WO2016138623A1 - 无线局域网中的确认帧传输方法及通信装置 - Google Patents

无线局域网中的确认帧传输方法及通信装置 Download PDF

Info

Publication number
WO2016138623A1
WO2016138623A1 PCT/CN2015/073518 CN2015073518W WO2016138623A1 WO 2016138623 A1 WO2016138623 A1 WO 2016138623A1 CN 2015073518 W CN2015073518 W CN 2015073518W WO 2016138623 A1 WO2016138623 A1 WO 2016138623A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
data
acknowledgement frame
transmission mode
subchannel
Prior art date
Application number
PCT/CN2015/073518
Other languages
English (en)
French (fr)
Inventor
吴伟民
于健
郭宇宸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073518 priority Critical patent/WO2016138623A1/zh
Publication of WO2016138623A1 publication Critical patent/WO2016138623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly to a method and communication apparatus for transmitting an acknowledgment frame.
  • Embodiments of the invention relate to the application of the following techniques in a wireless local area network:
  • Orthogonal Frequency Division Multiple Access OFDMA
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA technology supports multiple nodes to simultaneously send and receive data.
  • the resource allocation is performed based on the RB or the RB group; different channel resources are allocated to different stations (STA, Station) at the same time, so that multiple STAs access the channel efficiently, and the channel is enhanced. Utilization rate.
  • MU-MIMO Multiple User-MIMO
  • MIMO Multiple Input Multiple Output
  • MIMO technology can provide transmit (receive) beamforming to effectively increase transmit (receive) power, effectively The reliability of the communication system is improved; on the other hand, the MIMO technology can generate additional spatial freedom to multiply the throughput of the system and effectively increase the rate of the communication system. Because of these advantages of MIMO technology, MIMO technology has become one of the key technologies of the 802.11n and 802.11ac standard protocols.
  • the transmitting end can send data to multiple users through multiple spatial streams, and can also receive data sent from multiple users on different spatial streams, thereby realizing parallel transmission of multi-user data and improving
  • the concurrency of data transmission is called MU-MIMO transmission.
  • the 802.11 standard includes two types of acknowledgement frames, one is an ACK frame, which confirms the data of the non-aggregated frame, and the other is a BA frame, which is acknowledged for the data of the aggregated frame, so it is called block acknowledgement.
  • FIG. 1a and FIG. 1b a simple schematic diagram of a frame structure of an acknowledgement frame, wherein FIG. 1a is a frame structure of an ACK, and FIG. 1b is a frame structure of a BA.
  • Embodiments of the present invention provide a method, an access point, and a station for transmitting information, which can efficiently send an ACK or a BA to multiple STAs.
  • a method for transmitting an acknowledgment frame in a wireless local area network where the access point AP sends a trigger frame, where the trigger frame is used to trigger multiple STAs to perform single-user or multi-user data transmission on several sub-channels; After receiving the data of the single user or multiple users sent by multiple STAs, the AP performs a reply of the acknowledgement frame on the same subchannel for the data of each subchannel: if the single channel sends a single The data transmitted by the user is returned to the acknowledgement frame by using the orthogonal frequency division multiple access acknowledgement frame OFDMA ACK/BA on the same subchannel; if the multi-user MIMO transmitted data is transmitted on the subchannel, then On the same subchannel, the acknowledgement frame is returned using the multi-user block acknowledgement frame MBA transmission mode.
  • a method for a STA side of a station in a wireless local area network including: a station STA in a wireless local area network receives a trigger frame sent by an access point AP, and the trigger frame is used to trigger multiple STAs on several subchannels. Data transmission of single-user or multi-user on the uplink;
  • an acknowledgement frame replied by the AP on the same subchannel wherein if the data transmitted by the single user is transmitted on the subchannel, the acknowledgement frame is orthogonal on the same subchannel
  • the frequency division multiple access acknowledgement frame is replied to the transmission mode of the OFDMA ACK/BA; if the data transmitted by the multi-user MIMO is transmitted on the subchannel, the acknowledgement frame is a multi-user block acknowledgement frame on the same subchannel.
  • the MBA transmission method is replied.
  • a method for transmitting an acknowledgement frame in a wireless local area network where an access point AP in a wireless local area network transmits: an indication of a transmission mode of a downlink acknowledgement frame for uplink data, or an uplink acknowledgement frame for downlink data
  • the AP sends the downlink acknowledgement frame according to the indicated downlink acknowledgement frame transmission manner, or receives the station STA in the wireless local area network according to the An uplink acknowledgement frame transmitted by the transmission mode of the indicated uplink acknowledgement frame.
  • the method of the STA side of the station is provided, and the method for transmitting the acknowledgement frame in the wireless local area network, the station STA in the wireless local area network receives the indication of the transmission mode of the downlink acknowledgement frame for the uplink data sent by the access point AP, or The indication of the transmission mode of the uplink acknowledgement frame for downlink data
  • the uplink and downlink data transmission process includes: the STA receiving the downlink acknowledgement frame sent by the AP according to the indicated downlink acknowledgement frame transmission manner, or the STA confirming the uplink acknowledgement frame according to the indication
  • the transmission mode transmits an uplink acknowledgement frame.
  • the transmission frame is transmitted with higher efficiency, and communication resources are saved as a whole.
  • 1a-1b are schematic diagrams of a conventional acknowledgement frame structure.
  • FIG. 1c is a schematic flowchart of an applicable embodiment of the present invention.
  • 2a is a schematic diagram of a conventional Multi-TID BA frame structure.
  • 2b is a schematic diagram of a multi-user BA frame structure of the first embodiment.
  • 3-4 are schematic diagrams of a method of transmitting an acknowledgment frame in an embodiment.
  • FIG. 5 is a schematic diagram of three methods for transmitting an acknowledgement frame ACK/BA on an OFDMA subchannel in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method of transmitting an acknowledgement frame according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for transmitting an acknowledgement frame according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method of transmitting an acknowledgement frame according to another embodiment of the present invention.
  • FIGS 9-10 are schematic diagrams showing the structure of an acknowledgment frame, respectively, according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a method of transmitting an acknowledgement frame according to another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a station in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an access point according to an embodiment of the present invention.
  • An Access Point which can also be called a wireless access point or bridge or hotspot, can access a server or a communication network.
  • a station which may also be referred to as a user, may be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" phone) that supports WiFi communication functions and a computer with wireless communication capabilities.
  • a mobile phone or "cellular" phone
  • it may be a portable, pocket-sized, handheld, computer-built, wearable, or in-vehicle wireless communication device that supports WiFi communication functions, and exchanges communication data such as voice and data with the wireless access network.
  • FIG. 1c is a simplified schematic diagram of a WLAN system to which an embodiment of the present invention is applied.
  • the system of Figure 1c includes one or more access points AP 101 and one or more stations STA 102.
  • the OFDMA technology is used for wireless communication between the access point 101 and the site 102.
  • the data frame transmitted by the access point 101 to the station 102 needs to be replied to the acknowledgement frame.
  • the Multi-TID BA frame structure is a block acknowledgment for data for multiple communication classes simultaneously.
  • the TID is called the Traffic Identifier, which means the communication identifier.
  • the 802.11e standard defines four access categories, corresponding to four priority traffic categories (Traffic category, TC), and Multi-TID BA frames for multiple communication categories of a site. The data is simultaneously confirmed by the block.
