WO2017000133A1 - 资源指示的处理方法、处理装置、接入点和站点 - Google Patents

资源指示的处理方法、处理装置、接入点和站点 Download PDF

Info

Publication number
WO2017000133A1
WO2017000133A1 PCT/CN2015/082698 CN2015082698W WO2017000133A1 WO 2017000133 A1 WO2017000133 A1 WO 2017000133A1 CN 2015082698 W CN2015082698 W CN 2015082698W WO 2017000133 A1 WO2017000133 A1 WO 2017000133A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
trigger
uplink
time interval
sta
Prior art date
Application number
PCT/CN2015/082698
Other languages
English (en)
French (fr)
Inventor
刘乐
杨讯
淦明
吴伟民
于健
郭宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580079147.7A priority Critical patent/CN107534955B/zh
Priority to PCT/CN2015/082698 priority patent/WO2017000133A1/zh
Publication of WO2017000133A1 publication Critical patent/WO2017000133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technologies and, more particularly, to a method, an access point, and a station for transmitting information.
  • WLAN Wireless Local Area Network
  • Orthogonal Frequency Division Multiplexing OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the OFDMA technology divides the air interface time-frequency resources into a plurality of orthogonal time-frequency resource blocks (RBs).
  • the RBs may be shared in time and orthogonal in the frequency domain.
  • OFDMA technology supports multiple nodes to simultaneously send and receive data.
  • the resource allocation is performed based on the RB or the RB group; different channel resources are allocated to different STAs at the same time, so that multiple STAs access the channel efficiently, thereby improving channel utilization.
  • the access point AP needs to send a trigger frame (UL trigger).
  • the access point AP may include, but is not limited to, one of the following information: each STA ID, allocation resource, and other scheduling information. For example, frequency resources, time resources, spatial stream resources, modulation and coding scheme (MCS), coding type, transmission diversity mode, or power control information.
  • MCS modulation and coding scheme
  • These multiple STA scheduling information can be packaged and sent in the MAC frame, which is called MAC trigger, and can also be sent in the signaling of the PHY, which is called PHY trigger.
  • the embodiments of the present invention provide a method, an access point, and a station for transmitting information, which can efficiently and efficiently transmit a UL trigger.
  • FIG. 1 is a schematic diagram of a system architecture to which an embodiment of the present invention can be applied.
  • FIG. 2 is a schematic flow chart of an applicable embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an uplink trigger frame according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an uplink trigger frame according to an embodiment of the present invention.
  • 5a, 5b, 6, and 7 are schematic diagrams of frames of a TXOP according to an embodiment of the present invention, respectively.
  • FIG. 8 is a schematic diagram of a MAC header according to another embodiment of the present invention.
  • 9a, 9b are schematic views of a TXOP of one embodiment of the present invention, respectively.
  • 10a, 10b, and 10c are schematic views of a TXOP of one embodiment of the present invention, respectively.
  • FIG. 11 is a block diagram of an access point in accordance with an embodiment of the present invention.
  • Figure 12 is a block diagram of a station in accordance with an embodiment of the present invention.
  • An Access Point which can also be called a wireless access point or bridge or hotspot, can access a server or a communication network. It is also a site itself.
  • a station which may also be called a STA, or a Non-AP STA, may be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" phone) that supports WiFi communication function and has A computer with wireless communication capabilities.
  • a mobile phone or "cellular" phone
  • it may be a portable, pocket-sized, handheld, computer-built, wearable, or in-vehicle wireless communication device that supports WiFi communication functions, and exchanges communication data such as voice and data with the wireless access network.
  • FIG. 1 is a simplified schematic diagram of a WLAN system to which an embodiment of the present invention is applied.
  • the system of Figure 1 includes one or more access points AP 101 and one or more stations STA 102.
  • the OFDMA technology is used for wireless communication between the access point 101 and the site 102, wherein the data frame sent by the access point 101 includes a UL trigger for the site 102.
  • an embodiment of the present invention provides a method for triggering frame transmission, which is applied to a wireless local area network using OFDMA technology, including:
  • a wireless local area network in a TXOP, at least a first time interval and a second time interval after the first time interval are included,
  • the AP sends a PPDU physical layer header, where the PPDU physical layer header includes information I1 indicating whether the uplink trigger frame UL trigger exists in the TXOP. ;
  • the access point AP of the WLAN sends downlink STA data at the first time interval
  • the AP sends an uplink trigger frame UL trigger including uplink scheduling information in the second time interval.
  • the foregoing solution may send downlink and uplink multi-STA data in an efficient and flexible cascade in one TXOP, and may also include one or more of the following effects: reducing overhead, or improving reliability of uplink transmission.
  • a plurality of time intervals are allocated in the same TXOP.
  • the AP sends a trigger frame for triggering the uplink transmission, where the trigger frame includes scheduling information of the STA, which is simply referred to as uplink triggering.
  • Frame UL trigger is a MAC trigger that transmits the uplink scheduling information in the MAC frame.
  • the AP does not need to wait for the SIFS time, and the UL trigger can be sent without adding the legacy physical layer header Legacy preamble.
  • the UL trigger and other downlink data are time division multiplexed in one downlink DL frame.
  • Embodiments of the invention relate to, but are not limited to, the following aspects:
  • the PPDU sent by the AP includes the PPDU physical layer header before the downlink data.
  • the PPDU physical layer header included in the AP includes, and includes information I1 indicating whether a UL trigger exists in the TXOP.
  • the information I1 may be located in the L-SIG, the repeated L-SIG symbol (RL-SIG) or the HE-SIG-A in the PPDU physical layer header.
  • the information I1 is indicated in an implicit manner.
  • a method for indicating information of a UL trigger is provided, and the setting of L-LENGTH in the L-SIG is used to indicate whether there is a UL trigger in the TXOP: when L-LENGTH is an integral multiple of 3, indicating the TXOP There is no UL trigger; when the sender sets L-LENGTH not an integer multiple of 3, (the divisor is not 0 by 3), indicating that there is a UL trigger within the TXOP. Or, vice versa.
  • a method of indicating information of a UL trigger uses a phase change of information bits of a repeated L-SIG (RL-SIG) to indicate whether a UL trigger exists: for example, if RL-SIG and L-SIG The phase is the same, indicating that the UL trigger exists; if the RL-SIG and L-SIG are opposite in phase, it indicates that the UL trigger does not exist. Or vice versa.
  • RL-SIG repeated L-SIG
  • a method for indicating information of a UL trigger which utilizes an extra 4 bits added to the traditional 48-bit side of the L-SIG, and the pilot subcarrier that can be identified by the 802.11ax device can be obtained.
  • the phase change of 4 additional pilot subcarriers can be utilized to indicate whether a UL trigger exists.
  • four subcarriers are respectively located on the left and right of the DC tone, and two are in one group. If the left and right phases are the same, it means that there is no existence, and if the left and right phases are opposite, it means that there is.
  • a method of indicating UL trigger information is provided, using a phase change of four pilot subcarrier pilot tones in the RL-SIG to indicate whether a UL trigger is present.
  • a method of indicating information of a UL trigger is provided, with a 1-bit explicit indication in HE-SIG-A indicating that a UL trigger is present within the TXOP.
  • the information I2 indicating the location of the uplink trigger frame UL trigger or the information I3 of the length, and the transmission mode are included.
  • Such information such as the time/end time of the start of the UL trigger in the TXOP, or the UL trigger duration (in ms), or a multiple of the unit time (such as 0.1ms), or the number of unit symbols required by the UL trigger, transmitted
  • the amount of data and the specified MCS (the duration can be calculated based on the specified MCS and the amount of transmitted data).
  • the UL trigger transmission method includes MCS, symbol length, inter-symbol interval, and the like.
  • Symbol length such as 3.2us symbol length with traditional 11a/n/ac, or 12.8us symbol length for 11ax; Guard interval or CP (Cyclic prefix), such as 0.4us for indoor channel environment Or 0.8us, or 1.6us or 3.2us of the outdoor channel environment.
  • the indication of the symbol interval may reuse or partially reuse the indication of the downlink PPDU, and if the symbol length is fixed to 3.2us indoors and the outdoor fixed to 12.8us, the indication may be omitted, and the MCS indication may specify a default low MCS or a limited number of MCSs. The selection may save the overhead of the MCS indication information of the UL trigger.
  • the STAID or STA group ID of the UL trigger may also be indicated in the header HE-SIG-B of the downlink PPDU. If the STA sequence indicated by the HE-SIG-B is followed, the UL trigger may internally omit the indication of the STAID, and indicate other scheduling information of each STA or STA group in order.
  • the default UL trigger is located at the last position of the PPDU sent by the AP, and there is no need to indicate the end position I2-1.
  • the length I3 of the UL trigger needs to be indicated, and the length may be a time interval or a unit time interval.
  • the multiple, or the number of unit symbols, can be calculated by specifying the MCS and the amount of transmitted data.
  • the receiving end (uplink STA) can reduce the length of the UL trigger by the length of the PPDU in the L-SIG, and can know the location where the UL trigger starts, and the downlink STA can know the location where the downlink data ends.
  • the UL trigger needs to read whether the uplink transmission schedule of the STA is available. Information; otherwise, the downlink STA does not need to read the UL trigger. If a downlink STA delays the ACK of the downlink data of the STA, or the STA does not wait for the uplink data scheduled by the AP, it does not need to detect the scheduling information of the STA in the UL trigger; otherwise, the STA detects the STA in the UL trigger. Related scheduling information.
  • the default UL trigger is located at the beginning of the data portion of the downlink frame, without indicating the starting position I2-2, only the length I2 of the UL trigger is required, and the uplink STA can know the end point of the UL trigger, and the downlink STA can know The location where the downstream data begins.
  • the receiving end can know the exact position and length of the UL trigger according to the relevant indication of the UL trigger in HE-SIG-A or HE-SIG-B. If the receiving end is an uplink STA that is waiting to be scheduled to send uplink data, the scheduling information of the uplink transmission of the STA may be detected from the UL trigger, and the scheduling information may include, but is not limited to, one of the following information: each uplink STA identifier ID, Allocating resources and other scheduling information, such as frequency resources, time resources, spatial stream resources, modulation and coding scheme (MCS), coding type, transmission diversity mode, or power control information. .
  • MCS modulation and coding scheme
  • the STA finds that the scheduling information of the STA downlink data is in the HE-SIG-B, the STA is that the downlink STA continues to detect the downlink data in the allocated resource, and if the STA needs the AP to schedule the ACK to send the downlink data, wait for the UL.
  • the trigger starts to detect scheduling information that the STA sends an ACK upstream. If the STA needs to schedule the uplink data to be sent by the AP, wait until the UL trigger starts detecting.
  • the scheduling information of the STA uplink is the STA is that the downlink STA continues to detect the downlink data in the allocated resource, and if the STA needs the AP to schedule the ACK to send the downlink data, wait for the UL.
  • the trigger starts to detect scheduling information that the STA sends an ACK upstream. If the STA needs to schedule the uplink data to be sent by the AP, wait until the UL trigger starts detecting.
  • the scheduling information of the STA uplink is the STA down
  • the UL trigger is sent as part of the 802.11ax downlink data packet, and may be sent on the entire bandwidth allocated by the AP to the UL trigger, or repeatedly transmitted according to the unit bandwidth in the total bandwidth.
