WO2015127806A1 - 无线局域网数据的传输方法及装置 - Google Patents

无线局域网数据的传输方法及装置 Download PDF

Info

Publication number
WO2015127806A1
WO2015127806A1 PCT/CN2014/092960 CN2014092960W WO2015127806A1 WO 2015127806 A1 WO2015127806 A1 WO 2015127806A1 CN 2014092960 W CN2014092960 W CN 2014092960W WO 2015127806 A1 WO2015127806 A1 WO 2015127806A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sta
domain
radio resource
radio frame
Prior art date
Application number
PCT/CN2014/092960
Other languages
English (en)
French (fr)
Inventor
张佳胤
朱俊
林英沛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480076066.7A priority Critical patent/CN106465400B/zh
Priority to EP19206406.1A priority patent/EP3668242B1/en
Priority to EP14883642.2A priority patent/EP3113565B1/en
Priority to ES19206406T priority patent/ES2948967T3/es
Priority to CN202010103469.3A priority patent/CN111629388B/zh
Priority to PCT/CN2014/093869 priority patent/WO2015127810A1/zh
Priority to JP2016554452A priority patent/JP6479033B2/ja
Priority to KR1020167026368A priority patent/KR101883416B1/ko
Priority to EP23156706.6A priority patent/EP4221410A3/en
Publication of WO2015127806A1 publication Critical patent/WO2015127806A1/zh
Priority to US15/249,795 priority patent/US10264599B2/en
Priority to US16/384,522 priority patent/US10631322B2/en
Priority to US16/837,827 priority patent/US11497045B2/en
Priority to US17/948,871 priority patent/US11737092B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting wireless local area network data.
  • the WLAN network may include multiple APs (Access Points) and multiple STAs (Stations). Each AP may be associated with multiple STAs, and each AP may communicate with its associated STA through a wireless channel. Transfer wireless LAN data.
  • the current wireless local area network data transmission method is specifically: when the AP sends wireless local area network data to a certain STA associated with the AP, the AP listens to the wireless channel, and when the wireless channel is not occupied for a period of time, the AP accesses To the wireless channel, the right to use the wireless channel is obtained.
  • the AP encapsulates the wireless local area network data to be transmitted in a PPDU (PLCP protocol data unit, PLCP protocol processing unit), and sends the PPDU to the STA.
  • a PPDU PLCP protocol data unit, PLCP protocol processing unit
  • the STA When a certain STA associated with the AP sends wireless local area network data to the AP, the STA listens to the wireless channel, and when the wireless channel is not occupied for a period of time, the STA accesses the wireless channel, and acquires the wireless channel. The right to use the wireless channel.
  • the STA encapsulates the WLAN data to be transmitted in the PPDU, and sends the PPDU to the AP.
  • FIG. 1 shows a conventional PPDU format
  • the second and third rows of FIG. 1 show a PPDU frame format of 802.11n
  • FIG. 2 shows The PPDU frame format of 802.11ac.
  • the STA may encapsulate the WLAN data in the PPDU and send it to the AP through the frame format of FIG. 1 or FIG. 2.
  • the AP may also encapsulate the WLAN data in the PPDU and send it to the STA through the PPDU frame format of FIG. 1 or FIG. 2 .
  • L-STF, HT-STF, HT-GF-STF are short training fields
  • L-LTF, HT-LTF1, HT-LTF, VHT-LTF are long training fields
  • L-SIG, HT-SIG, VHT- SIG-A, VHT-SIG-B are signaling fields
  • Data is a data field.
  • the WLAN network uses a free unlicensed frequency band, and uses a contention-based access mechanism to acquire the right to use the wireless channel, and when a certain STA/AP acquires the right to use the wireless channel, A one-to-one relationship between the AP and the STA transmits wireless LAN data. It is impossible to transmit wireless LAN data in a one-to-many relationship between the AP and the STA and between the STA and the AP, reducing the spectrum utilization rate and the network. Use efficiency.
  • an embodiment of the present invention provides a method and an apparatus for transmitting wireless local area network data.
  • the technical solution is as follows:
  • a device for transmitting wireless local area network data comprising:
  • a constructing module configured to construct a radio frame when acquiring a radio channel usage right, where the radio frame includes at least a preamble portion, a control domain, and a data domain, where the data domain includes at least one downlink data domain;
  • a first sending module configured to send the preamble portion and the control domain to a site STA associated with the access point AP;
  • a second sending module configured to send, in a downlink data field of the radio frame, wireless local area network data to an STA associated with the AP.
  • the preamble portion and the control domain adopt orthogonal frequency division multiplexing compatible with the existing Institute of Electrical and Electronics Engineers IEEE 802.11 standard.
  • the transmission is performed by using an OFDM method
  • the data domain is transmitted by using an orthogonal frequency division multiple access (OFDMA) method.
  • OFDM orthogonal frequency division multiple access
  • the preamble portion adopts a preamble portion compatible with the existing IEEE 802.11, and the preamble portion includes a traditional short training field L-STF a legacy long training field L-LTF and a legacy signaling field L-SIG, the L-STF being used to synchronize an STA associated with the AP with the AP, the L-LTF being used to enable
  • the AP associated with the AP performs channel estimation to acquire information related to the duration of the radio frame carried in the L-SIG by coherent reception.
  • the length LENGTH data field in the L-SIG domain carries a duration that is longer than the duration of the radio frame.
  • a correlation value, the duration of the radio frame corresponding to the value being greater than or equal to the actual duration of the radio frame.
  • the device further includes:
  • An adding module configured to increase a transmit power of a preamble portion of the radio frame, so as not to be associated with the AP
  • the associated STA and other APs receive the preamble portion of the radio frame, and STAs and other APs not associated with the AP within the reserved duration no longer transmit wireless local area network data over the wireless channel, the pre- The length of stay is the length of time that the AP has the right to use the wireless channel.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, and an OFDMA modulation parameter used by the data domain. And radio resource allocation indication information for STAs associated with the AP.
  • the configuration information of the uplink and downlink data domain includes: the number of uplink data domains, and the number of downlink data domains. And conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameter used by the data domain includes: a channel bandwidth of the system, and a cyclic prefix used CP length, fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: And indicating, by the resource, that the first radio resource indication is used to indicate that the second radio resource used by each scheduled STA transmits data, or the first radio resource indication is used to indicate that each is scheduled.
  • the first radio resource indication includes: the radio resource block indicated by the first radio resource indication Size and location and modulation coding scheme and/or multiple input multiple output MIMO transmission scheme used on the radio resource block.
  • the device further includes:
  • a first receiving module configured to: when the data domain includes an uplink data domain, receive, according to the control domain, wireless local area network data sent by an STA associated with the AP in an uplink data domain included in the data domain.
  • a device for transmitting wireless local area network data comprising:
  • a second receiving module configured to receive a preamble portion and a control region of the radio frame sent by the access point AP associated with the station STA;
  • a third receiving module configured to receive, according to the preamble portion and the control domain, wireless local area network data sent by an AP associated with the STA in a downlink data field included in a data domain of the radio frame, where the data domain At least one downstream data field is included.
  • the preamble portion employs a preamble portion compatible with the existing Institute of Electrical and Electronics Engineers IEEE 802.11, and the preamble portion includes a conventional short Training field L-STF, traditional long training field L-LTF and traditional signaling field L-SIG;
  • the device further comprises:
  • a synchronization module configured to synchronize with an AP associated with the STA according to the L-STF;
  • a channel estimation module configured to perform channel estimation according to the L-LTF
  • an acquiring module configured to acquire, by coherent reception, information related to a duration of the radio frame carried in the L-SIG.
  • the length LENGTH data field in the L-SIG domain carries one duration with the radio frame duration A correlation value, the duration of the radio frame corresponding to the value being greater than or equal to the actual duration of the radio frame.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, and orthogonal frequency used by the data domain.
  • the configuration information of the uplink and downlink data domain includes: the number of uplink data domains, and the number of downlink data domains. And conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, and a cyclic prefix used CP length, fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: And indicating, by the resource, that the first radio resource indication is used to indicate that the second radio resource used by each scheduled STA transmits data, or the first radio resource indication is used to indicate that each is scheduled.
  • the first radio resource indication includes: the radio resource block indicated by the first radio resource indication The size and location and the modulation and coding scheme and/or the multiple input multiple output MIMO transmission scheme used on the radio resource block.
  • the device further includes:
  • a third sending module configured to: when the data domain includes an uplink data domain, send wireless local area network data to an AP associated with the STA according to the control domain in an uplink data domain included in the data domain.
  • a third aspect provides a method for transmitting wireless local area network data, where the method includes:
  • the access point AP When acquiring the wireless channel usage right, the access point AP constructs a radio frame, where the radio frame includes at least a preamble portion, a control domain, and a data domain, and the data domain includes at least one downlink data domain;
  • the AP transmits wireless local area network data to STAs associated with the AP within a downlink data field of the radio frame.
  • the preamble portion and the control domain adopt orthogonal frequency division complex compatible with the existing Institute of Electrical and Electronics Engineers IEEE 802.11 standard.
  • the transmission is performed by using an OFDM method
  • the data domain is transmitted by using an orthogonal frequency division multiple access (OFDMA) method.
  • OFDM orthogonal frequency division multiple access
  • the preamble portion adopts a preamble portion compatible with the existing IEEE 802.11, and the preamble portion includes a traditional short training field L-STF a legacy long training field L-LTF and a legacy signaling field L-SIG, the L-STF being used to synchronize an STA associated with the AP with the AP, the L-LTF being used to enable
  • the AP associated with the AP performs channel estimation to acquire information related to the duration of the radio frame carried in the L-SIG by coherent reception.
  • the length LENGTH data field in the L-SIG domain carries a duration that is longer than the duration of the radio frame.
  • the corresponding radio frame duration is greater than or equal to the wireless The actual duration of the frame.
  • the method further includes:
  • the AP increases the transmit power of the preamble portion of the radio frame, so that the STA and other APs not associated with the AP receive the preamble portion of the radio frame, and are not associated with the AP within the reserved duration
  • the connected STAs and other APs no longer transmit wireless local area network data through the wireless channel, and the reserved duration is a duration in which the AP owns the wireless channel usage rights.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, and an OFDMA modulation parameter used by the data domain. And radio resource allocation indication information for STAs associated with the AP.
  • the configuration information of the uplink and downlink data domain includes: the number of uplink data domains, and the number of downlink data domains. And conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameter used by the data domain includes: a channel bandwidth of the system, and a cyclic prefix used CP length, fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: And indicating, by the resource, that the first radio resource indication is used to indicate that the second radio resource used by each scheduled STA transmits data, or the first radio resource indication is used to indicate that each is scheduled.
  • the first radio resource indication includes: the radio resource block indicated by the first radio resource indication Size and location and modulation coding scheme and/or multiple input multiple output MIMO transmission scheme used on the radio resource block.
  • the method further includes:
  • the AP receives wireless local area network data sent by the STA associated with the AP according to the control domain in an uplink data domain included in the data domain.
  • a fourth aspect provides a method for transmitting wireless local area network data, where the method includes:
  • the station STA receives a preamble portion and a control region of a radio frame transmitted by the access point AP associated with the STA;
  • the STA receives, according to the preamble portion and the control domain, wireless local area network data sent by an AP associated with the STA in a downlink data field included in a data field of the radio frame, where the data field includes at least one downlink Data field.
  • the preamble portion adopts a preamble portion compatible with the existing Institute of Electrical and Electronics Engineers IEEE 802.11, and the preamble portion includes a conventional short Training field L-STF, traditional long training field L-LTF and traditional signaling field L-SIG;
  • the station STA after receiving the preamble part and the control domain of the radio frame sent by the access point AP associated with the STA, the station STA further includes:
  • the STA synchronizes with the AP associated with the STA according to the L-STF;
  • the STA performs channel estimation according to the L-LTF
  • the STA acquires information related to the duration of the radio frame carried in the L-SIG by coherent reception.
  • the length LENGTH data field in the L-SIG domain carries a duration that is longer than the radio frame duration A correlation value, the duration of the radio frame corresponding to the value being greater than or equal to the actual duration of the radio frame.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, and orthogonal frequency used by the data domain.
  • the configuration information of the uplink and downlink data domain includes: the number of uplink data domains, and the number of downlink data domains. And conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, and a cyclic prefix used CP length, fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate that each scheduled STA uses to transmit data.
  • the second radio resource indicates a corresponding radio resource block, or the first radio resource indication is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: the radio resource block indicated by the first radio resource indication The size and location and the modulation and coding scheme and/or the multiple input multiple output MIMO transmission scheme used on the radio resource block.
  • the method further includes:
  • the STA When the data field includes an uplink data field, the STA sends wireless local area network data to an AP associated with the STA according to the control domain in an uplink data field included in the data domain.
  • the AP when acquiring the right to use the wireless channel, the AP may construct a wireless frame, and send the wireless local area network data to the STA associated with the AP in the downlink data field of the wireless frame, so that the AP may The STA associated with the AP sends wireless LAN data, which improves spectrum utilization and network usage efficiency.
  • FIG. 1 is a schematic diagram of a PPDU frame format provided by the prior art
  • FIG. 2 is a schematic diagram of another PPDU frame format provided by the prior art
  • FIG. 3 is a schematic structural diagram of a wireless local area network data transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a wireless local area network data transmission apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting data of a wireless local area network according to Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting data of a wireless local area network according to Embodiment 4 of the present invention.
  • FIG. 7 is a flowchart of a method for transmitting data of a wireless local area network according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram of a frame format of a radio frame according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram of a frame format of a radio frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a preamble portion of a radio frame according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a wireless local area network data transmission apparatus according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a wireless local area network data transmission apparatus according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic diagram of a frame format of a radio frame according to an embodiment of the present invention.
  • the AP when acquiring the right to use the wireless channel, constructs a radio frame, and the radio frame includes a preamble portion, a control region, and a data region.
  • the data domain may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA associated with the AP has a corresponding radio resource block.
  • the AP may transmit wireless local area network data to the STA associated with the AP on the radio resource block corresponding to each STA in the downlink data domain, thereby improving spectrum utilization and network usage efficiency.
  • the scheme and effect of the present invention will be described in more detail below with reference to a plurality of embodiments, taking the next generation WLAN as an example.
  • the STAs associated with the AP in the following embodiments may be one or multiple STAs.
  • FIG. 3 is a schematic diagram of a wireless local area network data transmission apparatus according to an embodiment of the present invention.
  • the apparatus includes:
  • the constructing module 301 is configured to: when acquiring the wireless channel usage right, construct a radio frame, where the radio frame includes at least a preamble part, a control domain, and a data domain, where the data domain includes at least one downlink data domain;
  • the first sending module 302 is configured to send the preamble part and the control domain to the station STA associated with the access point AP;
  • the second sending module 303 is configured to send wireless local area network data to the STA associated with the AP in a downlink data field of the radio frame.
  • the preamble part and the control domain are all transmitted by using an orthogonal frequency division multiplexing OFDM method compatible with the existing IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers, and the data domain is transmitted by orthogonal frequency division multiple access (OFDMA).
  • OFDM orthogonal frequency division multiplexing OFDM method compatible with the existing IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers
  • OFDMA orthogonal frequency division multiple access
  • the preamble part adopts a preamble part compatible with the existing IEEE802.11, and the preamble part includes a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG, L-STF for
  • the STA associated with the AP is synchronized with the AP, and the L-LTF is configured to perform channel estimation on the STA associated with the AP, to obtain, by coherent reception, the duration of the radio frame that is carried in the L-SIG.
  • Information is configured to perform channel estimation on the STA associated with the AP, to obtain, by coherent reception, the duration of the radio frame that is carried in the L-SIG.
  • the length LENGTH data field in the L-SIG domain carries a value related to the duration of the radio frame, and the duration of the radio frame corresponding to the value is greater than or equal to the actual duration of the radio frame.
  • the device further includes:
  • An adding module configured to increase a transmit power of a preamble portion of the radio frame, such that the STA and other APs not associated with the AP receive the preamble portion of the radio frame, and the STA that is not associated with the AP within the reserved duration And other APs no longer transmit wireless local area network data through the wireless channel, and the reserved duration is the length of time that the AP has the right to use the wireless channel.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for the STA associated with the AP.
