WO2017000876A1 - 对地定位或导航用相机、飞行器及其导航方法 - Google Patents

对地定位或导航用相机、飞行器及其导航方法 Download PDF

Info

Publication number
WO2017000876A1
WO2017000876A1 PCT/CN2016/087571 CN2016087571W WO2017000876A1 WO 2017000876 A1 WO2017000876 A1 WO 2017000876A1 CN 2016087571 W CN2016087571 W CN 2016087571W WO 2017000876 A1 WO2017000876 A1 WO 2017000876A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary
image
target
information
aircraft
Prior art date
Application number
PCT/CN2016/087571
Other languages
English (en)
French (fr)
Inventor
田瑜
江文彦
Original Assignee
优利科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520459593.8U external-priority patent/CN204925807U/zh
Priority claimed from CN201510369281.2A external-priority patent/CN106275470B/zh
Priority claimed from CN201520456110.9U external-priority patent/CN204916207U/zh
Priority claimed from CN201510369254.5A external-priority patent/CN106325305B/zh
Priority claimed from CN201610282288.5A external-priority patent/CN105974940B/zh
Application filed by 优利科技有限公司 filed Critical 优利科技有限公司
Priority to EP16817240.1A priority Critical patent/EP3315414B1/en
Priority to US15/577,303 priority patent/US10386188B2/en
Publication of WO2017000876A1 publication Critical patent/WO2017000876A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the present invention relates to the field of aircraft navigation, and in particular, to a camera, an aircraft, and a navigation method thereof for positioning or navigating to the ground.
  • some aircraft are provided with a camera for taking a ground image, but it is generally set on the aircraft.
  • the flight attitude of the aircraft is tilted and swayed during flight, such a change in flight attitude tends to cause the camera lens to not always face to the ground, and thus imaging compensation is required.
  • the prior art generally uses computer calculation compensation and sensor angle compensation to compensate for imaging problems.
  • using such multiple compensation methods will greatly increase the imaging error, and it is not very Conducive to the subsequent application and calculation of the resulting ground image.
  • GPS Global Positioning System
  • GPS signal strength is insufficient and cannot be located. GPS can achieve positioning mainly relying on satellites. The more the number of satellites, the more accurate the positioning is. However, some areas are difficult to be covered by satellites because of the occlusion of tall buildings or mountains. This makes the GPS signal strength insufficient in these areas. Positioning.
  • the technical problem to be solved by the present invention is to overcome the defects in the prior art that the ground image captured by the aircraft requires multiple imaging compensation and thus the imaging error is large, and is disadvantageous for the calculation and application involving the ground image, and provides a grounding positioning. Or use a camera, an aircraft, and its navigation methods.
  • the invention provides a camera for positioning or navigating to the ground, characterized in that the camera comprises an imaging device, and the imaging direction of the imaging device is vertically downward;
  • the camera further includes a pan-tilt stabilization system, the pan-tilt stabilization system includes a pan-tilt main body and a pan-tilt control system, and the pan-tilt control system is connected to the pan-tilt main body;
  • the imaging device is disposed on the pan/tilt head.
  • the vertical downward referred to here is generally understood to mean that the imaging direction is perpendicular to the ground.
  • the pan/tilt stabilization system is used to increase the stability of the gimbal body, thereby ensuring that the imaging direction of the camera device is vertically downward, and the image captured by the camera device is more clear.
  • the pan/tilt control system includes a first controller, a first motor, a second motor, and a pan/tilt body, wherein the first motor and the second motor are respectively used to control the cloud
  • the main body of the table rotates in the axial direction of the Pitch axis and the Roll axis of the three-dimensional coordinate system, the pan-tilt main body is provided with an imaging device, the first controller includes a balance control module, and the balance control module respectively
  • the first motor and the second motor are electrically connected, and are configured to control operation of the first motor and the second motor such that an imaging direction of the imaging device is vertically downward;
  • the pan/tilt control system further includes a third motor for controlling rotation of the pan/tilt head in an axial direction of a Yaw axis of the three-dimensional coordinate system, the balance control module further The three motors are electrically connected and used to control operation of the first motor, the second motor, and the third motor such that an imaging direction of the imaging device is vertically downward.
  • the pan/tilt control system is provided with a three-axis motor of a Pitch axis, a Roll axis, and a Yaw axis.
  • the direction of the imaging device is controlled by the operation of the three-axis motor, the imaging direction of the imaging device is ensured to be vertically downward, and control can be performed in a more stable manner.
  • the Yaw axis is a heading axis
  • the Pitch axis is a pitch axis
  • the Roll axis is a roll axis.
  • the rotation about the heading axis is a left-right rotation with respect to the forward direction of the aircraft, and the rotation about the pitch axis is relative to the aircraft.
  • the up and down rotation in the forward direction is the rotation about the roll axis as the axis in the longitudinal direction of the fuselage.
  • the present invention also provides an aircraft, comprising a navigation system, characterized in that the navigation system comprises a camera and a second controller in any combination of the above preferred conditions;
  • the camera of the camera is configured to capture an image when the aircraft is flying;
  • the second controller includes an acquisition module and a correction module;
  • the acquiring module is configured to acquire a set of reference images for displaying a specified flight line
  • the correction module is configured to compare an image captured by the camera device with the set of reference images to correct a current flight path of the aircraft when the aircraft is flying.
  • the first controller and the second controller use different names, they are both controllers, and the same control chip can be used in actual production, and different control chips can be used. Since the imaging direction of the imaging device is vertically downward, the image captured by the imaging device is substantially the image below the aircraft, that is, the image obtained from the bottom of the aircraft (viewing).
  • the navigation system can fly along the designated flight line without GPS, without worrying that the flight area is not within the coverage of the satellite or the map data is not updated in time.
  • the navigation system has the advantages of high accuracy, wide application range and the like.
  • the acquiring module is configured to acquire a topographic map of the specified flight line and use the topographic map as a reference image.
  • the topographic map of the designated flight line refers to an image below the aircraft when the aircraft is flying along the designated flight line, including but not limited to terrain, buildings, and the like.
  • the designated flight path includes a return route of the aircraft, and the topographic map of the return route is captured by the camera device when the aircraft is de-routed. That is, the image captured by the imaging device when the aircraft is going on a flight is a reference image for displaying the return route of the aircraft.
  • the aircraft can autonomously return to the navigation line, which simplifies the control of the aircraft. In particular, when the aircraft has flew out of the controller's line of sight, the controller does not know where the aircraft is located.
  • the navigation system can also be used to realize the automatic return of the aircraft.
  • the designated flight line may further include any line specifying a starting point and an ending point, for which the navigation system may obtain a corresponding reference image by pre-storing or downloading through a network to implement the aircraft along the aircraft. Autonomous flight of the designated flight line.
  • the correction module comprises an image processing module, a comparison module and a flight control module;
  • the image processing module is configured to select a reference image from the set of reference images as a comparison image, and extract feature information from the newly captured image and the comparison image respectively;
  • the comparison module is configured to compare offsets of the same feature information in the newly captured image and the comparison image
  • the flight control module is configured to change a current flight direction of the aircraft according to the offset.
  • the comparison image should have at least one identical feature information with the newly captured image, and the feature information may include a proportional relationship between objects in the image, an outline and a position of the object, and the like. If the same feature information is offset in a certain direction with respect to the position of the newly captured image relative to the position of the aligned image, then the flight direction of the aircraft should be moved in the opposite direction of the direction. The calculation of the offset may also incorporate the current flight altitude and/or flight speed of the aircraft, and the like.
  • the image processing module is configured to extract feature information of each of the reference images of the set of reference images, and select a reference image having the same feature information as the latest captured image as the comparison image.
  • the more feature information of the two images the closer the position at which the two images are captured.
  • the camera captures multiple images at certain time intervals, and the navigation system can more accurately ensure that the aircraft is flying along a designated flight path by multiple corrections.
  • the flight control module is further configured to change a current flying height of the aircraft according to the offset.
  • the navigation system further includes a GPS positioning unit, and the GPS positioning unit is configured to receive a GPS positioning signal of a location;
  • the aircraft body flies towards the location corresponding to the GPS positioning signal.
  • the camera device takes a picture of the area where the reference target is located to obtain a reference image
  • the aircraft body When the image pickup apparatus provided on the aircraft body acquires a temporary image on which the temporary target is displayed, the aircraft body extracts the temporary image feature of the temporary target from the temporary image and the temporary target is located in the temporary image Temporary location information;
  • the camera device is configured according to the Calculating a deviation direction from a difference between the start position information and the temporary position information;
  • the aircraft body is tracked in the direction of the deviation.
  • the camera device extracts first reference scale information and second reference scale information of the reference target from the reference image, the first reference scale information being the reference target in the reference image a width value, the second reference scale information being a height value of the reference target in the reference image;
  • the camera device determines that the reference image feature is consistent with the temporary image feature, the camera device extracts first temporary scale information and second temporary scale information of the temporary target from the temporary image, the first temporary scale The information is a width value of the temporary target in the temporary image, and the second temporary scale information is a height value of the temporary target in the temporary image;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the difference
  • the aircraft body accelerates when the absolute value of the value is greater than a preset threshold
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the difference
  • the absolute value of the value is greater than a preset threshold, the aircraft body decelerates
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the difference
  • the aircraft body accelerates when the absolute value of the value is greater than a preset threshold
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the difference When the absolute value of the value is greater than a predetermined threshold, the aircraft body decelerates.
  • the distance between the aircraft body and the temporary target meets the following constraint condition: 0.9*Z ⁇ X ⁇ 1.1*Z, wherein Z is a preset threshold, and X is the aircraft body and the The distance between the temporary targets.
  • the aircraft body calculates a difference between the temporary vertical coordinate and the initial vertical coordinate, and generates longitudinal displacement information, wherein the initial vertical coordinate is a reference target established according to the reference image. a position coordinate in a coordinate system, the temporary vertical coordinate being a position coordinate of the temporary target in a coordinate system established according to the temporary image;
  • the aircraft body adjusts a vertical angle of the image pickup device that takes the temporary image.
  • the aircraft body calculates a difference between the temporary horizontal coordinate and the starting horizontal coordinate, and generates a lateral displacement Information, wherein the starting horizontal coordinate is a position coordinate of a reference target in a coordinate system established according to the reference image, and the temporary horizontal coordinate is a position of a temporary target in a coordinate system established according to the temporary image coordinate;
  • the aircraft body adjusts a horizontal angle of the image pickup device that takes the temporary image.
  • the camera device searches for a similar target in the temporary image in real time, and extracts a reference feature similar to the target, and when the reference feature matches one of the temporary image features, the similar
  • the target is a candidate target in the target group.
  • the aircraft body detects that any of the temporary image feature, the temporary location information, the first temporary dimension information, and the second temporary dimension information changes, the changed temporary image feature, temporary location information,
  • the first temporary scale information and the second temporary scale information respectively update the temporary image feature, the temporary location information, the first temporary scale information, and the second temporary scale information before the change.
  • the camera device acquires and calculates temporary coordinate information, first temporary scale information and second temporary scale information of a similar target, wherein the first temporary scale information is the similar target in the temporary image. a width value, the second temporary scale information being a height value of the similar target in the temporary image;
  • the temporary coordinate information, the first temporary scale information, and the second temporary scale information of all the candidate targets of the target group are respectively Temporary location information, first temporary scale information, and second Temporary scale information is subjected to weighting calculation, and the result of the weighting calculation is output to the camera device to display the result of the weighting calculation;
  • the imaging device does not detect the target group, and the camera device tracks the temporary target
  • the temporary position information, the first temporary scale information, and the second temporary scale information of the target are output to the camera to display The temporary location information, the first temporary scale information, and the second temporary scale information
  • the imaging device detects the target group, and the camera device does not track the temporary target, the temporary coordinate information, the first temporary scale information, and the second temporary scale information of all candidate targets of the target group are respectively performed. Weighting the calculation and outputting the result of the weighting calculation to the camera to display the result of the weighting calculation;
  • the information is not output to the imaging apparatus.
  • the coordinate system of the reference image and the coordinate system of the temporary image are the same coordinate system.
  • the recording of the temporary image features of the target comprises: a gradient direction histogram, a local binary mode histogram, a scale invariant feature transform, and an accelerated robust feature.
  • the navigation system further includes an obstacle avoidance camera device and a third controller, and the pan/tilt head body is provided with the obstacle avoidance camera device;
  • the obstacle avoidance camera device is configured to capture an image in a flight direction when the aircraft is flying;
  • the third controller is configured to determine whether an obstacle exists in the image captured by the obstacle avoidance camera, and if yes, change a flight direction of the aircraft according to a position of the obstacle, if not, control the The aircraft flies in the current flight direction.
  • the image captured by the obstacle avoidance camera is an image in front of the aircraft. If the aircraft flies east, the obstacle avoidance camera captures the image on the east side, and the west flight captures the image on the west side.
  • Changing the flight direction of the aircraft in the present invention may be to control the flight direction of the aircraft to move in any direction, such as up, down, left, and right. Changing the flight direction of the aircraft Thereafter, the third controller determines whether the aircraft needs to change the flight direction again through the latest captured image of the obstacle avoidance camera.
  • the navigation system is capable of disengaging the aircraft from the control of the operator, automatically avoiding obstacles in front, preventing impacts from occurring, and avoiding damage to the aircraft.
  • the pan/tilt control system further includes a fourth controller, a fourth motor and a fifth motor, wherein the fourth motor and the fifth motor are respectively used to control the gimbal body in three dimensions.
  • the fourth controller includes a first balance control module, and the first balance control module is respectively electrically connected to the fourth motor and the fifth motor Connected and used to control the operation of the fourth motor and the fifth motor.
  • the pan/tilt control system of the present invention may be provided with only a two-axis motor of a Pitch axis and a Roll axis, and the axial direction of the Yaw axis of the third axis is fixed, and it is not necessary to provide a corresponding motor.
  • the first balance control module is only used to control the operation of the two-axis motor such that the imaging direction of the obstacle avoidance camera is forward, and the stability and balance of the obstacle avoidance camera are ensured.
  • the pan/tilt control system further includes a sixth motor for controlling rotation of the pan/tilt head in an axial direction of a Yaw axis of the three-dimensional coordinate system, the first balance control
  • the module is also electrically coupled to the sixth motor and for controlling operation of the fourth motor, the fifth motor, and the sixth motor.
  • the direction of the obstacle avoidance imaging device is controlled by the operation of the three-axis motor, and the control can be performed in a more stable manner.
  • the Yaw axis is a heading axis
  • the Pitch axis is a pitch axis
  • the Roll axis is a roll axis.
  • the rotation about the heading axis is a left-right rotation with respect to the forward direction of the aircraft, and the rotation about the pitch axis is relative to the aircraft.
  • the up and down rotation in the forward direction is the rotation about the roll axis as the axis in the longitudinal direction of the fuselage.
  • the method further includes a ranging module
  • the third controller is further configured to: when determining that there is an obstacle in the image captured by the obstacle avoidance camera, calling the ranging module to detect a distance between the aircraft and the obstacle, if If the distance is less than or equal to a distance threshold, the flight direction of the aircraft is changed according to the position of the obstacle, and if the distance is greater than the distance threshold, controlling the aircraft to fly along the current Direction flight.
  • the addition of the ranging module can help determine the position of the obstacle and prevent the aircraft from changing the flight direction prematurely.
  • the distance measuring module is a laser ranging module.
  • the third controller is further configured to: when it is determined that there is an obstacle in the image captured by the obstacle avoidance camera, determine whether the height of the obstacle is higher than a flying height of the aircraft, and if so, Then, the flying height of the aircraft is raised, and if not, the aircraft is controlled to fly in the current flight direction.
  • the technical solution can reduce the adjustment of the aircraft.
  • the number of flight situations avoiding frequent adjustments to the aircraft and increasing the burden on the system.
  • the navigation system includes a plurality of obstacle avoidance camera devices, and the obstacle avoidance camera devices are respectively disposed in different directions of the pan/tilt head body.
  • Multiple obstacle avoidance cameras can capture images in multiple directions, and thus can avoid obstacles in multiple directions. If the obstacle avoidance imaging device is provided on the front, rear, left and right sides of the pan/tilt main body, the aircraft can be prevented from moving in any direction.
  • the navigation system further includes a wireless transmitting module, and the wireless transmitting module is configured to send the image captured by the obstacle avoidance camera to a remote controller for controlling the aircraft.
  • the remote controller can display the received image so that the controller can check whether there is an obstacle in front of the aircraft.
  • the third controller is further configured to receive a control signal sent by the remote controller and control the aircraft according to the control signal.
  • the controlling may include changing a flight direction, a flying speed, and the like of the aircraft.
  • the navigation system not only can automatically avoid obstacles, but also realizes manual automatic integration by executing a control signal sent by the remote controller to avoid obstacles.
  • the third control module is further configured to: when determining that there is an obstacle in the image captured by the obstacle avoidance camera, calling the ranging module to detect between the aircraft and the obstacle The distance is adjusted according to the relationship between the distance and a set threshold.
  • the adjusting the flight speed of the aircraft according to the relationship between the distance and a set threshold comprises: reducing a flight speed of the aircraft when the distance is less than the set threshold.
  • the third controller is further configured to: when there is an obstacle in the image captured by the obstacle avoidance camera, according to reference scale information of the reference target in a reference image and a temporary obstacle target in a temporary image The relationship of the temporary scale information to adjust the flight speed of the aircraft;
  • the temporary image is an image in which an obstacle is captured in the image captured by the obstacle avoidance imaging device and an acquisition time is closest to the current time;
  • the reference image is an image in which an obstacle is present in the image captured by the obstacle avoidance camera and the capture time is before the capture time of the temporary image;
  • the obstacle in the reference image is recorded as a reference target
  • the obstacle in the temporary image is a temporary target.
  • the third controller is further configured to:
  • the present invention also provides an aircraft characterized by a navigation system comprising a combination of any of the above preferred conditions.
  • the present invention also provides a navigation method for an aircraft, characterized in that the aircraft comprises a camera of any combination of the above preferred conditions, the camera device of the camera for capturing an image when the aircraft is flying;
  • the navigation method includes:
  • S 1 includes acquiring a topographic map of the designated flight line and using the topographic map as a reference image.
  • the designated flight path includes a return route of the aircraft, and the topographic map of the return route is captured by the camera device when the aircraft is de-routed.
  • S 2 comprising:
  • a reference image is selected from the group of reference image as image alignment, features are extracted from the image information on the latest captured image and the ratio;
  • S 21 includes: extracting feature information of each of the reference images of the set of reference images, and selecting a reference image having the same feature information as the latest captured image as the comparison image.
  • S 23 further comprises changing the current flying height of the aircraft according to the offset.
  • the navigation method further includes:
  • the aircraft body flies towards the location corresponding to the GPS positioning signal.
  • the navigation method further includes:
  • the camera device During the flight of the aircraft body toward the location corresponding to the GPS positioning signal, the camera device also takes a picture of the area where the reference target is located to obtain a reference image;
  • the aircraft body When the image pickup apparatus provided on the aircraft body acquires a temporary image on which the temporary target is displayed, the aircraft body extracts the temporary image feature of the temporary target from the temporary image and the temporary target is located in the temporary image Temporary location information;
  • the imaging device calculates a deviation direction according to a difference between the start location information and the temporary location information
  • the aircraft body is tracked in the direction of the deviation.
  • the navigation method further includes:
  • the camera device extracts first reference scale information and second reference scale information of the reference target from the reference image, where the first reference scale information is a width value of the reference target in the reference image, The second reference scale information is a height value of the reference target in the reference image;
  • the camera device determines that the reference image feature is consistent with the temporary image feature, the camera device extracts first temporary scale information and second temporary scale information of the temporary target from the temporary image, the first temporary scale The information is a width value of the temporary target in the temporary image, and the second temporary scale information is a height value of the temporary target in the temporary image;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the difference
  • the aircraft body accelerates when the absolute value of the value is greater than a preset threshold
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the difference
  • the absolute value of the value is greater than a preset threshold, the aircraft body decelerates
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the difference
  • the aircraft body accelerates when the absolute value of the value is greater than a preset threshold
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the difference When the absolute value of the value is greater than a predetermined threshold, the aircraft body decelerates.
  • the navigation method further includes:
  • the distance between the aircraft body and the temporary target meets the following constraint condition: 0.9*Z ⁇ X ⁇ 1.1*Z, where Z is a preset threshold, and X is the aircraft body and the temporary target The distance between them.
  • the navigation method further includes:
  • the aircraft body calculates a difference between the temporary vertical coordinate and the starting vertical coordinate, and generates longitudinal displacement information, wherein
  • the initial vertical coordinate is a position coordinate of a reference target in a coordinate system established according to the reference image
  • the temporary vertical coordinate is a position coordinate of a temporary target in a coordinate system established according to the temporary image
  • the aircraft body adjusts a vertical angle of the image pickup device that takes the temporary image.
  • the navigation method further includes:
  • the aircraft body calculates a difference between the temporary horizontal coordinate and the starting horizontal coordinate, and generates lateral displacement information, wherein
  • the starting horizontal coordinate is a position coordinate of a reference target in a coordinate system established according to the reference image
  • the temporary horizontal coordinate is a position coordinate of a temporary target in a coordinate system established according to the temporary image
  • the aircraft body adjusts a horizontal angle of the image pickup device that takes the temporary image.
  • the navigation method further includes:
  • the camera device searches for a similar target in the temporary image in the temporary image, and extracts a reference feature similar to the target, and when the reference feature matches one of the temporary image features, the similar target is used as the target group Candidate target in .
  • the navigation method further includes:
  • the temporary location information, the first temporary scale information, and the second temporary scale information changes, the changed temporary image feature, temporary location information, and the first temporary scale are used.
  • the information and the second temporary scale information respectively update the temporary image feature, the temporary location information, the first temporary scale information, and the second temporary scale information before the change.
  • the navigation method further includes:
  • the camera device acquires and calculates temporary coordinate information, first temporary scale information, and second temporary scale information of a similar target, wherein the first temporary scale information is a width value of the similar target in the temporary image, The second temporary scale information is a height value of the similar target in the temporary image;
  • the camera device detects the target group, and the camera device tracks the temporary target, the temporary coordinate information, the first temporary scale information, and the second temporary scale information of all the candidate targets of the target group are respectively Performing weighting calculation on the temporary location information, the first temporary scale information, and the second temporary scale information of the temporary target, and outputting the result of the weighting calculation to the camera to display the result of the weighting calculation;
  • the imaging device does not detect the target group, and the camera device tracks the temporary target
  • the temporary position information, the first temporary scale information, and the second temporary scale information of the target are output to the camera to display The temporary location information, the first temporary scale information, and the second temporary scale information
  • the imaging device detects the target group, and the camera device does not track the temporary target, the temporary coordinate information, the first temporary scale information, and the second temporary scale information of all candidate targets of the target group are respectively performed. Weighting the calculation and outputting the result of the weighting calculation to the camera to display the result of the weighting calculation;
  • the information is not output to the imaging apparatus.
  • the coordinate system of the reference image is the same coordinate as the coordinate system of the temporary image. system.
  • the recording method of the temporary image feature of the target comprises: a gradient direction histogram, a local binary mode histogram, a scale invariant feature transform, and an accelerated robust feature.
  • the aircraft further includes an obstacle avoidance camera device, the pan/tilt head body is provided with the obstacle avoidance camera device, and the obstacle avoidance camera device is configured to capture an image in a flight direction when the aircraft is flying;
  • the navigation method further includes:
  • T 1 the distance between the aircraft and the obstacle is detected, if the distance is less than or equal to a distance threshold value, then performing S 3 ', if the distance is greater than said distance threshold value, then performing S 4'.