  • information in each unit bandwidth may also be transmitted in parallel on a unit bandwidth within the total bandwidth.
  • the unit bandwidth is specified to be 20 MHz or more, 40 MHz, for example, the total bandwidth is 80 MHz, and the unit bandwidth is 20 MHz; when the bandwidth is 160 MHz or 80 + 80 MHz, the unit bandwidth is 40 MHz).
  • the total bandwidth specified by the AP for the UL trigger may be the same as the total bandwidth of the downlink data packet, and the downlink bandwidth indication information may be reused, or may be different from the total bandwidth of the downlink data packet, but an additional signaling indication is required.
  • the difference from the traditional scheme 2 is that during the UL trigger transmission time, the frequency resource is not shared with other downlink data, but only the information of the UL trigger.
  • the transmitted symbol length can be the same as the data portion specified by the next-generation Wifi standard (such as but not limited to 802.11ax) protocol, for example (CP+12.8us), in which case HE-STF and HE-LTF need to be sent before the MAC trigger information. Helping the uplink STA to obtain UL trigger related power control information and channel estimation information.
  • the traditional symbol length (CP+3.2us) of the Wifi standard such as 802.11 series
  • the receiving end has obtained power control information and channel estimation information according to the L-STF and L-LTF starting from the frame, HE-STF/HE- The LTF can be omitted.
  • the inter-symbol interval CP can be specified as one of 0.4us, 0.8us, 1.6us or 3.2us.
  • the indication of the symbol interval may reuse or partially reuse the indication of the downlink PPDU, and if the symbol length is fixed to 3.2us indoors and the outdoor fixed to 12.8us, the indication may be omitted, and the MCS indication may specify a default low MCS or a limited number of MCSs. The selection may save the overhead of the MCS indication information of the UL trigger.
  • the UL trigger includes scheduling information for triggering an uplink transmission, and includes at least one of the following:
  • the scheduling information that triggers the uplink STA to send uplink data is triggered.
  • the uplink STA in the UL trigger here may be different from the downlink STA.
  • the uplink STA is the STA that sends the uplink data
  • the downlink STA is the STA that receives the downlink data. After the downlink STA correctly receives the downlink data, it needs to feed back the ACK to the AP. If the STA has both uplink data and downlink data, the STA is both an uplink STA and a downlink STA.
  • the UL trigger in each embodiment may specifically be a MAC frame, abbreviated as MAC tigger, which is a special control frame. Its content or structure is shown in Figure 4.
  • Frame Control (FC), Duration, and Transmitter Address (TA) are the contents of the traditional MAC frame, which are used to identify the MAC frame type, transmission time, and transmission source address.
  • the following indication information is the scheduling information that triggers the STA.
  • the scheduling information indicates uplink scheduling information of each STA, which is referred to as an STA-based MAC trigger.
  • the STA may be a downlink STA, the scheduling information indicates the ID of the STA, and the resource allocation information of the uplink STA sending the ACK and other scheduling information that is sent by the downlink STA, or the uplink STA, the scheduling information indicates the ID of the STA, and the The uplink STA transmits resource allocation information of uplink data and other scheduling information indicating transmission.
  • the AP allocates resources to the STA to simultaneously send ACK and uplink data of the downlink data, and the related information of the STA simultaneously indicates the ID of the STA, and the ACK and uplink data of the downlink data are allocated.
  • the location and size of the frequency time resource, and other scheduling information of the STA, such as the coding type, the transmit diversity mode, and the power control information may also be used for the ACK and uplink data of the downlink data, but other scheduling information, such as modulation.
  • the ACK and uplink data of the downlink data may be different according to the coding rate (MCS: Modulation and Coding Scheme) and the spatial stream.
  • MCS Modulation and Coding Scheme
  • the ACK of the downlink data is transmitted with the lowest MCS0 for correct detection, and the uplink data may be transmitted by the MCS indicated by the AP;
  • the ACK of the downlink data adopts a single stream, and the uplink data may be transmitted according to the spatial stream indicated by the AP.
  • the scheduling information indicates uplink transmission scheduling information of each resource unit (RU: resource unit), which is referred to as an RU-based MAC trigger.
  • RU resource unit
  • the information of the RU resource allocation is indicated, indicating the location and size of each RU, and the scheduling information of the STA or a group of STAs is indicated in each RU.
  • the STA in each RU may be a downlink STA
  • the scheduling information indicates the ID of the STA
  • the scheduling information indicates the ID of the STA.
  • resource allocation information for transmitting uplink data by the uplink STA and other scheduling information indicating the transmission is referred to as an RU-based MAC trigger.
  • the RU sends the ACK and uplink data of the downlink data to the STA at the same time, and the related information of the STA simultaneously indicates the ID of the STA, and sends the ACK and uplink data of the downlink data.
  • the location and size of the allocated frequency time resource, and other scheduling information of the STA, such as the coding type, the transmit diversity mode, and the power control information may also be used for the ACK and uplink data of the downlink data, but other scheduling information, For example, the modulation and coding rate (MCS: Modulation and Coding Scheme) and the spatial stream may be different.
  • MCS Modulation and Coding Scheme
  • the ACK of the downlink data is transmitted with the lowest MCS0 for correct detection, and the uplink data may be transmitted by the MCS indicated by the AP.
  • the ACK of the downlink data is a single stream, and the uplink data can be transmitted according to the space indicated by the AP.
  • the receiving end STA receives the corresponding information sent by the aforementioned AP. If the STA is in the indication information in the DL PPDU where the TXOP is located in the previous part (for example, the start position), the UL trigger is obtained in the TXOP, and in addition, the UL trigger accurate position can be obtained according to the position or length indication about the UL trigger. STAs with lengths and no downlink data, but STAs waiting for uplink scheduling can skip the downlink data time until the UL trigger re-detects the scheduling information, and STAs that do not have downlink data and the STAs that are not waiting for uplink scheduling can skip the entire TXOP time. , no information is detected. On the contrary, if it is known that the UL trigger does not exist, the STA waiting for scheduling uplink does not need to search for the uplink scheduling information of the STA at the TXOP.
  • the ACK of the downlink STA and the uplink STA data share an uplink resource
  • the UL scheduling information sent in the trigger includes:
  • Scheduling information for triggering the downlink STA to send an ACK Scheduling information for triggering the downlink STA to send an ACK; and triggering scheduling information for the uplink STA to send uplink data.
  • the OFDMA approach can be used, as shown in Figure 5a.
  • the downlink STA If the downlink STA only sends an ACK without additional uplink data, it can also be transmitted by TDM (time division multiplexing), as shown in FIG. 5b.
  • TDM time division multiplexing
  • the ACK information of the downlink STA is located in front of the uplink data. Because the ACK information is relatively short relative to the uplink data, the previous time does not affect the time and frequency synchronization when the subsequent uplink STA sends the uplink data.
  • the downlink STA may send the ACK together with its own uplink data, and the AP allocates the corresponding resource according to the ACK information and the size of the uplink data.
  • the AP after transmitting the downlink data, the AP directly sends the trigger frame without waiting for the SIFS, saving the SIFS and L-preamble time required for separately transmitting the UL trigger, and transmitting the L-preamble energy.
  • the UL trigger and the downlink data are separately allocated frequency resources in different time intervals, which reduces the complexity of resource scheduling, and does not waste or receive resources due to mismatch between the UL trigger information and the uplink STA. Performance is affected.
  • the ACK/downlink data and the uplink data of the downlink STA are jointly scheduled to improve the spectrum utilization efficiency, and the resource with good allocation condition is scheduled according to the STA channel condition to ensure the performance of the uplink transmission.
  • the uplink/downlink STA may know the exact location and length of the UL trigger according to the indication of the UL trigger in the HE-SIG-A or the HE-SIG-B, and the uplink waiting for the scheduling STA may be omitted. After the downlink data is waited until the UL trigger, the scheduling information is detected again. On the contrary, if it is known that the UL trigger does not exist, the STA that waits for scheduling in the uplink can ignore that the TXOP does not detect the uplink scheduling information.
  • some STAs in the UL trigger are UL STAs. Unlike the DL STAs, placing the UL trigger behind the data of the DL STA can delay the DL STA and ensure that there is enough before the SIFS. Processing time without having to add extra time to extend the symbol.
  • the STA scheduled in the UL trigger is the same as the DL STA, the STA needs to immediately detect the scheduling information of the STA in the UL trigger after receiving the downlink data, so if the downlink data of the STA is used in a large RU High MCS transmission, if the low-capacity STA does not have enough time to process the downlink data, it needs to insert additional symbols between the DL data time and the UL trigger to extend the processing time.
  • the UL trigger allocates resources only for the ACK of the downlink STA, and there is no data of other uplink STAs. Then, the scheduling information sent in the UL trigger includes:
  • the scheduling information that triggers the downlink STA to send an ACK is triggered.
  • the UL trigger is the same as the downlink scheduling STA, and the scheduling information in the UL trigger can be further saved according to the scheduling information of the downlink data specified by the downlink STA in the HE-SIG-B. For example, according to the same STA order or RU order as in the HE-SIG-B, the STAID in each STA scheduling information or the ID of each STA scheduling STA can be saved.
  • the UL trigger indicates the ACK uplink transmission
  • the special ACK transmission and the default selection may be single stream, BCC coding, non-transmission grading, and lowest MCS transmission
  • the scheduling information of each STA or each RU in the UL trigger may be
  • the MCS is omitted, the transmission classification mode, the coding type, and the spatial stream information, etc., can be simplified to the time-frequency resource allocation information indicated for the uplink transmission.
  • the downlink STA sends an ACK according to the scheduling information.
  • the downlink STA needs to send an ACK on the frequency resource with the best channel quality according to the size required for the ACK control signaling and the uplink channel quality in the uplink transmission, thereby avoiding additional resource waste and improving the detection quality;
  • MU-MIMOSTA such as STA2, 3 in FIG. 6
  • the uplink transmission ACK cannot be transmitted in parallel using MU-MIMO
  • the AP needs to reallocate the frequency resource at the time of uplink OFDMA transmission according to the uplink channel quality of each STA in MU-MIMO.
  • the UL trigger provides uplink scheduling-specific scheduling information indicating that the ACK information allocation for the downlink OFDMA+MU-MIMO multi-STA is more flexible. live. Especially for MU-MIMO STAs that share the same frequency resource in the downlink, the uplink ACK needs to allocate resources in order to ensure the detection performance by using OFDMA.
  • the second embodiment is a special case of the first embodiment, so it has the similar advantages described above, and provides a flexible application in which the downlink STA needs immediate feedback and no new uplink STA sends uplink data.
  • the UL trigger allocates resources only for the data of the uplink STA. Then sending the scheduling information in the UL trigger includes
  • the uplink STA transmits the uplink data according to the scheduling information.
  • the ACK of the downlink STA does not wait for the SIFS time to immediately feed back after the downlink data is transmitted, and delays the feedback ACK to prioritize the uplink STA data.