  • the AP may send a multi-user BA (Multi-user BA, hereinafter referred to as MBA) to send acknowledgement or block acknowledgement information to multiple STAs, and its frame structure.
  • a multi-user BA Multi-user BA
  • MPDU Media Access Control Protocol Data Unit
  • the BA Information field is a concatenation of block acknowledgment information of a plurality of STAs, and the STA's identity (AID) is placed in the reserved bits (B0-B10) of each TID information (Per TID Info) in FIG. 2a to identify the need
  • MBA Multi-user BA
  • ACK/BA/Multi-TID BA The main difference between MBA (Multi-user BA) and ACK/BA/Multi-TID BA is that the transmission of ACK/BA acknowledgment information to multiple STAs is completed in a MAC (Media Access Control) frame.
  • the MBA frame is transmitted by broadcast, and the receiving address (RA) is set as the broadcast address.
  • RA receiving address
  • each STA reads the MBA frame, it further searches the AID to identify whether the access point sends a confirmation message to it and further passes ACK/BA, to identify whether the subsequent confirmation or block confirmation, thereby further reading the subsequent different confirmation information.
  • each STA receives all the STA's confirmation information to obtain its own confirmation information, and even if one bit of the other station's confirmation information is transmitted incorrectly, its own confirmation information is also incorrect. Increased the frame error rate at the receiving end;
  • the transmission mode of 20M bandwidth must be adopted.
  • the bandwidth of the data to be replied is relatively large, each 20M copy is required, which causes the MBA transmission.
  • the efficiency has doubled. For example, if the entire data transmission bandwidth is 160M, the M-BA needs to be replicated 8 times, and the transmission efficiency is only 1/8. That is to say, the above scheme of replying the confirmation frame is not very effective.
  • the AP may send an ACK/BA to multiple STAs in an OFDMA manner, that is, the AP transmits the ACK/BA to different STAs on different subchannels by using the OFDMA form.
  • Single ACK/BA is generally referred to as a MAC frame, and OFDMA ACK/BA refers to an ACK/BA frame transmitted on the physical layer by OFDMA).
  • Different ACK/BAs may be transmitted on subchannels corresponding to subchannels occupied by data transmission, or may sequentially occupy subchannels of the same size, as shown in FIGS. 3 and 4, respectively. The scheme shown in FIG.
  • the OFDMA ACK/BA transmission mode that is, all stations adopt the manner in which ACK/BA and data are transmitted on corresponding subchannels.
  • the so-called corresponding subchannel refers to the position of the two subchannels in the frequency domain and the subband bandwidth are exactly the same. Since different ACK/BAs occupy different subchannel sizes, but need to be aligned in time, padding bits will appear after ACK/BA of some subbands.
  • the OFDMA ACK/BA transmission mode is also fully adopted (all sites are employed), where ACK/BA sequentially occupy subchannels of the same size.
  • the foregoing embodiment 2 does not use the MU MIMO method for ACK/BA transmission, and does not rely on the MBA frame format, and completely relies on the OFDMA method for ACK/BA transmission, and only one site acknowledgment information is transmitted on each subchannel. .
  • the data of the plurality of stations performing the MU MIMO transmission needs to be restored by the OFDMA method by using a plurality of resource blocks further subdivided in the corresponding subchannel.
  • the OFDMA ACK/BA cannot completely correspond to the data transmission. For example, as shown in FIG.
  • the MU MIMO data occupies two minimum resource blocks, and the spatial stream transmits data to three stations, and the three stations cannot utilize the two minimum resource blocks for the OFDMA ACK/BA reply.
  • the channel quality (signal to interference and noise ratio, etc.) of the entire subband of the MU MIMO user may be relatively good due to resource scheduling, but the channel quality of each of the smallest resource blocks may be uneven, and some resource blocks may have deep fading ( Deep fading), causing ACK/BA transmission failures at some sites.
  • the channel quality of RB1 (Resource Block 1, Resource Block 1) and RB2 may be better, but for the case where the frequency selectivity of the channel is relatively large, it is likely that the RB1 part will have deep fading, resulting in the channel quality of STA2. Poor, thus transmitting to STA2 ACK/BA will fail.
  • the subchannel occupied by the OFDMA ACK/BA may not be able to correspond to the subchannel of the data transmission, and the gain of the resource scheduling cannot be fully utilized, so that each subband is The channel quality of ACK/BA transmission is poor.
  • the present invention is particularly directed to multi-user OFDMA transmission or MU MIMO transmission or OFDMA and MU MIMO hybrid transmission in a wireless local area network, and adopts multiple acknowledgement frame ACK/BA transmission methods, which is efficient and reliable.
  • the disadvantages of the aforementioned comparative embodiments are improved.
  • orthogonal frequency division multiple access acknowledgement frame (referred to as OFDMA ACK/BA) transmission mode
  • the entire channel is divided into a number of subchannels, and an acknowledgement frame is transmitted on a certain subchannel.
  • the acknowledgement frame carries only one site's acknowledgement information (ie, contains acknowledgement information for one user's data: successful reception or unsuccessful reception).
  • the resource block may be further subdivided for a subchannel of a multi-user data transmission, and an acknowledgment frame for data of one site is separately transmitted in each resource block to perform ACK/BA frame reply of multiple sites, such as The situation of STA4 and STA5 in FIG.
  • the OFDMA ACK/BA degenerates into a single-user ACK/BA, and only one user's acknowledgment information is carried in one packet structure.
  • a subsequent embodiment of the present invention discusses a scheme for simultaneously transmitting acknowledgment information to multiple users, and a single user ACK/BA is not discussed in the solution of the present invention.
  • multiple input and multiple output confirmation frame (referred to as MU MIMO ACK/BA) transmission mode
  • Multi-user BA (referred to as MBA) transmission method
  • the AP only receives data for STA7 and STA8, the data acceptance of STA9 fails, and the MBA in the reply will be Only the confirmation information (STA7, STA8) for 2 users is included, indicating that the information transmission of another user (STA9) is unsuccessful.
  • the OFDMA ACK/BA of the single user is replied to the corresponding subchannel; if multiple users are transmitted on the subchannel, the MU MIMO is transmitted.
  • the data is returned to the MBA on the same subchannel.
  • the same subchannel refers to the fact that the subchannel transmitting data and the subchannel transmitting the acknowledgment frame for the data are exactly the same in the frequency domain and the subband bandwidth.
  • the OFDMA ACK/BA for multi-user data reply on different subchannels and the MBA for multi-user data reply are transmitted in the manner of OFDMA.
  • the specific process includes:
  • Step 101 The AP sends a trigger frame, and triggers multiple STAs to perform uplink data transmission on one or more subchannels. For example, multiple STAs are triggered to perform single-user or multi-user data transmission in the OFDMA mode, the MU MIMO mode, or the OFDMA and MU MIMO hybrid transmission modes.
  • the trigger frame (the Trigger frame shown in FIG. 6) may be a control frame that only includes trigger signaling, or may be a downlink data frame that carries trigger signaling.
  • the formula is not limited and is collectively referred to as a trigger frame.
  • the foregoing trigger signaling is only described from a functional point of view, for example, resource indication information in a trigger frame.