  • the configuration information of the uplink and downlink data domains includes: the number of uplink data domains, the number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, a cyclic prefix CP length employed, a fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information of the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate that the second radio resource indication used by each scheduled STA to transmit data corresponds to The radio resource block, or the first radio resource indication, is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the radio resource block indicated by the first radio resource indication, and a modulation and coding mode and/or multiple input multiple output used on the radio resource block. MIMO transmission mode.
  • the device further includes:
  • the first receiving module is configured to receive, according to the control domain, the wireless local area network data sent by the STA associated with the AP according to the control domain, when the data domain includes the uplink data domain.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • FIG. 4 is a schematic diagram of a wireless local area network data transmission apparatus according to an embodiment of the present invention.
  • the apparatus includes:
  • the second receiving module 401 is configured to receive a preamble portion and a control region of the radio frame sent by the access point AP associated with the STA;
  • the third receiving module 402 is configured to receive, according to the preamble portion and the control domain, the WLAN data sent by the AP associated with the STA in a downlink data field included in the data field of the radio frame, where the data domain includes at least one downlink data domain.
  • the preamble part adopts a preamble part compatible with the existing Institute of Electrical and Electronics Engineers IEEE802.11, and the preamble part comprises a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG;
  • the device further comprises:
  • a synchronization module configured to synchronize with an AP associated with the STA according to the L-STF;
  • a channel estimation module configured to perform channel estimation according to the L-LTF
  • an obtaining module configured to acquire, by coherent reception, information related to a duration of the radio frame carried in the L-SIG.
  • the length LENGTH data field in the L-SIG domain carries one and continues with the radio frame
  • the duration-related value, the duration of the radio frame corresponding to the value is greater than or equal to the actual duration of the radio frame.
  • the control domain includes: configuration information of uplink and downlink data domains in the radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for STAs associated with the AP.
  • the configuration information of the uplink and downlink data domains includes: the number of uplink data domains, the number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, a cyclic prefix CP length used, a fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information of the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate a second radio resource indication used by each scheduled STA to transmit data.
  • the radio resource block, or the first radio resource indication is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the radio resource block indicated by the first radio resource indication, and a modulation and coding mode and/or a multiple input multiple output MIMO transmission mode used on the radio resource block.
  • the device further includes:
  • a third sending module configured to: when the data field includes an uplink data domain, send wireless local area network data to an AP associated with the STA according to the control domain in an uplink data field included in the data domain.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • FIG. 5 is a method for transmitting data of a wireless local area network according to an embodiment of the present invention. Referring to FIG. 5, The method includes:
  • Step 501 When acquiring the wireless channel usage right, the access point AP constructs a radio frame, where the radio frame includes at least a preamble portion, a control domain, and a data domain, where the data domain includes at least one downlink data domain;
  • Step 502 The AP sends the preamble part and the control domain to the station STA associated with the AP.
  • Step 503 The AP sends the wireless local area network data to the STA associated with the AP in the downlink data field of the radio frame.
  • the preamble part and the control domain are all transmitted by using an orthogonal frequency division multiplexing OFDM method compatible with the existing IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers, and the data domain is transmitted by orthogonal frequency division multiple access (OFDMA).
  • OFDM orthogonal frequency division multiplexing OFDM method compatible with the existing IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers
  • OFDMA orthogonal frequency division multiple access
  • the preamble part adopts a preamble part compatible with the existing IEEE802.11, and the preamble part includes a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG, L-STF for
  • the STA associated with the AP is synchronized with the AP, and the L-LTF is configured to perform channel estimation on the STA associated with the AP, to obtain, by coherent reception, the duration of the radio frame that is carried in the L-SIG.
  • Information is configured to perform channel estimation on the STA associated with the AP, to obtain, by coherent reception, the duration of the radio frame that is carried in the L-SIG.
  • the length LENGTH data field in the L-SIG domain carries a value related to the duration of the radio frame, and the corresponding radio frame duration is greater than or equal to the actual duration of the radio frame.
  • the method further includes:
  • the AP increases the transmit power of the preamble portion of the radio frame, so that the STA and other APs not associated with the AP receive the preamble portion of the radio frame, and the STA and other APs that are not associated with the AP within the reserved duration
  • the wireless local area network data is no longer transmitted through the wireless channel, and the reserved duration is the length of time that the AP has the right to use the wireless channel.
  • the control domain includes: configuration information of an uplink and downlink data domain in a radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for a STA associated with the AP.
  • the configuration information of the uplink and downlink data domains includes: the number of uplink data domains, the number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: the channel bandwidth of the system, the cyclic prefix CP length used, the fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information of the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate a second radio resource indication used by each scheduled STA to transmit data. a radio resource block, or a first radio resource indication, for indicating each A radio resource block used by a scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the radio resource block indicated by the first radio resource indication, and a modulation and coding mode and/or a multiple input multiple output MIMO transmission mode used on the radio resource block.
  • the method further includes:
  • the AP receives wireless local area network data sent by the STA associated with the AP according to the control domain in an uplink data field included in the data field.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • FIG. 6 is a method for transmitting data of a wireless local area network according to an embodiment of the present invention. Referring to FIG. 6, the method includes:
  • Step 601 The station STA receives a preamble part and a control domain of a radio frame sent by the access point AP associated with the STA.
  • Step 602 The STA receives, according to the preamble part and the control domain, the WLAN data sent by the AP associated with the STA in the downlink data field included in the data field of the radio frame, where the data domain includes at least one downlink data domain.
  • the preamble part adopts a preamble part compatible with the existing Institute of Electrical and Electronics Engineers IEEE802.11, and the preamble part comprises a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG;
  • the station STA after receiving the preamble part and the control domain of the radio frame sent by the access point AP associated with the STA, the station STA further includes:
  • the STA synchronizes with the AP associated with the STA according to the L-STF;
  • the STA performs channel estimation according to the L-LTF
  • the STA acquires information related to the duration of the radio frame carried in the L-SIG through coherent reception.
  • the length LENGTH data field in the L-SIG domain carries a value related to the duration of the radio frame, and the duration of the radio frame corresponding to the value is greater than or equal to the actual duration of the radio frame.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for the STA associated with the AP.
  • the configuration information of the uplink and downlink data domains includes: the number of uplink data domains, the number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: the channel bandwidth of the system, the cyclic prefix CP length used, the fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information of the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate a second radio resource indication used by each scheduled STA to transmit data.
  • the radio resource block, or the first radio resource indication is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the radio resource block indicated by the first radio resource indication, and a modulation and coding mode and/or a multiple input multiple output MIMO transmission mode used on the radio resource block.
  • the method further includes:
  • the STA transmits wireless local area network data to the AP associated with the STA in the uplink data field included in the data field according to the control domain.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block. Since the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STA and the AP are implemented. Wireless LAN data improves spectrum utilization and network usage efficiency.
  • FIG. 7 is a method for transmitting data of a wireless local area network according to an embodiment of the present invention. Referring to FIG. 7, the method includes:
  • Step 701 When acquiring the wireless channel usage right, the AP constructs a radio frame, where the radio frame includes at least a preamble portion, a control domain, and a data domain, and the data domain includes at least one downlink data domain.
  • the specific operation of acquiring the right to use the wireless channel may be: listening to the wireless channel, and detecting the energy of the wireless channel.
  • the detected energy of the wireless channel is less than a preset threshold, and detecting that the NAV (Network Allocation Vector) is not set, it is determined that the current time of the wireless channel is not occupied.
  • the wireless channel is accessed to obtain the right to use the wireless channel.
  • the AP and the STA associated with the AP can obtain the right to use the wireless channel. After the STA associated with the AP acquires the right to use the wireless channel, the STA associated with the AP sends a notification message to the AP to notify the AP.
  • the AP may further construct a reservation control frame according to the address and the reserved duration of the AP, where the reserved duration is the duration that the AP has the right to use the wireless channel.
  • the AP broadcasts the reservation control frame to declare that the AP and the STA associated with the AP use the wireless channel within the most recent reservation duration after the current time.
  • the AP broadcasts the reserved control frame, so that the STAs and other APs that are not associated with the AP can obtain the right to use the wireless channel within the latest reserved time after the current time after receiving the reserved control frame. The impact of STAs and other APs not associated with the AP on the AP and the STA associated with the AP is avoided.
  • the reserved duration may be set in advance or may be configured by the AP, which is not specifically limited in the embodiment of the present invention.
  • the AP may further divide the reserved duration into at least one radio frame.
  • the duration of each radio frame and the duration of the SIFS are previously configured.
  • the duration of the SIFS is the time interval between two adjacent radio frames.
  • the AP and the STA associated with the AP can acquire the wireless in the contention window through CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance).
  • CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
  • the AP may broadcast a reservation control frame in the reserved channel in FIG. 8 to reserve the wireless channel.
  • the AP After the AP reserves the wireless channel, the AP enters a scheduling window, and the length of the scheduling window is a reserved duration.
  • the AP may divide the reserved duration into at least one radio frame.
  • the AP can construct a radio frame according to the number of STAs associated with the AP, and the AP can also construct a radio frame according to the service between the STAs associated with the AP.
  • the AP may also construct a radio frame according to other manners, which is not specifically limited in this embodiment of the present invention.
  • the radio frame includes at least a preamble portion, a control field, and a data field, and the data field includes at least one downlink data field.
  • a TTG Transmit/Receive Transition Gap
  • the size of the TTG may be 16us.
  • LP is the preamble part
  • FC is the control domain
  • DL is the downlink data domain
  • UL is the uplink data domain
  • DL, UL, and TTG in FIG. 8 constitute the data domain of the radio frame.
  • the sum of the number of uplink data fields and downlink data fields in the data domain is at most 6.
  • the preamble part adopts a preamble part compatible with the existing IEEE802.11, and the preamble part includes L-STF (Legacy-Short Training Field), L-LTF (Legacy-Long Training Field) Field) and L-SIG (Legacy-Signal Field), the L-STF is used to synchronize the STA associated with the AP with the AP, and the L-LTF is used to channel the STA associated with the AP. It is estimated that the information related to the duration of the radio frame carried in the L-SIG is obtained by coherent reception.
  • L-STF Legacy-Short Training Field
  • L-LTF Legacy-Long Training Field
  • L-SIG Legacy-Signal Field
  • the above-mentioned existing IEEE 802.11 may be IEEE802.11a, IEEE802.11g, IEEE802.11n or IEEE802.11ac.
  • the LENGTH (ie, length) data field in the L-SIG domain carries a value associated with the duration of the radio frame, the value being greater than or equal to the actual duration of the radio frame.
  • the rate is also included in the L-SIG domain.
  • a length of time can be calculated based on the rate and length.
  • the rate and length included in the L-SIG domain can be used to configure the packet information of the receiver.
  • the value is 4095.
  • the data 4095 corresponds to 5464us, and 5464us is the duration of the control domain and the data domain. If the length of the leading part is 20us, The maximum duration of the radio frame is 5484us.
  • the number of uplink data fields and downlink data fields in the radio frame is configurable, and the duration of each uplink/downlink data field is configured in advance. For example, the duration of each uplink/downlink data field may be 896 us. If there is an uplink data field in the radio frame, the transition between the downlink data domain and the uplink data domain requires a time interval, that is, the TTG, the duration of the TTG can be 16 us, and the TTG can ensure the relationship between the downlink data domain and the uplink data domain. Conversion.
  • the duration of the control domain is 48us or 44us. When the duration of the control domain is 48us, the control domain contains 12 OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the control domain may include 11 OFDM symbols, where the OFDM symbols are set using the OFDM parameters of 802.11ac. According to the above parameter setting, when the duration of the control domain is 48us, the maximum duration of one radio frame is 5484us; when the duration of the control domain is 44us, the maximum duration of a radio frame is 5480us.
  • the L-SIG in the preamble portion can represent the packet length by 12 bits, meaning that the maximum packet length that can be represented by such an L-SIG field is limited by 12 bits.
  • the lowest MCS (Modulation and Coding Scheme) represented by the Rate Rate section is BPSK (Binary Phase Shift Keying) modulation.
  • the maximum length of the next packet can be calculated by BPSK modulation and the packet length represented by 12 bits.
  • the tail Tail is used to clear the registers of the channel encoder and decoder.
  • the control domain includes: configuration information of an uplink and downlink data domain in a radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for a STA associated with the AP.
  • the configuration information of the uplink and downlink data domains may include: the number of uplink data domains, the number of downlink data domains, and the conversion information between the uplink data domain and the downlink data domain.
  • the number of uplink data fields and the number of downlink data domains in the radio frame may be configured according to the service between the AP and the STA associated with the AP.
  • the AP may also be based on the STA associated with the AP.
  • the service selects one configuration mode from multiple configuration modes configured in advance. For example, as shown in Table 1 below, various configuration modes are shown in Table 1.
  • D represents a downlink data domain
  • U represents an uplink data domain
  • Table 1 also shows L corresponding to each configuration mode.
  • the location of the uplink data domain and the location of the downlink data domain in the radio frame may also be configured.
  • the OFDMA modulation parameters used by the data domain may include: a channel bandwidth of the system, a CP (Cyclic Prefix) length, an FFT (Fast Fourier Transformation) order, and a number of available subcarriers. number.
  • the length of the adopted CP can also be configured according to the scenario deployed by the AP.
  • the channel conditions are also different.
  • the AP can be deployed indoors or outdoors.
  • Different channel conditions also have different length requirements for the CP.
  • the selection of the CP length is the result of a compromise between resource overhead and system performance. If the indoor channel is between the AP and the STA, the multipath expansion is small. In this case, using a longer CP may result in a decrease in resource utilization. If the AP and the STA are between the outdoor channel or the outdoor to indoor channel, the multipath The expansion is large, and using a shorter CP will result in a decrease in system performance. Therefore, a fixed CP length may not be sufficient for deployment of all or most scenarios.
  • the AP needs to indicate different CP lengths according to different deployment scenarios.
  • the indoor scene adopts a CP of 0.8 us
  • the length of the CP in the UMi scene (Urban Micro) is 4.4 us
  • the length of the CP in the UMa (Urban Macro) is 6.4 us.
  • the AP selects the corresponding CP length according to the scenario that it deploys, and indicates in the control domain. For example, if the system only supports indoor and UMi scenarios, use the 1-bit information in the control domain to indicate that 0 means 0.8us, and 1 means 4.8us. If the system needs to support UMa, it needs to be used in the control domain.
  • the 2bit information is indicated, indicating that 00 represents 0.8us, 01 indicates 4.4us, and 02 indicates 6.4us CP.
  • the radio resource allocation indication information of the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate a second radio resource indication used by each scheduled STA to transmit data.
  • the radio resource, or the first radio resource indication is used to indicate the radio resource used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the radio resource block indicated by the first radio resource, and a modulation and coding mode and/or MIMO (Multi-input Multi-output) used on the radio resource block. )transfer method.
  • MIMO Multi-input Multi-output
  • Step 702 The AP sends the preamble portion and the control domain of the radio frame to the STA associated with the AP.
  • the preamble part and the control field are different components of the radio frame, and the AP may first send the preamble part of the radio frame to the STA associated with the AP, and then send the control domain of the radio frame to the AP. STA.
  • the AP when the AP sends the preamble part of the radio frame to the STA associated with the AP, the AP broadcasts the preamble part of the radio frame, so not only the STA associated with the AP can receive To the preamble portion of the radio frame, STAs not associated with the AP may also receive the preamble portion of the radio frame.