  • the indication of how to delay the feedback ACK may be indicated or HEcontrol in the QoS control in the MAC header of the downlink STA data frame.
  • the QoS control in 802.11ax is the same as defined in the conventional 11ac, and includes the received data packet.
  • the MAC header refers to the MAC header portion of the general data packet, and there are some system signaling indications about the data packet.
  • the MAC trigger is a special control frame, not a data packet.
  • the data structure can refer to the foregoing implementation manner.
  • the third embodiment is a special case of the first embodiment, so similar advantages, while providing a downlink STA delay feedback and a flexible application in the case of a new uplink STA transmitting uplink data.
  • the UL trigger allocates resources only for the data of the uplink STA. Then sending the scheduling information in the UL trigger includes
  • the uplink STA sends uplink data according to the scheduling information.
  • the ACK of the downlink STA also waits for SIFS time feedback after the downlink data is sent, but the indication information of how the downlink STA feeds back the ACK is indicated in the 11ax specific control domain HE control after the QoS control in each downlink STA data frame MAC header, as shown in the figure. 8 is shown.
  • the HE control includes resource indications of the downlink STA uplink transmission (feedback ACK or uplink data transmission), including allocation resources and other scheduling information, such as frequency resources, time resources, spatial stream resources, modulation and coding rates, and coding types. , transmit diversity mode, power control information, etc.
  • the ID of the STA has been indicated in the target address field in the downlink data packet, and the HE control indication is not repeated.
  • Adopt the OFDMA method as shown in Figure 9a. If the downlink STA only sends an ACK without additional uplink data, it is also sent in TDM mode, as shown in Figure 9b. In the TDM mode, the ACK information of the downlink STA is placed in front of the uplink data. Because the ACK information of the uplink data is relatively short, the previous time does not affect the time and frequency synchronization when the subsequent uplink STA sends the uplink data. The downlink STA may send the ACK together with its own data, and the AP allocates the corresponding resource according to the ACK information and the size of the uplink data.
  • the ACK/downlink data and the uplink data of the downlink STA are jointly scheduled to improve the spectrum utilization efficiency, and the resource with good allocation condition is scheduled according to the STA channel condition to ensure the performance of the uplink transmission.
  • the fourth embodiment has its unique advantages:
  • the STA in the UL trigger is a UL STA, and is completely different from the DL STA. Therefore, after receiving the downlink data, the DL STA does not need to detect the UL trigger, and after preparing the uplink feedback ACK of the STA or sending the uplink data, after the downlink data.
  • the following UL trigger can leave enough processing time without adding extra time to extend the symbol.
  • the MAC header is the MAC frame header part of the general data packet, and there are some system signaling indications about the data packet.
  • the MAC trigger is a special control frame, not a packet.
  • Each PPDU has a MAC header, and the MAC header of the general data packet is as specified in Figure 8. Meaning, and the MAC trigger is a control frame different from the data packet, and the MAC frame header and the MAC frame header of the data packet are differently defined, for example, FIG.
  • an uplink STA may be instructed to transmit in a certain subsequent uplink PPDU in a UL trigger, as shown in FIGS. 10a, 10b, and 10c. Then, in the scheduling information corresponding to the STA, the resource indication needs to include the location of the specific uplink PPDU, such as the start time and the transmission time or the end time of the specified uplink PPDU in the TXOP, and the time may be an absolute time, or a specified unit time.
  • the specified uplink PPDU is the first serial number in the TXOP.
  • each uplink PPDU there are one or more DL PPDUs, so the multiple STAs scheduled in each uplink PPDU can use the pilot pilot subcarriers in the previous downlink PPDU to perform phase tracking to ensure that the UL trigger is specified.
  • the time is synchronized on the frequency.
  • the UL trigger in the TXOP in FIG. 10a is attached to a downlink PPDU to transmit downlink multi-STA data, and may indicate information about the UL trigger (presence or absence, length information, etc.) in the physical layer header of the downlink PPDU, to help the STA prepare in advance.
  • the specified time detects the UL trigger.
  • the UL trigger in the TXOP in Figure 10b is not attached to the downlink PPDU to transmit downlink multi-STA data, but waits for SIFS time transmission after the downlink PPDU.
  • the MAC trigger needs to have its own physical layer frame header when transmitting, if it is the format physical of 11a
  • the layer header includes a legacy preamble. If the 11n format physical layer header includes a legacy preamble and an HT-preamble, if the 11ac format physical layer header includes a legacy preamble and a VHT-preamble, if it is a 11n format physical layer header Includes legacy preamble and HE-preamble.
  • the related information may be indicated in the physical layer header of the downlink PPDU in front of the UL trigger, and the STA may be prepared to detect the UL trigger at a specified time in advance, or may be downlinked.
  • the physical layer header of the PPDU indicates only the presence of the UL trigger. If it exists, the STA needs to indicate the L-LENGTH indication in the L-SIG of the UL trigger, and the length of the PPDU of the UL trigger can be known.
  • the UL trigger in the TXOP in Figure 10c is not attached to the downlink PPDU to transmit downlink multi-STA data, but at the beginning of the TXOP, the MAC trigger needs to have its own physical layer header when transmitting, if the 11a format physical layer header includes Legacy preamble, if the 11n format physical layer header includes a legacy preamble and an HT-preamble, if the 11ac format physical layer header includes a legacy preamble and a VHT-preamble, if the 11n format physical layer header includes a legacy preamble and HE-preamble.
  • the L-LENGTH indication in the L-SIG can be used to know the PPDU length of the UL trigger.
  • the advantages of the fifth embodiment inherit the advantages of the previous embodiment, because the UL trigger contains scheduling information of multiple UL PPDUs, which saves the waiting time of multiple UL triggers and the physical layer/MAC layer frame header overhead. Can further improve system efficiency.
  • another embodiment provides a processing device (not shown) for information transmission, which is applied to a wireless local area network, and includes a processing unit configured to: in a wireless local area network, within a TXOP, at least including the first a time interval and a second time interval after the first time interval,
  • the uplink trigger frame UL trigger including uplink scheduling information is sent in the second time interval.
  • Another embodiment provides a processing device (not shown) for information transmission, which is applied to a wireless local area network, and includes a processing unit configured to: include, within a TXOP, at least a first time interval and The second time interval after a time interval,
  • a PPDU physical layer header Receiving, at least before the first time interval, a PPDU physical layer header, where the PPDU physical layer header includes information I1 indicating whether the uplink trigger frame ULtrigger is present in the TXOP;
  • the STA of the wireless local area network receives downlink STA data at the first time interval
  • the STA receives an uplink trigger frame UL trigger that includes uplink scheduling information at the second time interval.
  • the processing unit may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor. It is easy to understand that the processing device of the foregoing resource indication may be located at an access point when specifically transmitting the frame including the resource indication field, and may be located at the site when specifically receiving the frame including the resource indication field.
  • FIG. 11 is a block diagram of an access point in accordance with another embodiment of the present invention.
  • the access point of Figure 11 includes an interface 101, a processing unit 102, and a memory 103.
  • Processing unit 102 controls the operation of access point 100.
  • Memory 103 can include read only memory and random access memory and provides instructions and data to processing unit 102.
  • a portion of the memory 103 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of access point 100 are coupled together by a bus system 109, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as the bus system 109 in the figure.
  • the method for transmitting the foregoing various frames disclosed in the foregoing embodiments of the present invention may be applied to the processing unit 102 or implemented by the processing unit 102.
  • each step in the foregoing embodiments may be completed by an integrated logic circuit of the hardware in the processing unit 102 or a software form instruction. to make.
  • the processing unit 102 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 103, and the processing unit 102 reads the information in the memory 103 and completes the steps of the above method in combination with its hardware.
  • the processing unit 102 is configured to implement a method as follows:
  • a wireless local area network in a TXOP, at least a first time interval and a second time interval after the first time interval are included,
  • the uplink trigger frame UL trigger including uplink scheduling information is sent in the second time interval.
  • the uplink trigger frame is a MAC frame.
  • the uplink scheduling information includes at least one or two of the following information: scheduling information used to trigger the downlink STA to send an ACK; or scheduling information used to trigger the uplink STA to send uplink data. Other details refer to the foregoing embodiments and will not be described in detail herein.
  • FIG. 12 is a block diagram of a station in accordance with another embodiment of the present invention.
  • the site of FIG. 12 includes an interface 111, a processing unit 112, and a memory 113.
  • Processing unit 112 controls the operation of site 110.
  • Memory 113 can include read only memory and random access memory and provides instructions and data to processing unit 112.
  • a portion of the memory 113 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of the site 110 are coupled together by a bus system 119, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 119 in the figure.
  • the method for receiving information disclosed in the foregoing embodiments of the present invention may be applied to the processing unit 112 or implemented by the processing unit 112.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processing unit 112 or an instruction in a form of software.
  • the processing unit 112 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 113, and the processing unit 112 reads the information in the memory 113 and performs the steps of the above method in combination with its hardware.
  • the memory 113 stores an instruction that causes the processing unit 112 to perform resource status information indicating a busy state of a sub-resource of a channel resource for which the access point performs data transmission with the station; sending to the access point Resource status information, so that the access point performs resource allocation according to resource status information.
  • processing unit 112 is configured to implement:
  • a wireless local area network in a TXOP, at least a first time interval and a second time interval after the first time interval are included,
  • a PPDU physical layer header Receiving, at least before the first time interval, a PPDU physical layer header, where the PPDU physical layer header includes information I1 indicating whether the uplink trigger frame UL trigger exists in the TXOP;
  • the uplink trigger frame UL trigger including the uplink scheduling information is received at the second time interval.
  • the uplink trigger frame is a MAC frame.
  • the uplink scheduling information includes at least one or two of the following information: scheduling information used to trigger the downlink STA to send an ACK; or scheduling information used to trigger the uplink STA to send uplink data. Other details refer to the foregoing embodiments and will not be described in detail herein.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes computer storage media and Communication medium, wherein the communication medium includes any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital STA line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,至少在所述第一时间间隔之前,所述无线局域网的接入点AP发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在上行触发帧UL trigger的信息I1;所述AP在所述第一时间间隔发送下行的STA数据;当所述信息I1指示为存在所述UL trigger时,所述AP在所述第二时间间隔发送包含上行调度信息的所述上行触发帧UL trigger。

