WO2017004906A1 - 基于超薄膜的电容式压力传感器的制作方法 - Google Patents

基于超薄膜的电容式压力传感器的制作方法 Download PDF

Info

Publication number
WO2017004906A1
WO2017004906A1 PCT/CN2015/091969 CN2015091969W WO2017004906A1 WO 2017004906 A1 WO2017004906 A1 WO 2017004906A1 CN 2015091969 W CN2015091969 W CN 2015091969W WO 2017004906 A1 WO2017004906 A1 WO 2017004906A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ultra
substrate
thin film
insulating film
Prior art date
Application number
PCT/CN2015/091969
Other languages
English (en)
French (fr)
Inventor
刘胜
付兴铭
曹钢
严晗
刘亦杰
郑怀
王小平
Original Assignee
武汉大学
武汉飞恩微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学, 武汉飞恩微电子有限公司 filed Critical 武汉大学
Publication of WO2017004906A1 publication Critical patent/WO2017004906A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components

Definitions

  • the invention relates to a pressure sensor, in particular to a method for manufacturing a capacitive pressure sensor based on an ultrathin film.
  • Pressure sensors are used in a wide range of applications, such as industrial electronics: industrial batch weighing, digital flow meters and digital pressure gauges; consumer electronics: liquid level control pressure sensors for solar water heaters, dishwashers, water dispensers, washing machines, air conditioning pressure Sensors, microwave ovens, health scales, sphygmomanometers, etc.; automotive electronics: common rail pressure sensors for diesel engines, intake manifold pressure sensors for automotive engines, air pressure sensors for automotive brake systems, and engine oil pressure sensors.
  • An object of the present invention is to provide a method for fabricating a capacitive pressure sensor based on an ultra-thin film, which is intended to solve the problem that the conventional capacitive pressure sensor is difficult to be compatible with small size and high sensitivity.
  • the present invention is implemented as follows:
  • the invention provides a method for manufacturing a capacitive pressure sensor based on ultra-thin film, comprising the following steps:
  • the insulating film is etched with at least one cavity, the cavity penetrating through the insulating film;
  • One of the ultra-thin films located on the outer side is integrally formed with the insulating film, the ultra-thin film seals each of the cavities, and a substrate is disposed on a side of the insulating film away from the ultra-thin film;
  • the substrate is removed, and two pads are mounted, and the two pads are electrically connected to the other of the ultra-thin films on the outer side and the substrate, respectively.
  • the ultrathin film is a semiconductor compound film
  • the semiconductor compound is one of gallium nitride, aluminum gallium nitride, indium nitride, indium gallium nitride, gallium arsenide, indium phosphide, zinc oxide, and zinc telluride.
  • the semiconductor compound is one of gallium nitride, aluminum gallium nitride, indium nitride, indium gallium nitride, gallium arsenide, indium phosphide, zinc oxide, and zinc telluride.
  • the semiconductor compound is one of gallium nitride, aluminum gallium nitride, indium nitride, indium gallium nitride, gallium arsenide, indium phosphide, zinc oxide, and zinc telluride.
  • the semiconductor compound is one of gallium nitride, aluminum gallium nitride, indium nitride, indium gallium nitride
  • the semiconductor compound film is subjected to a doping treatment when the film is formed, and the molding material of the substrate is a semiconductor or a ceramic.
  • an insulating film is prepared on the substrate, and after etching each of the cavities, the insulating film is bonded to the outer semiconductor compound film.
  • the ultrathin film is a graphene film.
  • a copper film or a nickel film is prepared on the substrate, and at least one layer of the graphene film is grown on the copper film or the nickel film.
  • the insulating film is prepared on the outer graphene film, and after etching each of the cavities, the substrate is bonded to the insulating film, and the substrate seals each of the cavities.
  • a metal layer is formed on the upper surface of the substrate, and the metal layer is electrically connected to one of the pads, and the thickness of the metal layer is smaller than the thickness of the insulating film.
  • the material of the insulating film is one of silicon nitride, silicon dioxide, aluminum oxide, aluminum nitride, polymethyl methacrylate, and polyimide.
  • the ultrathin film has a thickness ranging from nanometer to micrometer.
  • At least one ultra-thin film that is, one or more ultra-thin films, is prepared on a substrate, and an insulating film is further prepared, and at least one cavity is opened on the insulating film, and the insulating film is
  • One of the ultra-thin films is prepared as a whole, the one end of the insulating film is on a substrate, and the other end is bonded to the ultra-thin film, and then the substrate is removed, and the two pads are electrically connected to the substrate and the ultra-thin film, respectively.
  • one side of the insulating film is sealed with an ultra-thin film, and the other side is a substrate, and the ultra-thin film can have higher sensitivity than the conventional silicon film while ensuring a small size, and the substrate As a support structure of the insulating film and the ultra-thin film, it also functions as a lower electrode.
  • the insulating film and the ultra-thin film it can be prepared by chemical vapor deposition or the like, and the ultra-thin film is first grown on the substrate. Then, it is transferred to the insulating film, and the insulating film and the ultra-thin film are connected by bonding or direct growth preparation, and the structural stability is very high.
  • FIG. 1 is a top plan view of an ultra-thin film-based capacitive pressure sensor according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of the A-A direction of FIG. 1 and the pad being led up;