  • the entire channel is divided into several subchannels, and the trigger frame in step 101 includes trigger signaling, and the trigger signaling includes specifying, for each subchannel, uplink data transmission using the subchannel as single user transmission. Or multi-user MIMO transmission, and one or more STAs using the subchannel.
  • the instruction information of the single user/multi-user may include any one or more of the following, and the embodiment of the present invention does not limit the indication form thereof:
  • the SU/MU Single User/Multiple User indicates that before each resource is indicated for each single user/multiple user group, 1 bit is used to indicate whether a single user or a multi-user group is transmitted on the subchannel.
  • Resource Block User Number Indication Indicates the number of users transmitted on the resource block or subchannel. If it is 1, it is a single user. If it is greater than 1, it is a multi-user group.
  • the allocation of the spatial stream indicates that the flow number indication information of the four stations is fixed.
  • the number of flows of only one site is not 0, it is a single user; if the number of flows of more than one site is not 0, then Multi-user group.
  • Step 102 After receiving the trigger frame, the STA sends uplink data on the corresponding subchannel (that is, on one of the one or more subchannels) according to the indication of the trigger signaling in the trigger frame.
  • step 102 if STA1, STA4 in the triggering frame indicates that a certain STA transmits on a certain subchannel in a single user mode, the STA is on the subchannel.
  • the uplink data is transmitted in the N spatial streams, where N is included in the trigger signaling in the trigger frame.
  • N is included in the trigger signaling in the trigger frame.
  • STA2 and STA3 if the trigger signaling in the trigger frame indicates that a certain STA transmits data in a multi-user MIMO transmission manner on a certain subchannel, the STA has corresponding space on the subchannel. Sending uplink data in the stream, the location and number of the corresponding spatial stream It is included in the signaling of the trigger frame.
  • Step 103 After receiving the uplink data sent by the multiple STAs, the AP sends a corresponding ACK/BA transmission mode to confirm the data transmission for each subchannel on the same subchannel as each of the subchannels. frame. Specifically, for example, according to whether the uplink data transmitted on the subchannel saved by the AP (indicated in the signaling indication in the foregoing trigger frame) is single-user transmitted data or multi-user transmitted data, the corresponding OFDMA ACK/BA is performed, or , MBA's reply.
  • the OFDMA ACK/BA is used on the same subchannel as the subchannel.
  • the transmission mode is replied; if the signaling in the trigger frame indicates that the multi-user MIMO transmission data is transmitted on the subchannel, the MBA transmission mode is used to reply on the same subchannel as the subchannel.
  • the same subchannel refers to the position and subband bandwidth of the foregoing two subchannels (the subchannel transmitting data and the channel acknowledging the acknowledgement frame for the data) are exactly the same in the frequency domain.
  • the AP transmits the OFDMA ACK/BA and/or MBA of different sites on the multiple subchannels by using the downlink OFDMA.
  • the foregoing transmission mode of OFDMA ACK/BA for data transmitted by a single user specifically refers to an acknowledgment frame for transmitting data for one site on the subchannel, and the MBA transmission method for data transmitted by multiple users. Specifically, an acknowledgment frame for transmitting data for a plurality of sites on the subchannel.
  • the AP decides the type of ACK/BA to be sent for the number of users (SU or MU MIMO) on a certain subchannel.
  • the transmission mode of the acknowledgement frame in this embodiment not only considers whether the MU MIMO mode is adopted when transmitting data, but also distinguishes the subchannel. For example, in some other possible implementations, only counting the number of users in a certain area (for example, on the entire bandwidth, or on each 20M), and then selecting the transmission mode of ACK/BA, which does not consider sending Whether the MU MIMO mode is adopted in the data, and the decision about the transmission mode of the acknowledgment frame also has no zone molecular channel.
  • each user/MU MIMO user group can arbitrarily occupy a number of minimum resource block units, and the resources occupied by the user/user group are referred to as one subchannel.
  • the minimum resource block unit is 26 subcarriers
  • each subchannel may include 1 minimum resource block unit, that is, 26 subcarriers; or 2 minimum resource block units, that is, 52 subcarriers.
  • the subchannel also includes a multiple of 20M or 20M.
  • the 20M bandwidth is the minimum bandwidth since the 802.11 standard was established.
  • 802.11n introduces 40M bandwidth.
  • 802.11ac introduces 80M bandwidth and 160M bandwidth, regardless of the bandwidth of the subchannel occupied by each station.
  • each acknowledgment frame transmission mode is used for each subchannel of the transmission data, the reciprocity of the uplink and downlink channels is utilized at a more accurate granularity, so that the frame is confirmed. Higher transmission performance.
  • the MBA transmission mode is adopted (for other multi-user data transmission methods on the subchannel, the MBA transmission method is not used), and the bandwidth of the subchannel can be effectively avoided to transmit more. The problem of users of OFDMA BA.
  • This embodiment utilizes the entire subchannel and improves the scheduling gain. Moreover, for the MBA transmitted on each subchannel, the scheduling gain is utilized, and many users are not included, and the influence of other user confirmation information on the STA confirmation information is also reduced.
  • the acknowledgement frame there may be multiple transmission modes of the acknowledgement frame, such as OFDMA mode back ACK/BA, MU MIMO mode back ACK/BA, or MBA mode back ACK/BA; In the mode, no overhead is required to indicate the transmission mode of the acknowledgement frame. Better communication resources are saved.
  • OFDMA mode back ACK/BA OFDMA mode back ACK/BA
  • MU MIMO mode back ACK/BA MU MIMO mode back ACK/BA
  • MBA mode back ACK/BA In the mode, no overhead is required to indicate the transmission mode of the acknowledgement frame. Better communication resources are saved.
  • the embodiments of the present invention mainly discuss the transmission mode of the ACK/BA, such as the OFDMA mode, the MU MIMO mode, or the broadcast.
  • the MBA way.
  • the embodiments of the present invention are not limited to the specific ACK or BA, or other types of acknowledgment frames.
  • ACK or BA can be regarded as a generalized MBA having a user number of one.
  • the present preferred embodiment 2 is different from the preferred embodiment 1 in that there are multiple ACK/BA transmission modes (transmission modes), including the MBA mode, the OFDMA ACK/BA mode, and the MU MIMO ACK/BA mode.
  • transmission modes including the MBA mode, the OFDMA ACK/BA mode, and the MU MIMO ACK/BA mode.
  • the AP may indicate a corresponding ACK/BA transmission mode for multi-user transmissions on the entire channel or for transmissions on a single sub-channel in the trigger frame.
  • Step 201 The AP sends a trigger frame, and triggers multiple STAs to perform uplink data transmission in an OFDMA mode or a MU MIMO mode or an OFDMA and MU MIMO hybrid transmission mode.
  • the trigger frame in step 201 includes trigger signaling, which divides the entire channel into several subchannels, and specifies, for each subchannel, uplink data transmission using the subchannel as single-user transmission or multi-user MIMO transmission, and One or more STAs of the subchannel are used.
  • the AP indicates in the trigger signaling whether to send an MBA frame to transmit an acknowledgement frame for all STAs. For example, a 1-bit flag is used, indicating 1 for indicating that one MBA frame needs to be sent for all STAs, that is, no further sub-band allocation is performed subsequently; and 0 is used to indicate that it is not necessary to send one MBA frame for all STAs. That is, it indicates that the subband allocation is further performed subsequently.