  • the AP may increase the transmit power of the preamble portion of the radio frame, so that the STA and other APs not associated with the AP receive the preamble portion of the radio frame, and are reserved.
  • STAs and other APs that are not associated with the AP within the duration no longer transmit wireless local area network data over the wireless channel. For example, in the case where the peak-to-average ratio is satisfied, the transmission power of the leading portion of the radio frame can be increased by 2 dB.
  • Increasing the transmit power of the preamble portion of the radio frame may enable the STA and other APs not associated with the AP to better receive the preamble portion of the radio frame, thereby preventing STAs and other APs not associated with the AP from being Transmitting the wireless local area network data through the wireless channel, and avoiding interference between the AP and other STAs associated with the AP to transmit wireless local area network data when the STA and other APs not associated with the AP transmit wireless local area network data, The better result.
  • the preamble part and the control domain are all transmitted by using an OFDM method compatible with the existing IEEE 802.11 standard.
  • the existing IEEE802.11 may be IEEE802.11a, IEEE802.11g, IEEE802.11n or IEEE802.11ac.
  • the preamble part and the control domain when the preamble part and the control domain are sent, the preamble part and the control domain may be configured and sent according to the OFDM configuration parameter.
  • the first value column in Table 2 is the OFDM configuration parameter configuring the preamble portion and the control field
  • the second value column is the configuration parameter of OFDMA in the uplink data field and the downlink data field.
  • each downlink data domain or uplink data domain may have a duration of 900 us.
  • each uplink or downlink data domain includes 30 OFDM symbols.
  • each radio resource block may be composed of 32 subcarriers and 192 resource units occupied by 6 OFDM symbols, respectively, in one uplink or downlink data.
  • each radio resource block may also be composed of 160 resource units occupied by 16 subcarriers and 10 OFDM symbols.
  • Step 703 The STA associated with the AP receives a preamble portion and a control region of a radio frame sent by the AP.
  • the AP associated with the AP first receives the preamble portion of the radio frame sent by the AP, and then receives the radio sent by the AP, because the AP sends the preamble portion of the radio frame and then sends the control region of the radio frame.
  • the control field of the frame is the preamble portion of the radio frame sent by the AP, and then receives the radio sent by the AP, because the AP sends the preamble portion of the radio frame and then sends the control region of the radio frame.
  • Step 704 The STA associated with the AP receives the WLAN data sent by the AP in a downlink data field included in a data field of the radio frame according to a preamble portion and a control region of the radio frame.
  • the STA associated with the AP When the STA associated with the AP receives the preamble portion of the radio frame, the STA synchronizes with the AP associated with the STA according to the L-STF in the preamble portion; performs channel estimation according to the L-LTF of the preamble portion And the L-SIG that the STA acquires the leading part of the radio frame by coherent reception Information carried in the duration associated with the radio frame.
  • the STA associated with the AP is configured according to the configuration information of the uplink and downlink data fields in the radio frame included in the control domain, the OFDMA (Orthogonal Frequency Division Multiple Access) modulation parameter used in the data domain, and Determining, by the STA, the radio resource allocation indication information of the STA associated with the AP, the corresponding resource block in the downlink data field in the data domain, and the transmission parameter (eg, MCS, MIMO mode) used to send the resource block data, and determining The resource block receives and demodulates the wireless local area network data sent by the AP.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the data domain is transmitted by using the OFDMA method.
  • Step 705 When the data field of the radio frame includes an uplink data field, the STA associated with the AP sends the wireless LAN data to the AP in the uplink data field included in the data domain according to the control domain of the radio frame.
  • the specific operation of the STA associated with the AP to send the wireless local area network data to the AP in the uplink data field included in the data domain according to the control domain of the radio frame may be: the STA associated with the AP controls according to the radio frame.
  • the domain modulates and encodes the WLAN data to be transmitted, and sends the encoded WLAN data to the AP on the resource block corresponding to the STA.
  • the specific operation of the STA associated with the AP to modulate and encode the WLAN data to be transmitted according to the control domain of the radio frame may be: the OFDM modulation parameter included in the control domain of the AP according to the STA associated with the AP, The configuration information of the uplink and downlink data domain in the radio frame included in the control domain and the radio resource allocation indication information of the STA associated with the AP, modulate and encode the WLAN data to be transmitted, and determine that the STA is in the uplink data domain. Corresponding resource blocks, and transmitting modulated and encoded wireless local area network data to the AP on the determined resource blocks.
  • the AP may broadcast the abandonment control frame to declare that the AP relinquishes the right to use the wireless channel. .
  • the AP may broadcast the abandonment control frame to declare that the AP relinquishes the right to use the wireless channel. .
  • other APs or STAs can acquire the right to use the wireless channel in a competitive manner.
  • the AP when acquiring the wireless channel usage right, may construct a wireless frame, where the wireless frame includes a leading part, a control domain, and a data domain.
  • the AP may increase the transmit power of the preamble portion and broadcast the preamble portion to not only enable the STA associated with the AP to receive the preamble portion, but also enable STAs and other APs not associated with the AP to receive Going to the preamble portion, so that STAs and other APs not associated with the AP no longer transmit wireless local area network data through the wireless channel, avoiding STAs and other APs not associated with the AP transmitting wireless local area network data The interference between the AP and the STA associated with the AP transmitting wireless local area network data achieves better results.
  • each STA has a corresponding radio resource.
  • the AP associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block in the uplink data field.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • FIG. 10 is a diagram of a wireless local area network data transmission apparatus according to an embodiment of the present invention.
  • the apparatus includes: a first transmitter 1001, a first receiver 1002, a first memory 1003, and a first processor 1004.
  • the method for transmitting wireless local area network data as described below includes:
  • the first processor 1004 is configured to: when acquiring a wireless channel usage right, construct a radio frame, where the radio frame includes at least a preamble portion, a control domain, and a data domain, where the data domain includes at least one downlink data domain;
  • the first transmitter 1001 is configured to send the preamble portion and the control domain to a station STA associated with the AP;
  • the first transmitter 1001 is further configured to send, in a downlink data field of the radio frame, wireless local area network data to an STA associated with the AP.
  • the preamble portion and the control domain are all transmitted by using an orthogonal frequency division multiplexing OFDM method compatible with the IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers, and the data domain adopts orthogonal frequency division multiple access.
  • OFDM orthogonal frequency division multiplexing OFDM
  • the preamble part adopts a preamble part compatible with the existing IEEE 802.11, and the preamble part comprises a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG,
  • the L-STF is configured to synchronize a STA associated with the AP with the AP
  • the L-LTF is configured to perform channel estimation by a STA associated with the AP to acquire the L- by coherent reception.
  • Information carried in the SIG related to the duration of the radio frame.
  • the length LENGTH data field in the L-SIG domain carries a value related to the duration of the radio frame, where the duration of the radio frame duration is greater than or equal to the actual duration of the radio frame.
  • the first processor 1004 is further configured to increase a transmit power of a preamble portion of the radio frame, so that a STA and other APs not associated with the AP receive a preamble portion of the radio frame, and are reserved STAs and other APs that are not associated with the AP in the duration of time are no longer transmitting wireless local area network data through the wireless channel, and the reserved duration is the length of time that the AP owns the right to use the wireless channel.
  • the control domain includes: configuration information of an uplink and downlink data domain in the radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for a STA associated with the AP.
  • the configuration information of the uplink and downlink data domain includes: the number of uplink data domains, the number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, a cyclic prefix CP length used, a fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate a second used by each scheduled STA to transmit data.
  • the radio resource indicates a corresponding radio resource block, or the first radio resource indication is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the indicated radio resource block by the first radio resource indication, and a modulation and coding mode and/or multiple input multiple output used on the radio resource block. MIMO transmission mode.
  • the first receiver 1002 is further configured to: when the data domain includes an uplink data domain, receive, by using the control domain, a wireless local area network that is sent by an STA associated with the AP in an uplink data domain that is included in the data domain. data.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • FIG. 11 is a diagram of a wireless local area network data transmission apparatus according to an embodiment of the present invention.
  • the apparatus includes: a second transmitter 1101, a second receiver 1102, a second memory 1103, and a second processor 1104.
  • the method for transmitting wireless local area network data as described below includes:
  • the second receiver 1102 is configured to receive a preamble portion and a control region of a radio frame sent by an access point AP associated with the STA;
  • the second receiver 1102 is further configured to receive, according to the preamble portion and the control domain, wireless local area network data sent by an AP associated with the STA in a downlink data domain included in a data domain of the radio frame, where The data field includes at least one downlink data field.
  • the preamble part adopts a preamble part compatible with the existing Institute of Electrical and Electronics Engineers IEEE802.11, and the preamble part comprises a traditional short training field L-STF, a traditional long training field L-LTF and a traditional signaling field L-SIG;
  • the second processor 1104 is configured to perform synchronization with an AP associated with the STA according to the L-STF;
  • the second processor 1104 is further configured to perform channel estimation according to the L-LTF;
  • the second receiver 1102 is further configured to acquire, by coherent reception, information related to a duration of the radio frame carried in the L-SIG.
  • the length LENGTH data field in the L-SIG domain carries a value related to the duration of the radio frame, and the duration of the radio frame corresponding to the value is greater than or equal to the actual duration of the radio frame.
  • control domain includes: configuration information of an uplink and downlink data domain in the radio frame, an OFDMA modulation parameter used by the data domain, and radio resource allocation indication information for a STA associated with the AP.
  • the configuration information of the uplink and downlink data domain includes: a number of uplink data domains, a number of downlink data domains, and conversion information between the uplink data domain and the downlink data domain.
  • the OFDMA modulation parameters used by the data domain include: a channel bandwidth of the system, a cyclic prefix CP length used, a fast Fourier transform FFT order, and the number of available subcarriers.
  • the radio resource allocation indication information for the STA associated with the AP includes: a first radio resource indication, where the first radio resource indication is used to indicate that each scheduled STA transmits
  • the second radio resource used by the data indicates a corresponding radio resource block, or the first radio resource indication is used to indicate a radio resource block used by each scheduled STA to transmit data.
  • the first radio resource indication includes: a size and a location of the indicated radio resource block by the first radio resource indication, and a modulation and coding mode and/or multiple input multiple output MIMO used on the radio resource block. transfer method.
  • the second transmitter 1101 is configured to: when the data domain includes an uplink data domain, send wireless local area network data to an AP associated with the STA according to the control domain in an uplink data domain included in the data domain.
  • the AP when acquiring the wireless channel usage right, may construct a radio frame, where the data domain of the radio frame may include at least one downlink data domain, and the downlink data domain includes multiple radio resource blocks, and each STA There are corresponding radio resource blocks.
  • the AP may send wireless local area network data to the STA associated with the AP on the radio resource block corresponding to the STA in the downlink data domain.
  • the data field of the radio frame includes an uplink data field
  • the uplink data field also includes multiple radio resource blocks, and each STA has a corresponding radio resource block.
  • a STA associated with the AP may send wireless local area network data to the AP on its corresponding radio resource block.
  • the AP can be associated with multiple STAs, a one-to-many relationship between the AP and the STA and a many-to-one relationship between the STAs and the APs are transmitted to transmit wireless local area network data, thereby improving spectrum utilization and network usage efficiency.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
  • the present invention can be implemented by means of software plus necessary general hardware including general-purpose integrated circuits, general-purpose CPUs, general-purpose memories, general-purpose components, and the like.
  • general-purpose integrated circuits general-purpose integrated circuits
  • general-purpose CPUs general-purpose memories
  • general-purpose components and the like.
  • dedicated hardware including an application specific integrated circuit, a dedicated CPU, a dedicated memory, a dedicated component, and the like.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product, which may be stored in a readable storage medium, such as a USB flash drive.
  • a computer device which may be a personal computer, server, or network device, etc. performs the methods of various embodiments of the present invention.
  • the AP further includes: the AP sends an RTS (English is Request To Send, and the Chinese is request to send), and receives one or more STA replies associated with the AP.
  • RTS Request To Send
  • STA replies associated with the AP.
  • One or more CTSs (Clear To Send in English, which is allowed to transmit)
  • the one or more CTSs are used to indicate that the STA that sends the CTS can receive or transmit data (channel conditions allow data to be sent and received). More specifically, other nearby communication nodes do not use the channel for communication when receiving the CTS. That is to say, the STA protects the channel from being used by surrounding communication nodes by transmitting the CTS, thereby avoiding interference.
  • the receiving address of the RTS sent by the AP may be a group address, or may be an address of a specified STA, or may be an address of all STAs associated with the AP, for example, by some default The address is, for example, all zero.
  • the AP After receiving the RTS, the AP indicates that the received STA (that is, the STA indicated by the foregoing receiving address) will reply to the CTS after a certain interval, for example, the SIFS duration.
  • a group of STAs associated with the AP, the individual STAs designated by the AP or all STAs respectively reply to the CTS.
  • Such a reply may be by time division, code division, frequency division, OFDMA techniques, or overlapping transmissions on exactly the same resources.
  • the AP can construct a radio frame according to the number of STAs associated with the AP, and the AP can also construct a radio frame according to the service between the STAs associated with the AP.
  • the AP can also The wireless frame is constructed in other ways. Specifically, the AP can determine what kind of radio frame is constructed by using the received CTS. For example, determining the number of schedulable STAs according to the number of received CTSs, and determining the scheduling duration or the number of scheduled radio frames, and the number of downlink subframes and the number of uplink subframes in the radio frame, Or the ratio of the downlink to the uplink subframe.
  • the AP can also determine whether MU-MIMO transmission can be adopted in the radio frame, and how much resources can be allocated for MU-MIMO transmission, thereby determining the internal structure of the radio frame. For example, based on the received signal strength of the CTS, the transmission MCS within the scheduling period is determined to determine the scheduling duration or the number of scheduled radio frames.
  • a radio frame in a sequential order, sequentially includes: a preamble portion compatible with the existing IEEE 802.11 (hereinafter referred to as Legacy preamble), and a preamble portion adopted by the next generation standard (for example, HEW preamble), the first downlink subframe, or may include other downlink subframes or uplink subframes.
  • the other downlink subframes or uplink subframes mentioned above include training sequence field parts of the next generation standard, such as HEW STF and HEW LTF parts and data, and do not include a preamble part compatible with the existing IEEE 802.11.
  • one radio frame includes one or more downlink subframes and one or more uplink subframes.
  • the first subframe after the conversion includes the Legacy preamble and the preamble used by the next generation standard (for example, HEW preamble).
  • the preamble for example, HEW preamble
  • the preamble adopted by the Legacy preamble and the next generation standard is included.
  • the remaining non-first downlink subframes and non-first uplink subframes include the next-generation standard training sequence field parts, such as HEW STF and HEW LTF parts, excluding Legacy preamble and other next-generation standard preambles. other parts.
  • next-generation standard training sequence field parts such as HEW STF and HEW LTF parts, excluding Legacy preamble and other next-generation standard preambles. other parts.
  • ACK information of the downlink subframe in the middle including in the radio frame ACK information of the downlink subframe in the middle.
  • ACK information for a certain downlink subframe is carried in a subsequent uplink subframe subsequent to the downlink subframe.
  • the uplink subframes may be default, for example, the first or first uplink subframes after the downlink subframes carry ACK information for the downlink subframes.
  • the first UL subframe is used as an ACK reply and the second and third UL are used as a transport for the upstream data payload.
  • it may also be indicated by the AP to the uplink STA in advance.
  • the one subframe includes a downlink subframe, where the downlink subframe is used to trigger subsequent bearer data (payload).
  • the transmission of the uplink subframe the downlink subframe may carry information such as a resource allocation indication, such as resource block information of a subsequent uplink subframe.
  • the downlink subframe may include only the legacy preamble and the next-generation standard preamble, such as the HEW preamble, or may include the MAC PDU part in addition to the above two parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线局域网数据的传输方法及装置,涉及通信领域,所述方法包括:当获取到无线信道使用权时,接入点AP构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域(501);所述AP将所述前导部分和所述控制域发送给与所述AP相关联的站点STA(502);所述AP在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据(503)。所述装置包括:构造模块(301)、第一发送模块(302)和第二发送模块(303)。所述方法和装置可以实现AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用率。