  • FIG. 3 is a schematic view showing the structure of the A-A direction of FIG. 1 and the pad being led downward;
  • FIG. 4 is a schematic structural view showing an insulating film prepared on a substrate in the first embodiment
  • FIG. 5 is a schematic structural view of an insulating film etching cavity in the first embodiment
  • FIG. 6 is a schematic structural view of a semiconductor compound film prepared on a substrate in the first embodiment
  • FIG. 7 is a schematic structural view showing bonding of an insulating film and a semiconductor compound film in the first embodiment
  • FIG. 8 is a schematic structural view of a substrate removed in the first embodiment
  • FIG. 9 is a schematic structural view showing two pads in the first embodiment
  • FIG. 10 is a schematic structural view of a copper film prepared on a substrate in Embodiment 2;
  • FIG. 11 is a schematic structural view of a graphene film prepared on a copper film in the second embodiment
  • FIG. 12 is a schematic structural view showing an insulating film formed on a graphene film in the second embodiment
  • FIG. 13 is a schematic structural view of an insulating film etching cavity in the second embodiment
  • FIG. 14 is a schematic structural view of a bonding substrate on an insulating film in Embodiment 2;
  • FIG. 16 is a schematic structural view showing two pads in the second embodiment.
  • an embodiment of the present invention provides a capacitive pressure sensor based on ultra-thin film.
  • the ultra-thin film 1 is mainly applied to a pressure sensor, and the ultra-thin film 1 is used as a sensitive film to sense a pressure change, and mainly includes the following production steps:
  • At least one ultra-thin film 1 is prepared on a substrate 2, that is, the ultra-thin film 1 may be one layer or multiple layers, and when it is a plurality of layers, each layer of the ultra-thin film 1 is sequentially stacked on the substrate 2.
  • the film can be grown on the substrate 2 by chemical deposition, and other different preparation methods can be used according to the material of the ultra-thin film 1, and the substrate 2 can also be prepared according to the method for preparing the ultra-thin film 1. Different materials, different materials are selected, and the thickness of the ultra-thin film 1 ranges from nanometer to micrometer;
  • the insulating film 3 may be a silicon nitride (Si 3 N 4) on the insulating film 3 is etched, silicon dioxide (SiO 2 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), polymethyl methacrylate (PMMA), and polyimide (PI), etc., the thickness of each cavity 31 and the insulating film 3 The thickness is the same, and one or more for the cavity 31.
  • the thickness of the insulating film 3 is very small, usually between the micron to the nanometer thickness;
  • the substrate 4 is made of a semiconductor material or a ceramic material. When it is a semiconductor substrate 4, it needs to be doped and mixed.
  • the impurity material is silicon, silicon carbide, germanium, etc., and when it is the ceramic substrate 4, it may be made of materials such as aluminum oxide or silicon nitride;
  • the substrate 2 on the ultra-thin film 1 is removed, and two pads 5 are mounted at the same time, and the two pads 5 are electrically connected to the other ultra-thin film 1 and the substrate 4 on the outer side, respectively, and the ultra-thin film 1 is used as the upper electrode, and the substrate 4 is As the lower electrode, the two pads 5 respectively extract the charges at the two electrodes.
  • the insulating film 3 can be prepared by chemical deposition, physical deposition or spin coating, and the ultra-thin film 1 can be prepared in different manners depending on the material, such as when the ultra-thin film 1 is a semiconductor compound. It can be prepared by chemical deposition or physical deposition, and can be specifically refined into metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE) or magnetron sputtering.
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • MBE molecular beam epitaxy
  • magnetron sputtering magnetron sputtering.
  • one side of the insulating film 3 is made of an ultra-thin film 1, which can have a higher sensitivity while satisfying the requirement of a small size, and the substrate 4 is used as
  • the substrate 4 is used as
  • support for the insulating film 3 and the ultra-thin film 1 can be formed, and a bonding or insulating film 3 can be directly grown on the ultra-thin film 1 between the insulating film 3 and the ultra-thin film 1, and the structure can be prepared.
  • the stability is high.
  • the substrate 4 serves as the lower electrode of the pressure sensor, a metal layer is formed on the upper surface of the substrate 4, and the metal layer is electrically connected to one of the pads 5, and the thickness of the metal layer is smaller than the thickness of the insulating film 3.
  • the ultra-thin film 1 is a semiconductor compound film 1a
  • its various kinds of properties are numerous, and it is widely used in fields such as optoelectronic devices, ultra-high-speed microelectronic devices, microwave devices, and circuits.
  • Different semiconductor compounds can be selected according to requirements during fabrication.
  • the semiconductor compound can be gallium nitride, aluminum gallium nitride, indium nitride, indium gallium nitride, gallium arsenide, indium phosphide, zinc oxide, and zinc telluride.
  • One, and doping treatment is performed in the process of fabrication, so that the conductivity performance of the semiconductor compound film 1a can be satisfied.