  • the method further comprises: performing P 1 when S 2 ' determines that there is an obstacle in the captured image;
  • P 1 determines whether the height of the obstacle above the altitude of the aircraft, and if so, then increase the altitude of the aircraft, and if not, the aircraft flight control in the current flight direction.
  • the method further comprises the following steps:
  • the captured image is sent to a remote control for controlling the aircraft.
  • the method further comprises the following steps:
  • the navigation method further includes:
  • the adjusting the flight speed of the aircraft according to the relationship between the distance and a set threshold comprises: reducing a flight speed of the aircraft when the distance is less than the set threshold.
  • the navigation method further includes:
  • the temporary image is an image in which an obstacle is captured in the image captured by the obstacle avoidance imaging device and an acquisition time is closest to the current time;
  • the reference image is an image in which an obstacle is present in the image captured by the obstacle avoidance camera and the capture time is before the capture time of the temporary image;
  • the obstacle in the reference image is recorded as a reference target
  • the obstacle in the temporary image is a temporary target.
  • the navigation method further includes:
  • the positive progressive effect of the present invention is that the camera for positioning or navigation of the present invention, the aircraft and the navigation method and system thereof have better balance and control effect of the pan-tilt stabilization system, so that the camera device has better stability and can Keep the camera direction always vertical down, so you can get accurate ground images without imaging compensation.
  • the navigation system can also achieve autonomous return of the aircraft, simplifying flight control.
  • FIG. 1 is a schematic view showing a state in which an aircraft of a first embodiment of the present invention is flying forward in a forward direction.
  • Fig. 2 is a schematic view showing a state in which the aircraft of the first embodiment of the present invention is flying forward when flying forward.
  • Fig. 3 is a view showing a state of the front side of the aircraft of the first embodiment of the present invention when flying vertically to the right.
  • Fig. 4 is a view showing a state in which the aircraft of the first embodiment of the present invention flies to the right while flying vertically.
  • Fig. 5 is a view showing a state in which the aircraft of the first embodiment of the present invention is vertically inclined to the left.
  • Fig. 6 is a view showing a state in which the aircraft of the first embodiment of the present invention flies to the left while flying vertically.
  • FIG. 7 is a schematic diagram of a camera according to an embodiment of Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a system of a navigation system of an aircraft according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the flight path of the aircraft of Embodiment 1 of the present invention.
  • Fig. 10 is a view showing an image captured by the image pickup apparatus according to Embodiment 1 of the present invention at a position P7 in Fig. 9 and a comparison image.
  • FIG. 11 is a schematic diagram of an aircraft tracking vehicle in another embodiment of the navigation system according to Embodiment 1 of the present invention.
  • FIG. 12 is another schematic diagram of an aircraft tracking vehicle in another embodiment of the navigation system according to Embodiment 1 of the present invention.
  • FIG 13 is an aircraft tracking in another embodiment of the navigation system according to Embodiment 1 of the present invention. Another schematic of the car.
  • Fig. 14 is a schematic view showing the state of the front side of the aircraft when flying forward according to another embodiment of the first embodiment of the present invention.
  • Fig. 15 is a view showing the state of the side of the aircraft flying forward when another embodiment of the first embodiment of the present invention is carried out.
  • Fig. 16 is a view showing the state of the front side of the aircraft when it is flying backward according to another embodiment of the first embodiment of the present invention.
  • Fig. 17 is a view showing a state of a side surface of the aircraft flying backward when another embodiment of the first embodiment of the present invention.
  • Fig. 18 is a schematic diagram showing another flight path of the aircraft and the image captured by the image pickup apparatus according to Embodiment 1 of the present invention.
  • Figure 19 is a schematic view showing another flight path of the aircraft of Embodiment 1 of the present invention.
  • Figure 20 is a schematic diagram of still another flight path of the aircraft of Embodiment 1 of the present invention.
  • Fig. 21 is a schematic diagram showing still another flight path of the aircraft according to Embodiment 1 of the present invention and an image captured by the obstacle avoidance imaging device.
  • Figure 22 is a flow chart showing an embodiment of a navigation method of an aircraft according to Embodiment 2 of the present invention.
  • Fig. 23 is a flow chart showing another embodiment of the navigation method of the aircraft according to the second embodiment of the present invention.
  • Fig. 24 is a flow chart showing still another embodiment of the navigation method of the aircraft according to the second embodiment of the present invention.
  • Fig. 25 is a flow chart showing still another embodiment of the navigation method of the aircraft according to the second embodiment of the present invention.
  • the camera for positioning or navigating the ground in this embodiment includes a camera device and a pan-tilt stabilization system.
  • the imaging direction of the imaging device is vertically downward.
  • 1 is a schematic view showing a state in which the aircraft is flying forward in a vertical direction
  • FIG. 2 is a schematic view showing a state in which the aircraft is flying forward to the front
  • FIG. 3 is a view showing a state in which the aircraft is flying vertically to the right
  • FIG. 5 is a schematic view showing a state in which the aircraft is flying vertically to the left
  • FIG. 6 is a schematic view showing a state in which the aircraft is flying vertically to the left.
  • the imaging directions of the image pickup device 15 in FIGS. 1-6 are all vertically downward.
  • the pan-tilt stabilization system includes a pan-tilt main body and a pan-tilt control system, and the pan-tilt control system is connected to the pan-tilt main body.
  • the imaging device is disposed on the pan/tilt head.
  • the pan/tilt control system includes a first controller 14, a first motor 11, a second motor 12, and a third motor 13.
  • the first motor 11, the second motor 12, and the third motor 13 are used to respectively control the rotation of the pan/tilt head in three axial directions of the three-dimensional coordinate system.
  • the first controller 14 includes a balance control module 141, and the balance control module 141 is electrically connected to the first motor 11, the second motor 12, and the third motor 13, respectively, and is used to control the The first motor 11, the second motor 12, and the third motor 13 are operated such that the imaging direction of the imaging device is vertically downward.
  • the first motor 11, the second motor 12, and the third motor 13 are used to respectively control the rotation of the pan/tilt head on the Yaw axis, the Pitch axis, and the Roll axis.
  • the navigation system of the aircraft of the present embodiment includes the camera and a second controller 2.
  • the camera 15 of the camera is used to capture an image while the aircraft is flying.
  • a time interval of capturing an image may be set in advance.
  • the set time interval is 1 minute, that is, the image capturing device 15 captures an image every other minute while the aircraft is flying.
  • the captured image can directly show the terrain, buildings, etc. under the aircraft.
  • the second controller 2 includes an acquisition module 21 and a correction module 22.
  • the obtaining module 21 is configured to acquire a set of reference images for displaying a specified flight line. Its
  • the reference image may be a topographic map of the designated flight line.
  • the designated flight path includes a return route of the aircraft, and a topographic map of the return route is captured by the camera device 15 when the aircraft is voyaged.
  • the position P5 to the position P6 are the detour routes of the aircraft, and during the detouring process, the ground camera device captures a set of topographic maps D1, D2, ..., Dn (accepted once every said time interval).
  • n is a positive integer, the specific content of the topographic map is not shown), and the topographic maps D1, D2, ..., Dn are used as reference images during the return flight of the aircraft from the position P6 back to the position P5.
  • the designated flight line may also include any line that specifies a starting point and an ending point for which the navigation system may obtain a corresponding reference image by pre-storing or downloading over the network.
  • the correction module 22 is configured to compare the newly captured image with the set of reference images when the aircraft is flying, and correct the current flight path of the aircraft.
  • the correction module 22 includes an image processing module 221, a comparison module 222, and a flight control module 223.
  • the image processing module 221 is configured to select a reference image from the set of reference images as a comparison image, and extract feature information from the newly captured image and the comparison image, respectively. More specifically, the image processing module 221 may extract feature information of each of the reference images of the set of reference images, and select a reference image having the same feature information as the latest captured image as the comparison image. Still taking Fig. 9 as an example, the aircraft captures the image D' when flying back to the position P7 (P7 between P6 and P5) during the return flight from the position P6 back to the position P5, and selects from the topographic map D1-Dn. The image with the most feature information (ie, the closest) of the same image D' is used as the comparison image.
  • the comparison module 222 is configured to compare the offsets of the same feature information in the newly captured image and the compared image.
  • the flight control module 223 is configured to change a current flight direction and a flying height of the aircraft according to the offset.
  • the flight direction of the aircraft should be shifted to the left.
  • the offset may also be combined with the current flight altitude and/or flight speed of the aircraft, and the like.
  • the image D′ captured by the ground camera device when the aircraft flies to the position P7 in FIG. 18 is further described below with reference to FIG. 10. There is a lake E in the image D′, and the topographic map Dm (1 ⁇ m ⁇ n) is in the reference image.
  • the lake E is the same feature information, by comparing the image D' and the topographic map Dm, The position of the lake E in the image D' is rightward relative to the position of the lake E in the topographic map Dm. At this time, the flight direction of the aircraft should be moved to the left on the basis of the original flight direction to narrow the lake E.
  • the navigation system of the present embodiment can quickly and accurately realize the addressing and return of the aircraft by capturing the image below the aircraft multiple times and comparing the image with the reference image to continuously correct the flight line.
  • the navigation system is also applicable to target tracking of the aircraft, and the target tracking method applicable to the aircraft is applied to the tracking aircraft.
  • the navigation system further includes a GPS positioning unit for receiving a GPS positioning signal of a location; the aircraft body flying toward a location corresponding to the GPS positioning signal.
  • the aircraft body described below is part of the aircraft.
  • the latitude and longitude coordinates returned by the GPS system can be obtained and can be forwarded, and the aircraft body can be activated, and the aircraft body can acquire the latitude and longitude coordinates forwarded by the GPS signal receiver, and the aircraft body according to the latitude and longitude.
  • the coordinates fly toward the location corresponding to the GPS positioning signal.
  • the camera takes a picture of the area where the reference target is located to obtain a reference image.
  • the camera device extracts the reference image feature of the reference target and the start position information of the reference target in the reference image from the reference image, and the reference target is at a position of a certain point of the reference image, and in actual operation, the point is based on the reference
  • the coordinate values in the coordinate system established by the image are recorded as the starting position information.
  • the temporary location information mentioned below is a point in the temporary image of the temporary target.
  • the coordinate value of the point in the coordinate system established according to the temporary image is recorded as temporary location information.
  • the reference image feature and the starting position information are initialized in the aircraft body, The image feature is used as a reference feature for subsequent selection of the target to be tracked, and the target is to be tracked as the target to be tracked.
  • the starting position information is used as the reference point of the image to be tracked by the camera, the coordinate system of the reference image and the temporary image.
  • the coordinate system is the same coordinate system.
  • the vertices of the upper left corner of the reference image are taken as the coordinate origin, and the origin of the coordinate is the right half of the x-axis, and the origin of the coordinate is the positive half of the y-axis.
  • the size of the coordinates is calculated in pixels as the smallest unit.
  • the background subtraction technology is used to extract the grayscale, color and other information of the reference target, and the interference caused by noise and pseudo-target is eliminated by techniques such as threshold processing and morphological operation, and then obtained by contour extraction and other techniques.
  • Reference image feature and start position information of the reference target is extracted.
  • the temporary image feature of the temporary target and the temporary location information in which the temporary target is located in the temporary image are extracted from the temporary image, wherein Image features include, but are not limited to, grayscale, color, shape, etc. of the temporary target.
  • Image features include, but are not limited to, grayscale, color, shape, etc. of the temporary target.
  • temporary image features of the temporary target are selectively selected according to the usage scenario.
  • the temporary target is determined to be the target to be tracked, and the camera calculates the deviation direction according to the difference between the initial position information and the temporary position information, that is, Calculating the difference between the horizontal coordinate of the start position information (ie, the abscissa of the start position information) and the horizontal coordinate of the temporary position information (ie, the abscissa of the temporary position information), and calculating the vertical coordinate of the start position information (i.e., the ordinate of the starting position information) and the difference between the vertical coordinates of the temporary position information (i.e., the ordinate of the temporary position information), and the two differences determine the direction of the deviation.
  • the aircraft body continues to track the temporary target in the deviation direction such that the difference between the starting position information and the temporary position information is gradually reduced.
  • the temporary location information is offset to the right by a certain distance from the starting location information. Then the main body of the aircraft will fly to the right side so that the temporary position information gradually approaches the starting position information.
  • the temporary image features of the target include, but are not limited to, a gradient direction histogram, a local binary mode histogram, a scale invariant feature transform, and an accelerated robust feature, that is, using template matching, histogram matching, or FLANN-based matching method, etc.
  • the aircraft body is tracked in the direction of the deviation.
  • the aircraft main body since the target to be tracked by the main body of the aircraft includes static targets and dynamic targets, in order to avoid collision between the main body of the aircraft and the target, and also avoiding the target being lost, the aircraft main body needs to maintain a reasonable distance therefrom.
  • the scale of the target in the image captured by the camera device becomes larger; when the aircraft body is too far away from the temporary target, the scale of the target in the image captured by the camera device becomes smaller.
  • the distance between the aircraft body and the temporary target is subject to the following constraints: 0.9*Z ⁇ X ⁇ 1.1*Z, where Z is a preset threshold and X is the aircraft body and temporary The distance between the targets.
  • An example is as follows: A car advances at a constant speed, and the aircraft is responsible for tracking the vehicle and maintaining a distance of 500 meters from the vehicle. The 500 meters is the set threshold.
  • the aircraft body determines the distance from the vehicle according to the change of the width value and the height value of the temporary target in the temporary image, wherein the width value refers to the length value of the temporary target lateral direction in the temporary image, and the height value refers to the temporary image in the temporary image.
  • the camera device extracts first reference scale information and second reference scale information of the reference target from the reference image, where the first reference scale information is a width value of the reference target in the reference image, and the second reference scale information is The height value of the reference target in the reference image;
  • the camera device determines that the reference image feature coincides with the temporary image feature, the camera device extracts the first temporary scale information of the temporary target and the second temporary scale information from the temporary image, the first temporary scale information being the width of the temporary target in the temporary image Value, the second temporary scale information is a height value of the temporary target in the temporary image;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the absolute value of the difference is large At a preset threshold, the aircraft body accelerates;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body decelerates;
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body accelerates;
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body decelerates.
  • the target tracking method of the aircraft also includes:
  • the temporary vertical coordinate is calculated.
  • a longitudinal displacement information is generated from a difference between the initial vertical coordinate, wherein the initial vertical coordinate is a position coordinate acquired by the camera device in a coordinate system established according to the reference image, and the temporary vertical coordinate is a camera image based on the temporary image The position coordinates obtained in the established coordinate system;
  • the pitch axis of the pan/tilt is rotated in accordance with the longitudinal displacement information to adjust the vertical angle of the image pickup device that takes the temporary image.
  • the temporary horizontal coordinate of the temporary position information does not coincide with the starting horizontal coordinate of the starting position information
  • calculating a difference between the temporary horizontal coordinate and the starting horizontal coordinate generates lateral displacement information
  • the starting horizontal coordinate is the camera device
  • the temporary horizontal coordinate is a position coordinate acquired by the camera device in a coordinate system established according to the temporary image according to the position coordinate acquired in the coordinate system established by the reference image;
  • the yaw axis of the pan/tilt is rotated in accordance with the lateral displacement information to adjust the horizontal angle of the image pickup device that takes the temporary image.
  • the pitch and yaw axes of the gimbal are rotated simultaneously such that the temporary vertical coordinates and the temporary horizontal coordinates change simultaneously.
  • the temporary target may undergo deformation, color change, etc. due to its own or external factors
  • the temporary image features of the target include, but are not limited to, a gradient direction histogram and a local binary mode. Histograms, scale-invariant feature transforms, and accelerated robust features change.
  • the present invention employs methods such as establishing a target group and updating temporary image features.
  • the camera device searches for a similar target in a temporary image in a temporary image, and extracts a reference feature similar to the target.
  • the reference feature matches one of the temporary image features, for example, the color of the similar target is the same as the color of the temporary target, or Similar colors and shapes are the same as the colors and shapes of the temporary targets, and similar targets are used as candidate targets in the target group.
  • the aircraft body detects any change of the temporary image feature, the temporary location information, the first temporary scale information, and the second temporary scale information, the changed temporary image feature, the temporary location information, the first temporary scale information, and The second temporary scale information respectively updates the temporary image feature, the temporary location information, the first temporary scale information and the second temporary scale information before the change to eliminate or weaken the tracking system due to factors such as changes or occlusion of the target appearance. Interference, which in turn improves the stability of the tracking system and the accuracy of the tracking results.
  • the position information and the scale information of the candidate target or the temporary target tracked by the aircraft body are selectively displayed in the image pickup apparatus (the image pickup apparatus has a display function), in an embodiment
  • the camera device is connected to the display, and displays the position information and the scale information of the candidate target or the temporary target using the display.
  • the camera device acquires and calculates temporary coordinate information, first temporary scale information, and second temporary scale information similar to the target, wherein the first temporary scale information is a width value similar to the target in the temporary image, and the second temporary scale information is a similar target The height value in the temporary image.
  • the camera device detects the target group, and the camera device tracks the temporary target, the temporary coordinate information, the first temporary scale information, and the second temporary scale information of the target group are respectively associated with the temporary position information of the temporary target and the first temporary scale.
  • the information and the second temporary scale information are weighted, and the result of the weighting calculation is output to the camera to display the result of the weighting calculation;
  • the imaging direction of the imaging device of the aircraft is the direction of the arrow F1, toward the car to be tracked, when there is more than one car in front of the aircraft, and the color of the car is the same.
  • the vehicles other than the temporary target are classified as the target group.
  • the temporary coordinate information, the first temporary scale information, and the second temporary scale information of each vehicle in the target group are respectively associated with the temporary target.
  • the temporary position information of the tracked vehicle, the first temporary scale information and the second temporary scale information are weighted, and the result of the weighting calculation is output to the camera to display the result of the weighting calculation;
  • the image capturing device When the image capturing device does not detect the target group, and the image capturing device tracks the temporary target, the temporary position information, the first temporary scale information, and the second temporary scale information of the temporary target are output to the image capturing device to display the temporary position information, a temporary scale information and second temporary scale information;
  • the imaging direction of the imaging device of the aircraft is the direction of the arrow F2, toward the vehicle to be tracked, and when there is only one vehicle in front of the aircraft, the vehicle is a temporary target, and
  • the temporary location information, the first temporary scale information and the second temporary scale information of the vehicle are output to the camera device to display the temporary location information, the first temporary scale information and the second temporary scale information;
  • the imaging device detects the target group and the imaging device does not track the temporary target
  • the temporary coordinate information, the first temporary scale information, and the second temporary scale information of the target group are respectively weighted and output, and the weighting calculation is output to the imaging device.
  • the imaging direction of the imaging device of the aircraft is in the direction of arrow F3, toward the vehicle to be tracked, when there are multiple vehicles in front of the aircraft, but no one vehicle is a temporary target.
  • One of the characteristics of a plurality of vehicles is the same as that of the vehicle to be tracked, and multiple vehicles are classified as target groups.
  • the temporary coordinate information of each vehicle in the target group and the first temporary ruler are used.
  • the degree information and the second temporary scale information are separately weighted, and the result of the weighting calculation is output to the camera to display the result of the weighting calculation; when the camera does not detect the target group, and the camera does not track the temporary target, No information is output to the camera.
  • the above-mentioned output to the camera device can also be displayed on the display, so that the operator can view the situation of the aircraft tracking target in real time.
  • the bird to be tracked can receive the GPS signal and start the main body of the aircraft.
  • the main body of the aircraft flies toward the location corresponding to the GPS positioning signal.
  • the camera device is placed on the bird.
  • the area is photographed to obtain a reference image, and the camera extracts reference image features of the reference object from the reference image, for example, the size, color, and the like of the bird, and extracts the starting position information of the reference target in the reference image, assuming small
  • the bird is at the center of the reference image.
  • the photographing is performed during the flight of the main body of the aircraft.
  • the imaging device calculates the deviation direction based on the difference between the initial position information and the temporary position information, and the aircraft body follows the deviation direction. And, the imaging device extracts the width value and the height value of the reference target from the reference image, and when the imaging device determines that the reference image feature is consistent with the temporary image feature, that is, the temporary target is the bird to be tracked, and the imaging device is from the temporary image. Extracting the width and height values of the bird.
  • the distance between the aircraft body and the bird is deviated from the preset threshold. For example, if the width value of the reference target is greater than the width value of the bird extracted from the temporary image, the distance between the aircraft body and the bird is greater than a threshold, and the aircraft body accelerates to maintain the distance between the aircraft body and the temporary target within a threshold range.
  • the threshold range is set in the present invention between 0.9* threshold and 1.1* threshold.
  • the camera calculates a difference between the temporary vertical coordinate and the initial vertical coordinate, and generates longitudinal displacement information, and the pitch axis of the aircraft body rotates according to the longitudinal displacement information to adjust the temporary capture The vertical angle of the camera of the image.
  • the camera calculates the difference between the temporary horizontal coordinate and the starting horizontal coordinate, and generates a lateral displacement letter.
  • the yaw axis of the aircraft body is rotated in accordance with the lateral displacement information to adjust the horizontal angle of the camera that captures the temporary image.
  • the flight direction of the aircraft body is directed to the bird to be tracked in real time, and at the same time, in the temporary image acquired by the camera device, the bird can be kept at the center point of the reference image, thereby facilitating viewing, Avoid the loss of tracking targets.
  • the technical effect of the navigation system provided by this embodiment is that during the flight of the aircraft body toward the location corresponding to the GPS positioning signal, the camera acquires the reference image and the temporary image, and acquires the feature parameters by using the reference image and the temporary image to make the aircraft
  • the subject can track the target by comparing and calculating the characteristic parameters without relying on the GPS positioning signal for tracking, thereby improving the accuracy of the tracking.
  • the navigation system further includes an obstacle avoidance camera device 3 and a third controller, and the pan/tilt head body is provided with the An obstacle avoidance camera device for capturing an image in a flight direction while the aircraft is flying.
  • Fig. 14 is a view showing a state of the front side of the aircraft flying forward
  • Fig. 15 is a view showing a state of the side of the aircraft flying forward
  • Fig. 16 is a view showing a state of the front side of the aircraft flying backward
  • Fig. 17 is a view A schematic diagram of the state of the side of the aircraft flying backwards.
  • the pan/tilt control system further includes a fourth controller, a fourth motor, a fifth motor and a sixth motor, wherein the fourth motor, the fifth motor and the sixth motor are respectively used for controlling The pan/tilt head rotates in three axial directions of the three-dimensional coordinate system.
  • the fourth controller includes a first balance control module, and the first balance control module is electrically connected to the fourth motor, the fifth motor, and the sixth motor, respectively, and is configured to control the first The four motors, the fifth motor, and the sixth motor are operated to ensure that the imaging direction of the obstacle avoidance imaging device is forward.
  • the fourth motor, the fifth motor, and the sixth motor are used to respectively control the rotation of the pan/tilt main body 12 on the Yaw axis, the Pitch axis, and the Roll axis.
  • the fourth motor and the first motor may be the same motor or different motors
  • the fifth motor and the second motor may be the same motor or different motors
  • the sixth motor and the third motor may be For the same motor or different motors.
  • the third controller is configured to determine whether there is a barrier in the image captured by the obstacle avoidance camera
  • the obstruction changes the flight direction of the aircraft based on the position of the obstacle, and if not, controls the aircraft to fly in the current flight direction. For example, as shown in FIG. 18, the aircraft originally flies in the direction indicated by the arrow S. The position of the left side of the aircraft is lower than the obstacle A, the circle 3 represents the camera of the flight, and the box below the aircraft is the captured image. There is an obstacle A in the lower left corner of the image, then the flight direction of the aircraft moves to the upper right, and instead moves in the direction indicated by the dotted arrow S'.
  • the navigation system further includes a ranging module, and the ranging module is a laser ranging module.