Description

无线局域网数据的传输方法及装置 技术领域
本发明涉及通信领域,特别涉及一种无线局域网数据的传输方法及装置。
背景技术
随着通信技术的快速发展,基于IEEE 802.11标准的WLAN(Wireless Local Area Network,无线局域网)技术得到了长足地发展和广泛地应用。而WLAN网络内可以包括多个AP(Access Point,接入点)和多个STA(Station,站点),每个AP可以与多个STA关联,且每个AP可以通过无线信道与与其关联的STA传输无线局域网数据。
目前的无线局域网数据传输方法具体为:当该AP向与其关联的某个STA发送无线局域网数据时,该AP侦听无线信道,当该无线信道在一段时间内未被占用时,该AP接入到该无线信道,获取该无线信道的使用权。该AP将需要传输的无线局域网数据封装在PPDU(PLCP protocol data unit,PLCP协议处理单元)内,并将该PPDU发送给该STA。当与该AP关联的某个STA向该AP发送无线局域网数据时,该STA侦听该无线信道,当该无线信道在一段时间内未被占用时,该STA接入到该无线信道,获取该无线信道的使用权。该STA将需要传输的无线局域网数据封装在PPDU内,将该PPDU发送给该AP。
其中,如图1和图2所示,图1的第一行示出了传统的PPDU格式,以及图1的第二行和第三行示出了802.11n的PPDU帧格式,图2示出了802.11ac的PPDU帧格式。STA可以通过图1或者图2的帧格式,将无线局域网数据封装在PPDU内并发送给AP。当然,AP也可以通过图1或者图2的PPDU帧格式,将无线局域网数据封装在PPDU内并发送给STA。其中,L-STF、HT-STF、HT-GF-STF为短训练字段,L-LTF、HT-LTF1、HT-LTF、VHT-LTF为长训练字段,L-SIG、HT-SIG、VHT-SIG-A、VHT-SIG-B为信令字段,Data为数据字段。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
由于WLAN网络使用的是免费非授权频段,并且采用基于竞争的接入机制获取无线信道的使用权,并且当某个STA/AP获取到该无线信道的使用权后, AP与STA之间是一对一的关系传输无线局域网数据,无法做到AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,降低了频谱利用率和网络的使用效率。
发明内容
为了提高频谱利用率和网络的使用效率,本发明实施例提供了一种无线局域网数据的传输方法及装置。所述技术方案如下:
第一方面,提供了一种无线局域网数据的传输装置,所述装置包括:
构造模块,用于当获取到无线信道使用权时,构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域;
第一发送模块,用于将所述前导部分和所述控制域发送给与接入点AP相关联的站点STA;
第二发送模块,用于在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据。
结合第一方面,在上述第一方面的第一种可能的实现方式中,所述前导部分和所述控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,所述数据域采用正交频分多址接入OFDMA方式进行发送。
结合第一方面,在上述第一方面的第二种可能的实现方式中,所述前导部分采用与现有IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF用于使与所述AP相关联的STA和所述AP同步,所述L-LTF用于使与所述AP相关联的STA进行信道估计,以通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
结合第一方面的第二种可能的实现方式,在上述第一方面的第三种可能的实现方式中,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧持续时长大于或等于所述无线帧的实际持续时长。
结合第一方面,在上述第一方面的第四种可能的实现方式中,所述装置还包括:
增加模块,用于增加所述无线帧的前导部分的发射功率,使未与所述AP 相关联的STA和其他AP接收到所述无线帧的前导部分,并在预留时长内未与所述AP相关联的STA和其他AP不再通过所述无线信道传输无线局域网数据,所述预留时长为所述AP拥有所述无线信道使用权的时长。
结合第一方面,在上述第一方面的第五种可能的实现方式中,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
结合第一方面的第五种可能的实现方式,在上述第一方面的第六种可能的实现方式中,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
结合第一方面的第五种可能的实现方式,在上述第一方面的第七种可能的实现方式中,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
结合第一方面的第五种可能的实现方式,在上述第一方面的第八种可能的实现方式中,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
结合第一方面的第八种可能的实现方式,在上述第一方面的第九种可能的实现方式中,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第九种可能的实现方式中的任一种可能的实现方式,在上述第一方面的第十种可能的实现方式中,所述装置还包括:
第一接收模块,用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内接收与所述AP相关联的STA发送的无线局域网数据。
第二方面,提供了一种无线局域网数据的传输装置,所述装置包括:
第二接收模块,用于接收与站点STA相关联的接入点AP发送的无线帧的前导部分和控制域;
第三接收模块,用于根据所述前导部分和所述控制域,在所述无线帧的数据域包括的下行数据域内接收与所述STA相关联的AP发送的无线局域网数据,所述数据域至少包括一个下行数据域。
结合第二方面,在上述第二方面的第一种可能的实现方式中,所述前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
相应地,所述装置还包括:
同步模块,用于根据所述L-STF与与所述STA相关联的AP进行同步;
信道估计模块,用于根据所述L-LTF进行信道估计;
获取模块,用于通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
结合第二方面的第一种可能的实现方式,在上述第二方面的第二种可能的实现方式中,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧的持续时长大于或等于所述无线帧的实际持续时长。
结合第二方面,在上述第二方面的第三种可能的实现方式中,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的正交频分多址接入OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
结合第二方面的第三种可能的实现方式,在上述第二方面的第四种可能的实现方式中,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
结合第二方面的第三种可能的实现方式,在上述第二方面的第五种可能的实现方式中,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
结合第二方面的第三种可能的实现方式,在上述第二方面的第六种可能的实现方式中,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
结合第二方面的第六种可能的实现方式,在上述第二方面的第七种可能的实现方式中,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第七种可能的实现方式中的任一种可能的实现方式,在上述第二方面的第八种可能的实现方式中,所述装置还包括:
第三发送模块,用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内向与所述STA相关联的AP发送无线局域网数据。
第三方面,提供了一种无线局域网数据的传输方法,所述方法包括:
当获取到无线信道使用权时,接入点AP构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域;
所述AP将所述前导部分和所述控制域发送给与所述AP相关联的站点STA;
所述AP在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据。
结合第三方面,在上述第三方面的第一种可能的实现方式中,所述前导部分和所述控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,所述数据域采用正交频分多址接入OFDMA方式进行发送。
结合第三方面,在上述第三方面的第二种可能的实现方式中,所述前导部分采用与现有IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF用于使与所述AP相关联的STA和所述AP同步,所述L-LTF用于使与所述AP相关联的STA进行信道估计,以通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
结合第三方面的第二种可能的实现方式,在上述第三方面的第三种可能的实现方式中,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧持续时长大于或等于所述无线 帧的实际持续时长。
结合第三方面,在上述第三方面的第四种可能的实现方式中,所述方法还包括:
所述AP增加所述无线帧的前导部分的发射功率,使未与所述AP相关联的STA和其他AP接收到所述无线帧的前导部分,并在预留时长内未与所述AP相关联的STA和其他AP不再通过所述无线信道传输无线局域网数据,所述预留时长为所述AP拥有所述无线信道使用权的时长。
结合第三方面,在上述第三方面的第五种可能的实现方式中,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
结合第三方面的第五种可能的实现方式,在上述第三方面的第六种可能的实现方式中,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
结合第三方面的第五种可能的实现方式,在上述第三方面的第七种可能的实现方式中,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
结合第三方面的第五种可能的实现方式,在上述第三方面的第八种可能的实现方式中,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
结合第三方面的第八种可能的实现方式,在上述第三方面的第九种可能的实现方式中,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第九种可能的实现方式中的任一种可能的实现方式,在上述第三方面的第十种可能的实现方式中,所述方法还包括:
当所述数据域包括上行数据域时,所述AP根据所述控制域在所述数据域包括的上行数据域内接收与所述AP相关联的STA发送的无线局域网数据。
第四方面,提供了一种无线局域网数据的传输方法,所述方法包括:
站点STA接收与所述STA相关联的接入点AP发送的无线帧的前导部分和控制域;
所述STA根据所述前导部分和所述控制域,在所述无线帧的数据域包括的下行数据域内接收与所述STA相关联的AP发送的无线局域网数据,所述数据域至少包括一个下行数据域。
结合第四方面,在上述第四方面的第一种可能的实现方式中,所述前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
相应地,所述站点STA接收与所述STA相关联的接入点AP发送的无线帧的前导部分和控制域之后,还包括:
所述STA根据所述L-STF与与所述STA相关联的AP进行同步;
所述STA根据所述L-LTF进行信道估计;
所述STA通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
结合第四方面的第一种可能的实现方式,在上述第四方面的第二种可能的实现方式中,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧的持续时长大于或等于所述无线帧的实际持续时长。
结合第四方面,在上述第四方面的第三种可能的实现方式中,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的正交频分多址接入OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
结合第四方面的第三种可能的实现方式,在上述第四方面的第四种可能的实现方式中,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
结合第四方面的第三种可能的实现方式,在上述第四方面的第五种可能的实现方式中,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
结合第四方面的第三种可能的实现方式,在上述第四方面的第六种可能的 实现方式中,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
结合第四方面的第六种可能的实现方式,在上述第四方面的第七种可能的实现方式中,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第七种可能的实现方式中的任一种可能的实现方式,在上述第四方面的第八种可能的实现方式中,所述方法还包括:
当所述数据域包括上行数据域时,所述STA根据所述控制域在所述数据域包括的上行数据域内向与所述STA相关联的AP发送无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,并在该无线帧的下行数据域内向该AP相关联的STA发送无线局域网数据,如此,该AP可以和与该AP相关联的STA发送无线局域网数据,提高了频谱利用率和网络的使用效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的一种PPDU帧格式示意图;
图2是现有技术提供的另一种PPDU帧格式示意图;
图3是本发明实施例一提供的一种无线局域网数据的传输装置结构示意图;
图4是本发明实施例二提供的一种无线局域网数据的传输装置结构示意图;
图5是本发明实施例三提供的一种无线局域网数据的传输方法流程图;
图6是本发明实施例四提供的一种无线局域网数据的传输方法流程图;
图7是本发明实施例五提供的一种无线局域网数据的传输方法流程图;
图8是本发明实施例五提供的一种无线帧的帧格式示意图;
图8a是一个本发明实施例提供的一种无线帧的帧格式示意图;
图9是本发明实施例五提供的一种无线帧的前导部分的示意图;
图10是本发明实施例六提供的一种无线局域网数据的传输装置结构示意图;
图11是本发明实施例七提供的一种无线局域网数据的传输装置结构示意图。
图12是一个本发明实施例提供的一种无线帧的帧格式示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
考虑到现有技术存在的问题,本发明实施例当获取到无线信道使用权时,AP构造无线帧,该无线帧包括前导部分、控制域和数据域。该数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个与该AP相关联的STA均有对应的无线资源块。该AP可以在该下行数据域内,每个STA对应的无线资源块上向与该AP相关联的STA传输无线局域网数据,提高了频谱利用率和网络的使用效率。
下面结合多个实施例,以下一代WLAN为例对本发明的方案和效果进行更加详细的描述。以下实施例中的与该AP相关联的STA可以为一个,也可以为多个。
实施例一
图3为本发明实施例提供的一种无线局域网数据的传输装置,参见图3,该装置包括:
构造模块301,用于当获取到无线信道使用权时,构造无线帧,该无线帧至少包括前导部分、控制域和数据域,数据域至少包括一个下行数据域;
第一发送模块302,用于将前导部分和控制域发送给与接入点AP相关联的站点STA;
第二发送模块303,用于在无线帧的下行数据域内向与该AP相关联的STA发送无线局域网数据。
其中,前导部分和控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,数据域采用正交频分多址接入OFDMA方式进行发送。
其中,前导部分采用与现有IEEE802.11中兼容的前导部分,且前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,L-STF用于使与该AP相关联的STA和该AP同步,L-LTF用于使与该AP相关联的STA进行信道估计,以通过相干接收获取该L-SIG中携带的与该无线帧的持续时长相关的信息。