  • the ultrathin film 1 may also be a graphene film 1b. It has very special properties for graphene: (1) single-layer graphene thickness is 0.335nm, graphene film 1b is nano-scale; (2) graphene has ultra-high Young's modulus (about 1000GPa) and breaking strength , the structure is very stable, highly conductive (carrier of high migration rate, at room temperature and liquid nitrogen, respectively, can reach 15000cm 2 V -1 S -1 and 60000cm 2 V -1 S -1); (3) Graphene film 1b can adhere stably on the surface of silica and is impenetrable; (4) Graphene has extremely low resistivity (resistivity is only about 10 -8 ⁇ m, which is lower than common metals).
  • the pressure sensor using graphene as the ultra-thin film 1 can have high sensitivity even in the case of meeting a very small size.
  • the graphene film 1b can be prepared by a mechanical stripping method, a liquid phase or gas phase direct stripping method, a graphite oxide reduction method or a chemical vapor deposition method, and usually a copper film 21 or a nickel film is prepared on the substrate 2, and then The graphene film 1b was prepared on the copper film 21 or the nickel film by the above method.
  • the insulating film 3 there may be two preparation methods for the insulating film 3, one of which is when the ultra-thin film 1 is the semiconductor compound film 1a, and the insulating film 3 is prepared on a substrate. 4, the insulating film 3 and the ultra-thin film 1 are bonded, and the other is when the ultra-thin film 1 is the graphene film 1b, the insulating film 3 is directly prepared on the ultra-thin film 1, and the substrate 4 and the insulating film 3 are bonded, specifically See the two embodiments below:
  • the ultra-thin film 1 is a semiconductor compound film 1a, and an insulating film 3 is prepared on the substrate 4, and the thickness is on the order of nanometers to micrometers, and the film is etched on the insulating film.
  • the cavity 31 has a cavity 31 having the same thickness as the insulating layer; on the other substrate 2, an ultra-thin film 1 is prepared, and the substrate 2 may be silicon, silicon carbide, germanium, sapphire or the like, and the ultra-thin film 1 is a semiconductor.
  • the compound film 1a can be prepared in a thickness ranging from a nanometer (such as a monoatomic film) to a micron (such as a tens of micron GaN film prepared by MOCVD); bonding the two fabrication structures together, that is, a semiconductor
  • the compound film 1a and the insulating film 3 are contacted and bonded, and the substrate 2 and the substrate 4 are respectively located on both sides of the bonding structure; after bonding, the substrate 2 is removed, and the removal process includes laser stripping, etching, etc. Since the semiconductor compound film 1a has a small thickness and is a brittle material, attention must be paid to the integrity and residual stress of the semiconductor compound film 1a when removing the substrate 2.
  • the substrate 2 is sapphire, laser peeling is generally used, otherwise the semiconductor compound is used.
  • the film 1a is easily damaged. If the thickness of the semiconductor compound film 1a is very small, only nanometers, a material such as Si, SiC, or Ge can be used as the substrate 2, and the substrate 2 can be removed by etching.
  • the semiconductor compound film 1a is protected by minimizing residual stress; after the above operation, the semiconductor compound film 1a, the insulating film 3 and the substrate 4, and the cavity 31 are completed, and then the electrode is fabricated using a conventional IC or MEMS device.
  • a metal pad 5 is fabricated to derive a signal from the upper and lower electrodes of the capacitor.
  • the ultra-thin film 1 is a graphene film 1b, and a copper film 21 (which may also be a nickel film) is prepared on the substrate 2, and graphene is grown on the copper film 21.
  • the film 1b may have a thickness of one to several layers, and then an insulating film 3 is formed on the graphene film 1b, which etches the insulating film 3 out of the cavity 31, and the depth of the cavity 31 is the same as the thickness of the insulating film 3; Taking a substrate 4, bonding the substrate 4 and the side of the insulating film 3 away from the graphene film 1b, the substrate 2 and the substrate 4 are respectively located on both sides of the insulating film 3 and the graphene film 1b; The etching process removes the substrate 2, at which time the graphene film 1b, the insulating film 3 and the substrate 4, and the cavity 31 are completed, and then the metal pad 5 is fabricated by using a common IC or MEMS device to form an electrode to derive a capacitor. The signal of the upper and lower electrodes.
  • the charge derivation of the upper electrode ultra-thin film 1 and the lower electrode substrate 4 can be realized in various manners, one of which is that the pad 5 is directly formed on the conductive ultra-thin film 1, the pad 5 The electrical connection is made through the contact of the insulating film 3 with the substrate 4. It should be noted that the pad 5 needs to be separated from the ultra-thin film 1 by using the insulating film 3 to prevent direct connection between the upper and lower electrodes.
  • This method is mainly suitable for wire bonding or Package form such as flip chip soldering.
  • the electrical signal is derived in a different manner, and the electrical signal is electrically guided by the substrate 4 through-hole package. Outgoing to the lower surface of the substrate 4, the package is directly reflow soldered to the substrate, and does not require wire bonding or flip chip bonding. In this structure, metal bumps are formed at the ends of the two pads 5 . 51.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种基于超薄膜的电容式压力传感器的制作方法,于衬底(2)上制备至少一层超薄膜(1a),同时还制备有一层绝缘薄膜(3),绝缘薄膜上蚀刻有至少一个空腔(31),采用超薄膜(1a)与基底(4)分别贴合于绝缘薄膜(3)的两端面,形成对空腔(3)的密封,然后去除衬底(2),通过两个焊盘(5)将超薄膜(3)与基底(4)上的电荷导出。压力传感器的敏感薄膜采用超薄膜,在能够满足极小尺寸的情况下,还具有较高的敏感度,另外作为下电极的基底还形成对绝缘薄膜以及超薄膜的支撑,同时绝缘薄膜与超薄膜之间则采用键合或者直接生长制备的方式进行连接,结构稳定性非常高。