  • the third controller is further configured to: when determining that there is an obstacle in the image captured by the obstacle avoidance camera, calling the ranging module to detect a distance between the aircraft and the obstacle, if If the distance is less than or equal to a distance threshold, the flight direction of the aircraft is changed according to the position of the obstacle, and if the distance is greater than the distance threshold, the aircraft is controlled to fly in the current flight direction.
  • a distance threshold a distance threshold
  • the aircraft is measured by the distance measuring module to be 10 meters. If the preset distance threshold is 5 meters, then the aircraft is at this time. The flight will continue along the current flight direction S until the aircraft reaches the position P2.
  • the distance measuring module measures the distance between the obstacle A and the aircraft to be shortened to 5 meters, the flight direction will be changed and the arrow will be changed along the dotted line. Flight in the direction indicated by S'.
  • the third controller is further configured to determine whether the height of the obstacle is higher than the aircraft when it is determined that there is an obstacle in the image captured by the obstacle avoidance camera
  • the flight altitude if so, increases the flight altitude of the aircraft, and if not, controls the aircraft to fly in the current flight direction. Referring to Fig. 20, the aircraft originally flies in the direction indicated by the arrow S.
  • the mountain B1 and the mountain B2 There are two obstacles in front of the aircraft, namely, the mountain B1 and the mountain B2: if the aircraft is flying toward the mountain B1, the image captured by the obstacle avoidance camera There is a mountain B1, and it is judged that the height h1 of the mountain B1 is lower than the flying height of the aircraft, then the aircraft will continue to fly in the direction indicated by the arrow S; if the aircraft is flying toward the mountain B2, the obstacle avoiding camera There is a mountain B2 in the captured image. Knowing that the height h2 of the mountain B2 is higher than the flying height of the aircraft, then the aircraft will raise the flying height and fly in the direction indicated by the arrow S'.
  • the obstacle avoidance system in order to prevent the aircraft from colliding with an obstacle, the obstacle avoidance system also adjusts the flight speed of the aircraft by itself.
  • the flight speed of the aircraft In another embodiment of the obstacle avoidance system of Embodiment 1, in order to prevent the aircraft from colliding with an obstacle, the obstacle avoidance system also adjusts the flight speed of the aircraft by itself.
  • two specific ways to adjust the flight speed are two specific ways to adjust the flight speed:
  • the first way detecting the distance between the aircraft and the obstacle by means of the distance measuring module, and adjusting the flying speed.
  • the specific contents are as follows:
  • the third control module is further configured to: when determining that there is an obstacle in the image captured by the obstacle avoidance camera, calling the ranging module to detect a distance between the aircraft and the obstacle, according to the Adjusting the flight speed of the aircraft by the relationship between the distance and a set threshold. Adjusting the flight speed of the aircraft according to the relationship between the distance and a set threshold comprises: reducing a flight speed of the aircraft when the distance is less than the set threshold.
  • the set threshold can be freely set, and the specific value can be considered in combination with the distance threshold.
  • the setting threshold may be smaller than the distance threshold.
  • the navigation system determines whether the distance between the aircraft and the obstacle is less than or equal to the distance threshold to determine whether to change the flight direction; the set threshold may also be equal to the distance threshold, and at this time, the navigation system determines the obstacle avoidance When there is an obstacle in the image captured by the camera, it is determined whether the distance between the aircraft and the obstacle is less than or equal to Said distance threshold (equal to the set threshold value) to determine whether to change the flight direction while reducing the flying speed.
  • the second way adjust the flight speed with the image captured by the obstacle avoidance camera. Specifically
  • the contents are as follows:
  • the third controller is further configured to: when it is determined that an obstacle exists in the image captured by the obstacle avoidance camera, extract a reference image feature of the reference target from a reference image, and extract a temporary target temporary from a temporary image Image features.
  • the temporary image is an image in which the obstacle is captured by the obstacle avoidance imaging device, and an image with the closest time to the current time, that is, the latest captured image with an obstacle is captured;
  • the reference image is the In an image captured by the obstacle avoidance camera, there is an obstacle and an image whose capture time is before the capture time of the temporary image; an obstacle in the reference image is recorded as a reference target; an obstacle in the temporary image is recorded as Temporary goal.
  • the third controller is further configured to determine whether the reference image feature and the temporary image feature are consistent, and when the reference image feature and the temporary image feature are determined to be consistent, extracting the reference from the reference image
  • the reference scale information of the target extracting temporary scale information of the temporary target from the temporary image, and adjusting a flight speed of the aircraft according to the relationship between the reference scale information and the temporary scale information.
  • the specific adjustment manner is: when the temporary scale information is greater than the reference scale information, calculating a difference between the reference scale information and the temporary scale information, if the absolute value of the difference is greater than a difference At the threshold, the aircraft decelerates.
  • the aircraft flies from the position P3 to the position P4 at the speed V1 in the direction indicated by the arrow S.
  • the image below the position P3 is the image captured by the obstacle avoidance camera at the position P3, which is the reference image, and the obstacle C in the figure is the reference target;
  • the image below the position P4 is the obstacle avoidance camera at the position P4.
  • the captured image, this image is a temporary image, and the obstacle C' in the figure is a temporary target.
  • the image feature may be a shape, a color, or the like. Taking the image feature as a shape, if the shape of the obstacle C extracted from the reference image is the same as the shape of the obstacle C' extracted from the temporary image, it can be determined that the obstacle C is the same as the obstacle C'. Obstacle, if the shape of the obstacle C extracted from the reference image is different from the shape of the obstacle C' extracted from the temporary image, then It is determined that the obstacle C and the obstacle C' are different obstacles. Specifically, in FIG.
  • the shape of the obstacle C and the shape of the obstacle C' are both triangular and are the same obstacle, and the reference scale information of the obstacle C' and the temporary scale information of the obstacle C are further extracted, and the scale information is characterized.
  • the size of the obstacle in the image such as the length, area, etc. of the obstacle. If the temporary scale information is greater than the reference scale information and the difference between the reference scale information and the temporary scale information is greater than a difference threshold, indicating that the aircraft is in the process of gradually approaching the obstacle, controlling the aircraft to slow down , instead of flying at speed V2, speed V2 is less than speed V1.
  • the navigation system further includes a plurality of obstacle avoidance imaging devices respectively disposed in different directions of the pan/tilt head for capturing images in different directions.
  • the navigation system may be configured with one ranging module for each obstacle avoiding camera device, or all of the obstacle avoiding camera devices may share a rotatable distance measuring module capable of measuring distances in multiple directions.
  • the navigation system also includes a wireless transmitting module.
  • the wireless transmitting module is configured to send an image captured by the obstacle avoidance camera to a remote controller for controlling the aircraft.
  • the remote control can display the received image to facilitate the operator to see if there is an obstacle in front of the aircraft.
  • the third controller is further configured to receive a control signal sent by the remote controller and control the aircraft according to the control signal.
  • the aircraft of Embodiment 1 includes the navigation system of any one of Embodiments 1 and other components of the existing aircraft.
  • the navigation system is disposed on the aircraft body, which is not shown in the specific position map.
  • the aircraft includes the camera, and the camera device 15 is configured to capture an image when the aircraft is flying; as shown in FIG. 22, the navigation method includes the following steps:
  • Step 41 Acquire a set of reference images for displaying a designated flight line.
  • the image may be a topographic map of the designated flight line.
  • the designated flight path includes a return route of the aircraft, and a topographic map of the return route is captured by the camera device 15 when the aircraft is voyaged.
  • the designated flight line may also include any line that specifies a starting point and an ending point for which the navigation system may obtain a corresponding reference image by pre-storing or downloading over the network.
  • Step 42 When the aircraft is flying, compare the newly captured image with the set of reference images to correct the current flight path of the aircraft. Specific steps 42 include:
  • Step 421 Select a reference image from the set of reference images as a comparison image, and extract feature information from the newly captured image and the compared image respectively. More specifically, the feature information of each of the reference images of the set of reference images is extracted, and the reference image having the same feature information as the most recently captured image is selected as the comparison image.
  • Step 422 Align the offset of the same feature information in the newly captured image and the compared image.
  • Step 423 Change a current flight direction and a flying height of the aircraft according to the offset.
  • a navigation method suitable for target tracking of an aircraft is provided, and a target tracking method suitable for an aircraft is applied to the tracking aircraft.
  • the navigation method includes: receiving a GPS positioning signal of a place; the aircraft body flies toward a location corresponding to the GPS positioning signal. As shown in FIG. 23, the specific includes:
  • Step 51 Since the GPS signal receiver is set on the tracking target, the latitude and longitude coordinates returned by the GPS system can be obtained and can be forwarded, and the aircraft body can be activated, and the aircraft body can acquire the latitude and longitude coordinates forwarded by the GPS signal receiver, and the aircraft The main body flies toward the location corresponding to the GPS positioning signal according to the latitude and longitude coordinates.
  • the imaging device takes a picture of the area where the reference target is located to obtain a reference image.
  • Step 52 The camera device extracts, from the reference image, the reference image feature of the reference target and the start position information of the reference target in the reference image, and the reference target is at a position of a certain point of the reference image, and in actual operation, the point is Record the coordinate values in the coordinate system established from the reference image Start location information.
  • the temporary location information mentioned below is a point in the temporary image of the temporary target. In actual operation, the coordinate value of the point in the coordinate system established according to the temporary image is recorded as temporary location information.
  • the reference image feature and the starting position information are initialized in the aircraft body, and the reference image feature is used as a reference feature for subsequent selection of the target to be tracked, and the matching target is recorded as the target to be tracked, and the starting position information is used as the tracking target.
  • the coordinate system of the reference image is the same coordinate system as the coordinate system of the temporary image.
  • the vertices of the upper left corner of the reference image are taken as the coordinate origin, and the origin of the coordinate is the x-axis to the right.
  • the positive half-axis, with the coordinate origin down to the positive half-axis of the y-axis, calculates the size of the coordinates in pixels.
  • the aircraft body When the target to be tracked deviates from the reference point, the aircraft body is controlled to rotate to realize the transformation of the imaging angle of the camera and return it to the position of the reference point.
  • the background subtraction technology is used to extract the grayscale, color and other information of the reference target, and the interference caused by noise and pseudo-target is eliminated by techniques such as threshold processing and morphological operation, and then obtained by contour extraction and other techniques.
  • Reference image feature and start position information of the reference target is used to extract the grayscale, color and other information of the reference target, and the interference caused by noise and pseudo-target is eliminated by techniques such as threshold processing and morphological operation, and then obtained by contour extraction and other techniques.
  • Step 53 Since the camera device takes a photo in real time during the flight, when the camera device acquires the temporary image displaying the temporary target, the temporary image feature of the temporary target and the temporary location information of the temporary target in the temporary image are extracted from the temporary image, Among them, the temporary image features include, but are not limited to, the grayscale, color, shape, and the like of the temporary target. In the actual processing, temporary image features of the temporary target are selectively selected according to the usage scenario.
  • Step 54 If the reference image feature and the temporary image feature are consistent, it is assumed that the color and shape information of the reference target is extracted in the reference image, and the color and shape information of the temporary target are extracted in the temporary image, and only the color and reference of the temporary target are obtained.
  • the color contrast of the target is consistent, and when the shape of the temporary target is consistent with the shape of the reference target, the temporary target is determined to be the target to be tracked, and the camera calculates the deviation based on the difference between the initial position information and the temporary position information.
  • the direction that is, the difference between the horizontal coordinate of the start position information (ie, the abscissa of the start position information) and the horizontal coordinate of the temporary position information (ie, the abscissa of the temporary position information), and the start position information is calculated.
  • the vertical coordinate ie, the ordinate of the starting position information
  • the vertical coordinate of the temporary position information ie The difference between the ordinates of the temporary position information, two differences to determine the direction of the deviation.
  • the aircraft body continues to track the temporary target in the deviation direction such that the difference between the starting position information and the temporary position information is gradually reduced.
  • the temporary image features of the target include, but are not limited to, a gradient direction histogram, a local binary mode histogram, a scale invariant feature transform, and an accelerated robust feature, that is, using template matching, histogram matching, or FLANN-based matching method, etc.
  • step 55 the aircraft body follows the deviation direction.
  • the aircraft main body since the target to be tracked by the main body of the aircraft includes static targets and dynamic targets, in order to avoid collision between the main body of the aircraft and the target, and also avoiding the target being lost, the aircraft main body needs to maintain a reasonable distance therefrom.
  • the scale of the target in the image captured by the camera device becomes larger; when the aircraft body is too far away from the temporary target, the scale of the target in the image captured by the camera device becomes smaller.
  • the distance between the aircraft body and the temporary target is subject to the following constraints: 0.9*Z ⁇ X ⁇ 1.1*Z, where Z is a preset threshold and X is the aircraft body and temporary The distance between the targets.
  • An example is as follows: A car advances at a constant speed, and the aircraft is responsible for tracking the vehicle and maintaining a distance of 500 meters from the vehicle. The 500 meters is the set threshold.
  • the aircraft body determines the distance from the vehicle according to the change of the width value and the height value of the temporary target in the temporary image, wherein the width value refers to the length value of the temporary target lateral direction in the temporary image, and the height value refers to the temporary image in the temporary image.
  • the camera device extracts first reference scale information and second reference scale information of the reference target from the reference image, where the first reference scale information is a width value of the reference target in the reference image, and the second reference scale information is The height value of the reference target in the reference image;
  • the camera device determines that the reference image feature is consistent with the temporary image feature, the camera device extracts the first temporary scale information and the second temporary scale information of the temporary target from the temporary image, the first temporary ruler The degree information is a width value of the temporary target in the temporary image, and the second temporary scale information is a height value of the temporary target in the temporary image;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body accelerates;
  • the camera device calculates a difference between the first reference scale information and the first temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body decelerates;
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body accelerates;
  • the camera device calculates a difference between the second reference scale information and the second temporary scale information, if the absolute value of the difference is greater than a preset threshold When the aircraft body decelerates.
  • the target tracking method of the aircraft also includes:
  • the temporary vertical coordinate is calculated.
  • a longitudinal displacement information is generated from a difference between the initial vertical coordinate, wherein the initial vertical coordinate is a position coordinate acquired by the camera device in a coordinate system established according to the reference image, and the temporary vertical coordinate is a camera image based on the temporary image The position coordinates obtained in the established coordinate system;
  • the pitch axis of the pan/tilt is rotated in accordance with the longitudinal displacement information to adjust the vertical angle of the image pickup device that takes the temporary image.
  • the difference between the temporary horizontal coordinate and the initial horizontal coordinate is calculated to generate lateral displacement information, wherein the initial horizontal coordinate is a position coordinate acquired by the camera device in a coordinate system established according to the reference image, and the temporary horizontal coordinate is a position coordinate acquired by the camera device in a coordinate system established according to the temporary image;
  • the yaw axis of the pan/tilt is rotated in accordance with the lateral displacement information to adjust the horizontal angle of the image pickup device that takes the temporary image.
  • the pitch and yaw axes of the gimbal are rotated simultaneously such that the temporary vertical coordinates and the temporary horizontal coordinates change simultaneously.
  • the temporary target may undergo deformation, color change, etc. due to its own or external factors
  • the temporary image features of the target include, but are not limited to, a gradient direction histogram and a local binary mode. Histograms, scale-invariant feature transforms, and accelerated robust features change.
  • the present invention employs methods such as establishing a target group and updating temporary image features.
  • the camera device searches for a similar target in a temporary image in a temporary image, and extracts a reference feature similar to the target.
  • the reference feature matches one of the temporary image features, for example, the color of the similar target is the same as the color of the temporary target, or Similar colors and shapes are the same as the colors and shapes of the temporary targets, and similar targets are used as candidate targets in the target group.
  • the aircraft body detects any change of the temporary image feature, the temporary location information, the first temporary scale information, and the second temporary scale information, the changed temporary image feature, the temporary location information, the first temporary scale information, and The second temporary scale information respectively updates the temporary image feature, the temporary location information, the first temporary scale information and the second temporary scale information before the change to eliminate or weaken the tracking system due to factors such as changes or occlusion of the target appearance. Interference, which in turn improves the stability of the tracking system and the accuracy of the tracking results.
  • the position information and the scale information of the candidate target or the temporary target tracked by the aircraft body are selectively displayed in the image pickup apparatus (the image pickup apparatus has a display function), in an embodiment In the middle, the camera is connected to the display, and the display is displayed. The location information and the scale information of the candidate target or the temporary target are shown.
  • the camera device acquires and calculates temporary coordinate information, first temporary scale information, and second temporary scale information similar to the target, wherein the first temporary scale information is a width value similar to the target in the temporary image, and the second temporary scale information is a similar target The height value in the temporary image.
  • the camera device detects the target group, and the camera device tracks the temporary target, the temporary coordinate information, the first temporary scale information, and the second temporary scale information of the target group are respectively associated with the temporary position information of the temporary target and the first temporary scale.
  • the information and the second temporary scale information are weighted, and the result of the weighting calculation is output to the camera to display the result of the weighting calculation;
  • each of the target groups will be The temporary coordinate information, the first temporary scale information and the second temporary scale information of the vehicle are respectively weighted with the temporary target, that is, the temporary position information of the vehicle to be tracked, the first temporary scale information and the second temporary scale information, and are directed to the camera device. Outputting the result of the weighted calculation to display the result of the weighted calculation;
  • the image capturing device When the image capturing device does not detect the target group, and the image capturing device tracks the temporary target, the temporary position information, the first temporary scale information, and the second temporary scale information of the temporary target are output to the image capturing device to display the temporary position information, a temporary scale information and second temporary scale information;
  • the vehicle when there is only one vehicle in front, the vehicle is a temporary target, and the temporary position information, the first temporary scale information and the second temporary scale information of the vehicle are output to the camera device to display the temporary position.
  • the imaging device detects the target group and the imaging device does not track the temporary target
  • the temporary coordinate information, the first temporary scale information, and the second temporary scale information of the target group are respectively weighted and output, and the weighting calculation is output to the imaging device.
  • the aircraft tracking vehicle Take the aircraft tracking vehicle as an example.
  • one of the characteristics of multiple vehicles is the same as that of the vehicle to be tracked, and multiple vehicles are classified as target groups.
  • the temporary coordinate information, the first temporary scale information, and the second temporary scale information of each vehicle in the target group are respectively weighted, and the result of the weighting calculation is output to the imaging device to display plus The result of the weight calculation; when the camera group does not detect the target group, and the camera does not track the temporary target, the information is not output to the camera.
  • the above-mentioned output to the camera device can also be displayed on the display, so that the operator can view the situation of the aircraft tracking target in real time.
  • the bird to be tracked can receive the GPS signal, start the aircraft body, and the aircraft body flies toward the location corresponding to the GPS positioning signal.
  • the camera device takes a picture of the area where the bird is located to obtain a reference image, and the camera device
  • the reference image feature of the reference target is extracted from the reference image, for example, the size, color, and the like of the bird, and the starting position information of the reference target in the reference image is extracted, assuming that the bird is located at the center point of the reference image.
  • the photographing is performed during the flight of the main body of the aircraft.
  • the imaging device calculates the deviation direction based on the difference between the initial position information and the temporary position information, and the aircraft body follows the deviation direction. And, the imaging device extracts the width value and the height value of the reference target from the reference image, and when the imaging device determines that the reference image feature is consistent with the temporary image feature, that is, the temporary target is the bird to be tracked, and the imaging device is from the temporary image. Extracting the width and height values of the bird.
  • the distance between the aircraft body and the bird is deviated from the preset threshold. For example, if the width value of the reference target is greater than the width value of the bird extracted from the temporary image, the distance between the aircraft body and the bird is greater than a threshold, and the aircraft body accelerates to maintain the distance between the aircraft body and the temporary target within a threshold range.
  • the threshold range is set in the present invention between 0.9* threshold and 1.1* threshold.
  • the camera calculates a difference between the temporary vertical coordinate and the initial vertical coordinate, and generates longitudinal displacement information, and the pitch axis of the aircraft body rotates according to the longitudinal displacement information to adjust the temporary capture The vertical angle of the camera of the image. Thereafter, the camera calculates a difference between the temporary horizontal coordinate and the starting horizontal coordinate, and generates lateral displacement information, and the yaw axis of the aircraft body is rotated according to the lateral displacement information to adjust the taking of the temporary image. Like the horizontal angle of the device.
  • the flight direction of the aircraft body is directed to the bird to be tracked in real time, and at the same time, in the temporary image acquired by the camera device, the bird can be kept at the center point of the reference image, thereby facilitating viewing, Avoid the loss of tracking targets.
  • the navigation system further includes the following steps:
  • Step 61 capturing an image in a flight direction when the aircraft is flying
  • Step 62 Determine whether there is an obstacle in the captured image. If yes, go to step 63. If not, go to step 64.
  • Step 63 Change a flight direction of the aircraft according to a position of the obstacle.
  • Step 64 Control the aircraft to fly in the current flight direction.
  • the navigation method may further include:
  • step 65 is performed: determining whether the height of the obstacle is higher than the flying height of the aircraft, and if yes, executing step 66; if not, executing step 64.
  • Step 66 Detect a distance between the aircraft and the obstacle, if the distance is less than or equal to a distance threshold, increase a flying height of the aircraft, and if the distance is greater than the distance threshold, execute Step 64.
  • the navigation method may further include the following steps:
  • the captured image is sent to a remote control for controlling the aircraft, and a control signal from the remote controller is received and the aircraft is controlled in accordance with the control signal.
  • the controller can determine whether it is necessary to avoid obstacles from the image displayed in front of the aircraft displayed by the remote controller, and if necessary, the controller can also manually control the aircraft through the remote controller to adjust to safely pass through the front area.
  • the obstacle avoidance method in order to prevent the aircraft from colliding with an obstacle, also adjusts the flight speed of the aircraft by itself. Two adjustments are given below The specific way of the entire flight speed:
  • the first way detecting the distance between the aircraft and the obstacle by means of the distance measuring module, and adjusting the flying speed.
  • the specific steps involved are as follows:
  • Adjusting the flight speed of the aircraft according to the relationship between the distance and a set threshold comprises: reducing a flight speed of the aircraft when the distance is less than the set threshold.
  • the set threshold can be freely set, and the specific value can be considered in combination with the distance threshold.
  • the second way adjust the flight speed by means of the image captured by the camera.
  • the specific steps involved are as follows:
  • the reference image feature of the reference target is extracted from a reference image
  • the temporary image feature of the temporary target is extracted from a temporary image.
  • the temporary image is an image in which the obstacle is captured by the obstacle avoidance imaging device, and an image with the closest time to the current time, that is, the latest captured image with an obstacle is captured
  • the reference image is the In an image captured by the obstacle avoidance camera, there is an obstacle and an image whose capture time is before the capture time of the temporary image; an obstacle in the reference image is recorded as a reference target; an obstacle in the temporary image is recorded as Temporary goal.
  • the specific adjustment manner is: when the temporary scale information is greater than the reference scale information, calculating a difference between the reference scale information and the temporary scale information, if the absolute value of the difference is greater than a difference At the threshold, the aircraft decelerates.
  • the aircraft in order to perform obstacle avoidance in multiple directions, includes a plurality of obstacle avoidance camera devices, and the obstacle avoidance camera devices are respectively disposed in different directions of the pan/tilt head body for capturing images in different directions.
  • One of the plurality of obstacle avoidance camera devices is configured to capture an image in a flight direction when the aircraft is flying;
  • the obstacle avoidance method further includes:
  • the images captured by the obstacle avoidance cameras are spliced into a panoramic image.
  • the navigation system can observe the situation around the aircraft in all directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Navigation (AREA)