进一步地,L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,该数值对应的无线帧持续时长大于或等于无线帧的实际持续时长。
可选地,该装置还包括:
增加模块,用于增加无线帧的前导部分的发射功率,使未与该AP相关联的STA和其他AP接收到该无线帧的前导部分,并在预留时长内未与该AP相关联的STA和其他AP不再通过该无线信道传输无线局域网数据,预留时长为该AP拥有无线信道使用权的时长。
进一步地,控制域包括:无线帧内的上下行数据域的配置信息、数据域所使用的OFDMA调制参数和对于与该AP相关联的STA的无线资源分配指示信息。
其中,上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
可选地,数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
其中于,对于与该AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
其中,第一无线资源指示包括:第一无线资源指示所指示的无线资源块的大小和位置以及该无线资源块上所使用的调制编码方式和/或多输入多输出 MIMO传输方式。
进一步地,该装置还包括:
第一接收模块,用于当数据域包括上行数据域时,根据该控制域在数据域包括的上行数据域内接收与该AP相关联的STA发送的无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例二
图4是本发明实施例提供的一种无线局域网数据的传输装置,参见图4,该装置包括:
第二接收模块401,用于接收与STA相关联的接入点AP发送的无线帧的前导部分和控制域;
第三接收模块402,用于根据前导部分和控制域,在该无线帧的数据域包括的下行数据域内接收与该STA相关联的AP发送的无线局域网数据,数据域至少包括一个下行数据域。
其中,前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
相应地,该装置还包括:
同步模块,用于根据L-STF与与STA相关联的AP进行同步;
信道估计模块,用于根据L-LTF进行信道估计;
获取模块,用于通过相干接收获取L-SIG中携带的与该无线帧的持续时长相关的信息。
进一步地,L-SIG域中的长度LENGTH数据域中携带一个与该无线帧持续 时长相关的数值,该数值对应的无线帧的持续时长大于或等于该无线帧的实际持续时长。
其中,控制域包括:该无线帧内的上下行数据域的配置信息、该数据域所使用的OFDMA调制参数和对于与该AP相关联的STA的无线资源分配指示信息。
其中,上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
可选地,该数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
其中,对于与该AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
其中,第一无线资源指示包括:第一无线资源指示所指示的无线资源块的大小和位置以及该无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
进一步地,该装置还包括:
第三发送模块,用于当该数据域包括上行数据域时,根据控制域在该数据域包括的上行数据域内向与该STA相关联的AP发送无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例三
图5是本发明实施例提供的一种无线局域网数据的传输方法,参见图5, 该方法包括:
步骤501:当获取到无线信道使用权时,接入点AP构造无线帧,该无线帧至少包括前导部分、控制域和数据域,该数据域至少包括一个下行数据域;
步骤502:该AP将前导部分和控制域发送给与该AP相关联的站点STA;
步骤503:该AP在该无线帧的下行数据域内向与该AP相关联的STA发送无线局域网数据。
其中,前导部分和控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,数据域采用正交频分多址接入OFDMA方式进行发送。
其中,前导部分采用与现有IEEE802.11中兼容的前导部分,且前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,L-STF用于使与该AP相关联的STA和该AP同步,L-LTF用于使与该AP相关联的STA进行信道估计,以通过相干接收获取该L-SIG中携带的与该无线帧的持续时长相关的信息。
进一步地,L-SIG域中的长度LENGTH数据域中携带一个与该无线帧持续时长相关的数值,该数值对应的无线帧持续时长大于或等于该无线帧的实际持续时长。
可选地,该方法还包括:
AP增加该无线帧的前导部分的发射功率,使未与该AP相关联的STA和其他AP接收到该无线帧的前导部分,并在预留时长内未与该AP相关联的STA和其他AP不再通过该无线信道传输无线局域网数据,预留时长为该AP拥有该无线信道使用权的时长。
其中,控制域包括:无线帧内的上下行数据域的配置信息、数据域所使用的OFDMA调制参数和对于与该AP相关联的STA的无线资源分配指示信息。
其中,上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
进一步地,数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
其中,对于与该AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者第一无线资源指示用于指示每一 个被调度的STA传输数据所使用的无线资源块。
其中,第一无线资源指示包括:第一无线资源指示所指示的无线资源块的大小和位置以及该无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
可选地,该方法还包括:
当该数据域包括上行数据域时,该AP根据控制域在该数据域包括的上行数据域内接收与该AP相关联的STA发送的无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例四
图6是本发明实施例提供的一种无线局域网数据的传输方法,参见图6,该方法包括:
步骤601:站点STA接收与该STA相关联的接入点AP发送的无线帧的前导部分和控制域;
步骤602:STA根据前导部分和控制域,在该无线帧的数据域包括的下行数据域内接收与该STA相关联的AP发送的无线局域网数据,数据域至少包括一个下行数据域。
其中,前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
相应地,站点STA接收与该STA相关联的接入点AP发送的无线帧的前导部分和控制域之后,还包括:
STA根据L-STF与与该STA相关联的AP进行同步;
STA根据L-LTF进行信道估计;
STA通过相干接收获取L-SIG中携带的与该无线帧的持续时长相关的信息。
其中,L-SIG域中的长度LENGTH数据域中携带一个与该无线帧持续时长相关的数值,该数值对应的无线帧的持续时长大于或等于该无线帧的实际持续时长。
进一步地,控制域包括:无线帧内的上下行数据域的配置信息、数据域所使用的OFDMA调制参数和对于与该AP相关联的STA的无线资源分配指示信息。
其中,上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
进一步地,数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
其中,对于与该AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
其中,第一无线资源指示包括:第一无线资源指示所指示的无线资源块的大小和位置以及该无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
可选地,该方法还包括:
当数据域包括上行数据域时,STA根据控制域在数据域包括的上行数据域内向与该STA相关联的AP发送无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输 无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例五
图7是本发明实施例提供的一种无线局域网数据的传输方法,参见图7,该方法包括:
步骤701:当获取到无线信道使用权时,AP构造无线帧,该无线帧至少包括前导部分、控制域和数据域,数据域至少包括一个下行数据域。
其中,获取无线信道使用权的具体操作可以为:侦听该无线信道,检测该无线信道的能量。当检测到的无线信道的能量小于预设阈值时,并且检测NAV(Network Allocation Vector,网络分配向量)未被置位,则确定该无线信道当前时刻未被占用。在经过随机回退时间之后,如果该无线信道还未被占用时,则接入该无线信道,获取到该无线信道的使用权。
其中,该AP和与该AP相关联的STA均可以获取该无线信道的使用权。当与该AP相关联的STA获取到该无线信道的使用权后,与该AP相关联的STA向该AP发送通知消息以通知该AP。
进一步地,当获取到该无线信道的使用权时,该AP还可以根据该AP的地址和预留时长,构造一个预留控制帧,该预留时长为该AP拥有该无线信道使用权的时长。该AP将该预留控制帧进行广播,以声明在当前时间之后最近的预留时长内该AP和与该AP相关联的STA使用该无线信道。
该AP将该预留控制帧进行广播,可以使未与该AP关联的STA和其他AP在接收到该预留控制帧后不再当前时间之后最近的预留时长内获取该无线信道的使用权,避免了未与该AP关联的STA和其他AP对该AP和与该AP相关联的STA造成的影响。
需要说明的是,预留时长可以是事先设置的,也可以是AP配置的,在本发明实施例中对此不做具体限定。
可选地,当获取到该无线信道的使用权时,该AP还可以将预留时长划分为至少一个无线帧。在划分的至少一个无线帧中,每个无线帧的持续时长和SIFS(Short Inter-Frame Space,短帧间距)的时长是事先配置的。其中,SIFS的时长为相邻的两个无线帧之间的时间间隔。当一个无线帧结束时,该AP持续侦听该无线信道SIFS的时长,如果在该SIFS的时长内该无线信道未被占用,则该AP构造下一个无线帧。
如图8所示,AP和与该AP相关联的STA可以在竞争窗口中通过CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance,带碰撞避免的载波侦听多址接入)的方式获取该无线信道的使用权。当获取到该无线信道的使用权时,该AP可以在图8中的预留信道中广播预留控制帧,以预留该无线信道。当该AP预留该无线信道之后,该AP进入调度窗口,该调度窗口的时间长度为预留时长。该AP可以将该预留时长划分为至少一个无线帧。
在本发明实施例中,该AP不仅可以根据与该AP相关联的STA的个数构造无线帧,该AP还可以根据其与该AP相关联的STA之间的业务构造无线帧,当然,该AP还可以根据其他的方式构造无线帧,本发明实施例对此不做具体限定。
无线帧至少包括前导部分、控制域和数据域,而数据域至少包括一个下行数据域。当数据域不仅包括下行数据域,还包括上行数据域时,在上行数据域与下行数据域之间设置TTG(Transmit/receive Transition Gap,接收/发送转换间隔),例如,该TTG的大小可以为16us。如图8的下半部分所示,LP为前导部分,FC为控制域,DL为下行数据域,UL为上行数据域,图8中的DL、UL和TTG构成该无线帧的数据域。
进一步地,数据域中的上行数据域和下行数据域的个数之和最多为6。
其中,前导部分采用与现有IEEE802.11中兼容的前导部分,且前导部分包括L-STF(Legacy-Short Training Field,传统短训练字段),L-LTF(Legacy-Long Training Field,传统长训练字段)和L-SIG(Legacy-Signal Field,传统信令字段),L-STF用于使与AP相关联的STA和该AP同步,L-LTF用于使与该AP相关联的STA进行信道估计,以通过相干接收获取该L-SIG中携带的与该无线帧的持续时长相关的信息。
其中,上述所说的现有IEEE802.11可以为IEEE802.11a、IEEE802.11g、IEEE802.11n或者IEEE802.11ac。
其中,L-SIG域中的LENGTH(即长度)数据域中携带一个与该无线帧持续时长相关的数值,该数值大于或等于该无线帧的实际持续时长。
进一步地,L-SIG域中还包含速率。根据该速率和长度可以计算出一个时间长度。L-SIG域中包括的速率和长度可以用于配置接收机的分组信息。
例如,该数值为4095,根据L-SIG域中包含的速率计算出该数据4095对应于5464us,5464us为控制域和数据域的时长。假如,前导部分的时长为20us, 则该无线帧的最大时长为5484us。
由于无线帧中的上行数据域和下行数据域的数目是可以配置的,且每个上/下行数据域的时长是事先配置的,例如,每个上/下行数据域的时长可以为896us。如果该无线帧中存在上行数据域,下行数据域与上行数据域之间的转换需要一个时间间隔,即TTG,TTG的时长可以为16us,该TTG可以保证下行数据域与上行数据域之间的转换。控制域的时长为48us或者44us,当控制域的时长为48us时,该控制域包含12个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,当控制域的时长为44us时,该控制域可以包括11个OFDM符号,这里的OFDM符号采用802.11ac的OFDM参数设置。根据上述参数设定,当控制域的时长为48us时,一个无线帧的最大时长为5484us;当控制域的时长为44us时,一个无线帧的最大时长为5480us。
如图9所示,该前导部分中的L-SIG可以用12bit表示包长,意味着用这种L-SIG字段所能表示的最大包长是受12bits限制的。速率Rate部分所表示的最低的MCS(Modulation and Coding Scheme,调制和编码方案)是BPSK(Binary Phase Shift Keying,二相相移键控)调制。通过BPSK调制和12bits表示的包长,可以计算出接下来的包的最大时长。尾部Tail用来清空信道编码器和解码器的寄存器。
其中,控制域包括:无线帧内的上下行数据域的配置信息、数据域所使用的OFDMA调制参数和对于与该AP相关联的STA的无线资源分配指示信息。
其中,上下行数据域的配置信息可以包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
无线帧内的上行数据域的数目和下行数据域的数目可以根据该AP和与该AP相关联的STA之间的业务进行配置,当然,AP还可以根据与该AP相关联的STA之间的业务从事先配置的多种配置方式中选取一种配置方式。例如,如下表1所示,表1中示出了多种配置方式,表1中D代表下行数据域,U代表上行数据域,且在表1中还示出了每种配置方式对应的L-SIG包括的LENGTH中的数值的大小,由于控制域的时长可以为48us,也可以为44us,所以表1中示出了48us对应的LENGTH1中的数值大小,以及示出了44us对应的LENGTH2中的数值大小。
表1
Figure PCTCN2014092960-appb-000001
进一步地,该无线帧内的上行数据域的位置和下行数据域的位置也可以进行配置。
其中,数据域所使用的OFDMA调制参数可以包括:系统的信道带宽、所采用的CP(Cyclic Prefix,循环前缀)长度、FFT(Fast Fourier Transformation,快速傅氏变换)阶数和可用子载波的个数。
其中,所采用的CP的长度也可以根据AP所部署的场景进行配置。当场景的差异较大时,信道条件也相差较大,例如,可以将该AP部署在室内或者室外。不同的信道条件对CP的长度要求也是不同的。CP长度的选取是资源开销和系统性能折中的结果。如果AP和STA之间是室内信道时,多径扩展较小,此时使用较长的CP会导致资源利用率降低;如果AP和STA之间是室外信道或者室外至室内的信道时,多径扩展较大,此时使用较短的CP会导致系统性能下降。因此,固定的CP长度可能无法满足全部或者大多数场景的部署。AP需要根据不同的部署场景,指示其采用不同的CP长度。例如,室内场景采用0.8us的CP,UMi场景(Urban Micro,城区微小区)下CP长度为4.4us,UMa(Urban Macro,城区宏小区)场景下CP长度为6.4us。AP根据自己所部署的场景,选择对应的CP长度,并在控制域中进行指示。例如,如果系统只支持室内和UMi场景,则在控制域中使用1bit信息进行指示,指示0代表采用0.8us,指示1代表采用4.8us;如果系统还需支持UMa场景,在控制域中需要使用2bit信息进行指示,指示00代表采用0.8us,指示01代表采用4.4us,指示02代表采用6.4us的CP。
其中,对于与该AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源,或者第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源。
