫通孔21の密度の平均値で割った値に100を掛けて得た貫通孔21の密度の変動率は、40%以下である。同変動率は、30%以下であってもよく、20%以下であってもよい。
 本明細書の貫通孔21の密度の平均値、標準偏差および変動率は、以下のように特定したものである。まず、互いに隣接する複数の領域のそれぞれを走査型電子顕微鏡(SEM)により観察する。複数の領域のそれぞれのサイズは、膜厚方向に沿って観察したときに例えば800nm×800nmのサイズであるが、これに限定されない。複数の領域の数は、例えば30であるが、これに限定されない。次に、取得した各SEM像における貫通孔の数を目視で数える。次に、その数を貫通孔21の密度(単位:個/cm2)に換算し、密度の測定値を得る。得られた複数の測定値の平均値を貫通孔21の密度の平均値とする。得られた複数の測定値の標準偏差を貫通孔21の密度の標準偏差とする。また、このようにして特定した貫通孔21の密度の標準偏差を貫通孔21の密度の平均値で割って得た値に100を掛けることによって、貫通孔21の密度の変動率を得る。
 本実施形態では、樹脂フィルム2の厚さは、3~50μmである。樹脂フィルム2の厚さは、4~30μmであってもよく、5~20μmであってもよい。
 樹脂フィルム2は、着色されていてもよい。着色は、例えば、樹脂フィルム2を染色したり、樹脂フィルム2に着色剤を含ませたりすることで実施できる。着色は、例えば、波長380nm以上500nm以下の波長域に含まれる光が吸収されるように実施してもよい。すなわち、樹脂フィルム2は、波長380nm以上500nm以下の波長域に含まれる光を吸収する着色が施されていてもよい。そのためには、例えば、樹脂フィルム2に、波長380nm以上500nm以下の波長域に含まれる光を吸収する能力を有する着色剤を含ませたり、樹脂フィルム2を波長380nm以上500nm以下の波長域に含まれる光を吸収する能力を有する染料によって染色したりすればよい。この場合、樹脂フィルム2を、青色、灰色、茶色、桃色、緑色、黄色などに着色できる。樹脂フィルム2は、黒色、灰色、茶色または桃色に着色されていてもよい。なお、樹脂フィルム2を構成する材料の種類によるが、着色されていない樹脂フィルム2の色は、例えば、透明または白色である。
 貫通孔21は、例えば、原フィルムである樹脂フィルム(典型的には無孔のフィルム)へのイオンビーム照射およびエッチングにより形成できる。イオンビーム照射およびエッチングでは、開口径および軸線の方向(貫通孔が延びる方向)が揃った多数の貫通孔21を樹脂フィルム2に形成できる。
 原フィルムにイオンビームを照射する際の照射密度は、樹脂フィルム2が有するべき貫通孔21の密度に応じて調整される。照射密度は、例えば1×106~1×1012個/cm2である。照射密度は、1×106~1×1010個/cm2であってもよく、1×107~1×1012個/cm2であってもよい。
 一例では、イオンビームのイオン種は、キセノン(Xe)、アルゴン(Ar)およびクリプトン(Kr)からなる群より選ばれる少なくとも一種を含む。また、一例では、加速エネルギーは、100~1000MeVである。加速エネルギーは、200~500MeVであってもよい。
 原フィルムは、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリカーボネートおよびポリフッ化ビニリデンから選ばれる少なくとも1種の樹脂を含む。これらの樹脂は、アルカリ溶液を含むエッチング処理液によって加水分解されうる。アルカリ溶液は、例えば、水酸化カリウムおよび/または水酸化ナトリウムを含む溶液であり、溶媒(例えば、水等の無機溶媒、エタノールなどの有機溶媒)、酸化剤等をさらに含んでいてもよい。
 上記の程度にまで径(平均値)が小さくかつ径のバラツキが小さい貫通孔21を有する樹脂フィルム2を得るには、貫通孔21を形成するためのエッチングをゆっくりと進行させることが好ましい。エッチングをゆっくり進行させるためには、エッチング処理液におけるアルカリ成分の濃度を十分に低くすることが好ましい。エッチング処理液の溶媒としてエタノールと水との重量比が21:79程度であるエタノールと水とからなる混合溶媒を用い、エッチング処理液におけるアルカリ成分として水酸化ナトリウムを採用する場合、水酸化ナトリウムの濃度は1~5重量%程度にすればよい。また、エッチング処理液の好ましい温度は70~90℃であり、エッチングの好ましい時間は15~120分である。なお、従来からより高濃度のアルカリ成分を有するエッチング処理液を用いたエッチングがなされることがあった。しかし、高濃度のアルカリ成分を有するエッチング処理液を用いたエッチングでは、上記の程度にまで径が小さくかつ径のバラツキが小さい貫通孔を有する樹脂フィルムを得ることはできない。