Abstract

提供一种对地定位或导航用相机、飞行器及其导航方法。该对地定位或导航用相机包括摄像装置(15),该摄像装置(15)的摄像方向竖直向下。该相机还包括云台增稳系统,其包括云台主体和与云台主体相连的云台控制系统。该摄像装置(15)设置在该云台主体上。通过云台增稳系统的平衡控制和减震作用,使得摄像装置(15)的平稳性更好,并且能保持其摄像方向始终垂直向下。即便没有GPS,该飞行器也能进行导航,其具有准确度高、适用范围广等优点。

Description

对地定位或导航用相机、飞行器及其导航方法
本申请要求申请日为2015年6月29日的中国专利申请CN 201510369281.2、申请日为2015年6月29日的中国专利申请CN 201520456110.9的优先权、申请日为2015年6月29日的中国专利申请CN 201510369254.5的优先权、申请日为2015年6月29日的中国专利申请CN 201520459593.8的优先权、申请日为2016年4月29日的中国专利申请CN 201610282288.5的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及飞行器导航领域,尤其涉及一种对地定位或导航用相机、飞行器及其导航方法。
背景技术
现有技术中,一些飞行器上设置了用于拍摄地面图像的相机,然而其一般是将相机设置在飞机上。在这种情况下,由于飞行器在飞行过程中飞行姿态会倾斜以及晃动,这种飞行姿态的变化容易造成相机镜头不能始终对地,因而需要成像补偿。为了取得较好的成像效果,现有技术一般会采用计算机计算补偿和传感器视角补偿的共同作用来补偿成像问题,然而,采用这样的多次补偿的方式,会使得成像误差大大增加,也十分不利于所成的地面图像的后续应用和计算。
此外,现有的飞行器广泛借助于GPS(全球定位系统)进行导航,但是这种导航方式始终存在一定的缺陷,例如:
1、GPS信号强度不足,不能进行定位。GPS能够实现定位主要依靠的是卫星,卫星的数量越多定位就越准确,但是一些区域因为高楼或高山的遮挡难以被卫星覆盖,这就使得在这些区域时GPS信号强度不足,难以进行 定位。
2、需要经常更新地图数据,否则会影响导航的准确度。现有的导航系统能够导航,除了要借助于GPS的精准定位外,还要依靠于准确的地图数据,为了获得最新的地图数据,用户常常需要进行软件更新,否则就很可能会出现导航线路错误等问题。
另外,飞行器在飞行过程如何避开障碍物是飞行控制的一大难题。现有技术中通常是依赖操控者的遥控水平,即操控者首先利用肉眼判断飞行器的周围是否有障碍物,然后通过遥控控制飞行器改变飞行的方向以躲避障碍物。然而,在实际操作中这种方式常常出现以下情况:
1、如果飞行器已经飞到了操控者的视野之外,操控者就无法知道飞行器的周围是否有障碍物;
2、即使操控者看见了障碍物,操控者也有可能出现操作不当,而使飞行器撞击障碍物。
由此看来,无论上述哪种情况出现,飞行器都难免会撞击障碍物,导致损坏或损毁。
发明内容
本发明要解决的技术问题是为了克服现有技术中飞行器所拍摄的地面图像需要多次成像补偿因而成像误差较大,并且不利于涉及地面图像的计算和应用的缺陷,提供一种对地定位或导航用相机、飞行器及其导航方法。
本发明是通过以下技术方案解决上述技术问题的:
本发明提供一种对地定位或导航用相机,其特点是,所述相机包括一摄像装置,所述摄像装置的摄像方向竖直向下;
所述相机还包括一云台增稳系统,所述云台增稳系统包括一云台主体和一云台控制系统,所述云台控制系统与所述云台主体连接;
所述摄像装置设于所述云台主体上。
这里所说的竖直向下一般可以理解为摄像方向垂直指向地面。所述云台增稳系统用于增加所述云台主体的稳定性,进而保证所述摄像装置的摄像方向竖直向下,并使得所述摄像装置捕获的图像更加清晰。
较佳地,所述云台控制系统包括一第一控制器、一第一电机、一第二电机及一云台主体,所述第一电机、所述第二电机分别用于控制所述云台主体在三维坐标系的Pitch轴和Roll轴的轴向上的转动,所述云台主体设置有一摄像装置,所述第一控制器包括一平衡控制模块,所述平衡控制模块分别与所述第一电机、所述第二电机电连接,并且用于控制所述第一电机、所述第二电机的运转以使得所述摄像装置的摄像方向竖直向下;
所述云台控制系统还包括一第三电机,所述第三电机用于控制所述云台主体在三维坐标系的Yaw轴的轴向上的转动,所述平衡控制模块还与所述第三电机电连接、并用于控制所述第一电机、所述第二电机、所述第三电机的运转以使得所述摄像装置的摄像方向竖直向下。
所述云台控制系统设有Pitch轴、Roll轴和Yaw轴的三轴电机。通过三轴电机的运转控制所述摄像装置的方向,保证所述摄像装置的摄像方向竖直向下,且能够以更平稳的方式进行控制。本领域技术人员应当理解,Yaw轴为航向轴、Pitch轴为俯仰轴、Roll轴为横滚轴,绕航向轴的转动为相对于飞机前进方向的左右转动,绕俯仰轴的转动为相对于飞机前进方向的上下转动,绕横滚轴的转动为以机身长度方向为轴的转动。
本发明还提供一种飞行器,包括一导航系统,其特点是,所述导航系统包括上述各优选条件任意组合的一种相机和一第二控制器;
所述相机的摄像装置用于在所述飞行器飞行时捕获图像;所述第二控制器包括一获取模块和一校正模块;
所述获取模块用于获取一组用于显示指定飞行线路的基准图像;
所述校正模块用于在所述飞行器飞行时,将所述摄像装置最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。
其中,虽然所述第一控制器和所述第二控制器使用了不同的命名,但是它们同属控制器,在实际制作中可以采用同一控制芯片,可以采用不同的控制芯片。因为所述摄像装置的摄像方向竖直向下,所以所述摄像装置捕获的图像实质就是所述飞行器下方的图像,即从飞行器的底部向下看(俯瞰)所得到的图像。所述导航系统不需要GPS就可以沿着所述指定飞行线路飞行,不必担心飞行的区域不在卫星的覆盖范围内或者地图数据没有及时更新等问题出现。所述导航系统具有准确度高、适用范围广等优点。
较佳地,所述获取模块用于获取所述指定飞行线路的地形图并将所述地形图作为基准图像。所述指定飞行线路的地形图是指在所述飞行器沿所述指定飞行线路飞行时所述飞行器下方的图像,包括但不仅限于地形、建筑等。
较佳地,所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置在所述飞行器去航时捕获而得。即所述摄像装置在所述飞行器去航时捕获的图像为用于显示所述飞行器的返航线路的基准图像。通过本技术方案,所述飞行器可以自主地沿着去航的线路返航,简化了飞行器的控制,尤其是,在飞行器已经飞出了操控者的视线范围内时,操控者即便不知道飞行器的所在位置,也可以利用所述导航系统实现飞行器的自动返航。
所述指定飞行线路还可以包括任意一条指定了起始点和终点的线路,针对这种指定飞行线路,所述导航系统可以通过预存或通过网络下载来获得对应的基准图像,以实现所述飞行器沿着指定飞行线路的自主飞行。
较佳地,所述校正模块包括一图像处理模块、一比对模块和一飞行控制模块;
所述图像处理模块用于从该组基准图像中选取一张基准图像作为比对图像,以及分别从最新捕获到的图像与所述比对图像中提取特征信息;
所述比对模块用于比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量;
所述飞行控制模块用于根据所述偏移量改变所述飞行器当前的飞行方向。
其中,所述比对图像应当与最新捕获到的图像至少有一个相同的特征信息,所述特征信息可以包括图像中的物体之间的比例关系、物体的轮廓和位置等等。若同一特征信息在最新捕获到的图像的位置相对于所述比对图像的位置向某个方向偏移,那么所述飞行器的飞行方向就应该向该方向的反方向移动。所述偏移量的计算还可以结合所述飞行器当前的飞行高度和/或飞行速度等。
较佳地,所述图像处理模块用于提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。两张图像相同的特征信息越多,说明捕获这两个图像的位置越接近。随着所述飞行器的飞行,所述摄像装置以一定时间间隔捕获到多个图像,所述导航系统通过多次校正能够更精确地保证飞行器沿着指定飞行线路飞行。
较佳地,所述飞行控制模块还用于根据所述偏移量改变所述飞行器当前的飞行高度。
较佳地,所述导航系统还包括GPS定位单元,所述GPS定位单元用于接收一地点的GPS定位信号;
飞行器主体朝向GPS定位信号所对应的地点飞行。
较佳地,飞行器主体朝向GPS定位信号所对应的地点飞行过程中,摄像装置对参考目标所在的区域进行拍照,以获得参考图像;
飞行器主体从所述参考图像中提取所述参考目标的参考图像特征和所述参考目标位于所述参考图像中的起始位置信息;
当设置在所述飞行器主体上的摄像装置获取到显示有临时目标的临时图像时,飞行器主体从所述临时图像中提取所述临时目标的临时图像特征和所述临时目标位于所述临时图像中的临时位置信息;
若所述参考图像特征和所述临时图像特征一致,则摄像装置根据所述起 始位置信息与所述临时位置信息之间的差值计算偏离方向;
所述飞行器主体按照所述偏离方向进行跟踪。
较佳地,所述摄像装置从所述参考图像中提取所述参考目标的第一参考尺度信息和第二参考尺度信息,所述第一参考尺度信息为所述参考目标在所述参考图像中的宽度值,所述第二参考尺度信息为所述参考目标在所述参考图像中的高度值;
当摄像装置判定所述参考图像特征与所述临时图像特征一致时,摄像装置从所述临时图像中提取所述临时目标的第一临时尺度信息和第二临时尺度信息,所述第一临时尺度信息为所述临时目标在所述临时图像中的宽度值,所述第二临时尺度信息为所述临时目标在所述临时图像中的高度值;
当所述第一参考尺度信息的数值大于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
当所述第一参考尺度信息的数值小于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动;
当所述第二参考尺度信息的数值大于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
当所述第二参考尺度信息的数值小于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动。
较佳地,所述飞行器主体与所述临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为所述飞行器主体与所述临时目标之间的距离。
较佳地,当所述临时位置信息的临时垂直坐标与起始位置信息的起始垂 直坐标不一致时,飞行器主体计算所述临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,其中,所述起始垂直坐标是参考目标在依据所述参考图像所建立的坐标系中位置坐标,所述临时垂直坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
飞行器主体调整拍取所述临时图像的所述摄像装置的垂直角度。
较佳地,当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一致时,飞行器主体计算所述临时水平坐标与所述起始水平坐标之间的差值,并生成横向位移信息,其中,所述起始水平坐标是参考目标在依据所述参考图像所建立的坐标系中的位置坐标,所述临时水平坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
所述飞行器主体调整拍取所述临时图像的所述摄像装置的水平角度。
较佳地,摄像装置在所述临时图像中实时查找类似目标,并提取类似目标的参比特征,当所述参比特征与所述临时图像特征中的一项相吻合时,将所述类似目标作为目标群中的候选目标。
较佳地,当飞行器主体监测到所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新。
较佳地,所述摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,所述第一暂时尺度信息为所述类似目标在所述临时图像中的宽度值,所述第二暂时尺度信息为所述类似目标在所述临时图像中的高度值;
当摄像装置检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与所述临时目标的临时位置信息、第一临时尺度信息和第二 临时尺度信息进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
当摄像装置没有检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示所述临时位置信息、第一临时尺度信息和第二临时尺度信息;
当摄像装置检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
当摄像装置没有检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,不向摄像装置输出信息。
较佳地,所述参考图像的坐标系与所述临时图像的坐标系是同一个坐标系。
较佳地,所述目标的临时图像特征的记录包括:梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征。
较佳地,所述导航系统还包括一避障摄像装置和一第三控制器,所述云台主体设置有所述避障摄像装置;
所述避障摄像装置用于在所述飞行器飞行时捕获飞行方向上的图像;
所述第三控制器用于判断所述避障摄像装置捕获的图像中是否存在障碍物,若存在,则根据所述障碍物的位置改变所述飞行器的飞行方向,若不存在,则控制所述飞行器沿当前飞行方向飞行。
所述避障摄像装置捕获的图像即为所述飞行器前方的图像,如飞行器向东飞行,那么避障摄像装置捕获的就是东面的图像,向西飞行则捕获的就是西面的图像。本发明中改变所述飞行器的飞行方向可以为控制所述飞行器的飞行方向向上、下、左、右等任意方向移动。在改变所述飞行器的飞行方向 之后,所述第三控制器会通过所述避障摄像装置最新捕获的图像来判断所述飞行器是否需要再次改变飞行方向。所述导航系统能够使得所述飞行器脱离操控者的控制,自动避开前方的障碍物,防止发生撞击,避免飞行器损坏。
较佳地,所述云台控制系统还包括一第四控制器、一第四电机和一第五电机,所述第四电机和所述第五电机分别用于控制所述云台主体在三维坐标系的Pitch轴和Roll轴的轴向上的转动,所述第四控制器包括一第一平衡控制模块,所述第一平衡控制模块分别与所述第四电机、所述第五电机电连接,并且用于控制所述第四电机、所述第五电机的运转。
本发明的所述云台控制系统可以仅设有Pitch轴和Roll轴的两轴电机,在第三轴Yaw轴的轴向则是固定的,无需设置对应的电机。这种情形下,所述第一平衡控制模块仅用于控制两轴电机的运转使得所述避障摄像装置的摄像方向向前,保证避障摄像装置的稳定性和平衡性。
较佳地,所述云台控制系统还包括一第六电机,所述第六电机用于控制所述云台主体在三维坐标系的Yaw轴的轴向上的转动,所述第一平衡控制模块还与所述第六电机电连接、并用于控制所述第四电机、所述第五电机和所述第六电机的运转。
这种情况下,通过三轴电机的运转控制所述避障摄像装置的方向,能够以更平稳的方式进行控制。本领域技术人员应当理解,Yaw轴为航向轴、Pitch轴为俯仰轴、Roll轴为横滚轴,绕航向轴的转动为相对于飞机前进方向的左右转动,绕俯仰轴的转动为相对于飞机前进方向的上下转动,绕横滚轴的转动为以机身长度方向为轴的转动。
较佳地,还包括一测距模组;
所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,调用所述测距模组检测所述飞行器与所述障碍物之间的距离,若所述距离小于或等于一距离阈值,则根据所述障碍物的位置改变所述飞行器的飞行方向,若所述距离大于所述距离阈值,则控制所述飞行器沿当前飞行 方向飞行。
由于所述避障摄像装置捕获的图像往往都是二维平面的,所以增设测距模组可以辅助判断障碍物的位置,防止飞行器过早地改变飞行方向。
较佳地,所述测距模组为一激光测距模组。
较佳地,所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,判断所述障碍物的高度是否高于所述飞行器的飞行高度,若是,则调高所述飞行器的飞行高度,若否,则控制所述飞行器沿当前飞行方向飞行。
考虑到飞行器可能会飞到一个较为复杂的环境,很难保证捕获的图像中完全没有障碍物,所以通过计算障碍物的高度来判断是否需要调整飞行器的飞行高度,本技术方案能够减少调整飞行器的飞行情况的次数,避免频繁地调整飞行器,增加系统的负担。
较佳地,所述导航系统包括多个避障摄像装置,该些避障摄像装置分别设于所述云台主体的不同方向上。
多个避障摄像装置可以捕获多个方向上的图像,进而可以多方位的避障。如在所述云台主体的前后左右分别设置避障摄像装置,可以使飞行器无论向哪个方向飞行都能避障。
较佳地,所述导航系统还包括一无线发送模块,所述无线发送模块用于将所述避障摄像装置捕获的图像发送至一用于控制所述飞行器的遥控器。
其中,所述遥控器可以显示接收到的图像,以便于操控者查看飞行器前方是否有障碍物。
较佳地,所述第三控制器还用于接收所述遥控器发出的控制信号并根据所述控制信号对所述飞行器进行控制。
其中,所述控制可以包括改变飞行器的飞行方向和飞行速度等。所述导航系统不仅能够自动避开障碍物,还能通过执行遥控器发出的控制信号避开障碍物,实现了手动自动一体化。
较佳地,所述第三控制模块还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,调用所述测距模组检测所述飞行器与所述障碍物之间的距离,根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度。
较佳地,所述根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度包括:在所述距离小于所述设定阈值时,降低所述飞行器的飞行速度。
较佳地,所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,根据一参考图像中参考目标的参考尺度信息与一临时图像中临时障目标的临时尺度信息的关系,调整所述飞行器的飞行速度;
所述临时图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间距离当前时刻最近的图像;
所述参考图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间在所述临时图像的捕获时间之前的图像;
所述参考图像中的障碍物记为参考目标;
所述临时图像中的障碍物即为临时目标。
较佳地,所述第三控制器还用于:
从所述参考图像中提取所述参考目标的参考图像特征;
从所述临时图像中提取所述临时目标的临时图像特征;
当判定所述参考图像特征和所述临时图像特征一致时,从所述参考图像中提取所述参考目标的参考尺度信息,从所述临时图像中提取所述临时目标的临时尺度信息;
当所述临时尺度信息大于所述参考尺度信息时,计算所述参考尺度信息与所述临时尺度信息之间的差值,若所述差值的绝对值大于一差值阈值时,所述飞行器减速运动。
本发明还提供一种飞行器,其特点是,包括上述各优选条件任意组合的一种的导航系统。
本发明还提供一种飞行器的导航方法,其特点是,所述飞行器包括上述各优选条件任意组合的一种相机,所述相机的摄像装置用于在所述飞行器飞行时捕获图像;
所述导航方法包括:
S1、获取一组用于显示指定飞行线路的基准图像;
S2、在所述飞行器飞行时,将最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。
较佳地,S1包括获取所述指定飞行线路的地形图并将所述地形图作为基准图像。
较佳地,所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置在所述飞行器去航时捕获而得。
较佳地,S2包括:
S21、从该组基准图像中选取一张基准图像作为比对图像,分别从最新捕获到的图像与所述比对图像中提取特征信息;
S22、比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量;
S23、根据所述偏移量改变所述飞行器当前的飞行方向。
较佳地,S21包括:提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。
较佳地,S23还包括根据所述偏移量改变所述飞行器当前的飞行高度。
较佳地,所述导航方法还包括:
接收一地点的GPS定位信号;
飞行器主体朝向GPS定位信号所对应的地点飞行。
较佳地,所述导航方法还包括:
飞行器主体朝向GPS定位信号所对应的地点飞行过程中,所述摄像装置还对参考目标所在的区域进行拍照,以获得参考图像;
飞行器主体从所述参考图像中提取所述参考目标的参考图像特征和所述参考目标位于所述参考图像中的起始位置信息;
当设置在所述飞行器主体上的摄像装置获取到显示有临时目标的临时图像时,飞行器主体从所述临时图像中提取所述临时目标的临时图像特征和所述临时目标位于所述临时图像中的临时位置信息;
若所述参考图像特征和所述临时图像特征一致,则摄像装置根据所述起始位置信息与所述临时位置信息之间的差值计算偏离方向;
所述飞行器主体按照所述偏离方向进行跟踪。
较佳地,所述导航方法还包括:
所述摄像装置从所述参考图像中提取所述参考目标的第一参考尺度信息和第二参考尺度信息,所述第一参考尺度信息为所述参考目标在所述参考图像中的宽度值,所述第二参考尺度信息为所述参考目标在所述参考图像中的高度值;
当摄像装置判定所述参考图像特征与所述临时图像特征一致时,摄像装置从所述临时图像中提取所述临时目标的第一临时尺度信息和第二临时尺度信息,所述第一临时尺度信息为所述临时目标在所述临时图像中的宽度值,所述第二临时尺度信息为所述临时目标在所述临时图像中的高度值;
当所述第一参考尺度信息的数值大于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
当所述第一参考尺度信息的数值小于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动;
当所述第二参考尺度信息的数值大于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
当所述第二参考尺度信息的数值小于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动。
较佳地,所述导航方法还包括:
所述飞行器主体与所述临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为所述飞行器主体与所述临时目标之间的距离。
较佳地,所述导航方法还包括:
当所述临时位置信息的临时垂直坐标与起始位置信息的起始垂直坐标不一致时,飞行器主体计算所述临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,其中,所述起始垂直坐标是参考目标在依据所述参考图像所建立的坐标系中位置坐标,所述临时垂直坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
飞行器主体调整拍取所述临时图像的所述摄像装置的垂直角度。
较佳地,所述导航方法还包括:
当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一致时,飞行器主体计算所述临时水平坐标与所述起始水平坐标之间的差值,并生成横向位移信息,其中,所述起始水平坐标是参考目标在依据所述参考图像所建立的坐标系中的位置坐标,所述临时水平坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
所述飞行器主体调整拍取所述临时图像的所述摄像装置的水平角度。
较佳地,所述导航方法还包括:
摄像装置在所述临时图像中实时查找类似目标,并提取类似目标的参比特征,当所述参比特征与所述临时图像特征中的一项相吻合时,将所述类似目标作为目标群中的候选目标。
较佳地,所述导航方法还包括:
当飞行器主体监测到所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新。
较佳地,所述导航方法还包括:
所述摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,所述第一暂时尺度信息为所述类似目标在所述临时图像中的宽度值,所述第二暂时尺度信息为所述类似目标在所述临时图像中的高度值;
当摄像装置检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与所述临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