  • the AP may further include, in the trigger signaling, an indication indicating the transmission mode of the ACK/BA for each allocated subchannel, such as MBA, OFDMA ACK/ BA, MU MIMO ACK/BA, etc.; if it is indicated that an MBA frame needs to be sent for all STAs, the AP does not need to include an indication of a further ACK/BA transmission mode in the trigger signaling.
  • Step 202 After receiving the trigger frame, the STA sends uplink data on the corresponding subchannel according to the indication of the trigger signaling in the trigger frame.
  • step 202 if the trigger signaling in the trigger frame indicates that a certain STA transmits on a certain subchannel in a single user transmission manner, the STA sends uplink data in N spatial streams on the subchannel. , where N is included in the trigger signaling in the trigger frame. If the trigger signaling in the trigger frame indicates that a certain STA transmits in a multi-user MIMO transmission manner on a certain subchannel, each STA sends uplink data in a corresponding spatial stream on the subchannel, The location and number of corresponding spatial streams are included in the trigger signaling in the trigger frame.
  • Step 203 After receiving the uplink data sent by the multiple STAs, the AP sends the ACK/BA according to the indication of the ACK/BA type in the trigger signaling in step 201. Specifically, the AP sends a broadcast MBA frame to all users, or uses the downlink OFDMA to transmit OFDMA ACK/BA, MU MIMO ACK/BA and/or MBA of different sites on multiple subchannels.
  • the AP transmits on the entire channel.
  • the MBA frame either transmits an MBA frame on its primary channel or simultaneously transmits an MBA frame that replicates the primary channel on the secondary channel.
  • the AP sends a corresponding type of ACK/BA according to the indication of the trigger signaling on each subchannel, for example, MBA, OFDMA ACK/BA, MU MIMO ACK/BA, etc.
  • the foregoing MBA transmission method specifically refers to an acknowledgment frame for transmitting data for a plurality of stations on a certain subchannel, for example, using the structure shown in FIG. 2b.
  • the transmission mode of the above-mentioned OFDMA ACK/BA specifically refers to an acknowledgment frame for transmitting data for one station on a certain subchannel (for the case where single-user data is transmitted on the sub-channel), or, in a certain sub-channel An acknowledgment frame for transmitting data for a plurality of sites on a plurality of resource blocks (for the case where data of a plurality of users is transmitted on the subchannel).
  • the above MU MIMO ACK/BA refers to adopting MU on a certain subchannel.
  • the MIMO mode transmits a plurality of acknowledgment frames, and all spatial streams transmitted on the subchannels are allocated to different STAs in order to transmit respective acknowledgment frames for data of the respective STAs.
  • each subchannel of the reply confirmation frame may be the same subchannel as the uplink; or may be subchannel allocation according to some default rule, such as dividing the entire bandwidth into the acknowledgment information that needs to be replied.
  • the number of subchannels; the location of the subchannel in which the acknowledgment information for each STA or MU MIMO transmission user group is located may also be explicitly clarified.
  • the preferred embodiment 1 and the preferred embodiment 2 perform the reply of the acknowledgement frame (referred to as the downlink acknowledgement frame) for the uplink data.
  • the third embodiment of the present invention is mainly for the downlink data of the AP, and how to indicate the site to confirm the frame ( A reply that is subsequently referred to as an uplink acknowledgement frame.
  • the MME transmission method is not included for the reply or transmission mode of the uplink acknowledgement frame.
  • the acknowledgment of the uplink acknowledgment frame may be followed by the downlink data, or may be re-triggered by a separate trigger frame trigger frame, as shown in FIG. 8 , which is not limited in this embodiment of the present invention.
  • the method includes:
  • Step 301 The AP sends a trigger frame (for example, a downlink OFDMA data frame), and includes indication information of an ACK/BA transmission mode in the trigger frame.
  • the indication information may be located in a High Efficient Signal (HE-SIG) field of a physical layer preamble sequence of the data frame, or may be located in a MAC frame header portion of the data frame, such as an HE Control field. See Figure 9 and Figure 10, respectively.
  • the transmission mode of the ACK/BA includes OFDMA ACK/BA or MU MIMO ACK/BA.
  • Step 302 The STA receives the downlink OFDMA data frame, and sends a response type ACK/BA, such as OFDMA ACK/BA or MU MIMO ACK/BA, on each subchannel according to the indication information of the ACK/BA type.
  • a response type ACK/BA such as OFDMA ACK/BA or MU MIMO ACK/BA
  • Each of the subchannels may be a subchannel corresponding to the downlink (or the same); It may be a subchannel that performs subchannel allocation according to some default rule, such as dividing the entire bandwidth into subchannels of the number of acknowledgment information to be replied; and may also explicitly indicate each STA or MU MIMO transmission user group. Confirm the location of the subchannel where the information is located.
  • the uplink multi-user acknowledgment information is triggered by a separate trigger frame, and the indication information of the ACK/BA transmission mode may also be after the downlink data. Transfer in the Trigger frame.
  • the preferred embodiment 2 and the preferred embodiment 3 are indications of ACK/BA transmission mode for site-by-site or MU MIMO transmitted site groups, and in the preferred embodiment, ACK/ is performed for each zone.
  • An indication of the BA transmission method The entire bandwidth may be allocated into multiple regions according to an indication or according to some default rule, and each region corresponds to multiple sites, and the information is included in the resource indication information in the trigger frame.
  • the resource indication information in the trigger frame includes an indication of the station identifier and an indication of the resource block allocated to the station, such that the area to which the station belongs can be learned by triggering an indication of the resource block in the resource indication information in the frame.
  • the area where a site transmits data is the same as the area where the site transmits ACK/BA (ie, corresponds).
  • the entire bandwidth is divided into a plurality of parts according to a certain reservation pattern, and each part is called an area.
  • the entire bandwidth is 80MHz, and the average is divided into 4 parts, then a total of 4 areas are formed, each area is 20M; of course, other ways can be further divided, for example, according to one of the 20M areas according to the resource unit.
  • the entire bandwidth is 40M, and the entire bandwidth is divided into two areas. Then, the ACK/BA mode is indicated for each area.
  • the value indicated by the first area is 00, which is used to indicate the adoption.
  • the MBA mode responds with ACK/BA, and the second area indicates a value of 01, which is used to indicate that ACK/BA is replied in the manner of OFDMA.
  • the advantage of this method is that it further saves the overhead, and the number of bits indicated by the required acknowledgement frame is only 2*M, where M is the number of regions.
  • the region in this embodiment is different from the subchannel, the region is a fixed partition in the frequency domain; the subchannel is a time-frequency resource with respect to the station or the site group, and the allocation is A resource block for a station or group of stations is referred to as a subchannel, that is, the subchannel is changed according to the resource block allocation of the station or the site group.
  • the AP may carry a field in the beacon frame to perform a semi-static indication of the BA transmission mode for a period of time.
  • the AP or the STA After receiving the uplink or downlink OFDMA data frame, the AP or the STA performs the indication according to the BA transmission mode. Reply from ACK/BA. In this case, it changes once every longer period of time, for example, the duration of several beacon frame periods, the frequency of change is not so fast, and the efficiency is relatively high.
  • the AP can perform an indication of the ACK/BA transmission mode for the uplink OFDMA transmission and the downlink OFDMA transmission respectively in the beacon frame (Beacon).