 樹脂フィルム2は、種々の技術分野での利用が期待される。
 例えば、濾過用途にて樹脂フィルム2は利用されうる。具体的に、貫通孔21の径が先に説明した程度に小さいため、樹脂フィルム2は、半透膜として良好に機能しうる。また、貫通孔21の径のバラツキが小さいことは、樹脂フィルム2の膜面全体にわたる均一な濾過性能の確保に有利である。本実施形態では、貫通孔21は直線状に延びているので、濾液が貫通孔21内を直線的に移動する。このことは、供給ポンプの駆動に必要なエネルギー(電力)の低減や、濾過システムにおける圧力損失の低減に寄与しうる。樹脂フィルム2は、ナノ濾過膜、限外濾過膜、精密濾過膜等を含む濾過膜一般に適用されうる。濾過用途における濾過膜については、特許文献2等を参照されたい。
 また、従来から、エレクトロルミネッセンス層から取り出される光の取り出し率を高めるために、エレクトロルミネッセンス層上に低屈折率層を設けることが行われている。そのような低屈折率層としても、樹脂フィルム2は利用されうる。具体的に、貫通孔21は、先に説明した程度に密度が高くかつ径が小さいため、低屈折率層として好適に機能するための屈折率を樹脂フィルム2にもたらしうる。貫通孔21の径が小さいことは、透明性確保の観点からも有利である。また、先に説明した程度に貫通孔21の径のバラツキが小さいことは、樹脂フィルム2の膜面全体にわたる均一な屈折率の確保に有利である。光の取り出し率を高めるための低屈折率層に関する技術については、特許文献3等を参照されたい。
 また例えば、細胞培養のための足場材として、樹脂フィルム2は利用されうる。樹脂フィルム2の貫通孔21は、先に説明した程度に密度が高く、径が小さく、径のバラツキが小さいため、細胞培養のための足場材として好適に機能しうる。具体的には、細胞の選択的な透過性が好適に発揮されうる。細胞培養のための足場材に関する技術については、特許文献4等を参照されたい。
 樹脂フィルム2は、水の通過を防止しつつ気体の通過を許容する防水通気膜としても機能しうる。
 実施例により、本発明を詳細に説明する。ただし、以下の実施例は、本発明の一例を示すものであり、本発明は以下の実施例に限定されない。まず、実施例および比較例に係るサンプルの評価方法を説明する。
<膜厚>
 ダイヤルゲージ(株式会社ミツトヨ製)を用いて各サンプルの膜厚を任意に選択した5点について測定し、その平均値を膜厚とした。
<孔径の平均値、標準偏差σ1および変動率>
 サンプルをカットして10枚の小片のセットを30組得た。各小片のサイズは1cm×1cmである。各セットに含まれる10枚の小片は、サンプルにおける1つのまとまった領域を構成していたものである。また、30組のセットは、サンプルにおける1つのまとまった領域を構成していたものである。各セットについて10枚の小片を積層することによって、10枚の小片からなる積層体を30個作製した。30個の積層体の各々に対して透過測定(X線小角散乱法)を実施した。具体的には、株式会社リガク製のナノスケールX線構造評価装置(小角散乱測定装置)NANO-Viewerを用いてX線(小角X線)を照射した際の回折パターンから貫通孔の径(孔径)の測定値を得た。特定した30の測定値から、孔径の平均値と、孔径の標準偏差σ1とを計算した。また、孔径の標準偏差σ1を孔径の平均値で割って得た値に100を掛けることによって孔径の変動率を計算した。なお、上記装置を用いた透過測定では以下の測定条件を用いた。
[測定条件]
 X線:CuKα線
 波長:0.15418nm
 出力:40kV-30mA
 第1スリット:φ0.2mm
 第2スリット:φ0.1mm
 第3スリット:φ0.25mm
 検出器:PILATUS300K
 ピクセルサイズ:127μm×127μm
 カメラ長:1221mm
 X線露光時間:30分
 環境温度:25℃
<孔密度の平均値、標準偏差σ2および変動率>