当摄像装置没有检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示所述临时位置信息、第一临时尺度信息和第二临时尺度信息;
当摄像装置检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
当摄像装置没有检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,不向摄像装置输出信息。
较佳地,所述参考图像的坐标系与所述临时图像的坐标系是同一个坐标 系。
较佳地,所述目标的临时图像特征的记录方法包括:梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征。
较佳地,所述飞行器还包括一避障摄像装置,所述云台主体设置有所述避障摄像装置,所述避障摄像装置用于在所述飞行器飞行时捕获飞行方向上的图像;
所述导航方法还包括:
S1’、在所述飞行器飞行时捕获飞行方向上的图像;
S2’、判断捕获的图像中是否存在障碍物,若存在,则执行S3’,若不存在,则执行S4’;
S3’、根据所述障碍物的位置改变所述飞行器的飞行方向;
S4’、控制所述飞行器沿当前飞行方向飞行。
较佳地,还包括;
在S2’判断出捕获的图像中存在障碍物时,执行T1
T1、检测所述飞行器与所述障碍物之间的距离,若所述距离小于或等于一距离阈值,则执行S3’,若所述距离大于所述距离阈值,则执行S4’。
较佳地,还包括在S2’判断出捕获的图像中存在障碍物时,执行P1
P1、判断所述障碍物的高度是否高于所述飞行器的飞行高度,若是,则调高所述飞行器的飞行高度,若否,则控制所述飞行器沿当前飞行方向飞行。
较佳地,还包括以下步骤:
将捕获的图像发送至一用于控制所述飞行器的遥控器。
较佳地,还包括以下步骤:
接收所述遥控器发出的控制信号并根据所述控制信号对所述飞行器进行控制。
较佳地,所述导航方法还包括:
在S2’判断出捕获的图像中存在障碍物时,检测所述飞行器与所述障碍 物之间的距离,根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度。
较佳地,所述根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度包括:在所述距离小于所述设定阈值时,降低所述飞行器的飞行速度。
较佳地,所述导航方法还包括:
在S2’判断出捕获的图像中存在障碍物时,根据一参考图像中参考目标的参考尺度信息与一临时图像中临时目标的临时尺度信息的关系,调整所述飞行器的飞行速度;
所述临时图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间距离当前时刻最近的图像;
所述参考图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间在所述临时图像的捕获时间之前的图像;
所述参考图像中的障碍物记为参考目标;
所述临时图像中的障碍物即为临时目标。
较佳地,所述导航方法还包括:
从所述参考图像中提取所述参考目标的参考图像特征;
从所述临时图像中提取所述临时目标的临时图像特征;
当判定所述参考图像特征和所述临时图像特征一致时,从所述参考图像中提取所述参考目标的参考尺度信息,从所述临时图像中提取所述临时目标的临时尺度信息;
当所述临时尺度信息大于所述参考尺度信息时,计算所述参考尺度信息与所述临时尺度信息之间的差值,若所述差值的绝对值大于一差值阈值时,所述飞行器减速运动。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明的对地定位或导航用相机、飞行器及其导航方法和系统通过云台增稳系统的平衡控制和减震作用,使得摄像装置的平稳性更好并且能够保持其摄像方向始终垂直向下,从而无需进行成像补偿即可获得准确的地面图像。同时,还能够实现在没有GPS的情况下进行导航,不必担心飞行的区域不在卫星的覆盖范围内或者地图数据没有及时更新等问题出现,达到了准确度高、适用范围广等优点。此外,所述导航系统还能实现飞行器的自主返航,简化了飞行控制。
附图说明
图1为本发明的实施例1的飞行器向前垂直飞时正面的状态示意图。
图2为本发明的实施例1的飞行器向前垂直飞时侧面的状态示意图。
图3为本发明的实施例1的飞行器向右垂直飞时正面的状态示意图。
图4为本发明的实施例1的飞行器向右垂直飞时侧面的状态示意图。
图5为本发明的实施例1的飞行器向左垂直飞时正面的状态示意图。
图6为本发明的实施例1的飞行器向左垂直飞时侧面的状态示意图。
图7为本发明的实施例1的一种实施方式的相机的示意图。
图8为本发明实施例1的一种实施方式的飞行器的导航系统的系统示意图。
图9为本发明的实施例1的飞行器的飞行路线示意图。
图10为本发明的实施例1的摄像装置在图9中的位置P7捕获到的图像及比对图像的示意图。
图11为本发明的实施例1的导航系统的另一种实施方式中飞行器跟踪车的示意图。
图12为本发明的实施例1的导航系统的另一种实施方式中飞行器跟踪车的另一示意图。
图13为本发明的实施例1的导航系统的另一种实施方式中飞行器跟踪 车的又一示意图。
图14为本发明的实施例1的另一种实施方式飞行器向前飞时正面的状态示意图。
图15为本发明的实施例1的另一种实施方式飞行器向前飞时侧面的状态示意图。
图16为本发明的实施例1的另一种实施方式飞行器向后飞时正面的状态示意图。
图17为本发明的实施例1的另一种实施方式飞行器向后飞时侧面的状态示意图。
图18为本发明的实施例1的飞行器的另一飞行路线及摄像装置捕获的图像的示意图。
图19为本发明的实施例1的飞行器的另一飞行路线示意图。
图20为本发明的实施例1的飞行器的又一飞行路线示意图。
图21为本发明的实施例1的飞行器的再一飞行路线及避障摄像装置捕获的图像的示意图。
图22为本发明实施例2的飞行器的导航方法的一种实施方式的流程图。
图23为本发明的实施例2的飞行器的导航方法的另一种实施方式的流程图。
图24为本发明的实施例2的飞行器的导航方法的再一实施方式的流程图。
图25为本发明的实施例2的飞行器的导航方法的又一实施方式的流程图。
具体实施方式
实施例1
本实施例的对地定位或导航用相机包括一摄像装置和一云台增稳系统。所述摄像装置的摄像方向竖直向下。图1示出了飞行器向前垂直飞时正面的状态示意图,图2示出了飞行器向前垂直飞时侧面的状态示意图;图3示出了飞行器向右垂直飞时正面的状态示意图,图4示出了飞行器向右垂直飞时侧面的状态示意图;图5示出了飞行器向左垂直飞时正面的状态示意图,图6示出了飞行器向左垂直飞时侧面的状态示意图。图1-6中摄像装置15的摄像方向均竖直向下。
所述云台增稳系统包括一云台主体和一云台控制系统,所述云台控制系统与所述云台主体连接。所述摄像装置设于所述云台主体上。
其中,所述云台控制系统,如图7所示,包括一第一控制器14、一第一电机11、一第二电机12和一第三电机13。所述第一电机11、所述第二电机12及所述第三电机13用于分别控制所述云台主体在三维坐标系的三个轴向上的转动。所述第一控制器14包括一平衡控制模块141,所述平衡控制模块141分别与所述第一电机11、所述第二电机12、所述第三电机13电连接,并且用于控制所述第一电机11、所述第二电机12及所述第三电机13的运转以使得所述摄像装置的摄像方向竖直向下。
所述第一电机11、所述第二电机12及所述第三电机13用于分别控制所述云台主体在Yaw轴、Pitch轴和Roll轴上的转动。
如图8所示,本实施例的飞行器的导航系统包括所述相机和一第二控制器2。
所述相机的摄像装置15用于在所述飞行器飞行时捕获图像。在所述摄像装置15进行捕获时,可以预先设定一捕获图像的时间间隔。例如,设定时间间隔为1分钟,即在所述飞行器飞行时,每隔1分钟摄像装置15捕获一次图像。捕获的图像可以直接显示出飞行器下方的地形、建筑等。
所述第二控制器2包括一获取模块21和一校正模块22。
所述获取模块21用于获取一组用于显示指定飞行线路的基准图像。其 中,所述基准图像可以为所述指定飞行线路的地形图。所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置15在所述飞行器去航时捕获而得。以图9为例,由位置P5到位置P6为飞行器的去航线路,在去航过程中对地摄像装置捕获一组地形图D1、D2、……、Dn(每隔所述时间间隔捕获一次,n为正整数,地形图的具体内容未示出),在飞行器由位置P6飞回位置P5的返航过程中,地形图D1、D2、……、Dn作为基准图像使用。所述指定飞行线路还可以包括任意一条指定了起始点和终点的线路,针对这种指定飞行线路,所述导航系统可以通过预存或通过网络下载来获得对应的基准图像。
所述校正模块22用于在所述飞行器飞行时,将最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。
具体地,所述校正模块22包括一图像处理模块221、一比对模块222和一飞行控制模块223。
所述图像处理模块221用于从该组基准图像中选取一张基准图像作为比对图像,以及分别从最新捕获到的图像与所述比对图像中提取特征信息。更具体地,所述图像处理模块221可以提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。还是以图9为例,飞行器在由位置P6飞回位置P5的返航过程中,飞到位置P7(P7在P6和P5之间)时捕获到图像D’,从地形图D1-Dn中选取与图像D’相同的特征信息最多(即最接近)的一张作为比对图像。
所述比对模块222用于比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量。
所述飞行控制模块223用于根据所述偏移量改变所述飞行器当前的飞行方向和飞行高度。
例如,若同一特征信息在最新捕获到的图像的位置相对于所述比对图像的位置向右偏移,那么所述飞行器的飞行方向就应该向左移动。所述偏移量 的计算还可以适当地结合所述飞行器当前的飞行高度和/或飞行速度等。下面结合图10进一步说明:飞行器飞到图18中的位置P7时对地摄像装置捕获的图像D’,图像D’中有一个湖E,地形图Dm(1≤m≤n)为基准图像中的一个,且与图像D’相同的特征信息最多(也包括湖E),故将地形图Dm作为比对图像,湖E即为相同的特征信息,通过比较图像D’和地形图Dm可知,图像D’中湖E的位置相对于地形图Dm中湖E的位置偏右,那么此时,所述飞行器的飞行方向就应该在原先的飞行方向的基础上向左移动,以缩小湖E在图像D’和在地形图Dm中偏移量d。本实施例的导航系统通过多次捕获飞行器下方的图像,并将图像与基准图像进行比对,不断地校正飞行线路,可以快速、准确地实现飞行器的寻址和返航。
在实施例1的导航系统的另一实施方式中,导航系统还适用于飞行器的目标跟踪,适用于飞行器的目标跟踪方法应用于跟踪飞行器。所述导航系统还包括GPS定位单元,所述GPS定位单元用于接收一地点的GPS定位信号;飞行器主体朝向GPS定位信号所对应的地点飞行。下述的飞行器主体为飞行器的一部分。
由于要跟踪目标上设置有GPS信号接收仪,能获取到GPS系统返回给它的经纬度坐标并能进行转发,启动飞行器主体,飞行器主体能获取到GPS信号接收仪转发的经纬度坐标,飞行器主体按照经纬度坐标朝向GPS定位信号所对应的地点飞行,在飞行过程中,摄像装置对参考目标所在的区域进行拍照,以获得参考图像。
摄像装置从参考图像中提取参考目标的参考图像特征和参考目标位于参考图像中的起始位置信息,参考目标在参考图像的某一个点的位置上,在实际操作中,将该点在依据参考图像建立的坐标系中的坐标值记作起始位置信息。同理,下文中提及的临时位置信息是临时目标在临时图像中的某一点,在实际操作中,将该点在依据临时图像建立的坐标系中的坐标值记作临时位置信息。并且,参考图像特征和起始位置信息被初始化在飞行器主体中,参 考图像特征作为后续甄选要跟踪目标的参考特征,与之符合的才记作要跟踪的目标,起始位置信息作为要跟踪目标在摄像装置获取图像的参考点,参考图像的坐标系与临时图像的坐标系是同一个坐标系,在本发明中以参考图像的左上角顶点为坐标原点,以坐标原点向右为x轴的正半轴,以坐标原点向下为y轴的正半轴,以像素为最小单位计算坐标的大小。当要跟踪的目标偏离该参考点时,控制飞行器主体转动,以实现摄像装置拍摄角度的变换,并使其重回参考点的位置。在实际处理中,采用背景减等技术提取出参考目标的灰度、颜色等信息,通过阈值处理、形态学操作等技术消除噪声、伪目标等带来的干扰,而后再通过轮廓提取等技术得到参考目标的参考图像特征和起始位置信息。
由于摄像装置在飞行过程中实时拍照,当摄像装置获取到显示有临时目标的临时图像时,从临时图像中提取临时目标的临时图像特征和临时目标位于临时图像中的临时位置信息,其中,临时图像特征包括但不限于临时目标的灰度、颜色、形状等。在实际处理过程中,根据使用场景有选择的提取临时目标的临时图像特征。
如果参考图像特征和临时图像特征一致,假设,在参考图像中提取了参考目标的颜色和形状信息,在临时图像中提取了临时目标的颜色和形状信息,只有临时目标的颜色与参考目标的颜色对比一致,并且,临时目标的形状与参考目标的形状对比一致时,则判定该临时目标为要跟踪的目标,摄像装置根据起始位置信息与临时位置信息之间的差值计算偏离方向,即,计算起始位置信息的水平坐标(即起始位置信息的横坐标)与临时位置信息的水平坐标(即临时位置信息的横坐标)之间的差值,并计算起始位置信息的垂直坐标(即起始位置信息的纵坐标)与临时位置信息的垂直坐标(即临时位置信息的纵坐标)之间的差值,两个差值来确定偏离的方向。飞行器主体按照偏离方向继续跟踪临时目标,使得起始位置信息与临时位置信息之间的差值逐步减小。例如,临时位置信息相对于起始位置信息向右偏离了一定距离, 那么飞行器主体就会偏向右侧飞行,以使得临时位置信息逐渐靠近起始位置信息。其中,目标的临时图像特征包括但不限于梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征,即采用模板匹配、直方图匹配或者基于FLANN的匹配方法等来锁定临时目标为要跟踪的目标。
飞行器主体按照偏离方向进行跟踪。
此外,由于飞行器主体要跟踪的目标包括静态的目标和动态的目标,为了避免飞行器主体与目标相撞,同时也避免目标被跟丢,需要飞行器主体与之保持合理的距离。当飞行器主体与临时目标太近时,摄像装置拍摄出来的图像中目标的尺度会变大;当飞行器主体与临时目标太远时,摄像装置拍摄出来的图像中目标的尺度会变小。通过控制飞行器主体加速或者减速运动,使飞行器主体与临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为飞行器主体与临时目标之间的距离。举例如下:一辆车匀速前进,飞行器负责跟踪该车辆,并与车保持500米的距离,500米即为设定的阈值。
飞行器主体根据临时图像中临时目标的宽度值和高度值的变化来判定与车之间的距离,其中宽度值是指在临时图像中临时目标横向的长度值,高度值是指在临时图像中临时目标纵向的长度值。在本实施例中,摄像装置从参考图像中提取参考目标的第一参考尺度信息和第二参考尺度信息,第一参考尺度信息为参考目标在参考图像中的宽度值,第二参考尺度信息为参考目标在参考图像中的高度值;
当摄像装置判定参考图像特征与临时图像特征一致时,摄像装置从临时图像中提取临时目标的第一临时尺度信息和第二临时尺度信息,第一临时尺度信息为临时目标在临时图像中的宽度值,第二临时尺度信息为临时目标在临时图像中的高度值;
当第一参考尺度信息的数值大于第一临时尺度信息的数值时,摄像装置计算第一参考尺度信息和第一临时尺度信息之间的差值,若差值的绝对值大 于预先设定的阈值时,飞行器主体加速运动;
当第一参考尺度信息的数值小于第一临时尺度信息的数值时,摄像装置计算第一参考尺度信息和第一临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体减速运动;
当第二参考尺度信息的数值大于第二临时尺度信息的数值时,摄像装置计算第二参考尺度信息和第二临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体加速运动;
当第二参考尺度信息的数值小于第二临时尺度信息的数值时,摄像装置计算第二参考尺度信息和第二临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体减速运动。
当摄像装置拍摄到的临时目标在临时图像中的位置远离参考点时,需要及时调整飞行器主体的飞行方向,通过飞行方向的调整使得临时目标在临时图像的位置始终保持在参考点,故适用于飞行器的目标跟踪方法还包括:
当摄像装置判断临时位置信息的临时垂直坐标(即临时位置信息的临时纵坐标)与起始位置信息的起始垂直坐标(即起始位置信息的起始纵坐标)不一致时,计算临时垂直坐标与起始垂直坐标之间的差值生成纵向位移信息,其中,起始垂直坐标是摄像装置在依据参考图像所建立的坐标系中获取的位置坐标,临时垂直坐标是摄像装置在依据临时图像所建立的坐标系中获取的位置坐标;
云台的pitch轴按照纵向位移信息转动,以调整拍取临时图像的摄像装置的垂直角度。
当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一致时,计算临时水平坐标与起始水平坐标之间的差值生成横向位移信息,其中,起始水平坐标是摄像装置在依据参考图像所建立的坐标系中获取的位置坐标,临时水平坐标是摄像装置在依据临时图像所建立的坐标系中获取的位置坐标;
云台的yaw轴按照横向位移信息转动,以调整拍取临时图像的摄像装置的水平角度。
在另一种实施方式中,云台的pitch轴和yaw轴同时转动,使得临时垂直坐标和临时水平坐标同时变化。
进一步的,在飞行器主体对临时目标进行跟踪的过程中,临时目标由于自身或者外界的原因可能会发生形变、色变等,目标的临时图像特征包括但不限于梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征会发生变化。对于这种情况,本发明采用建立目标群和更新临时图像特征等方法。
摄像装置在临时图像中实时查找类似目标,并提取类似目标的参比特征,当参比特征与临时图像特征中的一项相吻合时,例如,类似目标的颜色与临时目标的颜色相同,或者类似目标的颜色和形状分别与临时目标的颜色和形状相同,则将类似目标作为目标群中的候选目标。
当飞行器主体监测到临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新,以消除或减弱由于目标外表的变化或遮挡等因素带给跟踪系统的干扰,进而提高跟踪系统的稳定性和跟踪结果的准确性。
为了便于操作人员查看,在本发明中,将飞行器主体跟踪的候选目标或者临时目标的位置信息和尺度信息有选择地显示在摄像装置(所述摄像装置具有显示功能)中,在一种实施例中,摄像装置连接显示器,使用显示器显示候选目标或者临时目标的位置信息和尺度信息。
摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,第一暂时尺度信息为类似目标在临时图像中的宽度值,第二暂时尺度信息为类似目标在临时图像中的高度值。
当摄像装置检测到目标群,且,摄像装置跟踪到临时目标时,将目标群的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
以飞行器跟踪车为例,如图11所示,飞行器的摄像装置的摄像方向为箭头F1的方向,朝向要跟踪的车,在飞行器的前方有不只一辆车时,并且,车的颜色都一样,则除临时目标之外的车都归为目标群,在这种情况下,将目标群中的各个车的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与临时目标即要跟踪的车的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
当摄像装置没有检测到目标群,且,摄像装置跟踪到临时目标时,将临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示临时位置信息、第一临时尺度信息和第二临时尺度信息;
以飞行器跟踪车为例,如图12所示,飞行器的摄像装置的摄像方向为箭头F2的方向,朝向要跟踪的车,在飞行器的前方只有一辆车时,该车即为临时目标,将该车的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示临时位置信息、第一临时尺度信息和第二临时尺度信息;
当摄像装置检测到目标群,且,摄像装置没有跟踪到临时目标时,将目标群的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
以飞行器跟踪车为例,如图13所示,飞行器的摄像装置的摄像方向为箭头F3的方向,朝向要跟踪的车,在飞行器的前方有多辆车时,但没有一辆车为临时目标,多辆车中的某一个特性与要跟踪的车一样,将多辆车归为目标群,在这种情况下,将目标群中的各个车的暂时坐标信息、第一暂时尺 度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;当摄像装置没有检测到目标群,且,摄像装置没有跟踪到临时目标时,不向摄像装置输出信息。
上述向摄像装置输出的结果还可以在显示器上进行显示,便于操作人员实时查看飞行器跟踪目标的情况。
以飞行器主体要跟踪一只小鸟为例,要跟踪的小鸟能接收到GPS信号,启动飞行器主体,飞行器主体朝向GPS定位信号所对应的地点飞行,在飞行过程中,摄像装置对小鸟所在的区域进行拍照,以获得参考图像,摄像装置从参考图像中提取参考目标的参考图像特征,例如,小鸟的大小、颜色等,并提取参考目标位于参考图像中的起始位置信息,假设小鸟位于参考图像的中心点。飞行器主体飞行的过程中进行拍照,当摄像装置获取到显示有临时目标的临时图像时,从临时图像中提取临时目标的临时图像特征和临时目标位于临时图像中的临时位置信息,当参考图像特征和临时图像特征一致,则摄像装置根据起始位置信息与临时位置信息之间的差值计算偏离方向,飞行器主体按照偏离方向进行跟踪。并且,摄像装置从参考图像中提取参考目标的宽度值和高度值,当摄像装置判定参考图像特征与临时图像特征一致时,即该临时目标即为要跟踪的小鸟,摄像装置从临时图像中提取小鸟的宽度值和高度值,当参考目标的宽度值和高度值与临时图像中提取小鸟的宽度值和高度值不一致时,说明飞行器主体与小鸟的距离偏离了预先设定的阈值,例如,参考目标的宽度值大于从临时图像中提取小鸟的宽度值,则说明飞行器主体与小鸟的距离大于阈值,飞行器主体加速运动,使飞行器主体与临时目标的距离保持在阈值范围内,在本发明中设定阈值范围在0.9*阈值到1.1*阈值之间。当临时目标偏离参考图像的中心点时,摄像装置计算临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,飞行器主体的pitch轴按照纵向位移信息转动,以调整拍取临时图像的摄像装置的垂直角度。之后,摄像装置计算临时水平坐标与起始水平坐标之间的差值,并生成横向位移信 息,飞行器主体的yaw轴按照横向位移信息转动,以调整拍取临时图像的摄像装置的水平角度。这样,通过调整飞行器主体,使得飞行器主体的飞行方向实时朝向要跟踪的小鸟,同时,在摄像装置获取到的临时图像中,小鸟能保持在参考图像的中心点处,从而便于查看,也避免了跟踪目标的丢失。
本实施例提供的导航系统的技术效果是:在飞行器主体朝向GPS定位信号所对应的地点飞行过程中,摄像装置获取到参考图像和临时图像,通过对参考图像和临时图像获取特征参数,使得飞行器主体在不依赖GPS定位信号进行跟踪的情况下,能通过特征参数的比对和计算来对目标进行跟踪,从而提高了跟踪的精确度。
在实施例1的导航系统的另一实施方式中,如图14-17所示,所述导航系统还包括一避障摄像装置3和一第三控制器,所述云台主体设置有所述避障摄像装置;所述避障摄像装置用于在所述飞行器飞行时捕获飞行方向上的图像。图14示出了飞行器向前飞时正面的状态示意图,图15示出了飞行器向前飞时侧面的状态示意图;图16示出了飞行器向后飞时正面的状态示意图,图17示出了飞行器向后飞时侧面的状态示意图。所述云台控制系统还包括一第四控制器、一第四电机、一第五电机和一第六电机,所述第四电机、所述第五电机及所述第六电机用于分别控制所述云台主体在三维坐标系的三个轴向上的转动。所述第四控制器包括一第一平衡控制模块,所述第一平衡控制模块分别与所述第四电机、所述第五电机、所述第六电机电连接,并且用于控制所述第四电机、所述第五电机及所述第六电机的运转以保证所述避障摄像装置的摄像方向向前。
所述第四电机、所述第五电机及所述第六电机用于分别控制所述云台主体12在Yaw轴、Pitch轴和Roll轴上的转动。所述第四电机与所述第一电机可以为同一电机或不同电机,所述第五电机与所述第二电机可以为同一电机或不同电机,所述第六电机与所述第三电机可以为同一电机或不同电机。