其中,第一无线资源指示包括:第一无线资源所指示的无线资源块的大小和位置以及无线资源块上所使用的调制编码方式和/或MIMO(Multi-input Multi-output,多输入多输出)传输方式。
步骤702:AP将该无线帧的前导部分和控制域发送给与该AP相关联的STA。
前导部分和控制域为该无线帧的不同组成部分,该AP可以先将该无线帧的前导部分发送给与该AP相关联的STA,再将该无线帧的控制域发送给与该AP相关联的STA。
可选地,当该AP将该无线帧的前导部分发送给与该AP相关联的STA时,该AP是将该无线帧的前导部分进行广播的,所以不仅与该AP相关联的STA可以接收到该无线帧的前导部分,未与该AP相关联的STA也可以接收到该无线帧的前导部分。该AP广播该无线帧的前导部分时,该AP可以增加该无线帧的前导部分的发射功率,使未与该AP相关联的STA和其他AP接收到该无线帧的前导部分,并在预留时长内未与该AP相关联的STA和其他AP不再通过该无线信道传输无线局域网数据。例如,在满足峰均比的情况下,可以将该无线帧的前导部分的发射功率增加2dB。
增加该无线帧的前导部分的发射功率,可以使未与该AP相关联的STA和其他AP更好地接收到该无线帧的前导部分,进而使未与该AP相关联的STA和其他AP不再通过该无线信道传输无线局域网数据,避免了未与该AP相关联的STA和其他AP传输无线局域网数据时对该AP与与该AP相关联的STA之间传输无线局域网数据的干扰,达到了较佳的效果。
其中,该前导部分和控制域均采用与现有IEEE802.11标准兼容的OFDM方式进行发送。
其中,现有IEEE802.11可以为IEEE802.11a、IEEE802.11g、IEEE802.11n或者IEEE802.11ac。
其中,发送前导部分和控制域时,可以根据OFDM配置参数对前导部分和控制域进行配置并发送。例如,如表2所示,表2中的第一数值列是该配置该前导部分和控制域的OFDM配置参数,第二数值列是上行数据域和下行数据域的OFDMA的配置参数。
进一步地,每一个下行数据域或者上行数据域的持续时间可以为900us,当采用如表2中第二数值进行OFDMA调制时,每个上行或者下行数据域包含30个OFDM符号。
可选地,当采用如表2中第二数值进行OFDMA调制时,每个无线资源块可以分别由32个子载波以及6个OFDM符号所占用192资源单元的组成,此时在一个上行或者下行数据域中共有70个无线资源块。或者每个无线资源块也可以采用由16个子载波以及10个OFDM符号所占用的160个资源单元组成,此时在一个上行或者下行数据域中共有84个无线资源块。
表2
Figure PCTCN2014092960-appb-000002
步骤703:与该AP相关联的STA接收该AP发送的无线帧的前导部分和控制域。
其中,由于该AP先发送该无线帧的前导部分,后发送该无线帧的控制域,所以与该AP相关联的STA先接收该AP发送的无线帧的前导部分,后接收该AP发送的无线帧的控制域。
步骤704:与该AP相关联的STA根据该无线帧的前导部分和控制域,在该无线帧的数据域包括的下行数据域内接收该AP发送的无线局域网数据。
当与该AP相关联的STA接收到该无线帧的前导部分时,该STA根据该前导部分中的L-STF与该STA相关联的AP进行同步;根据该前导部分的L-LTF进行信道估计,以及该STA通过相干接收获取该无线帧的前导部分的L-SIG 中携带的与该无线帧的持续时长相关的信息。
与该AP相关联的STA根据控制域包括的无线帧内的上下行数据域的配置信息、数据域所使用的OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址接入)调制参数和对于该AP相关联的STA的无线资源分配指示信息,确定该STA在数据域中该下行数据域内对应的资源块以及发送该资源块数据所采用的传输参数(例如MCS,MIMO方式),并在确定的资源块上接收并解调该AP发送的无线局域网数据。
其中,数据域采用OFDMA方式进行发送。
步骤705:当该无线帧的数据域包括上行数据域时,与该AP相关联的STA根据该无线帧的控制域在数据域包括的上行数据域内向该AP发送无线局域网数据。
其中,与该AP相关联的STA根据该无线帧的控制域在数据域包括的上行数据域内向该AP发送无线局域网数据的具体操作可以为:与该AP相关联的STA根据该无线帧的控制域,对需要发送的无线局域网数据进行调制和编码,并在该STA对应的资源块上向该AP发送编码后的无线局域网数据。
该AP相关联的STA根据该无线帧的控制域,对需要发送的无线局域网数据进行调制和编码的具体操作可以为:该AP相关联的STA根据该无线帧的控制域包括的OFDM调制参数、控制域包括的无线帧内的上下行数据域的配置信息和对于该AP相关联的STA的无线资源分配指示信息,对需要发送的无线局域网数据进行调制和编码,确定该STA在该上行数据域内对应的资源块,并在确定的资源块上向该AP发送调制编码后的无线局域网数据。
进一步地,当预留时长未结束之前,如果该AP想要结束调度窗口,即该AP放弃该无线信道的使用权时,该AP可以广播放弃控制帧,以声明该AP放弃该无线信道的使用权。此时,其他的AP或者STA可以通过竞争的方式获取该无线信道的使用权。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧包括前导部分、控制域和数据域。该AP可以增加该前导部分的发射功率,并将该前导部分进行广播,不仅使与该AP相关联的STA接收到该前导部分,还可以使未与该AP相关联的STA和其他的AP接收到该前导部分,进而使未与该AP相关联的STA和其他AP不再通过该无线信道传输无线局域网数据,避免了未与该AP相关联的STA和其他AP传输无线局域网数据时对该 AP和与该AP相关联的STA之间传输无线局域网数据的干扰,达到了较佳的效果。另外,由于该无线帧的数据域内可以包括多个上行数据域和多个下行数据域,且每个上行数据域或者下行数据域内均包括多个无线资源块,每个STA均有对应的无线资源块。该AP相关联的STA可以在上行数据域内其对应的无线资源块上向该AP发送无线局域网数据。该AP可以在下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例六
图10是本发明实施例提供的一种无线局域网数据的传输装置,参见图10,该装置包括:第一发射机1001、第一接收机1002、第一存储器1003和第一处理器1004,用于执行如下所述的无线局域网数据的传输方法,包括:
所述第一处理器1004,用于当获取到无线信道使用权时,构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域;
所述第一发射机1001,用于将所述前导部分和所述控制域发送给与所述AP相关联的站点STA;
所述第一发射机1001,还用于在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据。
其中,所述前导部分和所述控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,所述数据域采用正交频分多址接入OFDMA方式进行发送。
其中,所述前导部分采用与现有IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF用于使与所述AP相关联的STA和所述AP同步,所述L-LTF用于使与所述AP相关联的STA进行信道估计,以通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
可选地,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧持续时长大于或等于所述无线帧的实际持续时长。
进一步地,
所述第一处理器1004,还用于增加所述无线帧的前导部分的发射功率,使未与所述AP相关联的STA和其他AP接收到所述无线帧的前导部分,并在预留时长内未与所述AP相关联的STA和其他AP不再通过所述无线信道传输无线局域网数据,所述预留时长为所述AP拥有所述无线信道使用权的时长。
其中,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
其中,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
进一步地,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
其中,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
可选地,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
可选地,
所述第一接收机1002,还用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内接收与所述AP相关联的STA发送的无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
实施例七
图11是本发明实施例提供的一种无线局域网数据的传输装置,参见图11,该装置包括:第二发射机1101、第二接收机1102、第二存储器1103和第二处理器1104,用于执行如下所述的无线局域网数据的传输方法,包括:
所述第二接收机1102,用于接收与所述STA相关联的接入点AP发送的无线帧的前导部分和控制域;
所述第二接收机1102,还用于根据所述前导部分和所述控制域,在所述无线帧的数据域包括的下行数据域内接收与所述STA相关联的AP发送的无线局域网数据,所述数据域至少包括一个下行数据域。
其中,所述前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
相应地,
所述第二处理器1104,用于根据所述L-STF与与所述STA相关联的AP进行同步;
所述第二处理器1104,还用于根据所述L-LTF进行信道估计;
所述第二接收机1102,还用于通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
其中,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧的持续时长大于或等于所述无线帧的实际持续时长。
进一步地,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
可选地,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
其中,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
可选地,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输 数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
进一步地,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
可选地,
所述第二发射机1101,用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内向与所述STA相关联的AP发送无线局域网数据。
在本发明实施例中,当获取到无线信道使用权时,AP可以构造无线帧,该无线帧的数据域内可以包括至少一个下行数据域,且该下行数据域内包括多个无线资源块,每个STA均有对应的无线资源块。该AP可以在该下行数据域内STA对应的无线资源块上,向与该AP相关联的STA发送无线局域网数据。当该无线帧的数据域内包括上行数据域时,该上行数据域内也包括多个无线资源块,每个STA均有对应的无线资源块。与该AP相关联的STA可以在其对应的无线资源块上向该AP发送无线局域网数据。由于该AP可以关联多个STA,所以实现了AP到STA之间一对多、STA到AP之间多对一的关系传输无线局域网数据,提高了频谱利用率和网络的使用效率。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包 含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU、通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在可读取的存储介质中,如U盘、移动存储介质、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储软件程序代码的介质,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
对所提供的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所提供的原理和新颖特点相一致的最宽的范围。
下面仅作为示例,介绍一些本发明具体实施方式。
如前文图8中所示的竞争窗口中的“预留信道部分”,其细节可以参考图8a。具体的,AP竞争获得信道使用权后,在前述AP构造无线帧之前,还包括:该AP发送RTS(英文为Request To Send,中文为请求发送),接收一个或者多个该AP关联的STA回复的一个或者多个CTS(英文为Clear To Send,中文为允许发送),该一个或者多个CTS用于表明发送该CTS的STA可以接收或者发送数据,(信道条件允许收发数据)。更为具体的,附近的其他通信节点在收到CTS时,不会使用该信道进行通信。也就是说,STA通过发送CTS,保护信道不被周围的通信节点使用,从而避免造成干扰。
更具体的,AP发送的上述RTS的接收地址可以是组地址,也可以是指定的STA的地址,也可以是该AP关联的全部STA的地址,例如用某种缺省地 址例如全零表示。AP指示接收的STA(即前述接收地址所指示的STA)接收到RTS后,会在间隔一定时间后,例如SIFS时长后回复CTS。例如与该AP关联STA中的一组STA,AP指定的个别STA或者所有STA分别回复CTS。这种回复可以是采用时分、码分、频分、OFDMA技术,或者在完全相同的资源上重叠发送。
前文提到:该AP不仅可以根据与该AP相关联的STA的个数构造无线帧,该AP还可以根据其与该AP相关联的STA之间的业务构造无线帧,当然,该AP还可以根据其他的方式构造无线帧。具体的,该AP可以通过接收到的CTS,确定构造什么样的无线帧。例如,根据接收到CTS的个数,判断可调度的STA的个数,从而确定调度时长或调度的无线帧的个数,以及无线帧中下行子帧的个数和上行子帧的个数,或者下行与上行子帧的配比。进一步的,如果STA采用组的方式回复CTS,该AP还可以确定无线帧中,是否可以采用MU-MIMO的传输,可以分配多少资源进行MU-MIMO传输,从而决定了无线帧的内部结构。还例如,根据接收到CTS的信号强度,判断调度时段内的传输MCS,从而确定调度时长或者调度无线帧的个数。
如图8、图8a、图9所示的帧结构中,可以有多种具体的帧结构替换方式。例如,本发明各实施方式中,在一个无线帧中,按照先后的顺序,依次包括:与现有IEEE802.11中兼容的前导部分(后续简称为Legacy preamble),下一代标准采用的前导部分(例如HEW preamble),第一个下行子帧,或者,可能包括其他下行子帧或者上行子帧。上述其他下行子帧或者上行子帧中,包括下一代标准的训练序列字段部分,例如HEW STF和HEW LTF部分和数据,不包括与现有IEEE802.11中兼容的前导部分。
本发明各实施方式提供的各种帧结构中,在一个无线帧中包括:一个或者多个下行子帧和一个或者多个上行子帧。这样,在上面一段提到的帧结构基础上,在下行子帧和上行子帧发生转换后,在转换后的第一个子帧中包括Legacy preamble和下一代标准采用的preamble(例如HEW preamble)。例如,前文提到的TTG之后,在第一个上行子帧之前,包括Legacy preamble和下一代标准采用的preamble(例如HEW preamble)。其余的非第一个下行子帧和非第一个上行子帧中,包括下一代标准的训练序列字段部分,例如HEW STF和HEW LTF部分,不包括Legacy preamble和其他下一代标准的preamble中的其他部分。
本实施方式提供的各种帧结构中,在一个无线帧内,包括针对该无线帧内 中的下行子帧的ACK信息。例如,在一个无线帧内,对某一个下行子帧的ACK信息承载于该下行子帧之后的后续的上行子帧中。这些上行子帧可以是缺省的,例如该下行子帧之后的第一个或者前几个上行子帧承载针对该该下行子帧的ACK信息。一个例子中,第一个UL子帧用作ACK回复,第二个和第三个UL用作上行数据payload的传输。当然也可以是提前由AP进行指示给上行STA的。
更具体的例子中,在一个无线帧内,在上述承载针对该该下行子帧的ACK信息的上行子帧之后,包括一个下行子帧,该下行子帧的用于触发后续的承载数据(payload)的上行子帧的传输,该下行子帧可以承载资源分配指示等信息,例如后续上行子帧的资源块信息等。该下行子帧可以只包含legacy preamble和下一代标准的preamble,例如HEW preamble,也可以除了以上两部分外,包含MAC PDU部分。