Description

基于超薄膜的电容式压力传感器的制作方法 技术领域
本发明涉及压力传感器,尤其涉及一种基于超薄膜的电容式压力传感器的制作方法。
背景技术
压力传感器的应用非常广泛,如工业电子领域:工业配料称重、数字流量表以及数字压力表等;消费电子领域:太阳能热水器用液位控制压力传感器、洗碗机、饮水机、洗衣机、空调压力传感器,微波炉、健康秤以及血压计等;汽车电子领域:柴油机的共轨压力传感器、汽车发动机的进气歧管压力传感器、汽车刹车系统的空气压力传感器以及发动机的机油压力传感器等。
压力传感器的发展趋势是体积更小,从微米尺度到纳米尺度,灵敏度更高,可靠性更高,应用范围更广。现有的大部分MEMS压力传感器是在硅衬底上通过体加工或表面加工工艺制作出空腔,空腔顶部制作敏感薄膜,其厚度为几微米到几十微米。为了减小尺寸的同时获得高灵敏度的传感器,必须使用更薄的敏感薄膜。但是,由于硅的物理性能的限制,制造更高灵敏度、更小尺寸的超薄硅膜压力传感器的难度非常大。
技术问题
本发明的目的在于提供一种基于超薄膜的电容式压力传感器的制作方法,旨在用于解决现有的电容式压力传感器的采用硅膜难以兼容小尺寸与高灵敏度的问题。
技术解决方案
本发明是这样实现的:
本发明提供一种基于超薄膜的电容式压力传感器的制作方法,包括以下步骤:
于一衬底上制备有依次叠合的至少一层超薄膜;
制备一层绝缘薄膜,所述绝缘薄膜上蚀刻有至少一个空腔,所述空腔贯穿所述绝缘薄膜;
位于外侧的其中一所述超薄膜与所述绝缘薄膜制备为一整体,该超薄膜密封各所述空腔,且于所述绝缘薄膜远离所述超薄膜的一侧设置有基底;
去除所述衬底,安设两个焊盘,两个所述焊盘分别与外侧的另一所述超薄膜以及所述基底电连接。
具体地,所述超薄膜为半导体化合物薄膜,半导体化合物为氮化镓、氮化铝镓、氮化铟、氮化铟镓、砷化镓、磷化铟、氧化锌以及锑化锌其中的一种。
进一步地,在制作所述半导体化合物薄膜时对其进行掺杂处理,所述基底的成型材料采用半导体或者陶瓷。
具体地,于所述基底上制备有绝缘薄膜,蚀刻各所述空腔后将所述绝缘薄膜键合于外侧的所述半导体化合物薄膜上。
进一步地,所述超薄膜为石墨烯薄膜。
进一步地,在制作石墨烯薄膜时,先于所述衬底上制备铜膜或者镍膜,于所述铜膜或者所述镍膜上生长至少一层所述石墨烯薄膜。
进一步地,所述绝缘薄膜制备于外侧的所述石墨烯薄膜上,蚀刻各所述空腔后将所述基底键合于所述绝缘薄膜上,且所述基底密封各所述空腔。
进一步地,于所述基底上表面制作有金属层,所述金属层与其中一所述焊盘电连接,且所述金属层的厚度小于所述绝缘薄膜的厚度。
进一步地,所述绝缘薄膜的材料为氮化硅、二氧化硅、氧化铝、氮化铝、聚甲基丙烯酸甲酯以及聚酰亚胺中的一种。
具体地,所述超薄膜的厚度范围为纳米级至微米级。
本发明具有以下有益效果:
本发明的制作方法中,先在一衬底上制备至少一层超薄膜,即一层或者多层超薄膜,同时还制备有一层绝缘薄膜,绝缘薄膜上开设有至少一个空腔,绝缘薄膜与其中一超薄膜制备为一个整体,该绝缘薄膜一端面位于一基底上,而另一端则与超薄膜贴合,然后去除衬底,采用两个焊盘分别电连接至基底与超薄膜。在上述制作方式中,绝缘薄膜的一侧采用超薄膜密封,另一侧为基底,而超薄膜相比传统的硅膜在保证较小尺寸的前提下,还能够具有较高的灵敏度,而基底则作为绝缘薄膜以及超薄膜的支撑结构,同时兼具下电极的作用。而对于绝缘薄膜与超薄膜的制备均可采用化学气相沉积法等制备,对于超薄膜先是在衬底上生长, 然后再将其转移至绝缘薄膜上,而绝缘薄膜与超薄膜之间则采用键合或者直接生长制备的方式进行连接,结构稳定性非常高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的基于超薄膜的电容式压力传感器的俯视图;
图2为图1的A-A向且焊盘由上导出的结构示意图;
图3为图1的A-A向且焊盘由下导出的结构示意图;