  • ACK/BA transmission mode includes MBA, OFDMA ACK/BA or MU MIMO ACK/BA
  • BA transmission mode includes OFDMA ACK/BA or MU MIMO ACK/BA, and does not include MBA transmission mode.
  • the AP or the STA After receiving the uplink or downlink OFDMA data frame, the AP or the STA performs an ACK/BA reply according to the indication of the ACK/BA transmission mode.
  • the AP can determine different ACK/BA transmission methods according to different situations:
  • the channel quality is generally better.
  • the OFDMA ACK/BA transmission mode to make full use of the spatial gain transmission; when there are more edge sites, or need to take care of the edge site, you can use the OFDMA ACK/BA transmission method, using the resource block. The scheduling and power gain on the subchannel further enhances the reception robustness of the edge site.
  • a single site or a group of MU-MIMO user groups needs to be identified when transmitting multiple users by using OFDMA and MU-MIMO.
  • an association identifier (AID) or a partial association identifier (Partial AID, PAID) may be used for identification.
  • the PAID is a part of the bit information of the AID and the BSSID is calculated by an arithmetic operation, which is a use of fewer bit pairs.
  • the group identifier is used for identification.
  • the GID is used to identify a group of four stations participating in MU-MIMO transmission.
  • the indication of the site identification may be performed in the resource indication information of the multicast/broadcast frame (for example, the foregoing MBA), and the method includes:
  • Step 401 The sender site (such as an AP) sends a trigger frame, where the resource indication information of the trigger frame includes an indication of whether it is a multicast/broadcast frame, and: resource block information and phase of the bearer unicast frame.
  • the resource block information of the unicast frame and the identifier of the corresponding site are the same as those in the prior art, and are not described here.
  • the resource indication information may be located in an efficient signaling field or in a MAC frame portion of the trigger frame.
  • Step 402 The receiving station determines, according to the resource indication information of the trigger frame, whether there is a unicast frame sent to itself, or a multicast/broadcast frame, and receives a unicast frame on the corresponding resource, or a multicast/broadcast frame. .
  • Manner 1 In the resource indication information of the trigger frame, the identifier AID/PAID/GID of the station receiving the unicast frame and the information of the corresponding resource block are included; and the resource block and the specific element for carrying the multicast/broadcast frame are further included AID/PAID/GID information (special identification information of the data structure of the identifier of the station receiving the unicast frame), the specific identifier is used to indicate that the frame is a multicast/broadcast frame, such as all 0s or all 1s A specific identifier, not a site/user group that receives a unicast frame.
  • the receiver site receives the trigger frame, and after parsing the AID/PAID/GID, the unicast frame is parsed from the corresponding resource block.
  • any station reads the specific identifier in the resource indication information, it knows that the frame is a multicast/broadcast frame, continues to read the MAC frame of the data part of the corresponding resource block, and then further reads in the MAC frame.
  • the frame MAC address and/or the number of sites receiving the multicast/broadcast frame, and the AID identity of each site to further clarify whether or not they need to receive the multicast/broadcast frame.
  • the indication that can be directly indicated is a unicast frame or a multicast/broadcast frame, that is, a resource indication of the unicast frame or the multicast/broadcast frame is distinguished, for example, if the resource indication can be utilized
  • the 1-bit indicator bit is explicitly identified; the implicit indication can be a unicast frame or a multicast/broadcast frame: for example, the number of unicast frames and the number of multicast/broadcast frames can be separately indicated first, and then By indicating the unicast frame and then indicating the multicast/broadcast frame, there is no need to explicitly distinguish between unicast or multicast/broadcast, and the effect of differentiation is also achieved.
  • the receiver After receiving the trigger frame, the receiver first parses whether the resource indication information is a unicast frame or a multicast/broadcast indication by whether it is a multicast/broadcast indication; when the resource indication information is parsed
  • the group identifier of the MU-MIMO user group may be utilized, or a multicast group identifier of more bits may be used to identify multiple frames receiving the multicast frame.
  • the site is not confused with the site identity of the unicast frame.
  • a site When a site reads the ID of the multicast group to which it belongs in the trigger frame, it reads the data in the corresponding resource block; if the group ID in the trigger frame read by the site is the multicast group that is not in the multicast group , then they will not read the data on the corresponding resource block, thus achieving the effect of saving power.
  • a special multicast group identifier can be used for indication.
  • the resource indication information of the trigger frame includes an indication of whether the multicast/broadcast is included, and the resource block information of the bearer unicast frame and the identifier of the corresponding site, and , resource block information carrying multicast/broadcast frames.
  • the information including the AID/PAID/GID and its corresponding resource block (the information of the resource block may be explicit or implicit); however, for multicast/broadcast
  • the frame does not perform the identification of the site, but only the indication of the resource block, thereby saving communication resources to a certain extent.
  • the receiver After receiving the trigger frame, the receiver first parses whether the resource indication information is a unicast frame or a multicast/broadcast frame according to whether it is a multicast/broadcast indication; when the resource indication information is parsed For a unicast frame, after the AID/PAID/GID is continuously parsed, the unicast frame is parsed from the corresponding resource block; when the resource indication information that the resource indication information is a multicast/broadcast frame is parsed, the receiver will unify the MAC address.
  • Reading the relevant information in the frame further reading the frame MAC address of the data portion of the corresponding location mapped by the resource indication information (ie, resource block information) in the MAC frame and/or the number of sites receiving the multicast/broadcast frame, and each The AID identifier of each site to further clarify whether the resource indication information contains each site's own identity.
  • the resource indication information ie, resource block information
  • a resource block indicating a unicast frame or a multicast/broadcast frame but an indication that can be displayed, or an implicit indication, such as ACK/BA in the preferred embodiment 1, is required.
  • Location information can be thought of as an implicit indication (same as the subchannel from which the data is sent).
  • Unicast (English: unicast) refers to a transmission method in which a packet is transmitted in a computer network and the destination address is a single target. It is the most widely used network application today, and most commonly used network protocols or services use unicast transmission, such as all TCP-based protocols. In addition to unicast transmission methods, there are also broadcasts and multicasts.
  • the destination address of the broadcast is the overall target in the network
  • the destination address of the multicast is a group of targets, and the members joining the group are the destinations of the packet. This is not the same as the data transmitted by the previous single user and the data transmitted by the multi-user.
  • an acknowledgement frame transmission processing device for use in a wireless local area network employing OFDMA technology, including a processing unit for generating or processing (transmitting or receiving) data for transmission. Whether to transmit a successful confirmation frame.
  • the processing unit may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor. It is easy to understand that the processing device of the foregoing resource indication may be located at an access point when specifically transmitting the frame including the resource indication field, and may be located at the site when specifically receiving the frame including the resource indication field.
  • FIG. 12 is a block diagram of an access point in accordance with another embodiment of the present invention.
  • the access point of Figure 12 includes an interface 101, a processing unit 102, and a memory 103.
  • Processing unit 102 controls the operation of access point 100.
  • the memory 103 can include read only memory and random access memory and provides instructions to the processing unit 102 and data.
  • a portion of the memory 103 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of access point 100 are coupled together by a bus system 109, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as the bus system 109 in the figure.