Claims (40)

  1. 一种无线局域网数据的传输装置,其特征在于,所述装置包括:
    构造模块,用于当获取到无线信道使用权时,构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域;
    第一发送模块,用于将所述前导部分和所述控制域发送给与接入点AP相关联的站点STA;
    第二发送模块,用于在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据。
  2. 如权利要求1所述的装置,其特征在于,所述前导部分和所述控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,所述数据域采用正交频分多址接入OFDMA方式进行发送。
  3. 如权利要求1所述的装置,其特征在于,所述前导部分采用与现有IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF用于使与所述AP相关联的STA和所述AP同步,所述L-LTF用于使与所述AP相关联的STA进行信道估计,以通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
  4. 如权利要求3所述的装置,其特征在于,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧持续时长大于或等于所述无线帧的实际持续时长。
  5. 如权利要求1所述的装置,其特征在于,所述装置还包括:
    增加模块,用于增加所述无线帧的前导部分的发射功率,使未与所述AP相关联的STA和其他AP接收到所述无线帧的前导部分,并在预留时长内未与所述AP相关联的STA和其他AP不再通过所述无线信道传输无线局域网数据,所述预留时长为所述AP拥有所述无线信道使用权的时长。
  6. 如权利要求1所述的装置,其特征在于,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
  7. 如权利要求6所述的装置,其特征在于,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之 间的转换信息。
  8. 如权利要求6所述的装置,其特征在于,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
  9. 如权利要求6所述的装置,其特征在于,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
  10. 如权利要求9所述的装置,其特征在于,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
  11. 如权利要1-10任一权利要求所述的装置,其特征在于,所述装置还包括:
    第一接收模块,用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内接收与所述AP相关联的STA发送的无线局域网数据。
  12. 一种无线局域网数据的传输装置,其特征在于,所述装置包括:
    第二接收模块,用于接收与站点STA相关联的接入点AP发送的无线帧的前导部分和控制域;
    第三接收模块,用于根据所述前导部分和所述控制域,在所述无线帧的数据域包括的下行数据域内接收与所述STA相关联的AP发送的无线局域网数据,所述数据域至少包括一个下行数据域。
  13. 如权利要求12所述的装置,其特征在于,所述前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
    相应地,所述装置还包括:
    同步模块,用于根据所述L-STF与与所述STA相关联的AP进行同步;
    信道估计模块,用于根据所述L-LTF进行信道估计;
    获取模块,用于通过相干接收获取所述L-SIG中携带的与所述无线帧的持 续时长相关的信息。
  14. 如权利要求13所述的装置,其特征在于,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧的持续时长大于或等于所述无线帧的实际持续时长。
  15. 如权利要求12所述的装置,其特征在于,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的正交频分多址接入OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
  16. 如权利要求15所述的装置,其特征在于,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
  17. 如权利要求15所述的装置,其特征在于,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
  18. 如权利要求15所述的装置,其特征在于,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
  19. 如权利要求18所述的装置,其特征在于,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
  20. 如权利要求12-19任一权利要求所述的装置,其特征在于,所述装置还包括:
    第三发送模块,用于当所述数据域包括上行数据域时,根据所述控制域在所述数据域包括的上行数据域内向与所述STA相关联的AP发送无线局域网数据。
  21. 一种无线局域网数据的传输方法,其特征在于,所述方法包括:
    当获取到无线信道使用权时,接入点AP构造无线帧,所述无线帧至少包括前导部分、控制域和数据域,所述数据域至少包括一个下行数据域;
    所述AP将所述前导部分和所述控制域发送给与所述AP相关联的站点 STA;
    所述AP在所述无线帧的下行数据域内向与所述AP相关联的STA发送无线局域网数据。
  22. 如权利要求21所述的方法,其特征在于,所述前导部分和所述控制域均采用与现有电气和电子工程师协会IEEE802.11标准兼容的正交频分复用OFDM方式进行发送,所述数据域采用正交频分多址接入OFDMA方式进行发送。
  23. 如权利要求21所述的方法,其特征在于,所述前导部分采用与现有IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF用于使与所述AP相关联的STA和所述AP同步,所述L-LTF用于使与所述AP相关联的STA进行信道估计,以通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
  24. 如权利要求23所述的方法,其特征在于,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧持续时长大于或等于所述无线帧的实际持续时长。
  25. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    所述AP增加所述无线帧的前导部分的发射功率,使未与所述AP相关联的STA和其他AP接收到所述无线帧的前导部分,并在预留时长内未与所述AP相关联的STA和其他AP不再通过所述无线信道传输无线局域网数据,所述预留时长为所述AP拥有所述无线信道使用权的时长。
  26. 如权利要求21所述的方法,其特征在于,所述控制域包括:所述无线帧内的上下行数据域的配置信息、所述数据域所使用的OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
  27. 如权利要求26所述的方法,其特征在于,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
  28. 如权利要求26所述的方法,其特征在于,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
  29. 如权利要求26所述的方法,其特征在于,所述对于与所述AP相关联 的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
  30. 如权利要求29所述的方法,其特征在于,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
  31. 如权利要21-30任一权利要求所述的方法,其特征在于,所述方法还包括:
    当所述数据域包括上行数据域时,所述AP根据所述控制域在所述数据域包括的上行数据域内接收与所述AP相关联的STA发送的无线局域网数据。
  32. 一种无线局域网数据的传输方法,其特征在于,所述方法包括:
    站点STA接收与所述STA相关联的接入点AP发送的无线帧的前导部分和控制域;
    所述STA根据所述前导部分和所述控制域,在所述无线帧的数据域包括的下行数据域内接收与所述STA相关联的AP发送的无线局域网数据,所述数据域至少包括一个下行数据域。
  33. 如权利要求32所述的方法,其特征在于,所述前导部分采用与现有电气和电子工程师协会IEEE802.11中兼容的前导部分,且所述前导部分包括传统短训练字段L-STF,传统长训练字段L-LTF和传统信令字段L-SIG;
    相应地,所述站点STA接收与所述STA相关联的接入点AP发送的无线帧的前导部分和控制域之后,还包括:
    所述STA根据所述L-STF与与所述STA相关联的AP进行同步;
    所述STA根据所述L-LTF进行信道估计;
    所述STA通过相干接收获取所述L-SIG中携带的与所述无线帧的持续时长相关的信息。
  34. 如权利要求33所述的方法,其特征在于,所述L-SIG域中的长度LENGTH数据域中携带一个与所述无线帧持续时长相关的数值,所述数值对应的无线帧的持续时长大于或等于所述无线帧的实际持续时长。
  35. 如权利要求32所述的方法,其特征在于,所述控制域包括:所述无线 帧内的上下行数据域的配置信息、所述数据域所使用的正交频分多址接入OFDMA调制参数和对于与所述AP相关联的STA的无线资源分配指示信息。
  36. 如权利要求35所述的方法,其特征在于,所述上下行数据域的配置信息包括:上行数据域的数目、下行数据域的数目以及上行数据域和下行数据域之间的转换信息。
  37. 如权利要求35所述的方法,其特征在于,所述数据域所使用的OFDMA调制参数包括:系统的信道带宽、所采用的循环前缀CP长度、快速傅氏变换FFT阶数和可用子载波的个数。
  38. 如权利要求35所述的方法,其特征在于,所述对于与所述AP相关联的STA的无线资源分配指示信息包括:第一无线资源指示,所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的第二无线资源指示对应的无线资源块,或者所述第一无线资源指示用于指示每一个被调度的STA传输数据所使用的无线资源块。
  39. 如权利要求38所述的方法,其特征在于,所述第一无线资源指示包括:所述第一无线资源指示所指示的无线资源块的大小和位置以及所述无线资源块上所使用的调制编码方式和/或多输入多输出MIMO传输方式。
  40. 如权利要求32-39任一权利要求所述的方法,其特征在于,所述方法还包括:
    当所述数据域包括上行数据域时,所述STA根据所述控制域在所述数据域包括的上行数据域内向与所述STA相关联的AP发送无线局域网数据。
PCT/CN2014/092960 2014-02-27 2014-12-03 无线局域网数据的传输方法及装置 WO2015127806A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PCT/CN2014/093869 WO2015127810A1 (zh) 2014-02-27 2014-12-15 无线局域网数据的传输方法及装置
KR1020167026368A KR101883416B1 (ko) 2014-02-27 2014-12-15 무선 근거리 네트워크 데이터를 전송하기 위한 방법 및 장치
EP14883642.2A EP3113565B1 (en) 2014-02-27 2014-12-15 Method and apparatus for transmitting wireless local area network data
ES19206406T ES2948967T3 (es) 2014-02-27 2014-12-15 Método y aparato para transmitir datos de red de área local inalámbrica
CN202010103469.3A CN111629388B (zh) 2014-02-27 2014-12-15 无线局域网数据的传输方法及装置
CN201480076066.7A CN106465400B (zh) 2014-02-27 2014-12-15 无线局域网数据的传输方法及装置
JP2016554452A JP6479033B2 (ja) 2014-02-27 2014-12-15 無線ローカルエリアネットワークデータを伝送するための方法及び装置
EP19206406.1A EP3668242B1 (en) 2014-02-27 2014-12-15 Method and apparatus for transmitting wireless local area network data
EP23156706.6A EP4221410A3 (en) 2014-02-27 2014-12-15 Method and apparatus for transmitting wireless local area network data
US15/249,795 US10264599B2 (en) 2014-02-27 2016-08-29 Method and apparatus for transmitting wireless local area network data
US16/384,522 US10631322B2 (en) 2014-02-27 2019-04-15 Method and apparatus for transmitting wireless local area network data
US16/837,827 US11497045B2 (en) 2014-02-27 2020-04-01 Method and apparatus for transmitting wireless local area network data
US17/948,871 US11737092B2 (en) 2014-02-27 2022-09-20 Method and apparatus for transmitting wireless local area network data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/072617 WO2015127616A1 (zh) 2014-02-27 2014-02-27 无线局域网数据的传输方法及装置
CNPCT/CN2014/072617 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015127806A1 true WO2015127806A1 (zh) 2015-09-03