图4为实施例一中基底上制备绝缘薄膜的结构示意图;
图5为实施例一中绝缘薄膜蚀刻空腔的结构示意图;
图6为实施例一中衬底上制备半导体化合物薄膜的结构示意图;
图7为实施例一中绝缘薄膜与半导体化合物薄膜键合的结构示意图;
图8为实施例一中去除衬底的结构示意图;
图9为实施例一中安设两个焊盘的结构示意图;
图10为实施例二中衬底上制备铜膜的结构示意图;
图11为实施例二中铜膜上制备石墨烯薄膜的结构示意图;
图12为实施例二中石墨烯薄膜上制备绝缘薄膜的结构示意图;
图13为实施例二中绝缘薄膜蚀刻空腔的结构示意图;
图14为实施例二中绝缘薄膜上键合基底的结构示意图;
图15为实施例二中去除衬底的结构示意图;
图16为实施例二中安设两个焊盘的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
参见图1-图3,本发明实施例提供一种基于超薄膜的电容式压力传感器的制 作方法,主要将超薄膜1应用于压力传感器中,超薄膜1作为敏感薄膜,能够感知压力变化,其主要包括以下制作步骤:
在一衬底2上制备有至少一层超薄膜1,即超薄膜1可以为一层,也可以为多层,且当为多层时,各层超薄膜1在该衬底2上依次叠合,对于超薄膜1可以采用化学沉积法在衬底2上生长成型,且还可以根据超薄膜1的材质不同采用其它不同的制备方法,而衬底2也可以根据其上制备超薄膜1的材质不同,选用不同的材料,超薄膜1的厚度范围为纳米级至微米级;
制备一层绝缘薄膜3,同时在该绝缘薄膜3上蚀刻有至少一个空腔31,空腔31贯穿绝缘薄膜3,绝缘薄膜3可以采用氮化硅(Si3N4)、二氧化硅(SiO2)、氧化铝(Al2O3)、氮化铝(AlN)、聚甲基丙烯酸甲酯(PMMA)以及聚酰亚胺(PI)等制备,各空腔31的厚度与绝缘薄膜3的厚度均相同,对于空腔31可为一个或者多个,如果有p×q(p,q≥1)阵列的空腔31,就可以制作数量为p×q个电容式压力传感器,其灵敏度也是单个压力传感器的p×q倍,而为了获取较高的灵敏度,绝缘薄膜3的厚度非常小,通常采用微米级到纳米级之间的厚度;
将位于外侧的其中一超薄膜1与绝缘薄膜3制备一个整体,该超薄膜1密封各所述空腔31,对于绝缘薄膜3的另一侧(远离超薄膜1的一侧)设置有基底4,基底4与超薄膜1分别位于绝缘薄膜3的两个端面上,分别密封各空腔31,基底4采用半导体材料或者陶瓷材料,当为半导体基底4时,其需要进行掺杂处理,且掺杂材料为硅、碳化硅以及锗等,而当其为陶瓷基底4时,可以为氧化铝或氮化硅等材料制成;
去除超薄膜1上的衬底2,同时安设两个焊盘5,且两个焊盘5分别与外侧的另一超薄膜1以及基底4电连接,将超薄膜1作为上电极,基底4作为下电极,两个焊盘5分别将两个电极处的电荷引出。
在上述制作过程中,绝缘薄膜3可以采用化学沉积、物理沉积或者旋涂等方式来制备,而超薄膜1可以根据材质的不同也可以采用不同的方式制备,比如当超薄膜1为半导体化合物时,其可以采用化学沉积或物理沉积的方式制备,具体可以细化为金属有机物化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束外延(MBE)或者磁控溅射等。本实施例中,绝缘薄膜3的一侧采用超薄膜1,其能够在满足小尺寸要求的情况下,还可以具有较高的敏感度,而基底4在作为 下电极的情况下,还能够形成对绝缘薄膜3以及超薄膜1的支撑,对于绝缘薄膜3与超薄膜1之间可以采用键合或者绝缘薄膜3在超薄膜1上直接生长的方式制备,结构稳定性均较高。当然由于基底4作为压力传感器的下电极,对此在基底4的上表面制作有金属层,金属层与其中一焊盘5电连接,且金属层的厚度小于绝缘薄膜3的厚度。
参见图9,细化上述的制备过程,当超薄膜1为半导体化合物薄膜1a时,其种类繁多性能繁多,在诸如光电子器件、超高速微电子器件和微波器件及电路等领域得到了广泛应用,制作时可以根据需要选择不同的半导体化合物,一般半导体化合物可以为氮化镓、氮化铝镓、氮化铟、氮化铟镓、砷化镓、磷化铟、氧化锌以及锑化锌其中的一种,且在制作的过程中进行掺杂处理,从而可以满足半导体化合物薄膜1a的电导率性能。