  • the method for transmitting the foregoing various frames disclosed in the foregoing embodiments of the present invention may be applied to the processing unit 102 or implemented by the processing unit 102.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processing unit 102 or an instruction in the form of software.
  • the processing unit 102 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 103, and the processing unit 102 reads the information in the memory 103 and completes the steps of the above method in combination with its hardware.
  • FIG. 13 is a block diagram of a station in accordance with another embodiment of the present invention.
  • the access point of FIG. 13 includes an interface 111, a processing unit 112, and a memory 113.
  • Processing unit 112 controls the operation of site 110.
  • Memory 113 can include read only memory and random access memory and provides instructions and data to processing unit 112.
  • a portion of the memory 113 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of the site 110 are coupled together by a bus system 119, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 119 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processing unit 112 or an instruction in a form of software.
  • deal with Unit 112 may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 113, and the processing unit 112 reads the information in the memory 113 and performs the steps of the above method in combination with its hardware.
  • the memory 113 stores an instruction that causes the processing unit 112 to perform resource status information indicating a busy state of a sub-resource of a channel resource for which the access point performs data transmission with the station; sending to the access point Resource status information, so that the access point performs resource allocation according to resource status information.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and root According to A, B can be determined.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software. The form of the unit is implemented.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital STA line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线局域网中的确认帧传输方法及通信装置,接入点AP发送触发帧,所述触发帧用于触发多个STA在若干子信道上进行单用户或者多用户的数据传输;所述AP在接收多个STA发送的所述单用户或者多用户的数据之后,针对每一个子信道的数据,在相同的子信道上进行确认帧的回复:如果所述子信道上发送的是单用户传输的数据,则在相同的子信道上用正交频分多址确认帧OFDMAACK/BA的传输方式回复确认帧;如果所述子信道上发送的是多用户MIMO传输的数据,则在相同的子信道上采用多用户块确认帧MBA的传输方式回复确认帧。上述方法更高效率的传输确认帧,节约了通信资源。

Description

无线局域网中的确认帧传输方法及通信装置 技术领域
本发明涉及无线通信技术领域,并且更具体地,涉及传输确认帧的方法和通信装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长。无线局域网(WLAN,Wireless Local Area Network)凭借高速率和低成本方面的优势,成为主流的移动宽带接入技术之一。本发明各实施方式涉及在无线局域网中应用如下技术:
正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)传输技术
为了大幅提升WLAN系统的业务传输速率,下一代电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)802.11ax标准将会在现有正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术的基础上,进一步采用OFDMA技术。OFDMA技术将空口无线信道时频资源划分成多个正交的时频资源块(RB,Resource Block),RB之间在时间上可以是共享的,而在频域上是正交的。
OFDMA技术支持多个节点同时发送和接收数据。当接入点需要与站点传输数据时,基于RB或RB组进行资源分配;在同一时刻为不同的站点(STA,Station)分配不同的信道资源,使多个STA高效地接入信道,提升信道利用率。
MU-MIMO(Multiple User-MIMO,多用户输入输出)传输技术
众所周知,MIMO(Multiple Input Multiple Output,多输入多输出)技术能够提供发射(接收)波束成形从而有效地提高发射(接收)功率,有效 地提高了通信系统的可靠性;另一方面,MIMO技术能够产生额外的空间自由度从而成倍地提高系统的吞吐量,有效地提高了通信系统的速率。正因为MIMO技术的这些优点,MIMO技术已经成为802.11n和802.11ac标准协议的关键技术之一。
另外,由于采用了波束成形技术,发送端可以通过多个空间流向多个用户进行数据发送,也可以接收来自多个用户在不同空间流上发送的数据,从而实现多用户数据的并行传输,提高数据传输的并发性,称为MU-MIMO传输。
OFDMA与MU-MIMO混合传输技术
结合OFDMA与MU-MIMO的传输方式,即在OFDMA划分的不同子信道或者资源块上,进一步利用多个空间流进行多用户数据的传输,进一步增加同时传输的用户的数量。
ACK(Acknowledge,确认)帧及BA(Block ACK,块确认)帧回复技术
802.11标准中包括两种确认帧,一种是ACK帧,针对非聚合帧的数据进行确认;另外一种是BA帧,针对聚合帧的数据进行确认,所以称作块确认。参考图1a、图1b为确认帧的帧结构的简单示意图,其中图1a为ACK的帧结构,图1b为BA的帧结构。