Description

资源指示的处理方法、处理装置、接入点和站点 技术领域
本发明涉及无线通信技术领域,并且更具体地,涉及传输信息的方法、接入点和站点。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长。无线局域网(WLAN,Wireless Local Area Network)凭借高速率和低成本方面的优势,成为主流的移动宽带接入技术之一。
为了大幅提升WLAN系统的业务传输速率,下一代电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)802.11ax标准将会在现有正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术的基础上,进一步采用正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)技术。OFDMA技术将空口无线信道时频资源划分成多个正交的时频资源块(RB,Resource Block),RB之间在时间上可以是共享的,而在频域上是正交的。
OFDMA技术支持多个节点同时发送和接收数据。当接入点需要与站点传输数据时,基于RB或RB组进行资源分配;在同一时刻为不同的STA分配不同的信道资源,使多个STA高效地接入信道,提升信道利用率。
具体的,对于上行多STA传输,接入点AP需要发送触发帧(UL trigger),一般的,可以包含但不限于下述信息之一:每个STA识别号ID,分配资源以及其他调度信息,比如频率资源,时间资源,空间流资源,调制编码速率(MCS:modulation and coding scheme),编码类型,发送分集方式,或者,功率控制信息等。这些多STA调度信息,可以在MAC帧中打包发送,称之为MAC trigger,也可以在PHY的信令里发送,称之为PHY trigger。
如何高效的发送UL trigger是本发明各实施方式关注的问题。
发明内容
本发明实施例提供了一种传输信息的方法、接入点和站点,能够高效地高效的发送UL trigger。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的系统构架的示意图。
图2是本发明实施例可应用的流程示意图。
图3是本发明一个实施例的上行触发帧的示意图。
图4是本发明一个实施例的上行触发帧的示意图。
图5a、5b、6、7分别是本发明一实施例的TXOP的帧的示意图。
图8是本发明另一实施例的MAC header的示意图。
图9a、9b分别是本发明一个实施例的TXOP的的示意图。
图10a、10b、10c分别是本发明一个实施例的TXOP的的示意图。
图11是本发明一实施例的接入点的框图。
图12是本发明一实施例的站点的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
接入点(AP,Access Point),也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。其本身也是一个站点。
站点(STA,Station),还可以称为STA,或者Non-AP STA,可以是无线传感器、无线通信终端或移动终端,如支持WiFi通讯功能的移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是支持WiFi通讯功能的便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。
图1为一个本发明实施方式应用的WLAN系统的简单示意图。图1的系统包括一个或者多个接入点AP101和一个或者多个站点STA102。接入点101和站点102之间采用OFDMA技术进行无线通信,其中接入点101发送的数据帧中包含针对站点102的UL trigger。
具体的,参考图2,本发明一个实施方式提供了一种触发帧传输的方法,应用于采用OFDMA技术的无线局域网,包括:
无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
至少在所述第一时间间隔之前,所述AP发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在所述上行触发帧UL trigger的信息I1;
所述无线局域网的接入点AP在所述第一时间间隔发送下行的STA数据;
所述AP在所述第二时间间隔发送包含上行调度信息的上行触发帧UL trigger。
上述方案可以在一个TXOP内高效灵活的级联发送下行和上行多STA数据,还可以包括下述的一个或者多个有益效果:减少额外开销,或者,提高上行发送的可靠性。
在一个实施方式中,在同一个TXOP内分配有多个时间间隔,在其中一个时间间隔内AP发送一个用于触发上行传输的触发帧,该触发帧中包含STA的调度信息,简称为上行触发帧UL trigger。本实施方式中,较优的,UL trigger是把上行调度信息在MAC帧内传输的MAC trigger。这样,在同一个TXOP内,AP发送多STA下行数据后,无需等待SIFS时间,也无需附加传统物理层帧头Legacy preamble就可以发送该UL trigger。其中,可以知道,UL trigger和其他下行数据在一个下行DL帧中时分复用。
本发明各实施方式涉及但不限于下面的几个方面:
第一、关于指示UL trigger的信息I1
AP发送的PPDU中,在下行数据之前,包括PPDU物理层帧头。在AP发送的PPDU物理层帧头中包括,包含用于指示是否在该TXOP内存在UL trigger的信息I1。较优的,该信息I1可以位于PPDU物理层帧头中的L-SIG,重复的L-SIG符号(RL-SIG)或者HE-SIG-A中。
较优的,该信息I1采用隐式的方式进行指示。
一个例子中,提供一种指示UL trigger的信息的方法,利用L-SIG中L-LENGTH的设置,指示是否在该TXOP内存在UL trigger:当L-LENGTH是3的整倍数,指示该TXOP内不存在UL trigger;当发送端设置L-LENGTH不是3的整数倍,(被3整除余数不为0),指示在该TXOP内,存在UL trigger。或者,反之。
另一个例子中,提供一种指示UL trigger的信息的方法,利用重复的L-SIG(RL-SIG)的信息比特的相位变化,指示UL trigger是否存在:比如,如果RL-SIG和L-SIG相位相同,指示UL trigger存在;如果RL-SIG和L-SIG相位相反,指示UL trigger不存在。或者反之。
另一个例子中,提供一种指示UL trigger的信息的方法,利用L-SIG中在传统48比特两边额外增加的4比特,802.11ax设备可以识别的导频子载波,该导频子载波可以得到4个子载波的信道估计,连同L-LTF得到的48 个子载波的信道估计,用来接收后续HE-SIG-A52个载波上的信息。这里可以利用4个额外的导频子载波的相位变化,来指示UL trigger是否存在。比如,4个子载波分别位于DC tone的左右,2个为一组,如果左右相位相同,表示不存在,如果左右相位相反,表示存在。
类似的另一个例子中,提供一种指示UL trigger的信息的方法,利用RL-SIG中的4个导频子载波pilot tone的相位变化,指示UL trigger是否存在。
另一个例子中,提供一种指示UL trigger的信息的方法,利用HE-SIG-A中的1比特明确的指示在该TXOP内存在UL trigger。
另外,在AP发送的PPDU物理层帧头中的HE-SIG-A或者HE-SIG-B内,包括用于指示该上行触发帧UL trigger的位置的信息I2或者长度的信息I3,以及传输方式等信息,比如TXOP内UL trigger开始的时间/结束的时间,或者UL trigger持续时间(单位ms),或者单位时间(比如0.1ms)的倍数,或者UL trigger所需要的单位符号数,所传输的数据量和指定MCS(根据指定的MCS和传输数据量可以计算出持续时间)等。UL trigger传输方式包括MCS,符号长度,符号间间隔等。符号长度,比如用传统11a/n/ac的3.2us符号长度,或者11ax的12.8us符号长度;符号间间隔GI(Guard interval)或者符号前缀CP(Cyclic prefix),比如适合室内信道环境的0.4us或者0.8us,或者室外信道环境的1.6us或者3.2us等。符号间隔的指示可以重用或者部分重用下行PPDU的指示,而符号长度如果室内固定为3.2us,而室外固定为12.8us,也可以省去指示,MCS指示可以指定默认的低MCS或者有限几个MCS中选择,可以节省UL trigger的MCS指示信息的开销。
较优的例子中,如果为了进一步提前指示哪些STA去检测UL trigger,还可以在下行PPDU的帧头HE-SIG-B中指示UL trigger的STAID或者STA组ID。如果按照HE-SIG-B指示的STA顺序,UL trigger内部可以省去对STAID的指示,按照顺序指示每个STA或者STA组的其他调度信息。
较优的例子中,默认UL trigger位于AP发送的PPDU的最后的位置,无需指示终点位置I2-1,这时,只需要指示UL trigger的长度I3,长度可以是时间间隔,或者是单位时间间隔的倍数,或者是单位符号个数,可以通过指定的MCS和传输数据量计算得到长度信息。接收端(上行STA)通过L-SIG中的PPDU长度减去UL trigger的长度,可以知道UL trigger开始的位置,下行STA可以知道下行数据结束的位置。如果下行STA需要通过AP调度在该下行PPDU结束后等待SIFS时间后反馈ACK信息,或者该STA有等待AP调度上行发送的数据同时是上行STA,需要读UL trigger里是否有该STA的上行传输调度信息;否则,该下行STA不需要读UL trigger。一个下行STA如果延迟对该STA下行数据的ACK,或者该STA没有等待AP调度的上行数据,则无需在UL trigger中去检测该STA的调度信息;否则,该STA在UL trigger中去检测该STA相关的调度信息。
另一个例子中,默认UL trigger位于下行帧中数据部分的开始的位置,无需指示起点位置I2-2,只需要指示UL trigger的长度I2,上行STA可以知道UL trigger的终点,下行STA就可以知道下行数据开始的位置。
如果知道UL trigger存在,接收端根据HE-SIG-A或者HE-SIG-B中关于UL trigger的相关指示,可以得知UL trigger准确位置和长度。如果该接收端是正在等待调度发送上行数据的上行STA,可以从UL trigger开始检测该STA上行传输的调度信息,调度信息可以包含但不限于下述信息之一:每个上行STA识别号ID,分配资源以及其他调度信息,比如频率资源,时间资源,空间流资源,调制编码速率(MCS:modulation and coding scheme),编码类型,发送分集方式,或者,功率控制信息等。。
如果该STA发现HE-SIG-B中有该STA下行数据的调度信息时,该STA是下行STA继续在分配的资源内检测下行数据,如果该STA需要AP调度发送下行数据的ACK,则等到UL trigger开始检测该STA上行发送ACK的调度信息。如果该STA有需要AP调度发送上行数据,等到UL trigger开始检测 该STA上行的调度信息。
第二、关于UL trigger的发送方式