参见图16,在另一实施方式中,超薄膜1还可以为石墨烯薄膜1b。对于石墨烯具有非常特殊的性能:(1)单层石墨烯厚度为0.335nm,石墨烯薄膜1b为纳米量级;(2)石墨烯拥有超高的杨氏模量(约1000GPa)和断裂强度,结构非常稳定,导电性很强(载流子的迁移速率极高,室温及液氮温度下分别能达到15000cm2V-1S-1和60000cm2V-1S-1);(3)石墨烯薄膜1b可以在二氧化硅表面稳定粘附,且具有不可穿透性;(4)石墨烯电阻率极低(电阻率只约10-8Ω·m,比常见金属还低)。针对上述性能,压力传感器采用石墨烯作为超薄膜1可以在满足极小尺寸的情况下,还具有较高的灵敏度。石墨烯薄膜1b可以采用机械剥离法、液相或气相直接剥离法、氧化石墨还原法或者化学气相沉积法等方法制备,通常是在衬底2上制备有一层铜膜21或者镍膜,然后在铜膜21或者镍膜上采用上述方法制备石墨烯薄膜1b。
参见图2、图9以及图16,进一步地,在制作时,对于绝缘薄膜3可以具有两种制备方法,其中一种为当超薄膜1为半导体化合物薄膜1a时,绝缘薄膜3制备于一基底4上,绝缘薄膜3与超薄膜1键合,另外一种为当超薄膜1为石墨烯薄膜1b时,绝缘薄膜3直接在超薄膜1上制备,基底4与绝缘薄膜3键合,具体可以参见下述两个实施例:
参见图1以及图4-图9,实施例一,超薄膜1为半导体化合物薄膜1a,在基底4上制备一层绝缘薄膜3,厚度在纳米到微米级别,在绝缘层膜上面蚀刻出空 腔31,空腔31的深度与绝缘层的厚度相同;在另一种衬底2上制备一层超薄膜1,衬底2可以是硅、碳化硅、锗、蓝宝石等,超薄膜1为半导体化合物薄膜1a,所制备的薄膜厚度范围可以从纳米级(如单原子层的薄膜)到微米级(如MOCVD制备的几十微米的GaN薄膜);将上述两制作结构键合在一起,即半导体化合物薄膜1a和绝缘薄膜3接触并键合,衬底2和基底4分别位于键合结构的两侧;键合后,将衬底2去除,去除工艺包括激光剥离、蚀刻等方式,特别提及的是由于半导体化合物薄膜1a的厚度很小且属脆性材料,去除衬底2时需要注意半导体化合物薄膜1a的完整性和残余应力,如果衬底2为蓝宝石,则一般采用激光剥离,否则半导体化合物薄膜1a容易受损,如果半导体化合物薄膜1a的厚度非常小,仅为纳米级别,可以使用Si、SiC、Ge等材料做衬底2,使用蚀刻方式去除衬底2,以最大程度地减小残余应力,保护半导体化合物薄膜1a;经过上述操作,半导体化合物薄膜1a、绝缘薄膜3和基底4、空腔31已经完备,接下来使用常用的IC或者MEMS器件制作电极的方法制作出金属焊盘5以导出电容上下电极的信号。
参见图1以及图10-图16,实施例二,超薄膜1为石墨烯薄膜1b,在衬底2上制备一层铜膜21(也可以是镍膜),在铜膜21上面生长石墨烯薄膜1b,厚度可以为一层到多层,然后在石墨烯薄膜1b上制备一层绝缘薄膜3,其将绝缘薄膜3蚀刻出空腔31,空腔31的深度与绝缘薄膜3的厚度相同;取一基底4,将该基底4与绝缘薄膜3远离石墨烯薄膜1b的一侧键合在一起,衬底2和基底4分别位于绝缘薄膜3与石墨烯薄膜1b的两侧;键合后采用蚀刻工艺将衬底2去除,此时石墨烯薄膜1b、绝缘薄膜3和基底4、空腔31已经完备,接下来使用常用的IC或者MEMS器件制作电极的方法制作出金属焊盘5以导出电容上下电极的信号。
参见图2以及图3,进一步地,上电极超薄膜1与下电极基底4的电荷导出可以采用多种方式实现,其中一种为焊盘5直接制作在导电的超薄膜1上,焊盘5穿过绝缘薄膜3与基底4接触实现电连接,需要注意的是焊盘5制作时需要使用绝缘薄膜3与超薄膜1隔离开以防止上下电极直接连通,这种方式主要适用于引线键合或者倒装焊等封装形式。在另一种实施方式中,其与上述实施方式类似,只是其电信号的导出方式不同,其电信号采用基底4通孔封装的形式将电信号导 出至基底4的下表面,封装时直接与基板对准回流焊接,不需要引线键合或者倒装焊等形式,在这种结构形式中两焊盘5的端部处均制作有金属凸点51。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于超薄膜的电容式压力传感器的制作方法,其特征在于,包括以下步骤:
    于一衬底上制备有依次叠合的至少一层超薄膜;
    制备一层绝缘薄膜,所述绝缘薄膜上蚀刻有至少一个空腔,所述空腔贯穿所述绝缘薄膜;
    位于外侧的其中一所述超薄膜与所述绝缘薄膜制备为一整体,该超薄膜密封各所述空腔,且于所述绝缘薄膜远离所述超薄膜的一侧设置有基底;
    去除所述衬底,安设两个焊盘,两个所述焊盘分别与外侧的另一所述超薄膜以及所述基底电连接。
  2. 如权利要求1所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:所述超薄膜为半导体化合物薄膜,半导体化合物为氮化镓、氮化铝镓、氮化铟、氮化铟镓、砷化镓、磷化铟、氧化锌以及锑化锌其中的一种。
  3. 如权利要求2所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:在制作所述半导体化合物薄膜时对其进行掺杂处理,所述基底的成型材料采用半导体或者陶瓷。
  4. 如权利要求2所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:于所述基底上制备有绝缘薄膜,蚀刻各所述空腔后将所述绝缘薄膜键合于外侧的所述半导体化合物薄膜上。
  5. 如权利要求1所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:所述超薄膜为石墨烯薄膜。
  6. 如权利要求5所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:在制作石墨烯薄膜时,先于所述衬底上制备铜膜或者镍膜,于所述铜膜或者所述镍膜上生长至少一层所述石墨烯薄膜。
  7. 如权利要求5所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:所述绝缘薄膜制备于外侧的所述石墨烯薄膜上,蚀刻各所述空腔后将所述基底键合于所述绝缘薄膜上,且所述基底密封各所述空腔。
  8. 如权利要求1所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:于所述基底上表面制作有金属层,所述金属层与其中一所述焊盘电连接, 且所述金属层的厚度小于所述绝缘薄膜的厚度。
  9. 如权利要求1所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:所述绝缘薄膜的材料为氮化硅、二氧化硅、氧化铝、氮化铝、聚甲基丙烯酸甲酯以及聚酰亚胺中的一种。
  10. 如权利要求1所述的基于超薄膜的电容式压力传感器的制作方法,其特征在于:所述超薄膜的厚度范围为纳米级至微米级。
PCT/CN2015/091969 2015-07-09 2015-10-15 基于超薄膜的电容式压力传感器的制作方法 WO2017004906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510401001.1A CN105060238B (zh) 2015-07-09 2015-07-09 基于超薄膜的电容式压力传感器的制作方法
CN201510401001.1 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017004906A1 true WO2017004906A1 (zh) 2017-01-12