 各サンプルの主面における互いに隣接する30の領域であって各々が800nm×800nmの領域である30の領域について、それぞれ以下のように孔密度を特定した。すなわち、30の領域の各々を走査型電子顕微鏡(SEM:JEOL社(日本電子株式会社)製、JSM-6510LV)により観察し、SEM像を取得した。SEM像における貫通孔の数を目視にて数え、貫通孔の密度(孔密度、単位:個/cm2)に換算した。こうして、30の領域の各々の孔密度を特定した。特定した30個の孔密度から、孔密度の平均値と孔密度の標準偏差σ2を計算した。また、孔密度の標準偏差σ2を孔密度の平均値で割った値に100を掛けることによって孔密度の変動率を計算した。
<実施例1~6>
 イオンビームの照射がなされた無孔のPETフィルム(it4ip製)を準備した。このPETフィルムの厚さは12μmであった。このPETフィルムは、照射密度3.0×108個/cm2のイオンビーム照射がなされたものである。エッチングによって、このPETフィルムに複数の貫通孔を形成した。エッチングの条件を表1に示す。表1に示すように、実施例1~6で用いたエッチング処理液は、水酸化ナトリウムの濃度が3重量%であり、エタノールの濃度が20重量%であり、温度が80℃に保持された水溶液である(水、エタノールおよび水酸化ナトリウムの合計を100重量部としたとき、エタノールは20重量部であり、水は77重量部であり、水酸化ナトリウムは3重量部である)。実施例1,2,3,4,5および6では、エッチング時間をそれぞれ15分、21分、30分、35分、60分および120分とした。エッチングの前後を通じてPETフィルムの厚さには変化はなかった。エッチングの後に、PETフィルムをエッチング処理液から取り出して水洗いし、乾燥させた。これにより、実施例1~6のサンプルを得た。実施例1~6のサンプルの膜厚、孔径の平均値、孔径の標準偏差、孔径の変動率、孔密度の平均値、孔密度の標準偏差および孔密度の変動率を表2に示す。
<比較例1>
 実施例1~6で準備した無孔のPETフィルムと同じ無孔のPETフィルムを準備した。エッチングによって、このPETフィルムに複数の貫通孔を形成した。エッチングの条件を表1に示す。表1に示すように、比較例1で用いたエッチング処理液は、水酸化ナトリウムの濃度が11重量%であり、エタノールの濃度が10重量%であり、温度が80℃に保持された水溶液である(水、エタノールおよび水酸化ナトリウムの合計を100重量部としたとき、エタノールは10重量部であり、水は79重量部であり、水酸化ナトリウムは11重量部である)。比較例1では、エッチング時間を15分とした。エッチングの前後を通じてPETフィルムの厚さには変化はなかった。エッチングの後に、PETフィルムをエッチング処理液から取り出して水洗いし、乾燥させた。これにより、比較例1のサンプルを得た。比較例1のサンプルの膜厚、孔径の平均値、孔径の標準偏差、孔径の変動率、孔密度の平均値、孔密度の標準偏差および孔密度の変動率を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  厚さ方向に貫通する複数の貫通孔が形成された樹脂フィルムであって、
     前記貫通孔は柱状形状を有し、
     前記貫通孔の密度の平均値は、1×106~1×1012個/cm2であり、
     前記貫通孔の径の平均値は、1~310nmであり、
     前記貫通孔の径の標準偏差を前記貫通孔の径の平均値で割った値に100を掛けて得た前記貫通孔の径の変動率は、30%以下である、樹脂フィルム。
  2.  前記貫通孔の径の標準偏差は、20nm以下である、請求項1に記載の樹脂フィルム。
  3.  前記貫通孔の径の平均値は、1~100nmである、請求項1に記載の樹脂フィルム。
  4.  前記貫通孔の密度の標準偏差は、7.0×107個/cm2以下である、請求項1に記載の樹脂フィルム。
  5.  前記貫通孔の密度の標準偏差を前記貫通孔の密度の平均値で割った値に100を掛けて得た前記貫通孔の密度の変動率は、40%以下である、請求項1に記載の樹脂フィルム。
  6.  前記樹脂フィルムの材料は、ポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリイミドからなる群より選ばれる少なくとも一種を含む、請求項1に記載の樹脂フィルム。
  7.  前記樹脂フィルムは着色されている、請求項1に記載の樹脂フィルム。
     