较优的,UL trigger作为802.11ax下行数据包中的一部分发送,可以在AP给UL trigger指定的总带宽上全带宽上发送,或者按照总带宽内单位带宽上重复发送。为了提高发送效率,也可以按照总带宽内单位带宽上并行发送各个单位带宽内的信息。这里,单位带宽规定为20MHz或者更大40MHz,比如总带宽80MHz,单位带宽20MHz;带宽160MHz或者80+80MHz时,单位带宽40MHz)。而AP给UL trigger指定的总带宽,可以和下行数据包总带宽相同,重用下行带宽指示信息,也可以和下行数据包总带宽不同,但是需要额外的信令指示。和传统方案二区别在于在UL trigger传输时间内,没有和其他下行数据分享频率资源,而只有是UL trigger的信息。
传输的符号长度可以采用和下一代Wifi标准(例如但不限于802.11ax)协议规定的数据部分相同,例如(CP+12.8us),此时在MAC trigger信息前需要发送HE-STF和HE-LTF,帮助上行STA得到UL trigger相关的功率控制信息和信道估计信息。如果采用和Wifi标准(如802.11系列)传统符号长度(CP+3.2us),接收端根据帧开始的L-STF和L-LTF已经得到了功率控制信息和信道估计信息,HE-STF/HE-LTF可以省略。符号间间隔CP可以指定为0.4us,0.8us,1.6us或者3.2us的一种。符号间隔的指示可以重用或者部分重用下行PPDU的指示,而符号长度如果室内固定为3.2us,而室外固定为12.8us,也可以省去指示,MCS指示可以指定默认的低MCS或者有限几个MCS中选择,可以节省UL trigger的MCS指示信息的开销。
第三、关于UL trigger包含的触发信息
该UL trigger中包括用于触发上行传输的调度信息,至少包括以下一种:
触发下行STA发送ACK的调度信息,和/或者,
触发上行STA发送上行数据的调度信息。
其中这里在UL trigger中的上行STA可以不同于下行STA。上行STA是发送上行数据的STA,下行STA是接收下行数据的STA,下行STA在正确接收了下行数据后,需要给AP反馈ACK。如果STA同时有上行数据和下行数据,该STA既是上行STA也是下行STA。
第四,关于UL trigger的数据结构
各实施方式中的UL trigger具体的可以是MAC帧,简称MAC tigger,为一种特殊的控制帧。其内容或者结构如图4所示,其中的Frame Control(FC),Duration,Transmitter Address(TA)都是传统MAC帧中的内容,分别用于识别MAC帧类别,传输时间和发送源地址等。后面的指示信息是触发STA的调度信息。
按照图3所示,调度信息指示每个STA的上行传输调度信息,简称STA-based MAC trigger。其中的STA可以是下行STA,调度信息指示该STA的ID,以及该下行STA上行发送ACK的资源分配信息和其他指示发送的调度信息,或者是上行STA,调度信息指示该STA的ID,以及该上行STA发送上行数据的资源分配信息和其他指示发送的调度信息。如果该STA同时有下行数据和上行数据,AP分配资源给该STA同时发送下行数据的ACK和上行数据,该STA的相关信息同时指示该STA的ID,以及发送下行数据的ACK和上行数据所分配的频率时间资源的位置和大小,另外该STA的其他的调度信息,比如编码类型,发送分集方式,功率控制信息也可以同时用在下行数据的ACK和上行数据,但是其他的调度信息,比如调制编码速率(MCS:Modulation and Coding Scheme)和空间流等,下行数据的ACK和上行数据可以不同,通常下行数据的ACK为了正确检测用最低MCS0传输,而上行数据可以按照AP指示的MCS传输;而下行数据的ACK采用单流,而上行数据可以按照AP指示的空间流传输。
按照图4所示,调度信息指示每个资源单位(RU:resource unit)的上行传输调度信息,简称RU-based MAC trigger。其中common field中包 括RU资源分配的信息,指示每个RU的位置和大小,后续指示每个RU内分配STA或者一组STA的调度信息。每个RU内的STA可以是下行STA,调度信息指示该STA的ID,以及该下行STA上行发送ACK的资源分配信息和其他指示发送的调度信息,或者是上行STA,调度信息指示该STA的ID,以及该上行STA发送上行数据的资源分配信息和其他指示发送的调度信息。如果该RU中的STA同时有下行数据和上行数据,该RU给该STA同时发送下行数据的ACK和上行数据,该STA的相关信息同时指示该STA的ID,以及发送下行数据的ACK和上行数据所分配的频率时间资源的位置和大小,另外该STA的其他的调度信息,比如编码类型,发送分集方式,功率控制信息也可以同时用在下行数据的ACK和上行数据,但是其他的调度信息,比如调制编码速率(MCS:Modulation and Coding Scheme)和空间流等,下行数据的ACK和上行数据可以不同,通常下行数据的ACK为了正确检测用最低MCS0传输,而上行数据可以按照AP指示的MCS传输;而下行数据的ACK采用单流,而上行数据可以按照AP指示的空间流传输。
第五、关于接收端STA端的处理
接收端STA接收前述提到的AP发送的相应的信息。如果STA在TXOP位于较前的部分(例如开始的位置)的DL PPDU中的指示信息中,获得在该TXOP内存在UL trigger,另外,根据关于UL trigger的位置或者长度指示可以获得UL trigger准确位置和长度,没有下行数据的STA但是在等待上行调度的STA可以略过下行数据时间等到UL trigger再检测调度信息,而没有下行数据的STA同时也没有在等待上行调度的STA可以略过整个TXOP时间,不进行信息的检测。相反,如果知道UL trigger不存在,上行等待调度的STA发现无需在该TXOP去搜索该STA的上行调度信息。
实例一
在本实例中,下行STA的ACK和上行STA数据共享上行资源,该UL  trigger中发送的调度信息包括:
触发下行STA发送ACK的调度信息;和,触发上行STA发送上行数据的调度信息。
其他的例子中,可以采用OFDMA方式,如图5a所示。如果下行STA只发送ACK而没有额外的上行数据,也采可以用TDM(time division multiplexing时分复用)方式发送,如图5b所示。在TDM方式中,下行STA的ACK信息位于上行数据的前面,因为相对上行数据,ACK信息较短,放在前面不会影响后续上行STA发送上行数据时的时间和频率同步。其中,下行STA发送ACK的同时可以和自己的上行数据一起发送,AP根据ACK信息和上行数据的大小分配对应的资源。
实例一的效果:
本实例中,AP在发送完下行数据后,直接发送触发帧,不需要等待SIFS,节省了单独发送UL trigger所需的SIFS和L-preamble等时间,以及发送L-preamble的能量。
本实例中,把UL trigger和下行数据分别在不同的时间间隔内独立分配频率资源,降低了资源调度的复杂度,同时也不会因为UL trigger信息和上行STA的不匹配,造成资源浪费或者接收性能受到影响。
本实例中,把下行STA的ACK/下行数据和上行数据联合调度,提高了频谱利用效率的同时,根据STA信道条件调度分配条件好的资源保证了上行传输的性能。
较优的,如果知道UL trigger存在,另外根据HE-SIG-A或者HE-SIG-B中关于UL trigger的指示,上/下行STA可以得知UL trigger准确位置和长度,上行等待调度STA可以略过下行数据等到UL trigger再检测调度信息。相反,如果知道UL trigger不存在,上行等待调度的STA可以忽略该TXOP不检测上行调度信息。
这里UL trigger中的部分STA是UL STA,和DL STA不同,把UL trigger放在DL STA的数据后面,可以为DL STA拖延时间,保证在SIFS前有足够 的处理时间,而无须添加额外的时间延长符号。但是如果UL trigger中调度的STA是和DL STA相同,那么该STA在接收完下行数据后需要紧接着检测UL trigger中的该STA的调度信息,所以如果该STA的下行数据在大的RU内采用高MCS传输,低能力STA如果处理下行数据时间不够,需要在DL数据时间和UL trigger之间,插入额外的符号,延长处理时间。
实例二
本实例中,UL trigger只为下行STA的ACK分配资源,没有其他上行STA的数据。那么该UL trigger中发送调度信息包括:
触发下行STA发送ACK的调度信息。
这里,UL trigger中和下行调度STA相同,按照下行STA在HE-SIG-B中指定下行数据的相关调度信息,可以进一步节省UL trigger中的调度信息。比如按照和HE-SIG-B中相同的STA顺序或者RU顺序,可以节省每个STA调度信息中的STAID,或者每个RU调度STA的ID。另外,UL trigger是指示ACK上行发送,特殊的ACK传输,可以默认选择采用单流,BCC编码,非发送分级,和最低的MCS传输,那么UL trigger中每个STA或者每个RU的调度信息可以省去MCS,发送分级方式,编码类型,以及空间流信息等,可以简化为指示为上行传输分配的时间频率资源分配信息。
如图6所示,UL trigger(图6中所示的MAC trigger for DL STA)后,经过SIFS时间,下行STA根据调度信息发送ACK。这样下行STA在上行传输时需要根据ACK控制信令所需要的大小和上行信道质量选择信道质量最好的频率资源上发送ACK,避免额外的资源浪费同时也提高检测质量;对于共享下行分配资源的MU-MIMOSTA(比如图6中的STA2,3),上行发送ACK无法利用MU-MIMO并行发送,需要AP根据MU-MIMO中的每个STA上行信道质量重新分配在上行OFDMA发送时的频率资源。所以UL trigger提供上行传输专有的调度信息指示对于下行OFDMA+MU-MIMO多STA的ACK信息分配更加灵 活。尤其对于下行分享同一频率资源的MU-MIMOSTA,上行ACK为了保证检测性能采用OFDMA发送,需要另外分配资源。
实施例二是实施例一的特例,所以具有前述类似的优点,提供了下行STA需要立刻反馈同时没有新上行STA发送上行数据情况下的一个灵活应用。
实例三
本实例中,UL trigger只为上行STA的数据分配资源。那么该UL trigger中发送调度信息包括
触发上行STA发送上行数据的调度信息;
如同图7所示,UL trigger(MAC trigger for UL STA4,5,6)后经过SIFS时间,上行STA根据调度信息发送上行数据。下行STA的ACK不是在下行数据发送后等待SIFS时间立刻反馈,推迟反馈ACK而优先上行STA数据。如何延迟反馈ACK的指示可以在下行STA数据帧的MAC header中的QoS control里指示或者HEcontrol,如图8所示,为802.11ax中的QoS control和传统11ac中的定义一样,包含了接收数据包后ACK反馈格式和反馈延迟与否的相关指示。
其中,MAC header是指一般数据包中的MAC帧头部分,其中有关于该数据包的一些系统信令指示。MAC trigger是一个特殊控制帧,不是数据包,其数据结构可以参考前述实施方式。
实施例三是实施例一的特例,所以类似的优点,同时提供了一种下行STA延迟反馈而有新上行STA发送上行数据情况下的一个灵活应用。
实例四
UL trigger只为上行STA的数据分配资源。那么该UL trigger中发送调度信息包括
触发上行STA发送上行数据的调度信息;
比如:
本例中,UL trigger后经过SIFS时间,上行STA根据调度信息发送上行数据。下行STA的ACK也在下行数据发送后等待SIFS时间反馈,但是下行STA如何反馈ACK的指示信息在每个下行STA数据帧MAC header中的QoS control后的11ax特定控制域HE control里指示,如图8所示。其中HE control中,包含了该下行STA上行传输时(反馈ACK或者发送上行数据)的资源指示,包括分配资源以及其他调度信息,比如频率资源,时间资源,空间流资源,调制编码速率,编码类型,发送分集方式,功率控制信息等。由于这个触发上行传输的调度信息只针对该STA,该STA的ID已经在下行数据包中的目标地址域里指示,不用重复在HE control指示。采用OFDMA方式,如图9a所示。如果下行STA只发送ACK而没有额外的上行数据,也采用TDM方式发送,如图9b所示。在TDM方式中把下行STA的ACK信息放在上行数据前面,因为相对上行数据ACK信息较短,放在前面不会影响后续上行STA发送上行数据时的时间和频率同步。其中,下行STA发送ACK的同时可以和自己的数据一起发送,AP根据ACK信息和上行数据的大小分配对应的资源。
把下行STA的ACK/下行数据和上行数据联合调度,提高了频谱利用效率的同时,根据STA信道条件调度分配条件好的资源保证了上行传输的性能。
实施例四除了具有实施例一类似的优点之外,还有其独特的优点:
这里UL trigger中的STA是UL STA,和DL STA完全不同,所以DL STA在接收完下行数据后,无需检测UL trigger,在准备该STA的上行反馈ACK或者发送上行数据前,在该下行数据后紧跟的UL trigger可以留够足够的处理时间,而无须添加额外的时间延长符号。
需要解释的是,MAC header是一般数据包中的MAC帧头部分,其中有关于该数据包的一些系统信令指示。MAC trigger是一个特殊控制帧,不是数据包。每个PPDU都有MAC header,一般数据包的MAC帧头按照图8中的定 义,而MAC trigger是不同于数据包的一个控制帧,MAC帧头和数据包的MAC帧头不同定义,例如图4。
实例五
如果一个TXOP内包含多个下行和上行级联的PPDU,在一个UL trigger中可以指示一个上行STA在后续特定的某个上行PPDU中发送,如图10a、10b、10c所示。那么该STA所对应的调度信息中,资源指示需要包含特定上行PPDU的位置,比如指定的上行PPDU在TXOP内的起始时间和传输时间或者结束时间,时间可以是绝对的时间,或者规定单位时间(符号或者几个符号为单位)的倍数;也可以简化在UL trigger的common info field公共信息域按照顺序指示每个上行PPDU的长度,而后面每个STA或者每个RU的时间资源指示信息指示指定的上行PPDU是TXOP内第几个的序列号。
在每个上行PPDU前,有一个或多个DL PPDU,所以每个上行PPDU中调度的多STA可以利用前面的下行PPDU中的pilot导频子载波进行相位跟踪,保证在UL trigger后的在指定的时间频率上同步。
图10a中TXOP中的UL trigger依附于一个下行PPDU传输下行多STA数据,可以在下行PPDU的物理层帧头中指示UL trigger的相关信息(存在与否,长度信息等),帮助STA提前准备在指定的时间检测UL trigger。
图10b中TXOP中的UL trigger不依附于下行PPDU传输下行多STA数据,而是在下行PPDU后等待SIFS时间发送,该MAC trigger发送时需要有自己的物理层帧头,如果是11a的格式物理层帧头包括legacy preamble,如果是11n的格式物理层帧头包括legacy preamble以及HT-preamble,如果是11ac的格式物理层帧头包括legacy preamble以及VHT-preamble,如果是11n的格式物理层帧头包括legacy preamble以及HE-preamble。可以在UL trigger前面的下行PPDU物理层帧头中指示相关信息(存在与否,长度信息等),帮助STA提前准备在指定的时间检测UL trigger,也可以下行 PPDU的物理层帧头中只指示UL trigger是否存在,如果存在,STA需要在检测UL trigger的L-SIG中L-LENGTH指示,可以获知UL trigger的PPDU长度。
图10c中TXOP中的UL trigger不依附于下行PPDU传输下行多STA数据,而是在TXOP的开头,该MAC trigger发送时需要有自己的物理层帧头,如果是11a的格式物理层帧头包括legacy preamble,如果是11n的格式物理层帧头包括legacy preamble以及HT-preamble,如果是11ac的格式物理层帧头包括legacy preamble以及VHT-preamble,如果是11n的格式物理层帧头包括legacy preamble以及HE-preamble。STA在检测到TXOP开始的ULtrigger后,通过该L-SIG中L-LENGTH指示,可以获知UL trigger的PPDU长度。
实施例五的优点继承了前面实施例的优点之外,因为UL trigger包含多个UL PPDU的调度信息,节省了多次独立发送多个UL trigger的等待时间和物理层/MAC层帧头开销,可以进一步提高系统效率。
相应的,另一实施方式提供了一种信息传输的处理装置(未示出),应用于无线局域网,包含处理单元,被配置为用于:无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
至少在所述第一时间间隔之前,发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在上行触发帧UL trigger的信息I1;
在所述第一时间间隔发送下行的STA数据;
当所述信息I1指示为存在所述UL trigger时,在所述第二时间间隔发送包含上行调度信息的所述上行触发帧UL trigger。或者,
另一实施方式提供了一种信息传输的处理装置(未示出),应用于无线局域网,包括处理单元被配置为用于:在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
至少在所述第一时间间隔之前,接收PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示是否在所述TXOP内存在所述上行触发帧ULtrigger的信息I1;
所述无线局域网的站点STA,在所述第一时间间隔接收下行的STA数据;
当所述信息I1指示为存在所述UL trigger时,所述STA在所述第二时间间隔接收包含上行调度信息的上行触发帧UL trigger
具体的帧的结构与内容,可以参考前述各实施方式,此处不再赘述。处理单元可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。容易理解的,上述资源指示的处理装置,当具体为发送该包含资源指示字段的帧时,可以位于接入点;当具体为接收该包含资源指示字段的帧时,可以位于站点。
图11是本发明另一实施例的接入点的框图。图11的接入点包括接口101、处理单元102和存储器103。处理单元102控制接入点100的操作。存储器103可以包括只读存储器和随机存取存储器,并向处理单元102提供指令和数据。存储器103的一部分还可以包括非易失行随机存取存储器(NVRAM)。接入点100的各个组件通过总线系统109耦合在一起,其中总线系统109除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统109。
上述本发明实施例揭示的发送前述各种帧的方法可以应用于处理单元102中,或者由处理单元102实现。在实现过程中,上述各实施方式中的各步骤可以通过处理单元102中的硬件的集成逻辑电路或者软件形式的指令完 成。处理单元102可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器103,处理单元102读取存储器103中的信息,结合其硬件完成上述方法的步骤。
作为举例,所述处理单元102被配置为用于实现如下的方法:
无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
至少在所述第一时间间隔之前,发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在上行触发帧UL trigger的信息I1;
在所述第一时间间隔发送下行的STA数据;
在所述第二时间间隔发送包含上行调度信息的所述上行触发帧UL trigger。
较优的,其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。较优的,所述上行触发帧为MAC帧。较优的,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调度信息;或者,用于触发上行STA发送上行数据的调度信息。其他细节参考前述实施方式,此处不再详细介绍。
图12是本发明另一实施例的站点的框图。图12的站点包括接口111、处理单元112和存储器113。处理单元112控制站点110的操作。存储器113可以包括只读存储器和随机存取存储器,并向处理单元112提供指令和数据。 存储器113的一部分还可以包括非易失行随机存取存储器(NVRAM)。站点110的各个组件通过总线系统119耦合在一起,其中总线系统119除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统119。
上述本发明实施例揭示的接收信息的方法可以应用于处理单元112中,或者由处理单元112实现。在实现过程中,上述方法的各步骤可以通过处理单元112中的硬件的集成逻辑电路或者软件形式的指令完成。处理单元112可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器113,处理单元112读取存储器113中的信息,结合其硬件完成上述方法的步骤。
具体地,存储器113存储使得处理单元112执行如下操作的指令:确定资源状态信息,该资源状态信息指示接入点与站点进行数据传输的信道资源的子资源的忙闲状态;向接入点发送资源状态信息,以便于该接入点根据资源状态信息进行资源分配。
作为举例,处理单元112被配置为用于实现:
无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
至少在所述第一时间间隔之前,接收PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示是否在所述TXOP内存在所述上行触发帧UL trigger的信息I1;
在所述第一时间间隔接收下行的STA数据;
当所述信息I1指示为存在所述UL trigger时,在所述第二时间间隔接收包含上行调度信息的上行触发帧UL trigger。
较优的,其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。较优的,所述上行触发帧为MAC帧。较优的,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调度信息;或者,用于触发上行STA发送上行数据的调度信息。其他细节参考前述实施方式,此处不再详细介绍。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和 通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字STA线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (28)