所述第三控制器用于判断所述避障摄像装置捕获的图像中是否存在障 碍物,若存在,则根据所述障碍物的位置改变所述飞行器的飞行方向,若不存在,则控制所述飞行器沿当前飞行方向飞行。例如,如图18所示,飞行器原先沿箭头S所表示的方向飞行,飞行器的左前方偏下的位置有障碍物A,圆圈3表示飞行的摄像装置,飞行器下方的方框为捕获的图像,图像中左下角有障碍物A,那么飞行器的飞行方向就向右上方移动,改为沿虚线箭头S’所表示的方向飞行。
为了使所述导航系统更准确地判断出障碍物的位置,所述导航系统还进一步地包括一测距模组,所述测距模为一激光测距模组。
所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,调用所述测距模组检测所述飞行器与所述障碍物之间的距离,若所述距离小于或等于一距离阈值,则根据所述障碍物的位置改变所述飞行器的飞行方向,若所述距离大于所述距离阈值,则控制所述飞行器沿当前飞行方向飞行。以图19为例,飞行器在位置P1时,通过所述测距模组测得障碍物A与飞行器之间的距离为10米,若预先设定的距离阈值为5米,那么此时飞行器就会先沿着当前的飞行方向S继续飞行,直至飞行器到达位置P2,测距模组测得障碍物A与飞行器之间的距离缩短为5米时,才会改变飞行方向,改为沿虚线箭头S’所表示的方向飞行。
为了避免频繁地调整飞行器的飞行情况,所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,判断所述障碍物的高度是否高于所述飞行器的飞行高度,若是,则调高所述飞行器的飞行高度,若否,则控制所述飞行器沿当前飞行方向飞行。下面参考图20进行说明,飞行器原先沿箭头S所表示的方向飞行,飞行器的前方有两个障碍物,分别为高山B1和高山B2:如果飞行器面向高山B1飞行,避障摄像装置捕获的图像中就存在高山B1,通过判断,得知高山B1的高度h1的高度低于飞行器的飞行高度,那么此时飞行器会继续沿箭头S所表示的方向飞行;如果飞行器面向高山B2飞行,避障摄像装置捕获的图像中就存在高山B2,通过判断,得 知高山B2的高度h2的高度高于飞行器的飞行高度,那么此时飞行器会调高飞行高度,改为沿箭头S’所表示的方向飞行。
在实施例1的避障系统的另一种实施方式中,为了防止飞行器与障碍物发生碰撞,所述避障系统还会自行调整飞行器的飞行速度。下面给出了两种调整飞行速度的具体方式:
第一种方式:借助测距模组检测所述飞行器与所述障碍物之间的距离,调整飞行速度。具体包括的内容如下:
所述第三控制模块还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,调用所述测距模组检测所述飞行器与所述障碍物之间的距离,根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度。所述根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度包括:在所述距离小于所述设定阈值时,降低所述飞行器的飞行速度。
其中,所述设定阈值可以自由设定,具体的数值大小可以结合所述距离阈值进行考虑。所述设定阈值可以小于所述距离阈值,此时,导航系统在判断出所述避障摄像装置捕获的图像中存在障碍物时,会先判断飞行器与障碍物之间的距离是否小于或等于所述距离阈值,以决定是否改变飞行方向,然后再判断飞行器与障碍物之间的距离是否小于所述设定阈值,以决定是否降低飞行速度;所述设定阈值也可以大于所述距离阈值,此时,导航系统在判断出所述避障摄像装置捕获的图像中存在障碍物时,会先判断飞行器与障碍物之间的距离是否小于所述设定阈值,以决定是否降低飞行速度,然后再判断飞行器与障碍物之间的距离是否小于或等于所述距离阈值,以决定是否改变飞行方向;所述设定阈值也可以等于所述距离阈值,此时,导航系统在判断出避障摄像装置捕获的图像中存在障碍物时,会判断飞行器与障碍物之间的距离是否小于或等于所述距离阈值(等于设定阈值),以决定是否改变飞行方向同时降低飞行速度。
第二种方式:借助避障摄像装置捕获的图像,调整飞行速度。具体包括 的内容如下:
所述第三控制器还用于在判断出所述避障摄像装置捕获的图像中存在障碍物时,从一参考图像中提取参考目标的参考图像特征,从一临时图像中提取临时目标的临时图像特征。其中,所述临时图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间距离当前时刻最近的图像,也就是最新捕获到的存在障碍物的图像;所述参考图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间在所述临时图像的捕获时间之前的图像;所述参考图像中的障碍物记为参考目标;所述临时图像中的障碍物记为临时目标。
所述第三控制器还用于判断所述参考图像特征和所述临时图像特征是否一致,当判定所述参考图像特征和所述临时图像特征一致时,从所述参考图像中提取所述参考目标的参考尺度信息,从所述临时图像中提取所述临时目标的临时尺度信息,根据所述参考尺度信息与所述临时尺度信息的关系,调整所述飞行器的飞行速度。具体的调整方式为:当所述临时尺度信息大于所述参考尺度信息时,计算所述参考尺度信息与所述临时尺度信息之间的差值,若所述差值的绝对值大于一差值阈值时,所述飞行器减速运动。
下面参考图21对上述借助避障摄像装置捕获的图像,调整飞行速度进行说明:如图21所示,飞行器沿箭头S所表示的方向,以速度V1,由位置P3飞行到位置P4。位置P3下方的图像为避障摄像装置在位置P3捕获到的图像,此图像即为参考图像,图中的障碍物C即为参考目标;位置P4下方的图像为避障摄像装置在位置P4时捕获到的图像,此图像即为临时图像,图中的障碍物C’即为临时目标。通过提取障碍物C的参考图像特征和障碍物C’的临时图像特征,确定障碍物C与障碍物C’是否为同一障碍物,图像特征可以为形状、颜色等。以图像特征为形状为例,如果从参考图像中提取出的障碍物C的形状与从临时图像中提取出的障碍物C’的形状相同,那么可以确定障碍物C与障碍物C’为同一障碍物,如果从参考图像中提取出的障碍物C的形状与从临时图像中提取出的障碍物C’的形状不同,那么可以 确定障碍物C与障碍物C’为不同障碍物。具体到图21中,障碍物C的形状与障碍物C’的形状均为三角形,为同一障碍物,进一步提取障碍物C’的参考尺度信息和障碍物C的临时尺度信息,尺度信息表征了图像中障碍物的大小,例如障碍物的边长、面积等。如果所述临时尺度信息大于所述参考尺度信息且所述参考尺度信息与所述临时尺度信息之间的差值大于差值阈值,则表明飞行器正处于逐渐靠近障碍物的过程中,控制飞行器减速,改为以速度V2飞行,速度V2小于速度V1。
为了进行多方位的避障,所述导航系统还包括多个避障摄像装置,该些避障摄像装置分别设于所述云台主体的不同方向上,用于捕获不同方向的图像。此时,所述导航系统可以为每一避障摄像装置分别配置一个测距模组配合使用,也可以所有避障摄像装置共用一个可旋转的、能够测量多个方向的距离的测距模组。
所述导航系统还包括一无线发送模块。所述无线发送模块用于将所述避障摄像装置捕获的图像发送至一用于控制所述飞行器的遥控器。所述遥控器可以显示接收到的图像,以便于操控者查看飞行器前方是否有障碍物。
所述第三控制器还用于接收所述遥控器发出的控制信号并根据所述控制信号对所述飞行器进行控制。
实施例1的飞行器包括实施例1中任意一种实施方式的导航系统和现有飞行器的其它组件。所述导航系统设于所述飞行器主体上,具体位置图中未示出。
实施例2
本实施例的飞行器的导航方法,所述飞行器包括所述相机,所述摄像装置15用于在所述飞行器飞行时捕获图像;如图22所示,所述导航方法包括以下步骤:
步骤41、获取一组用于显示指定飞行线路的基准图像。其中,所述基准 图像可以为所述指定飞行线路的地形图。所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置15在所述飞行器去航时捕获而得。所述指定飞行线路还可以包括任意一条指定了起始点和终点的线路,针对这种指定飞行线路,所述导航系统可以通过预存或通过网络下载来获得对应的基准图像。
步骤42、在所述飞行器飞行时,将最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。具体步骤42包括:
步骤421、从该组基准图像中选取一张基准图像作为比对图像,分别从最新捕获到的图像与所述比对图像中提取特征信息。更具体地,提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。
步骤422、比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量。
步骤423、根据所述偏移量改变所述飞行器当前的飞行方向和飞行高度。
在本发明实施例的另一实施方式中,提供了适用于飞行器的目标跟踪的导航方法,适用于飞行器的目标跟踪方法应用于跟踪飞行器。所述导航方法包括:接收一地点的GPS定位信号;飞行器主体朝向GPS定位信号所对应的地点飞行。如图23所示,具体包括:
步骤51、由于要跟踪目标上设置有GPS信号接收仪,能获取到GPS系统返回给它的经纬度坐标并能进行转发,启动飞行器主体,飞行器主体能获取到GPS信号接收仪转发的经纬度坐标,飞行器主体按照经纬度坐标朝向GPS定位信号所对应的地点飞行,在飞行过程中,摄像装置对参考目标所在的区域进行拍照,以获得参考图像。
步骤52、摄像装置从参考图像中提取参考目标的参考图像特征和参考目标位于参考图像中的起始位置信息,参考目标在参考图像的某一个点的位置上,在实际操作中,将该点在依据参考图像建立的坐标系中的坐标值记作起 始位置信息。同理,下文中提及的临时位置信息是临时目标在临时图像中的某一点,在实际操作中,将该点在依据临时图像建立的坐标系中的坐标值记作临时位置信息。并且,参考图像特征和起始位置信息被初始化在飞行器主体中,参考图像特征作为后续甄选要跟踪目标的参考特征,与之符合的才记作要跟踪的目标,起始位置信息作为要跟踪目标在摄像装置获取图像的参考点,参考图像的坐标系与临时图像的坐标系是同一个坐标系,在本发明中以参考图像的左上角顶点为坐标原点,以坐标原点向右为x轴的正半轴,以坐标原点向下为y轴的正半轴,以像素为最小单位计算坐标的大小。当要跟踪的目标偏离该参考点时,控制飞行器主体转动,以实现摄像装置拍摄角度的变换,并使其重回参考点的位置。在实际处理中,采用背景减等技术提取出参考目标的灰度、颜色等信息,通过阈值处理、形态学操作等技术消除噪声、伪目标等带来的干扰,而后再通过轮廓提取等技术得到参考目标的参考图像特征和起始位置信息。
步骤53、由于摄像装置在飞行过程中实时拍照,当摄像装置获取到显示有临时目标的临时图像时,从临时图像中提取临时目标的临时图像特征和临时目标位于临时图像中的临时位置信息,其中,临时图像特征包括但不限于临时目标的灰度、颜色、形状等。在实际处理过程中,根据使用场景有选择的提取临时目标的临时图像特征。
步骤54、如果参考图像特征和临时图像特征一致,假设,在参考图像中提取了参考目标的颜色和形状信息,在临时图像中提取了临时目标的颜色和形状信息,只有临时目标的颜色与参考目标的颜色对比一致,并且,临时目标的形状与参考目标的形状对比一致时,则判定该临时目标为要跟踪的目标,摄像装置根据起始位置信息与临时位置信息之间的差值计算偏离方向,即,计算起始位置信息的水平坐标(即起始位置信息的横坐标)与临时位置信息的水平坐标(即临时位置信息的横坐标)之间的差值,并计算起始位置信息的垂直坐标(即起始位置信息的纵坐标)与临时位置信息的垂直坐标(即 临时位置信息的纵坐标)之间的差值,两个差值来确定偏离的方向。飞行器主体按照偏离方向继续跟踪临时目标,使得起始位置信息与临时位置信息之间的差值逐步减小。例如,临时位置信息相对于起始位置信息向右偏离了一定距离,那么飞行器主体就会偏向右侧飞行,以使得临时位置信息逐渐靠近起始位置信息。其中,目标的临时图像特征包括但不限于梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征,即采用模板匹配、直方图匹配或者基于FLANN的匹配方法等来锁定临时目标为要跟踪的目标。
步骤55、飞行器主体按照偏离方向进行跟踪。
此外,由于飞行器主体要跟踪的目标包括静态的目标和动态的目标,为了避免飞行器主体与目标相撞,同时也避免目标被跟丢,需要飞行器主体与之保持合理的距离。当飞行器主体与临时目标太近时,摄像装置拍摄出来的图像中目标的尺度会变大;当飞行器主体与临时目标太远时,摄像装置拍摄出来的图像中目标的尺度会变小。通过控制飞行器主体加速或者减速运动,使飞行器主体与临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为飞行器主体与临时目标之间的距离。举例如下:一辆车匀速前进,飞行器负责跟踪该车辆,并与车保持500米的距离,500米即为设定的阈值。
飞行器主体根据临时图像中临时目标的宽度值和高度值的变化来判定与车之间的距离,其中宽度值是指在临时图像中临时目标横向的长度值,高度值是指在临时图像中临时目标纵向的长度值。在本实施例中,摄像装置从参考图像中提取参考目标的第一参考尺度信息和第二参考尺度信息,第一参考尺度信息为参考目标在参考图像中的宽度值,第二参考尺度信息为参考目标在参考图像中的高度值;
当摄像装置判定参考图像特征与临时图像特征一致时,摄像装置从临时图像中提取临时目标的第一临时尺度信息和第二临时尺度信息,第一临时尺 度信息为临时目标在临时图像中的宽度值,第二临时尺度信息为临时目标在临时图像中的高度值;
当第一参考尺度信息的数值大于第一临时尺度信息的数值时,摄像装置计算第一参考尺度信息和第一临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体加速运动;
当第一参考尺度信息的数值小于第一临时尺度信息的数值时,摄像装置计算第一参考尺度信息和第一临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体减速运动;
当第二参考尺度信息的数值大于第二临时尺度信息的数值时,摄像装置计算第二参考尺度信息和第二临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体加速运动;
当第二参考尺度信息的数值小于第二临时尺度信息的数值时,摄像装置计算第二参考尺度信息和第二临时尺度信息之间的差值,若差值的绝对值大于预先设定的阈值时,飞行器主体减速运动。
当摄像装置拍摄到的临时目标在临时图像中的位置远离参考点时,需要及时调整飞行器主体的飞行方向,通过飞行方向的调整使得临时目标在临时图像的位置始终保持在参考点,故适用于飞行器的目标跟踪方法还包括:
当摄像装置判断临时位置信息的临时垂直坐标(即临时位置信息的临时纵坐标)与起始位置信息的起始垂直坐标(即起始位置信息的起始纵坐标)不一致时,计算临时垂直坐标与起始垂直坐标之间的差值生成纵向位移信息,其中,起始垂直坐标是摄像装置在依据参考图像所建立的坐标系中获取的位置坐标,临时垂直坐标是摄像装置在依据临时图像所建立的坐标系中获取的位置坐标;
云台的pitch轴按照纵向位移信息转动,以调整拍取临时图像的摄像装置的垂直角度。
当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一 致时,计算临时水平坐标与起始水平坐标之间的差值生成横向位移信息,其中,起始水平坐标是摄像装置在依据参考图像所建立的坐标系中获取的位置坐标,临时水平坐标是摄像装置在依据临时图像所建立的坐标系中获取的位置坐标;
云台的yaw轴按照横向位移信息转动,以调整拍取临时图像的摄像装置的水平角度。
在另一种实施例中,云台的pitch轴和yaw轴同时转动,使得临时垂直坐标和临时水平坐标同时变化。
进一步的,在飞行器主体对临时目标进行跟踪的过程中,临时目标由于自身或者外界的原因可能会发生形变、色变等,目标的临时图像特征包括但不限于梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征会发生变化。对于这种情况,本发明采用建立目标群和更新临时图像特征等方法。
摄像装置在临时图像中实时查找类似目标,并提取类似目标的参比特征,当参比特征与临时图像特征中的一项相吻合时,例如,类似目标的颜色与临时目标的颜色相同,或者类似目标的颜色和形状分别与临时目标的颜色和形状相同,则将类似目标作为目标群中的候选目标。
当飞行器主体监测到临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新,以消除或减弱由于目标外表的变化或遮挡等因素带给跟踪系统的干扰,进而提高跟踪系统的稳定性和跟踪结果的准确性。
为了便于操作人员查看,在本发明中,将飞行器主体跟踪的候选目标或者临时目标的位置信息和尺度信息有选择地显示在摄像装置(所述摄像装置具有显示功能)中,在一种实施例中,摄像装置连接显示器,使用显示器显 示候选目标或者临时目标的位置信息和尺度信息。
摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,第一暂时尺度信息为类似目标在临时图像中的宽度值,第二暂时尺度信息为类似目标在临时图像中的高度值。
当摄像装置检测到目标群,且,摄像装置跟踪到临时目标时,将目标群的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
以飞行器跟踪车为例,在前方有不只一辆车时,并且,车的颜色都一样,则除临时目标之外的车都归为目标群,在这种情况下,将目标群中的各个车的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与临时目标即要跟踪的车的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
当摄像装置没有检测到目标群,且,摄像装置跟踪到临时目标时,将临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示临时位置信息、第一临时尺度信息和第二临时尺度信息;
以飞行器跟踪车为例,在前方只有一辆车时,该车即为临时目标,将该车的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示临时位置信息、第一临时尺度信息和第二临时尺度信息;
当摄像装置检测到目标群,且,摄像装置没有跟踪到临时目标时,将目标群的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出加权计算的结果,以显示加权计算的结果;
以飞行器跟踪车为例,在前方有多辆车时,但没有一辆车为临时目标,多辆车中的某一个特性与要跟踪的车一样,将多辆车归为目标群,在这种情况下,将目标群中的各个车的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出加权计算的结果,以显示加 权计算的结果;当摄像装置没有检测到目标群,且,摄像装置没有跟踪到临时目标时,不向摄像装置输出信息。
上述向摄像装置输出的结果还可以在显示器上进行显示,便于操作人员实时查看飞行器跟踪目标的情况。
以飞行器主体要跟踪一只小鸟为例。要跟踪的小鸟能接收到GPS信号,启动飞行器主体,飞行器主体朝向GPS定位信号所对应的地点飞行,在飞行过程中,摄像装置对小鸟所在的区域进行拍照,以获得参考图像,摄像装置从参考图像中提取参考目标的参考图像特征,例如,小鸟的大小、颜色等,并提取参考目标位于参考图像中的起始位置信息,假设小鸟位于参考图像的中心点。飞行器主体飞行的过程中进行拍照,当摄像装置获取到显示有临时目标的临时图像时,从临时图像中提取临时目标的临时图像特征和临时目标位于临时图像中的临时位置信息,当参考图像特征和临时图像特征一致,则摄像装置根据起始位置信息与临时位置信息之间的差值计算偏离方向,飞行器主体按照偏离方向进行跟踪。并且,摄像装置从参考图像中提取参考目标的宽度值和高度值,当摄像装置判定参考图像特征与临时图像特征一致时,即该临时目标即为要跟踪的小鸟,摄像装置从临时图像中提取小鸟的宽度值和高度值,当参考目标的宽度值和高度值与临时图像中提取小鸟的宽度值和高度值不一致时,说明飞行器主体与小鸟的距离偏离了预先设定的阈值,例如,参考目标的宽度值大于从临时图像中提取小鸟的宽度值,则说明飞行器主体与小鸟的距离大于阈值,飞行器主体加速运动,使飞行器主体与临时目标的距离保持在阈值范围内,在本发明中设定阈值范围在0.9*阈值到1.1*阈值之间。当临时目标偏离参考图像的中心点时,摄像装置计算临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,飞行器主体的pitch轴按照纵向位移信息转动,以调整拍取临时图像的摄像装置的垂直角度。之后,摄像装置计算临时水平坐标与起始水平坐标之间的差值,并生成横向位移信息,飞行器主体的yaw轴按照横向位移信息转动,以调整拍取临时图像的摄 像装置的水平角度。这样,通过调整飞行器主体,使得飞行器主体的飞行方向实时朝向要跟踪的小鸟,同时,在摄像装置获取到的临时图像中,小鸟能保持在参考图像的中心点处,从而便于查看,也避免了跟踪目标的丢失。
在本实施例的另一种实施方式中,如图24所示,所述导航系统还包括以下步骤:
步骤61、在所述飞行器飞行时捕获飞行方向上的图像;
步骤62、判断捕获的图像中是否存在障碍物,若存在,则执行步骤63,若不存在,则执行步骤64。
步骤63、根据所述障碍物的位置改变所述飞行器的飞行方向。
步骤64、控制所述飞行器沿当前飞行方向飞行。
为了避免频繁地调整飞行器的飞行情况以及使所述导航系统更准确地判断出障碍物的位置,如图25所示,所述导航方法还可以进一步包括:
在判断出捕获的图像中存在障碍物时,执行步骤65:判断所述障碍物的高度是否高于所述飞行器的飞行高度,若是,则执行步骤66,若否,则执行步骤64。
步骤66、检测所述飞行器与所述障碍物之间的距离,若所述距离小于或等于一距离阈值,则调高所述飞行器的飞行高度,若所述距离大于所述距离阈值,则执行步骤64。
此外,所述导航方法还可以包括以下步骤:
将捕获的图像发送至一用于控制所述飞行器的遥控器,以及,接收所述遥控器发出的控制信号并根据所述控制信号对所述飞行器进行控制。
通过所述导航方法,操控者可以从遥控器显示出的飞行器前方的图像中判断是否需要躲避障碍物,若需要,操控者还能够通过遥控器手动控制飞行器进行调整,以安全通过前方区域。
在实施例2的导航方法的另一实施方式中,为了防止飞行器与障碍物发生碰撞,所述避障方法还会自行调整飞行器的飞行速度。下面给出了两种调 整飞行速度的具体方式:
第一种方式:借助测距模组检测所述飞行器与所述障碍物之间的距离,调整飞行速度。具体包括的步骤如下:
在判断出所述避障摄像装置捕获的图像中存在障碍物时,检测所述飞行器与所述障碍物之间的距离,根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度。所述根据所述距离与一设定阈值之间的关系,调整所述飞行器的飞行速度包括:在所述距离小于所述设定阈值时,降低所述飞行器的飞行速度。其中,所述设定阈值可以自由设定,具体的数值大小可以结合所述距离阈值进行考虑。
第二种方式:借助摄像装置捕获的图像,调整飞行速度。具体包括的步骤如下:
在判断出所述避障摄像装置捕获的图像中存在障碍物时,从一参考图像中提取参考目标的参考图像特征,从一临时图像中提取临时目标的临时图像特征。其中,所述临时图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间距离当前时刻最近的图像,也就是最新捕获到的存在障碍物的图像;所述参考图像为所述避障摄像装置捕获的图像中,存在障碍物且捕获时间在所述临时图像的捕获时间之前的图像;所述参考图像中的障碍物记为参考目标;所述临时图像中的障碍物记为临时目标。
判断所述参考图像特征和所述临时图像特征是否一致,当判定所述参考图像特征和所述临时图像特征一致时,从所述参考图像中提取所述参考目标的参考尺度信息,从所述临时图像中提取所述临时目标的临时尺度信息,根据所述参考尺度信息与所述临时尺度信息的关系,调整所述飞行器的飞行速度。具体的调整方式为:当所述临时尺度信息大于所述参考尺度信息时,计算所述参考尺度信息与所述临时尺度信息之间的差值,若所述差值的绝对值大于一差值阈值时,所述飞行器减速运动。
在实施例2的避障方法的另一实施方式中,为了进行多方位的避障,所 述飞行器包括多个避障摄像装置,该些避障摄像装置分别设于所述云台主体的不同方向上,用于捕获不同方向的图像。所述多个避障摄像装置中的一个摄像装置用于在所述飞行器飞行时捕获飞行方向上的图像;
所述避障方法还包括:
将该些避障摄像装置捕获的图像拼接成一全景图像。通过所述全景图像,所述导航系统可以全方位地观察飞行器周围的情况。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (36)