PCT/JP2016/002630 2015-07-09 2016-06-01 樹脂フィルム WO2017006510A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16820990.6A EP3321075A4 (en) 2015-07-09 2016-06-01 Resin Sheet
US15/741,612 US20180193804A1 (en) 2015-07-09 2016-06-01 Resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138172A JP6736269B2 (ja) 2015-07-09 2015-07-09 樹脂フィルム
JP2015-138172 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006510A1 true WO2017006510A1 (ja) 2017-01-12

Family

ID=57685283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002630 WO2017006510A1 (ja) 2015-07-09 2016-06-01 樹脂フィルム

Country Status (5)

Country Link
US (1) US20180193804A1 (ja)
EP (1) EP3321075A4 (ja)
JP (1) JP6736269B2 (ja)
TW (1) TW201706344A (ja)
WO (1) WO2017006510A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020001774A1 (en) * 2018-06-28 2020-01-02 Applied Materials, Inc. A surface treatment method for a polymer film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195928A (ja) * 2011-03-03 2012-10-11 Nitto Denko Corp 防水通音膜および電気製品
WO2013035747A1 (ja) * 2011-09-09 2013-03-14 旭化成せんい株式会社 ポリケトン多孔膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623100B1 (fr) * 1987-11-13 1991-04-05 Commissariat Energie Atomique Membrane microporeuse obtenue par irradiation de deux faces et procede d'obtention correspondant
RU2077938C1 (ru) * 1994-12-02 1997-04-27 Объединенный Институт Ядерных Исследований Способ изготовления трековых мембран
US9005334B2 (en) * 2010-06-16 2015-04-14 Nitto Denko Corporation Water-proof air-permeable filter and use of the same
US20150065597A1 (en) * 2012-03-30 2015-03-05 Nitto Denko Corporation Method for producing porous polymer film and porous polymer film
WO2014084684A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 전기화학소자용 분리막 및 그의 제조방법
JP6396736B2 (ja) * 2014-09-24 2018-09-26 日東電工株式会社 防水通気膜と、それを備える防水通気部材および防水通気構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195928A (ja) * 2011-03-03 2012-10-11 Nitto Denko Corp 防水通音膜および電気製品
WO2013035747A1 (ja) * 2011-09-09 2013-03-14 旭化成せんい株式会社 ポリケトン多孔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321075A4 *

Also Published As

Publication number Publication date
JP6736269B2 (ja) 2020-08-05
EP3321075A1 (en) 2018-05-16
US20180193804A1 (en) 2018-07-12
EP3321075A4 (en) 2019-03-20
JP2017018881A (ja) 2017-01-26
TW201706344A (zh) 2017-02-16

Similar Documents

Publication Publication Date Title
DE2539408C3 (de) Membrane, Verfahren zu ihrer Herstellung und ihre Verwendung zur umgekehrten Osmose und Ultrafiltration
DE69432966T2 (de) Verfahren und vorrichtung zur modifizierung fester oberflächen
DE69408870T2 (de) Verfahren zum herstellen von verstärkten ionenaustauschmembranen
KR20130024950A (ko) 방수 통기 필터 및 그의 용도
US20140272286A1 (en) Nanoporous membranes and methods for making the same
WO2011067064A1 (de) Perforierte folie
DE3032380A1 (de) Verfahren zur herstellung hydrophiler mikroporoeser folien
WO2017006510A1 (ja) 樹脂フィルム
US4855049A (en) Microporous membrane obtained by the irradiation of two faces and process for obtaining the same
DE112006000450B4 (de) Funktionelle Membran, z.B. Elektrolytmembran zur Verwendung in einer Brennstoffzelle, und Herstellungsverfahren für dieselben
RU2440840C2 (ru) Пористая мембрана и способ ее получения
DE60019335T2 (de) Verfahren zur herstellung von poren in einem polymeren material
JP6396736B2 (ja) 防水通気膜と、それを備える防水通気部材および防水通気構造
JP2020117720A (ja) 樹脂フィルム
DE60018974T2 (de) Verfahren zur herstellung von poren und mikroporöser film
EP3401732B1 (de) Hochauflösende flexodruckplatte und mittel zu deren herstellung
JPH0338228A (ja) 多孔性高分子膜及びその製造方法
WO2007065657A1 (de) Optisch transparentes leichtbauelement
JPH02180624A (ja) 多孔性高分子膜の製造法
DE112019001070T5 (de) Wellenlängenselektives absorbierendes Material, Infrarotsensor, wellenlängenselektive Lichtquelle und Strahlungskühlsystem
JPH0338227A (ja) 多孔性高分子膜の製造方法
DE102012203755A1 (de) Perforierte Polymerfolien mit verbesserter Toleranz gegen Zugspannung
EP4331712A1 (en) Gas-tight track-etched membranes for emergency venting
EP3050150B1 (de) Brennstoffzelle
DE10392733T5 (de) Filtermaterial für Mikrofilter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016820990

Country of ref document: EP