  1. 一种传输信息的方法,其特征在于,
    无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
    至少在所述第一时间间隔之前,所述无线局域网的接入点AP发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在上行触发帧UL trigger的信息I1;
    所述AP在所述第一时间间隔发送下行的STA数据;
    当所述信息I1指示为存在所述UL trigger时,所述AP在所述第二时间间隔发送包含上行调度信息的所述上行触发帧ULtrigger。
  2. 根据权利要求1的方法,其特征在于,
    其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。
  3. 根据权利要求1或者2的方法,其特征在于,
    所述上行触发帧为MAC帧。
  4. 根据权利要求1-3任一所述的方法,所述信息I1位于所述PPDU物理层帧头中的L-SIG,重复的L-SIG符号RL-SIG或者HE-SIG-A中。
  5. 根据权利要求1-4任一的方法,其特征在于,所述所述PPDU物理层帧头中包括用于指示该上行触发帧UL trigger的位置的信息I2或者长度的信息I3。
  6. 根据权利要求5的方法,其特征在于,所述信息I2或者信息I3位于所述PPDU物理层帧头中的HE-SIG-A或者HE-SIG-B内。
  7. 根据权利要求1-6任一所述的方法,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调 度信息;或者,用于触发上行STA发送上行数据的调度信息。
  8. 一种传输信息的方法,其特征在于,
    无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔,
    至少在所述第一时间间隔之前,接收PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示是否在所述TXOP内存在所述上行触发帧UL trigger的信息I1;
    所述无线局域网的站点STA,在所述第一时间间隔接收下行的STA数据;
    当所述信息I1指示为存在所述UL trigger时,所述STA在所述第二时间间隔接收包含上行调度信息的上行触发帧UL trigger。
  9. 根据权利要求8的方法,其特征在于,
    其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。
  10. 根据权利要求8或者9的方法,其特征在于,
    所述上行触发帧为MAC帧。
  11. 根据权利要求8-10任一所述的方法,所述信息I1位于所述PPDU物理层帧头中的L-SIG,重复的L-SIG符号RL-SIG或者HE-SIG-A中。
  12. 根据权利要求8-11任一所述的方法,其特征在于,所述PPDU物理层帧头中包括用于指示该上行触发帧UL trigger的位置的信息I2或者长度的信息I3。
  13. 根据权利要求12的方法,其特征在于,所述信息I2或者信息I3位于所述PPDU物理层帧头中的HE-SIG-A或者HE-SIG-B内。
  14. 根据权利要求8-13任意所述的方法,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调度信息;或者,用于触发上行STA发送上行数据的调度信息。
  15. 一种用于传输信息的装置,其特征在于,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔;
    所述装置包括处理单元,被配置为用于:
    至少在所述第一时间间隔之前,发送PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示在所述TXOP内是否存在上行触发帧UL trigger的信息I1;
    在所述第一时间间隔发送下行的STA数据;
    当所述信息I1指示为存在所述UL trigger时,在所述第二时间间隔发送包含上行调度信息的所述UL trigger。
  16. 根据权利要求15的装置,其特征在于,
    其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。
  17. 根据权利要求15或者16的装置,其特征在于,
    所述上行触发帧为MAC帧。
  18. 根据权利要求15-17任意所述的装置,所述信息I1位于所述PPDU物理层帧头中的L-SIG,重复的L-SIG符号RL-SIG或者HE-SIG-A中。
  19. 根据权利要求15-18的装置,其特征在于,所述PPDU物理层帧头中包括用于指示该上行触发帧UL trigger的位置的信息I2或者长度的信息I3。
  20. 根据权利要求19的装置,其特征在于,所述信息I2或者信息I3位于所述PPDU物理层帧头中的HE-SIG-A或者HE-SIG-B内。
  21. 根据权利要求15-20任一所述的装置,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调度信息;或者,用于触发上行STA发送上行数据的调度信息。
  22. 一种用于传输信息的装置,其特征在于,
    无线局域网中,在一个TXOP内,至少包括第一时间间隔和与位于所述第一时间间隔之后的第二时间间隔;
    所述装置包括处理单元,被配置为用于:
    至少在所述第一时间间隔之前,接收PPDU物理层帧头,其中所述PPDU物理层帧头中包括用于指示是否在所述TXOP内存在所述上行触发帧UL trigger的信息I1;
    所述无线局域网的站点STA,在所述第一时间间隔接收下行的STA数据;
    当所述信息I1指示为存在所述UL trigger时,所述STA在所述第二时间间隔接收包含上行调度信息的上行触发帧UL trigger。
  23. 根据权利要求22的装置,其特征在于,
    其中,所述第一时间间隔与所述第二时间间隔之间没有时间间隙。
  24. 根据权利要求22或者23的装置,其特征在于,
    所述上行触发帧为MAC帧。
  25. 根据权利要求22-24任一所述的装置,所述信息I1位于所述PPDU物理层帧头中的L-SIG,重复的L-SIG符号RL-SIG或者HE-SIG-A中。
  26. 根据权利要求22-25的装置,其特征在于,所述PPDU物理层帧头中包括用于指示该上行触发帧UL trigger的位置的信息I2或者长度的信息I3。
  27. 根据权利要求26的装置,其特征在于,所述信息I2或者信息I3位于所述PPDU物理层帧头中的HE-SIG-A或者HE-SIG-B内。
  28. 根据权利要求22-27任一所述的装置,所述上行调度信息中至少包括下述信息中的一种或者两种:用于触发下行STA发送ACK的调度信息;或者,用于触发上行STA发送上行数据的调度信息。
PCT/CN2015/082698 2015-06-29 2015-06-29 资源指示的处理方法、处理装置、接入点和站点 WO2017000133A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580079147.7A CN107534955B (zh) 2015-06-29 2015-06-29 资源指示的处理方法、处理装置、接入点和站点
PCT/CN2015/082698 WO2017000133A1 (zh) 2015-06-29 2015-06-29 资源指示的处理方法、处理装置、接入点和站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082698 WO2017000133A1 (zh) 2015-06-29 2015-06-29 资源指示的处理方法、处理装置、接入点和站点