对于多用户传输(包括OFDMA方式,MU-MIMO方式或者OFDMA与MU-MIMO混合传输方式),需要对多个用户发送ACK帧或BA帧进行数据传输的确认。如何高效、可靠地向多个STA发送ACK或BA,是本发明方案需要解决的问题。
发明内容
本发明实施例提供了一种传输信息的方法、接入点和站点,能够高效地向多个STA发送ACK或BA。
一方面,提供了一种无线局域网中的确认帧传输方法,接入点AP发送触发帧,所述触发帧用于触发多个STA在若干子信道上进行单用户或者多用户的数据传输;所述AP在接收多个STA发送的所述单用户或者多用户的数据之后,针对每一个子信道的数据,在相同的子信道上进行确认帧的回复:如果所述子信道上发送的是单用户传输的数据,则在相同的子信道上用正交频分多址确认帧OFDMA ACK/BA的传输方式回复确认帧;如果所述子信道上发送的是多用户MIMO传输的数据,则在相同的子信道上采用多用户块确认帧MBA的传输方式回复确认帧。
相应的另一方面,提供了无线局域网中的站点STA侧的方法,包括:无线局域网中的站点STA接收接入点AP发送的触发帧,所述触发帧用于触发多个STA在若干子信道上进行上行的单用户或者多用户的数据传输;
所述STA根据所述触发帧发送所述上行的单用户或者多用户的数据;
所述STA接收所述AP在相同的子信道上回复的确认帧:其中,如果所述子信道上发送的是单用户传输的数据,则所述确认帧是在相同的子信道上用正交频分多址确认帧OFDMA ACK/BA的传输方式回复的;如果所述子信道上发送的是多用户MIMO传输的数据,则所述确认帧是在相同的子信道上采用多用户块确认帧MBA的传输方式回复的。
在又一方面,提供了一种无线局域网中的确认帧传输方法,无线局域网中的接入点AP发送:针对上行数据的下行确认帧的传输方式的指示,或者,针对下行数据的上行确认帧的传输方式的指示;在上下行数据传输过程中包含:所述AP根据所述指示的下行确认帧的传输方式发送所述下行确认帧,或者,接收所述无线局域网中的站点STA根据所述指示的上行确认帧的传输方式发送的上行确认帧。
相应的,提供了站点STA侧的方法,一种无线局域网中的确认帧传输方法,无线局域网中的站点STA接收接入点AP发送的针对上行数据的下行确认帧的传输方式的指示,或者,针对下行数据的上行确认帧的传输方式的指 示;在上下行数据传输过程中包含:所述STA接收所述AP根据所述指示的下行确认帧的传输方式发送的所述下行确认帧,或者,所述STA根据所述指示的上行确认帧的传输方式发送上行确认帧。
类似的,在其它方面提供了可用于执行前述方法的通信装置。
上述各个方面,采用更高的效率传输确认帧,整体上节约了通信资源。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a-1b是现有确认帧结构的示意图。
图1c是本发明实施例可应用的流程示意图。
图2a为现有的一种Multi-TID BA帧结构的示意图。
图2b是相比较的实施方式一的Multi-user BA帧结构的示意图。
图3-4是一种实施例的确认帧的发送方法的示意图。
图5本发明实施方式中的三种在OFDMA子信道上传输确认帧ACK/BA的方法示意图。
图6是本发明一实施例的传输确认帧的方法的示意图。
图7是本发明一实施例的传输确认帧的方法的流程示意图。
图8是本发明另一实施例的传输确认帧的方法的示意图。
图9-10分别是本发明一个实施例的确认帧的结构的示意图。
图11是本发明另一实施例的传输确认帧的方法的示意图。
图12是本发明一实施例的站点的示意图。
图13是本发明一实施例的接入点的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
接入点(AP,Access Point),也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。
站点,还可以称为用户,可以是无线传感器、无线通信终端或移动终端,如支持WiFi通讯功能的移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是支持WiFi通讯功能的便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。
图1c为一个本发明实施方式应用的WLAN系统的简单示意图。图1c的系统包括一个或者多个接入点AP101和一个或者多个站点STA102。接入点101和站点102之间采用OFDMA技术进行无线通信,其中接入点101对站点102发送的数据帧需要进行确认帧的回复。
为了使本发明实施方式清楚,现介绍本发明实施方式涉及的几个重要概念。
Multi-TID BA帧结构
图2a为现有的一种Multi-TID BA帧结构的简单示意图。Multi-TID BA帧结构为针对多个通信类别的数据同时进行块确认。其中TID全称为Traffic Identifier,即通信标识符的意思。针对不同的优先级的服务质量,802.11e标准中定义了4中接入类别,对应4种优先级的通信类别(Traffic category,TC),Multi-TID BA帧针对一个站点的多个通信类别的数据同时进行块确认。
相比较的实施方式一
基于图2a所示的Multi-TID BA的帧的字段进行修改,AP可以发送一个多用户BA帧(Multi-user BA,后续简称MBA)来向多个STA发送确认或块确认信息,其帧结构或者MPDU(Media Access Control Protocol Data Unit,媒体接入控制协议数据单元帧)结构如图2b所示。其BA Information字段是多个STA的块确认信息的级联,STA的标识(AID)置于图2a中的每TID信息(Per TID Info)的保留位(B0-B10)中,用来标识需要接收确认信息的站点;ACK/BA的指示置于Per TID Info的保留位(B11)中,用于指示发送给该STA的确认信息是ACK还是BA。
MBA(即Multi-user BA)与ACK/BA/Multi-TID BA的主要区别是在一个MAC(Media Access Control,媒体接入控制)帧中完成了对多个STA的ACK/BA确认信息的传输。MBA帧利用广播方式进行传输,接收地址(RA)会设置为广播地址,当每个STA读取MBA帧的时候,通过进一步搜索AID来识别接入点是否对其发送了确认信息,并进一步通过ACK/BA,来识别后续是确认还是块确认,从而进一步读取后续不同的确认信息。
但是这个技术方案中每个STA都要把所有STA的确认信息接收下来才能获得其自身的确认信息,即使其他站点的确认信息中的1个比特传输错误,它自身的确认信息也发生了错误,增大了接收端的误帧率;
当MBA帧利用传统的分组结构(如802.11a)进行传输时,必须采用20M带宽的传输模式,当需要回复的数据的带宽比较大的时,则需要进行每个20M的复制,会造成MBA传输效率成倍的下降。举例来讲,如整个数据的传输带宽为160M,则M-BA需要复制8倍,传输效率仅为1/8。也就是说上述回复确认帧的方案的效果不是很好。
相比较的实施方式二
在实施方式二中,AP可以以OFDMA的方式来向多个STA发送ACK/BA,即AP利用OFDMA形式,在其不同子信道上发送给不同STA的ACK/BA。(单独的ACK/BA一般指得是MAC帧,而OFDMA ACK/BA指得是物理层上用OFDMA方式传输的ACK/BA帧)。不同的ACK/BA可以在与数据传输所占用的子信道对应的子信道上进行传输,也可以顺序地占用相同大小的子信道,分别如图3和图4所示。其中,图3所示的方案完全采用OFDMA ACK/BA发送方式,即,所有站点都采用ACK/BA与数据在对应的子信道上发送的方式。所谓对应的子信道,指的是两个子信道在频域上的位置和子带带宽完全相同。由于不同的ACK/BA占用的子信道大小不同,但需要在时间上对齐,因此在有些子带的ACK/BA后面会出现填充(padding)比特。图4中,也是完全采用(所有站点都采用)OFDMA ACK/BA发送方式,其中ACK/BA顺序地占用相同大小的子信道。
前述相比较的实施方式二不利用MU MIMO方式进行ACK/BA的传输,也不依赖MBA的帧格式,完全依赖于OFDMA方式进行ACK/BA的传输,每个子信道上只传输一个站点的确认信息。对于ACK/BA与数据在对应的子信道上发送的情况,对进行MU MIMO的传输的多个站点的数据,需要利用对应子信道内进一步细分的多个资源块,进行OFDMA的方式回复。当其占用的子信道不足以发送多个用户的OFDMA ACK/BA时,OFDMA ACK/BA无法做到与数据传输完全对应。举例来讲,如图3所示,MU MIMO的数据占用两个最小资源块,而利用空间流向三个站点发送数据,则3个站点无法利用两个最小资源块进行OFDMA ACK/BA的回复。此外,MU MIMO用户整个子带的信道质量(信干噪比等)由于资源调度会相对较好,但是其中每个最小资源块的信道质量可能参差不齐,有些资源块可能会出现深衰(deep fading),从而造成某些站点的ACK/BA传输失败。例如,RB1(Resource Block 1,资源块1)和RB2整体的信道质量可能比较好,但是对于信道的频率选择性比较大的情况,很可能RB1部分会出现深衰,从而造成STA2的信道质量较差,从而向STA2传输的 ACK/BA会失败。