Family

ID=54008134

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2014/072617 WO2015127616A1 (zh) 2014-02-27 2014-02-27 无线局域网数据的传输方法及装置
PCT/CN2014/092960 WO2015127806A1 (zh) 2014-02-27 2014-12-03 无线局域网数据的传输方法及装置
PCT/CN2014/093869 WO2015127810A1 (zh) 2014-02-27 2014-12-15 无线局域网数据的传输方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072617 WO2015127616A1 (zh) 2014-02-27 2014-02-27 无线局域网数据的传输方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093869 WO2015127810A1 (zh) 2014-02-27 2014-12-15 无线局域网数据的传输方法及装置

Country Status (7)

Country Link
US (4) US10264599B2 (zh)
EP (3) EP4221410A3 (zh)
JP (1) JP6479033B2 (zh)
KR (1) KR101883416B1 (zh)
CN (2) CN111629388B (zh)
ES (1) ES2948967T3 (zh)
WO (3) WO2015127616A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952889B2 (en) 2016-06-02 2021-03-23 Purewick Corporation Using wicking material to collect liquid for transport
US11090183B2 (en) 2014-11-25 2021-08-17 Purewick Corporation Container for collecting liquid for transport
US11376152B2 (en) 2014-03-19 2022-07-05 Purewick Corporation Apparatus and methods for receiving discharged urine
US11806266B2 (en) 2014-03-19 2023-11-07 Purewick Corporation Apparatus and methods for receiving discharged urine
US9661638B2 (en) * 2014-05-07 2017-05-23 Qualcomm Incorporated Methods and apparatus for signaling user allocations in multi-user wireless communication networks
CN105515741B (zh) * 2014-09-26 2020-04-10 电信科学技术研究院 一种在非授权频段上的数据传输方法及装置
WO2016195442A1 (ko) * 2015-06-05 2016-12-08 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017041847A1 (en) * 2015-09-10 2017-03-16 Huawei Technologies Co., Ltd. Client and access point communication devices and methods for random access communication
CN113676871A (zh) 2015-09-18 2021-11-19 日本电气株式会社 基站装置、无线电终端及其方法
CN108370292B (zh) * 2015-10-09 2021-09-03 交互数字专利控股公司 针对高效应答传输的方法及装置
USD928946S1 (en) 2016-06-02 2021-08-24 Purewick Corporation Urine receiving apparatus
US10973678B2 (en) 2016-07-27 2021-04-13 Purewick Corporation Apparatus and methods for receiving discharged urine
CN108306841B (zh) * 2017-01-11 2022-02-11 中兴通讯股份有限公司 用于ofdm通信的信号设计方法及系统、发射机、接收机
CN108810980B (zh) * 2017-04-28 2020-10-23 华为技术有限公司 一种数据传输的方法、装置及设备
EP3998753A1 (en) 2017-12-06 2022-05-18 Marvell Asia Pte, Ltd. Methods and apparatus for generation of physical layer protocol data units for vehicular environments
WO2019207425A1 (en) 2018-04-26 2019-10-31 Marvell World Trade Ltd. Pilots for wireless access in vehicular environments
WO2019212951A1 (en) 2018-05-01 2019-11-07 Purewick Corporation Fluid collection devices, systems, and methods
EP3787568B1 (en) 2018-05-01 2023-12-06 Purewick Corporation Fluid collection devices, related systems, and related methods
CA3098680A1 (en) 2018-05-01 2019-11-07 Purewick Corporation Fluid collection garments
US11665036B2 (en) 2019-04-09 2023-05-30 Marvell Asia Pte Ltd Generation and transmission of physical layer data units in a composite communication channel in a vehicular communication network
CN110087259B (zh) * 2019-05-05 2020-07-28 华中科技大学 一种6g调度信息保护方法及系统
USD929578S1 (en) 2019-06-06 2021-08-31 Purewick Corporation Urine collection assembly
USD967409S1 (en) 2020-07-15 2022-10-18 Purewick Corporation Urine collection apparatus cover
US11801186B2 (en) 2020-09-10 2023-10-31 Purewick Corporation Urine storage container handle and lid accessories
EP4110247B1 (en) 2021-01-19 2024-02-28 Purewick Corporation Variable fit fluid collection devices
JP2023553620A (ja) 2021-02-26 2023-12-25 ピュアウィック コーポレイション 管開口とバリアとの間に排水受けを有する流体収集装置、ならびに関連するシステムおよび方法
US11938054B2 (en) 2021-03-10 2024-03-26 Purewick Corporation Bodily waste and fluid collection with sacral pad
CN118057894A (zh) * 2022-11-18 2024-05-21 华为技术有限公司 通信方法、装置、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889403A (zh) * 2006-06-01 2007-01-03 西安电子科技大学 认知无线电的ofdm帧结构及其副载波分配方法
CN102123514A (zh) * 2010-01-08 2011-07-13 北京新岸线无线技术有限公司 一种在无线局域网中实现多址的方法及无线局域网系统
US20120026909A1 (en) * 2010-07-30 2012-02-02 Yong Ho Seok Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
CN102792628A (zh) * 2010-03-10 2012-11-21 思科技术公司 用于具有混合客户端类型的业务组的下行ofdma
CN103428810A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 一种无线局域网的通信方法、接收方法及装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040024784A (ko) * 2002-09-16 2004-03-22 삼성전자주식회사 IEEE 802.11 Ad-hoc 무선 랜에서 서비스차별화를 위한 분산 MAC 프로토콜 구성 방법
KR101002883B1 (ko) 2003-10-27 2010-12-21 재단법인서울대학교산학협력재단 무선 통신 시스템에서 송신 전력 제어 장치 및 방법
KR100615139B1 (ko) 2005-10-18 2006-08-22 삼성전자주식회사 무선통신 시스템에서 전송 시간 구간의 할당 방법과 장치및 그 시스템
CN101288250B (zh) * 2005-10-18 2012-02-08 三星电子株式会社 无线通信系统中分配传输时间段的方法和设备及其系统
US8787841B2 (en) 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
CN101517935A (zh) 2006-09-26 2009-08-26 皇家飞利浦电子股份有限公司 Ieee802.22无线区域网通信系统的物理层超帧、帧、前导和控制报头
US8670704B2 (en) * 2007-03-16 2014-03-11 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US20100278123A1 (en) 2007-12-10 2010-11-04 Nortel Networks Limited Wireless communication frame structure and apparatus
US20100260114A1 (en) * 2009-04-10 2010-10-14 Qualcomm Incorporated Acknowledgement resource allocation and scheduling for wlans
JP5391816B2 (ja) 2009-05-08 2014-01-15 ソニー株式会社 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US9935805B2 (en) * 2009-08-25 2018-04-03 Qualcomm Incorporated MIMO and MU-MIMO OFDM preambles
KR20120135196A (ko) 2009-12-21 2012-12-12 톰슨 라이센싱 무선 네트워크에서의 동시 송신의 인에이블링
US8238316B2 (en) * 2009-12-22 2012-08-07 Intel Corporation 802.11 very high throughput preamble signaling field with legacy compatibility
CN101808409B (zh) * 2010-04-01 2015-03-25 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统
CN102714648B (zh) * 2010-07-09 2015-07-15 联发科技(新加坡)私人有限公司 无线局域网设备及其传送、接收方法
US8719684B2 (en) * 2010-08-31 2014-05-06 Qualcomm Incorporated Guard interval signaling for data symbol number determination
CN102111850B (zh) * 2010-12-21 2013-09-04 北京北方烽火科技有限公司 一种选择前导码的方法及装置
US8879472B2 (en) * 2011-04-24 2014-11-04 Broadcom Corporation Long training field (LTF) for use within single user, multiple user, multiple access, and/or MIMO wireless communications
EP2705620A4 (en) * 2011-05-03 2015-02-25 Samsung Electronics Co Ltd TRANSMISSION OF SURFACE REFERENCE SIGNALS FROM USER EQUIPMENT IN RESPONSE TO MULTIPLE DEMANDS
CN102843785B (zh) 2011-06-25 2015-04-08 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
CN103096439B (zh) * 2011-11-07 2018-04-27 中兴通讯股份有限公司 站点的调度方法、数据传输方法、接入控制站点及站点
CN103298079B (zh) 2012-02-23 2017-02-08 华为技术有限公司 数据传输方法、接入点和站点
KR20150013640A (ko) * 2012-04-30 2015-02-05 인터디지탈 패튼 홀딩스, 인크 협력형 직교 블록 기반 자원 할당(cobra) 동작을 지원하는 방법 및 장치
WO2013174159A1 (zh) 2012-05-23 2013-11-28 华为技术有限公司 一种无线局域网的通信方法、接收方法及装置
US9419752B2 (en) * 2013-03-15 2016-08-16 Samsung Electronics Co., Ltd. Transmission opportunity operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US9712231B2 (en) * 2013-04-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple narrow bandwidth channel access and MAC operation within wireless communications
US10439773B2 (en) * 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
CN104185296B (zh) 2013-05-20 2018-02-06 华为技术有限公司 信道接入方法及接入点
US9439161B2 (en) * 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
US9648620B2 (en) * 2013-08-28 2017-05-09 Qualcomm Incorporated Tone allocation for multiple access wireless networks
US10230497B2 (en) * 2013-11-01 2019-03-12 Qualcomm Incorporated Protocols for multiple user frame exchanges
WO2016032258A2 (ko) * 2014-08-27 2016-03-03 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889403A (zh) * 2006-06-01 2007-01-03 西安电子科技大学 认知无线电的ofdm帧结构及其副载波分配方法
CN102123514A (zh) * 2010-01-08 2011-07-13 北京新岸线无线技术有限公司 一种在无线局域网中实现多址的方法及无线局域网系统
CN102792628A (zh) * 2010-03-10 2012-11-21 思科技术公司 用于具有混合客户端类型的业务组的下行ofdma
US20120026909A1 (en) * 2010-07-30 2012-02-02 Yong Ho Seok Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
CN103428810A (zh) * 2012-05-23 2013-12-04 华为技术有限公司 一种无线局域网的通信方法、接收方法及装置

Also Published As

Publication number Publication date
EP3113565A1 (en) 2017-01-04
EP3668242A1 (en) 2020-06-17
JP2017512430A (ja) 2017-05-18
US20190246415A1 (en) 2019-08-08
CN111629388B (zh) 2021-11-30
CN111629388A (zh) 2020-09-04
JP6479033B2 (ja) 2019-03-06
CN106465400B (zh) 2020-02-21
CN106465400A (zh) 2017-02-22
US10631322B2 (en) 2020-04-21
EP4221410A2 (en) 2023-08-02
US10264599B2 (en) 2019-04-16
EP3113565A4 (en) 2017-03-15
US11497045B2 (en) 2022-11-08
KR20160125488A (ko) 2016-10-31
US20160366699A1 (en) 2016-12-15
EP3113565B1 (en) 2019-11-27
US20230024310A1 (en) 2023-01-26
US11737092B2 (en) 2023-08-22
WO2015127810A1 (zh) 2015-09-03
WO2015127616A1 (zh) 2015-09-03
EP3668242B1 (en) 2023-04-05
KR101883416B1 (ko) 2018-07-30
US20200229223A1 (en) 2020-07-16
ES2948967T3 (es) 2023-09-22
EP4221410A3 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US11737092B2 (en) Method and apparatus for transmitting wireless local area network data
US11991032B2 (en) Multi-user(MU) transmission for soliciting acknowledgement(ACK) from a target base station
US11937299B2 (en) Controlling transmissions from multiple user devices via a request-clear technique
CA3015425C (en) Data transmission method and apparatus
US20240073809A1 (en) Wireless communication method for saving power and wireless communication terminal using same
US9854605B2 (en) Method and apparatus for transmitting uplink frame in wireless LAN
US10021722B2 (en) Method and device for receiving frame in wireless LAN
US10136450B2 (en) Multiuser frame transmission method in wireless lan system
KR20150065155A (ko) 무선랜에서 채널 할당 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883867

Country of ref document: EP

Kind code of ref document: A1