Publications (1)

Publication Number Publication Date
WO2017000133A1 true WO2017000133A1 (zh) 2017-01-05

Family

ID=57607604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082698 WO2017000133A1 (zh) 2015-06-29 2015-06-29 资源指示的处理方法、处理装置、接入点和站点

Country Status (2)

Country Link
CN (1) CN107534955B (zh)
WO (1) WO2017000133A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019149340A1 (en) * 2018-01-30 2019-08-08 Huawei Technologies Co., Ltd. Synchronization in a wlan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1843617A2 (en) * 2006-04-03 2007-10-10 Samsung Electronics Co., Ltd. Method and system for performing ranging when using multiple channel communication in a wireless network
CN104039013A (zh) * 2013-03-06 2014-09-10 中兴通讯股份有限公司 资源分配信息处理方法及装置
CN104488347A (zh) * 2012-06-18 2015-04-01 Lg电子株式会社 在无线lan系统中控制信道接入的方法和设备
CN104521310A (zh) * 2012-09-07 2015-04-15 英特尔公司 用于分派无线网络中受限的接入窗中的时隙的方法和配置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1843617A2 (en) * 2006-04-03 2007-10-10 Samsung Electronics Co., Ltd. Method and system for performing ranging when using multiple channel communication in a wireless network
CN104488347A (zh) * 2012-06-18 2015-04-01 Lg电子株式会社 在无线lan系统中控制信道接入的方法和设备
CN104521310A (zh) * 2012-09-07 2015-04-15 英特尔公司 用于分派无线网络中受限的接入窗中的时隙的方法和配置
CN104039013A (zh) * 2013-03-06 2014-09-10 中兴通讯股份有限公司 资源分配信息处理方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019149340A1 (en) * 2018-01-30 2019-08-08 Huawei Technologies Co., Ltd. Synchronization in a wlan

Also Published As

Publication number Publication date
CN107534955B (zh) 2020-02-14
CN107534955A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
US10548156B2 (en) Resource indication processing method and processing apparatus, access point, and station
JP6333953B2 (ja) 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法
US20190349179A1 (en) Signaling method for multi-user transmission, and wireless communication terminal and wireless communication method using same
WO2019128957A1 (zh) 无线局域网中多信道混合传输方法和装置
WO2019096291A1 (zh) 信息发送、接收方法及装置
WO2015127806A1 (zh) 无线局域网数据的传输方法及装置
JP2016521051A5 (zh)
WO2016197349A1 (zh) 物理层协议数据单元的传输方法和装置
JP6522522B2 (ja) データ送信および受信方法およびデバイス
KR20160096593A (ko) 비면허 대역에서 데이터를 전송하는 방법 및 장치
WO2021036648A1 (zh) 数据传输方法及装置
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
WO2018086449A1 (zh) 一种小时隙的发送方法、装置和计算机可读存储介质
CN107529354A (zh) 一种数据传输方法和传输装置
WO2014146302A1 (zh) 上行数据传输方法及装置
EP3211947B1 (en) Resource indication method, data frame processing method, access point and station
WO2017000133A1 (zh) 资源指示的处理方法、处理装置、接入点和站点
WO2018032915A1 (zh) 一种非授权频谱上的数据传输方法和设备
TW202344004A (zh) Ppdu的上行頻寬指示方法及相關裝置
WO2020063922A1 (zh) 一种检测控制信道的方法及装置
WO2017063421A1 (zh) 媒介访问控制包头压缩方法、装置及系统
WO2016191991A1 (zh) 物理层协议数据单元的传输方法和装置
US20240048304A1 (en) Ppdu with adjustable subcarrier spacing
WO2016138623A1 (zh) 无线局域网中的确认帧传输方法及通信装置
WO2022062819A1 (zh) 一种符号应用方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896664

Country of ref document: EP

Kind code of ref document: A1