Family

ID=54489832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091969 WO2017004906A1 (zh) 2015-07-09 2015-10-15 基于超薄膜的电容式压力传感器的制作方法

Country Status (2)

Country Link
CN (1) CN105060238B (zh)
WO (1) WO2017004906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268641A (zh) * 2020-02-17 2020-06-12 中芯集成电路制造(绍兴)有限公司 晶圆键合方法以及微执行器的制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632405B (zh) * 2017-03-20 2020-10-20 上海敏传智能科技有限公司 一种可感知外部应力的机壳结构
CN108529553B (zh) * 2017-09-22 2020-02-18 中北大学 一种石墨烯高温压力传感器封装方法
CN108414120B (zh) * 2018-02-28 2021-06-15 中国电子科技集团公司第十三研究所 Si基GaN压力传感器的制备方法
CN110057907B (zh) * 2019-03-22 2021-11-23 天津大学 一种针对气体传感的cmut及制备方法
CN110398536B (zh) * 2019-07-30 2021-01-19 西安交通大学 一种多功能薄膜高灵敏度CMUTs气体传感器及其制备方法
CN114518186A (zh) * 2020-11-19 2022-05-20 无锡华润上华科技有限公司 电容压力传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
CN101680813A (zh) * 2007-06-04 2010-03-24 恩德莱斯和豪瑟尔两合公司 电容式压力传感器
CN103257005A (zh) * 2012-02-21 2013-08-21 苏州敏芯微电子技术有限公司 电容式压力传感器及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647796B2 (en) * 2000-08-11 2003-11-18 California Institue Of Technology Semiconductor nitride pressure microsensor and method of making and using the same
EP1837638B1 (en) * 2006-03-21 2011-12-28 Radi Medical Systems Ab Pressure sensor
US7331236B2 (en) * 2006-03-21 2008-02-19 Radi Medical Systems Ab Pressure sensor
DE102011084612A1 (de) * 2011-10-17 2013-04-18 Endress + Hauser Gmbh + Co. Kg Keramische Druckmesszelle mit kapazitivem Wandler
CN103983395B (zh) * 2014-05-30 2016-04-27 西安交通大学 一种微压力传感器及其制备与检测方法
CN104697680A (zh) * 2015-03-17 2015-06-10 浙江传媒学院 一种电容式压力传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
CN101680813A (zh) * 2007-06-04 2010-03-24 恩德莱斯和豪瑟尔两合公司 电容式压力传感器
CN103257005A (zh) * 2012-02-21 2013-08-21 苏州敏芯微电子技术有限公司 电容式压力传感器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268641A (zh) * 2020-02-17 2020-06-12 中芯集成电路制造(绍兴)有限公司 晶圆键合方法以及微执行器的制作方法
CN111268641B (zh) * 2020-02-17 2023-07-14 绍兴中芯集成电路制造股份有限公司 晶圆键合方法以及微执行器的制作方法

Also Published As

Publication number Publication date
CN105060238B (zh) 2018-05-29
CN105060238A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2017004906A1 (zh) 基于超薄膜的电容式压力传感器的制作方法
CN103972159B (zh) 三维封装结构及其形成方法
TWI521656B (zh) 感測器陣列封裝
US8664086B2 (en) Semiconductor wafer, semiconductor thin film, and method for manufacturing semiconductor thin film devices
CN105612610B (zh) 结合负热膨胀材料的导电互连结构及相关系统、装置及方法
CN104576917A (zh) 具有石墨烯探测层的霍尔效应传感器
CN102254836B (zh) 电子器件封装件的制造方法、电子器件封装件及振荡器
CN107963609B (zh) 一种基于阳极键合的全硅mems圆片级真空封装方法
US9561954B2 (en) Method of fabricating MEMS devices having a plurality of cavities
TWI480985B (zh) 一種半導體氣密封裝結構及其製造方法
TW201142999A (en) Chip package and fabrication method thereof
CN104465533B (zh) 自粘合裸片
CN107032288A (zh) Cmos‑mems结构及其形成方法
CN104236787B (zh) Mems差压传感器芯片及制作方法
CN111868492A (zh) 电容式压力传感器
US9759679B2 (en) Fluid sensor with backside of sensor die contacting header
CN102881666B (zh) 晶圆级器件封装
CN108598253A (zh) Si基GaN压力传感器的制备方法
TWI620290B (zh) 導電墊結構及其製作方法
JP2007173634A (ja) ウェハレベルパッケージ構造体の製造方法
JP2001201418A (ja) 静電容量型半導体圧力センサ及びその製造方法
KR100636823B1 (ko) Mems 소자 패키지 및 그 제조방법
CN112242343A (zh) 单晶硅局域soi衬底、光电器件及制备方法
CN111170263B (zh) 半导体器件与其制作方法
US20220293305A1 (en) Sensor Element and Method for Producing a Sensor Element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897562

Country of ref document: EP

Kind code of ref document: A1