  1. 一种对地定位或导航用相机,其特征在于,所述相机包括一摄像装置,所述摄像装置的摄像方向竖直向下;
    所述相机还包括一云台增稳系统,所述云台增稳系统包括一云台主体和一云台控制系统,所述云台控制系统与所述云台主体连接;
    所述摄像装置设于所述云台主体上。
  2. 如权利要求1所述的相机,其特征在于,所述云台控制系统包括一第一控制器、一第一电机和一第二电机;
    所述第一电机、所述第二电机分别用于控制所述云台主体在三维坐标系的Pitch轴和Roll轴的轴向上的转动;
    所述第一控制器包括一平衡控制模块,所述平衡控制模块分别与所述第一电机、所述第二电机电连接,并且用于控制所述第一电机、所述第二电机的运转以使得所述摄像装置的摄像方向竖直向下;
    所述云台控制系统还包括一第三电机,所述第三电机用于控制所述云台主体在三维坐标系的Yaw轴的轴向上的转动,所述平衡控制模块还与所述第三电机电连接、并用于控制所述第一电机、所述第二电机、所述第三电机的运转以使得所述摄像装置的摄像方向竖直向下。
  3. 一种飞行器,包括一导航系统,其特征在于,所述导航系统包括权利要求1-2中至少一项所述的相机和一第二控制器;
    所述相机的摄像装置用于在所述飞行器飞行时捕获图像;所述第二控制器包括一获取模块和一校正模块;
    所述获取模块用于获取一组用于显示指定飞行线路的基准图像;
    所述校正模块用于在所述飞行器飞行时,将所述摄像装置最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。
  4. 如权利要求3所述的飞行器,其特征在于,所述获取模块用于获取 所述指定飞行线路的地形图并将所述地形图作为基准图像。
  5. 如权利要求4所述的飞行器,其特征在于,所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置在所述飞行器去航时捕获而得。
  6. 如权利要求3-5中至少一项所述的飞行器,其特征在于,所述校正模块包括一图像处理模块、一比对模块和一飞行控制模块;
    所述图像处理模块用于从该组基准图像中选取一张基准图像作为比对图像,以及分别从最新捕获到的图像与所述比对图像中提取特征信息;
    所述比对模块用于比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量;
    所述飞行控制模块用于根据所述偏移量改变所述飞行器当前的飞行方向。
  7. 如权利要求6所述的飞行器,其特征在于,所述图像处理模块用于提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。
  8. 如权利要求6所述的飞行器,其特征在于,所述飞行控制模块还用于根据所述偏移量改变所述飞行器当前的飞行高度。
  9. 如权利要求3-8中至少一项所述的飞行器,其特征在于,所述导航系统还包括GPS定位单元,所述GPS定位单元用于接收一地点的GPS定位信号;
    飞行器主体朝向GPS定位信号所对应的地点飞行。
  10. 如权利要求9所述的飞行器,其特征在于,
    飞行器主体朝向GPS定位信号所对应的地点飞行过程中,摄像装置对参考目标所在的区域进行拍照,以获得参考图像;
    飞行器主体从所述参考图像中提取所述参考目标的参考图像特征和所述参考目标位于所述参考图像中的起始位置信息;
    当设置在所述飞行器主体上的摄像装置获取到显示有临时目标的临时图像时,飞行器主体从所述临时图像中提取所述临时目标的临时图像特征和所述临时目标位于所述临时图像中的临时位置信息;
    若所述参考图像特征和所述临时图像特征一致,则摄像装置根据所述起始位置信息与所述临时位置信息之间的差值计算偏离方向;
    所述飞行器主体按照所述偏离方向进行跟踪。
  11. 如权利要求10所述的飞行器,其特征在于,
    所述摄像装置从所述参考图像中提取所述参考目标的第一参考尺度信息和第二参考尺度信息,所述第一参考尺度信息为所述参考目标在所述参考图像中的宽度值,所述第二参考尺度信息为所述参考目标在所述参考图像中的高度值;
    当摄像装置判定所述参考图像特征与所述临时图像特征一致时,摄像装置从所述临时图像中提取所述临时目标的第一临时尺度信息和第二临时尺度信息,所述第一临时尺度信息为所述临时目标在所述临时图像中的宽度值,所述第二临时尺度信息为所述临时目标在所述临时图像中的高度值;
    当所述第一参考尺度信息的数值大于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
    当所述第一参考尺度信息的数值小于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动;
    当所述第二参考尺度信息的数值大于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
    当所述第二参考尺度信息的数值小于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值, 若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动。
  12. 如权利要求11所述的飞行器,其特征在于,
    所述飞行器主体与所述临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为所述飞行器主体与所述临时目标之间的距离。
  13. 如权利要求12所述的飞行器,其特征在于,
    当所述临时位置信息的临时垂直坐标与起始位置信息的起始垂直坐标不一致时,飞行器主体计算所述临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,其中,所述起始垂直坐标是参考目标在依据所述参考图像所建立的坐标系中位置坐标,所述临时垂直坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
    飞行器主体调整拍取所述临时图像的所述摄像装置的垂直角度。
  14. 如权利要求13所述的飞行器,其特征在于,
    当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一致时,飞行器主体计算所述临时水平坐标与所述起始水平坐标之间的差值,并生成横向位移信息,其中,所述起始水平坐标是参考目标在依据所述参考图像所建立的坐标系中的位置坐标,所述临时水平坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
    所述飞行器主体调整拍取所述临时图像的所述摄像装置的水平角度。
  15. 如权利要求10-14中至少一项所述的飞行器,其特征在于,
    摄像装置在所述临时图像中实时查找类似目标,并提取类似目标的参比特征,当所述参比特征与所述临时图像特征中的一项相吻合时,将所述类似目标作为目标群中的候选目标。
  16. 如权利要求15所述的飞行器,其特征在于,
    当飞行器主体监测到所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临 时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新。
  17. 如权利要求16所述的飞行器,特征在于,
    所述摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,所述第一暂时尺度信息为所述类似目标在所述临时图像中的宽度值,所述第二暂时尺度信息为所述类似目标在所述临时图像中的高度值;
    当摄像装置检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别与所述临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
    当摄像装置没有检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示所述临时位置信息、第一临时尺度信息和第二临时尺度信息;
    当摄像装置检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
    当摄像装置没有检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,不向摄像装置输出信息。
  18. 如权利要求14所述的飞行器,其特征在于,所述参考图像的坐标系与所述临时图像的坐标系是同一个坐标系。
  19. 如权利要求15所述的飞行器,其特征在于,所述目标的临时图像 特征的记录包括:梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征。
  20. 一种飞行器的导航方法,其特征在于,所述飞行器包括权利要求1或2所述的相机,所述相机的摄像装置用于在所述飞行器飞行时捕获图像;
    所述导航方法包括:
    S1、获取一组用于显示指定飞行线路的基准图像;
    S2、在所述飞行器飞行时,将最新捕获到的图像与该组基准图像进行比对,校正所述飞行器当前的飞行线路。
  21. 如权利要求20所述的导航方法,其特征在于,S1包括获取所述指定飞行线路的地形图并将所述地形图作为基准图像。
  22. 如权利要求21所述的导航方法,其特征在于,所述指定飞行线路包括所述飞行器的返航线路,所述返航线路的地形图通过所述摄像装置在所述飞行器去航时捕获而得。
  23. 如权利要求20-22中至少一项所述的导航方法,其特征在于,S2包括:
    S21、从该组基准图像中选取一张基准图像作为比对图像分别从最新捕获到的图像与所述比对图像中提取特征信息;
    S22、比对同一特征信息在最新捕获到的图像和所述比对图像中的偏移量;
    S23、根据所述偏移量改变所述飞行器当前的飞行方向。
  24. 如权利要求23所述的导航方法,其特征在于,S21包括:提取该组基准图像的每一张基准图像的特征信息,选取与最新捕获到的图像相同的特征信息最多的基准图像作为比对图像。
  25. 如权利要求23所述的导航方法,其特征在于,S23还包括根据所述偏移量改变所述飞行器当前的飞行高度。
  26. 如权利要求20-25中至少一项所述的导航方法,其特征在于,所述 导航方法还包括:
    接收一地点的GPS定位信号;
    飞行器主体朝向GPS定位信号所对应的地点飞行。
  27. 如权利要求26所述的导航方法,其特征在于,所述导航方法还包括:
    飞行器主体朝向GPS定位信号所对应的地点飞行过程中,所述摄像装置还对参考目标所在的区域进行拍照,以获得参考图像;
    飞行器主体从所述参考图像中提取所述参考目标的参考图像特征和所述参考目标位于所述参考图像中的起始位置信息;
    当设置在所述飞行器主体上的摄像装置获取到显示有临时目标的临时图像时,飞行器主体从所述临时图像中提取所述临时目标的临时图像特征和所述临时目标位于所述临时图像中的临时位置信息;
    若所述参考图像特征和所述临时图像特征一致,则摄像装置根据所述起始位置信息与所述临时位置信息之间的差值计算偏离方向;
    所述飞行器主体按照所述偏离方向进行跟踪。
  28. 如权利要求27所述的导航方法,其特征在于,所述导航方法还包括:
    所述摄像装置从所述参考图像中提取所述参考目标的第一参考尺度信息和第二参考尺度信息,所述第一参考尺度信息为所述参考目标在所述参考图像中的宽度值,所述第二参考尺度信息为所述参考目标在所述参考图像中的高度值;
    当摄像装置判定所述参考图像特征与所述临时图像特征一致时,摄像装置从所述临时图像中提取所述临时目标的第一临时尺度信息和第二临时尺度信息,所述第一临时尺度信息为所述临时目标在所述临时图像中的宽度值,所述第二临时尺度信息为所述临时目标在所述临时图像中的高度值;
    当所述第一参考尺度信息的数值大于所述第一临时尺度信息的数值时, 摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
    当所述第一参考尺度信息的数值小于所述第一临时尺度信息的数值时,摄像装置计算所述第一参考尺度信息和所述第一临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动;
    当所述第二参考尺度信息的数值大于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体加速运动;
    当所述第二参考尺度信息的数值小于所述第二临时尺度信息的数值时,摄像装置计算所述第二参考尺度信息和所述第二临时尺度信息之间的差值,若所述差值的绝对值大于预先设定的阈值时,所述飞行器主体减速运动。
  29. 如权利要求28所述的导航方法,其特征在于,所述导航方法还包括:
    所述飞行器主体与所述临时目标之间的距离符合如下约束条件:0.9*Z<X<1.1*Z,其中,Z为预先设定的阈值,X为所述飞行器主体与所述临时目标之间的距离。
  30. 如权利要求29所述的导航方法,其特征在于,所述导航方法还包括:
    当所述临时位置信息的临时垂直坐标与起始位置信息的起始垂直坐标不一致时,飞行器主体计算所述临时垂直坐标与起始垂直坐标之间的差值,并生成纵向位移信息,其中,所述起始垂直坐标是参考目标在依据所述参考图像所建立的坐标系中位置坐标,所述临时垂直坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
    飞行器主体调整拍取所述临时图像的所述摄像装置的垂直角度。
  31. 如权利要求30所述的导航方法,其特征在于,所述导航方法还包括:
    当临时位置信息的临时水平坐标与起始位置信息的起始水平坐标不一致时,飞行器主体计算所述临时水平坐标与所述起始水平坐标之间的差值,并生成横向位移信息,其中,所述起始水平坐标是参考目标在依据所述参考图像所建立的坐标系中的位置坐标,所述临时水平坐标是临时目标在依据所述临时图像所建立的坐标系中位置坐标;
    所述飞行器主体调整拍取所述临时图像的所述摄像装置的水平角度。
  32. 如权利要求27-31中至少一项所述的导航方法,其特征在于,所述导航方法还包括:
    摄像装置在所述临时图像中实时查找类似目标,并提取类似目标的参比特征,当所述参比特征与所述临时图像特征中的一项相吻合时,将所述类似目标作为目标群中的候选目标。
  33. 如权利要求32所述的导航方法,其特征在于,所述导航方法还包括:
    当飞行器主体监测到所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息的任一项有变化时,用变化后的临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息分别对变化前的所述临时图像特征、临时位置信息、第一临时尺度信息和第二临时尺度信息进行更新。
  34. 如权利要求33所述的导航方法,其特征在于,所述导航方法还包括:
    所述摄像装置获取并计算类似目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息,其中,所述第一暂时尺度信息为所述类似目标在所述临时图像中的宽度值,所述第二暂时尺度信息为所述类似目标在所述临时图像中的高度值;
    当摄像装置检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂 时尺度信息分别与所述临时目标的临时位置信息、第一临时尺度信息和第二临时尺度信息进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
    当摄像装置没有检测到所述目标群,且,摄像装置跟踪到所述临时目标时,将所述目标的临时位置信息、第一临时尺度信息和第二临时尺度信息输出到摄像装置,以显示所述临时位置信息、第一临时尺度信息和第二临时尺度信息;
    当摄像装置检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,将所述目标群的所有候选目标的暂时坐标信息、第一暂时尺度信息和第二暂时尺度信息分别进行加权计算,并向摄像装置输出所述加权计算的结果,以显示所述加权计算的结果;
    当摄像装置没有检测到所述目标群,且,摄像装置没有跟踪到所述临时目标时,不向摄像装置输出信息。
  35. 如权利要求31所述的导航方法,其特征在于,所述参考图像的坐标系与所述临时图像的坐标系是同一个坐标系。
  36. 如权利要求32所述的导航方法,其特征在于,所述目标的临时图像特征的记录方法包括:梯度方向直方图、局部二值模式直方图、尺度不变特征变换和加速的鲁棒特征。
PCT/CN2016/087571 2015-06-29 2016-06-29 对地定位或导航用相机、飞行器及其导航方法 WO2017000876A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16817240.1A EP3315414B1 (en) 2015-06-29 2016-06-29 Geo-location or navigation camera, and aircraft and navigation method therefor
US15/577,303 US10386188B2 (en) 2015-06-29 2016-06-29 Geo-location or navigation camera, and aircraft and navigation method therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201520459593.8U CN204925807U (zh) 2015-06-29 2015-06-29 具有云台增稳的对地定位或导航用相机、飞行器及其导航系统
CN201510369281.2 2015-06-29
CN201520459593.8 2015-06-29
CN201510369281.2A CN106275470B (zh) 2015-06-29 2015-06-29 飞行器及其避障方法和系统
CN201510369254.5 2015-06-29
CN201520456110.9U CN204916207U (zh) 2015-06-29 2015-06-29 飞行器及其避障系统
CN201510369254.5A CN106325305B (zh) 2015-06-29 2015-06-29 对地定位或导航用相机、飞行器及其导航方法和系统
CN201520456110.9 2015-06-29
CN201610282288.5 2016-04-29
CN201610282288.5A CN105974940B (zh) 2016-04-29 2016-04-29 适用于飞行器的目标跟踪方法

Publications (1)

Publication Number Publication Date
WO2017000876A1 true WO2017000876A1 (zh) 2017-01-05

Family

ID=57607772

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/087570 WO2017000875A1 (zh) 2015-06-29 2016-06-29 飞行器及其避障方法和系统
PCT/CN2016/087571 WO2017000876A1 (zh) 2015-06-29 2016-06-29 对地定位或导航用相机、飞行器及其导航方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087570 WO2017000875A1 (zh) 2015-06-29 2016-06-29 飞行器及其避障方法和系统

Country Status (3)

Country Link
US (2) US10386188B2 (zh)
EP (2) EP3315414B1 (zh)
WO (2) WO2017000875A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751860A (zh) * 2018-07-19 2020-02-04 波音公司 用于自主机场跑道导航的系统、方法和计算机可读介质
CN116683349A (zh) * 2023-06-27 2023-09-01 国网青海省电力公司海北供电公司 电力设备空天巡检线路修正方法及系统、巡检无人机

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408832B2 (ja) * 2014-08-27 2018-10-17 ルネサスエレクトロニクス株式会社 制御システム、中継装置、及び制御方法
USD843266S1 (en) * 2016-01-26 2019-03-19 SZ DJI Technology Co., Ltd. Aerial vehicle
US11608173B2 (en) * 2016-07-01 2023-03-21 Textron Innovations Inc. Aerial delivery systems using unmanned aircraft
CN111562796B (zh) * 2016-09-26 2024-06-14 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统
USD862359S1 (en) * 2016-10-27 2019-10-08 SZ DJI Technology Co., Ltd. Aerial vehicle
USD816582S1 (en) * 2017-02-24 2018-05-01 SZ DJI Technology Co., Ltd. Aerial vehicle
CN110891862B (zh) * 2017-08-10 2023-07-11 深圳零零无限科技有限公司 飞行系统中用于避障的系统和方法
CN108702447B (zh) * 2017-09-29 2021-11-12 深圳市大疆创新科技有限公司 一种视频处理方法、设备、无人机及系统、计算机可读存储介质
WO2019100353A1 (zh) * 2017-11-25 2019-05-31 深圳市大疆创新科技有限公司 一种任务执行方法、移动装置、系统及存储介质
CN108073184B (zh) * 2017-11-27 2024-02-20 北京拉近众博科技有限公司 无人机飞行控制方法及装置
TWI657011B (zh) * 2017-11-30 2019-04-21 財團法人工業技術研究院 無人機、無人機控制系統及控制方法
CN111527463B (zh) * 2018-01-22 2024-02-23 深圳市大疆创新科技有限公司 用于多目标跟踪的方法和系统
US11453513B2 (en) * 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration
CN110291482A (zh) * 2018-07-31 2019-09-27 深圳市大疆创新科技有限公司 返航控制方法、装置及设备
CN109240314B (zh) * 2018-11-09 2020-01-24 百度在线网络技术(北京)有限公司 用于采集数据的方法和装置
CN111290001A (zh) * 2018-12-06 2020-06-16 杭州海康威视数字技术股份有限公司 一种基于gps坐标的目标统筹方法、装置及设备
CN109747824B (zh) * 2019-01-14 2023-08-25 中国计量大学 用于烟囱内部无人机避障的装置和避障方法
CN111457923B (zh) * 2019-01-22 2022-08-12 北京京东乾石科技有限公司 路径规划方法、装置及存储介质
KR102171043B1 (ko) * 2019-02-28 2020-10-28 한국과학기술원 영상 처리를 기반으로 한 비행체의 충돌 방지 방법
WO2020220158A1 (zh) * 2019-04-28 2020-11-05 深圳市大疆创新科技有限公司 一种无人机的控制方法、无人机及计算机可读存储介质
US11022972B2 (en) * 2019-07-31 2021-06-01 Bell Textron Inc. Navigation system with camera assist
USD944683S1 (en) * 2020-02-28 2022-03-01 SZ DJI Technology Co., Ltd. Aerial vehicle
CN111976957B (zh) * 2020-09-12 2022-03-08 广东寻夏科技有限公司 一种基于5g的飞行器避障装置及其控制方法
CN112633375A (zh) * 2020-12-23 2021-04-09 深圳市赛为智能股份有限公司 鸟类检测方法、装置、计算机设备及存储介质
CN113467504B (zh) * 2021-07-26 2023-06-02 广东电网有限责任公司 一种飞行器飞行稳定控制方法、系统、设备及存储介质
TWI795987B (zh) * 2021-11-08 2023-03-11 致伸科技股份有限公司 雲台裝置
CN114428515A (zh) * 2022-01-24 2022-05-03 广东电网有限责任公司 一种无人机避障方法、装置、无人机及存储介质
US20230347765A1 (en) * 2022-04-27 2023-11-02 Skydio, Inc. Base Stations For Unmanned Aerial Vehicles (UAVs)
CN114913717B (zh) * 2022-07-20 2022-09-27 成都天巡微小卫星科技有限责任公司 一种基于智能终端的便携式低空飞行防撞系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101554925A (zh) * 2009-05-11 2009-10-14 董韬 一种无人机正射影像云台
CN102012612A (zh) * 2010-11-17 2011-04-13 宜兴市普天视电子有限公司 自稳定云台
CN102426019A (zh) * 2011-08-25 2012-04-25 航天恒星科技有限公司 一种无人机景象匹配辅助导航方法及系统
CN102506875A (zh) * 2011-11-30 2012-06-20 中国南方航空工业(集团)有限公司 无人机的导航方法及装置
CN102602543A (zh) * 2012-03-16 2012-07-25 广州市红鹏直升机遥感科技有限公司 飞行器航拍云台
CN103029834A (zh) * 2012-11-26 2013-04-10 北京兰亭华谊文化传媒有限责任公司 一种基于前置三轴式云台的小型电动无人直升机航拍系统
CN103411609A (zh) * 2013-07-18 2013-11-27 北京航天自动控制研究所 一种基于在线构图的飞行器返航路线规划方法
CA2830955A1 (en) * 2012-10-31 2014-04-30 Kabushiki Kaisha Topcon Aerial photogrammetry and aerial photogrammetric system
US20140336848A1 (en) * 2013-05-10 2014-11-13 Palo Alto Research Center Incorporated System and method for detecting, tracking and estimating the speed of vehicles from a mobile platform
CN204925807U (zh) * 2015-06-29 2015-12-30 优利科技有限公司 具有云台增稳的对地定位或导航用相机、飞行器及其导航系统

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8055100B2 (en) 2004-04-02 2011-11-08 The Boeing Company Method and system for image registration quality confirmation and improvement
IL165190A (en) * 2004-11-14 2012-05-31 Elbit Systems Ltd System and method for stabilizing an image
JP2006238325A (ja) 2005-02-28 2006-09-07 Canon Inc カメラシステム
WO2007047953A2 (en) * 2005-10-20 2007-04-26 Prioria, Inc. System and method for onboard vision processing
US9070101B2 (en) 2007-01-12 2015-06-30 Fatdoor, Inc. Peer-to-peer neighborhood delivery multi-copter and method
US7411167B2 (en) 2006-09-05 2008-08-12 Honeywell International Inc. Tracking a moving object from a camera on a moving platform
KR100818289B1 (ko) * 2007-02-02 2008-03-31 삼성전자주식회사 비디오 영상 트레킹 방법 및 장치
US7974460B2 (en) 2007-02-06 2011-07-05 Honeywell International Inc. Method and system for three-dimensional obstacle mapping for navigation of autonomous vehicles
US7865277B1 (en) * 2007-05-07 2011-01-04 The United States Of America As Represented By The Secretary Of The Navy Obstacle avoidance system and method
US8380430B2 (en) * 2008-10-28 2013-02-19 Audiovox Corporation Portable transceiver with vehicle security control and locate features
KR101071352B1 (ko) 2009-08-31 2011-10-07 주식회사 이미지넥스트 좌표맵을 이용한 팬틸트줌 카메라 기반의 객체 추적 장치 및 방법
CN101860562B (zh) 2010-03-18 2012-10-31 南京森林警察学院 集成化林火动态监测与精确定位系统及定位方法
US20110282580A1 (en) * 2010-05-11 2011-11-17 Honeywell International Inc. Method of image based navigation for precision guidance and landing
US9681065B2 (en) * 2010-06-15 2017-06-13 Flir Systems, Inc. Gimbal positioning with target velocity compensation
JP5618840B2 (ja) * 2011-01-04 2014-11-05 株式会社トプコン 飛行体の飛行制御システム
CN102183955A (zh) 2011-03-09 2011-09-14 南京航空航天大学 基于多旋翼无人飞行器的输电线路巡检系统
WO2013105926A1 (en) * 2011-03-22 2013-07-18 Aerovironment Inc. Invertible aircraft
WO2013033954A1 (zh) 2011-09-09 2013-03-14 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CN102707724B (zh) 2012-06-05 2015-01-14 清华大学 一种无人机的视觉定位与避障方法及系统
CN102779347B (zh) 2012-06-14 2014-08-06 清华大学 一种用于飞行器的目标跟踪与定位方法和装置
CN102749927A (zh) * 2012-07-20 2012-10-24 常州大学 无人飞机自动规避障碍物的系统及其规避方法
JP6151902B2 (ja) * 2012-09-20 2017-06-21 株式会社トプコン 写真計測用カメラ及び航空写真装置
US9734586B2 (en) * 2012-09-21 2017-08-15 The Schepens Eye Research Institute, Inc. Collision prediction
WO2014071400A1 (en) * 2012-11-05 2014-05-08 360 Heros, Inc. 360 degree camera mount and related photographic and video system
CN102999049B (zh) 2012-11-09 2016-04-27 国家电网公司 一种无线遥控架空线路巡检飞行器
CN203219298U (zh) 2012-12-05 2013-09-25 福建省电力有限公司 一种适用于山区电网巡检的专用无人直升机系统
JP6367522B2 (ja) 2013-02-28 2018-08-01 株式会社トプコン 航空写真システム
CN103144770B (zh) 2013-03-19 2015-10-28 南京航空航天大学 一种全自主控制入室环境避障导航微型飞行器
WO2015085499A1 (zh) * 2013-12-10 2015-06-18 深圳市大疆创新科技有限公司 非正交轴载体
US9348197B2 (en) 2013-12-24 2016-05-24 Pv Labs Inc. Platform stabilization system
US9710709B1 (en) * 2014-03-07 2017-07-18 Trace Live Network Inc. Cascade recognition for personal tracking via unmanned aerial vehicle (UAV)
CN103984357B (zh) 2014-05-30 2017-02-01 中国人民解放军理工大学 一种基于全景立体成像设备的无人机自动避障飞行系统
CN204058311U (zh) 2014-08-14 2014-12-31 河北中科智联节能科技股份公司 糠醛生产六塔式连续精制装置
CN204013920U (zh) 2014-08-29 2014-12-10 马鞍山市靓马航空科技有限公司 一种夜间搜救、搜索系统
JP6167425B2 (ja) * 2014-08-29 2017-07-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、及び無人航空機を用いた音声データ収集方法
CN204056311U (zh) 2014-10-11 2014-12-31 佛山市安尔康姆航空科技有限公司 一种增稳云台结构
CN104317288A (zh) 2014-10-22 2015-01-28 陕西亿美万泰科技有限公司 一种警用多用途侦测用无人机系统
CN104354859B (zh) 2014-10-23 2017-02-15 安徽大学 一种可避障的微型探测飞行器
CN204297112U (zh) 2014-11-05 2015-04-29 云南电网有限责任公司红河供电局 一种全向电机增稳云台
US9818303B2 (en) * 2015-06-16 2017-11-14 Verizon Patent And Licensing Inc. Dynamic navigation of UAVs using three dimensional network coverage information
CN204916207U (zh) 2015-06-29 2015-12-30 优利科技有限公司 飞行器及其避障系统
CN105182326B (zh) 2015-10-13 2018-03-27 四川星网云联科技有限公司 一种利用方位信息的目标跟踪快速方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101554925A (zh) * 2009-05-11 2009-10-14 董韬 一种无人机正射影像云台
CN102012612A (zh) * 2010-11-17 2011-04-13 宜兴市普天视电子有限公司 自稳定云台
CN102426019A (zh) * 2011-08-25 2012-04-25 航天恒星科技有限公司 一种无人机景象匹配辅助导航方法及系统
CN102506875A (zh) * 2011-11-30 2012-06-20 中国南方航空工业(集团)有限公司 无人机的导航方法及装置
CN102602543A (zh) * 2012-03-16 2012-07-25 广州市红鹏直升机遥感科技有限公司 飞行器航拍云台
CA2830955A1 (en) * 2012-10-31 2014-04-30 Kabushiki Kaisha Topcon Aerial photogrammetry and aerial photogrammetric system
CN103029834A (zh) * 2012-11-26 2013-04-10 北京兰亭华谊文化传媒有限责任公司 一种基于前置三轴式云台的小型电动无人直升机航拍系统
US20140336848A1 (en) * 2013-05-10 2014-11-13 Palo Alto Research Center Incorporated System and method for detecting, tracking and estimating the speed of vehicles from a mobile platform
CN103411609A (zh) * 2013-07-18 2013-11-27 北京航天自动控制研究所 一种基于在线构图的飞行器返航路线规划方法
CN204925807U (zh) * 2015-06-29 2015-12-30 优利科技有限公司 具有云台增稳的对地定位或导航用相机、飞行器及其导航系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315414A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751860A (zh) * 2018-07-19 2020-02-04 波音公司 用于自主机场跑道导航的系统、方法和计算机可读介质
CN116683349A (zh) * 2023-06-27 2023-09-01 国网青海省电力公司海北供电公司 电力设备空天巡检线路修正方法及系统、巡检无人机
CN116683349B (zh) * 2023-06-27 2024-01-26 国网青海省电力公司海北供电公司 电力设备空天巡检线路修正方法及系统、巡检无人机

Also Published As

Publication number Publication date
EP3315414A4 (en) 2019-02-27
EP3315414B1 (en) 2022-07-13
EP3315414A1 (en) 2018-05-02
EP3276374B1 (en) 2024-10-09
EP3276374A1 (en) 2018-01-31
WO2017000875A1 (zh) 2017-01-05
US10386188B2 (en) 2019-08-20
US20180149479A1 (en) 2018-05-31
EP3276374A4 (en) 2018-03-28
US20180136650A1 (en) 2018-05-17
US10634500B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017000876A1 (zh) 对地定位或导航用相机、飞行器及其导航方法
US10571934B2 (en) Target tracking method for air vehicle
CN109931939B (zh) 车辆的定位方法、装置、设备及计算机可读存储介质
CN108227751B (zh) 一种无人机的降落方法及系统
CN105184776B (zh) 目标跟踪方法
US8666571B2 (en) Flight control system for flying object
KR101214081B1 (ko) 항공촬영이미지와 수치정보를 합성 처리하는 영상도화 시스템
CN110799921A (zh) 拍摄方法、装置和无人机
CN102322859B (zh) 一种航空惯性导航测量系统及姿态校正方法
KR20200064542A (ko) 드론을 이용한 지상기준점 측량장치 및 그 방법
KR101450702B1 (ko) 지상면의 연직촬영 유지를 통한 고정밀 항공촬영 편집방법이 적용된 시스템
KR101160454B1 (ko) 무인항공기의 자세 제어를 이용한 3d 공간정보구축 방법
JP2008186145A (ja) 空撮画像処理装置および空撮画像処理方法
CN109146958B (zh) 一种基于二维图像的交通标志空间位置测量方法
CN106325305B (zh) 对地定位或导航用相机、飞行器及其导航方法和系统
CN106408601A (zh) 一种基于gps的双目融合定位方法及装置
US10337863B2 (en) Survey system
CN111426309B (zh) 一种基于三维地形测绘数据的采集处理方法
CN105549605A (zh) 一种实现无人机盯飞的方法
WO2021081707A1 (zh) 数据处理方法、装置、可移动平台及计算机可读存储介质
US20210097696A1 (en) Motion estimation methods and mobile devices
CN110896331B (zh) 一种测量天线工程参数的方法、装置和存储介质
CN115937446A (zh) 基于ar技术的地形测绘装置及方法
KR101589925B1 (ko) 영상도화용 지형이미지의 기준점 확인 처리가 가능한 공간영상도화시스템
CN115950435A (zh) 无人机巡检影像的实时定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817240

Country of ref document: EP