对于OFDMA ACK/BA顺序地占用相同大小的子信道的情况,OFDMA ACK/BA所占用的子信道可能无法与数据传输的子信道对应,无法充分利用资源调度的增益,而使得每个子带上的ACK/BA传输的信道质量较差。
结合各种回复确认帧的方法,本发明特别针对无线局域网中多用户OFDMA传输或MU MIMO传输或OFDMA与MU MIMO混合传输,采用多种确认帧ACK/BA的传输方式,该方法高效并可靠,改善了前述相比较的实施方式中的缺点。
在给出具体的实施例之前,为了使后面的具体实施方式简洁清楚,参考图5,简单示出了本发明实施方式中的三种在OFDMA子信道上回复(传输)确认帧ACK/BA的方法:
一、正交频分多址确认帧(简称OFDMA ACK/BA)传输方式
将整个信道划分为若干个子信道,在某一子信道上传输一个确认帧,该确认帧只携带一个站点的确认信息(即包含针对一个用户的数据的确认信息:成功接收或者未成功接收)。如图5中STA6的情形。或者,可以针对某个多用户数据传输的子信道,进一步细分资源块,在每个资源块分别传输针对一个站点的数据的确认帧,以进行多个站点的ACK/BA帧的回复,如图5中STA4和STA5的情形。
当子信道个数为1时,OFDMA ACK/BA退化为单用户的ACK/BA,一个分组结构中只携带一个用户的确认信息。不过,本发明后续实施方式讨论的是同时给多用户传输确认信息的方案,单用户的ACK/BA不在本发明方案的讨论当中。
二、多输入多输出确认帧(简称MU MIMO ACK/BA)传输方式
将整个信道划分为若干个子信道,在某一子信道上采用MU MIMO的方式 传输多个ACK/BA帧:该一子信道上的所有空间流被分配给不同的STA,以便于传输各个STA各自的ACK/BA确认信息。如图5中STA1,STA2和STA3的情形。
三、Multi-user BA(简称MBA)传输方式
将整个信道划分为若干个子信道,在某一子信道上采用图2b所示的MBA的帧格式进行传输:在该子信道上利用一个帧为多个用户提供ACK/BA确认信息(即包含针对所述多用户MIMO传输的数据的确认信息,例如成功或者不成功)。也可以通过不传该用户的确认信息来表示传输不成功。例如,如图5,该子信道上有3个用户传了数据,STA7,STA8和STA9,但是若AP只接收对了STA7和STA8的数据,STA9的数据接受失败,该回复的MBA中将会只包括针对2个用户的确认信息(STA7,STA8),说明另外一个用户(STA9)的信息传输不成功。
较优的实施方式一
较优的,针对上行OFDMA传输,若子信道上传输的是单个用户的数据,则在对应的子信道上回复单用户的OFDMA ACK/BA;若子信道上传输的是多个用户以MU MIMO方式发送的数据,则在相同的子信道上回复MBA。其中相同的子信道,指的是传输数据的子信道和传输针对该数据的确认帧的子信道在频域上的位置和子带带宽上完全相同。最后对针对不同子信道上的单用户数据回复的OFDMA ACK/BA及多用户数据回复的MBA采用OFDMA的方式进行发送。具体流程包括:
步骤101、AP发送触发帧,触发多个STA在一个或者多个子信道上进行上行数据传输。例如,触发多个STA以OFDMA方式,MU MIMO方式或OFDMA与MU MIMO混合传输方式进行单用户或者多用户的数据传输。
该触发帧(图6中所示的Trigger Frame)可以是一个只包含触发信令的控制帧,也可以是一个携带触发信令的下行数据帧,本发明对其发送形 式不做限制,统一称为触发帧。前述触发信令仅从功能的角度进行说明,例如是触发帧中的资源指示信息。
本方法应用的网络系统中,整个信道划分为若干个子信道,步骤101中的触发帧包含触发信令,所述触发信令包含为每个子信道指定使用该子信道的上行数据传输为单用户传输或者多用户MIMO传输,以及使用该子信道的一个或多个STA。
具体的,单用户/多用户的指令信息可以包括以下的任意一种或多种,本发明实施方式对其指示形式不做限制:
SU/MU(单用户Single user/多用户Multiple user)指示:对每个单用户/多用户组进行资源指示之前,先利用1比特指示在该子信道上传输的是单用户还是多用户组。
资源块用户数指示:指示该资源块或子信道上传输的用户数的个数。若为1,则为单用户,若大于1,则为多用户组。
空间流的分配指示:固定提供4个站点的流数指示信息,当只有1个站点的流数不为0时,则为单用户;若超过1个站点的流数不为0时,则为多用户组。
步骤102、STA在收到前述触发帧后,根据所述触发帧中的触发信令的指示,在相应的子信道上(即该一个或者多个子信道中的一个子信道上)发送上行数据。
在步骤102中,如图6中的STA1、STA4,若触发帧中的触发信令指示某个STA在某个子信道上以单用户传输的方式进行发送,则所述STA在所述子信道上的N个空间流中发送上行数据,其中N包含在该触发帧中的触发信令中。如图6中的STA2、STA3,若触发帧中的触发信令指示某个STA在某个子信道上以多用户MIMO的传输方式进行数据发送,则所述STA在所述子信道上的相应空间流中发送上行数据,所述相应空间流的位置和个数 包含在该触发帧的信令中。
步骤103、AP在收到多个STA发送的上行数据之后,针对每一个子信道的数据传输,分别在与所述每一个子信道相同的子信道上采用相应的ACK/BA的传输方式回复确认帧。具体的,例如,根据AP保存的(前述触发帧中信令指示中指示的)子信道上的发送上行数据是单用户传输的数据还是多用户传输的数据,相应的进行OFDMA ACK/BA,或者,MBA的回复。
更具体地说,对于某一个子信道,若触发帧中的触发信令指示该子信道上发送的是单用户传输的数据,则在与该子信道相同的子信道上用OFDMA ACK/BA的传输方式进行回复;若触发帧中信令指示该子信道上发送的是多用户MIMO传输的数据,则在与该子信道相同的子信道上采用MBA的传输方式进行回复。其中,相同的子信道,指的是前述两个子信道(传输数据的子信道和回复针对该数据的确认帧的信道)在频域上的位置和子带带宽完全相同。另外,上述的方法过程中AP利用下行OFDMA的方式对多个子信道上的不同站点的OFDMA ACK/BA和/或MBA进行发送。
更具体的,上述针对单用户传输的数据的OFDMA ACK/BA的传输方式具体指在所述子信道上传输针对一个站点的数据的确认帧,所述针对多用户传输的数据的MBA的传输方式,具体指在所述子信道上传输针对多个站点的数据的确认帧。
本领域技术人员可以看出,上述步骤103中AP针对某一个子信道上的用户数(SU or MU MIMO)来决策发送ACK/BA的类型。相对于其他的一些可能的实施方式,本实施例中确认帧的传输方式不仅考虑了发送数据时是否采用了MU MIMO的方式,并且也区分了子信道。例如,在其它的一些可能的实施方式中,仅仅是统计某一个区域(例如整个带宽上的,或者每个20M上)的用户数,然后选择ACK/BA的传输方式,其不会不考虑发送数据时是否采用了MU MIMO的方式,并且,关于确认帧的传输方式的决策也没有区分子信道。
在定义最小资源块单元(resource unit)之后,每个用户/MU MIMO用户组可以任意占据若干个最小资源块单元,则该用户/用户组所占据的资源被称为一个子信道。例如最小资源块单元为26个子载波,则每个子信道可以包括1个最小资源块单元,即26个子载波;或包括2个最小资源块单元,即52个子载波等。当然子信道也包括20M或者20M的倍数。而20M的带宽则是从802.11标准制定以来的最小带宽,802.11n引入了40M带宽,802.11ac引入了80M带宽和160M带宽,与每个站点占据的子信道的带宽无关。
综上所述,本实施方式中,因为针对传输数据的每个子信道,确认采用什么样的确认帧传输方式,所以在更准确的粒度上利用了上下行信道的互易性,使得确认帧的传输性能更高。另外,对于子信道上的MU MIMO的数据传输,采用MBA的传输方式(对于子信道上的其他多用户数据传输方式不采用MBA的传输方式),可以有效地避免子信道的带宽不足以发送多个用户的OFDMA BA的问题。
本实施方式利用了整个子信道,提高了调度增益。并且,针对每个子信道上传输MBA,在利用了调度增益的同时,不会包含很多的用户,其他用户确认信息对本STA确认信息的影响也会减少。
本实施方式中,虽然根据实际的情况,可能存在多种确认帧的传输方式,如OFDMA方式回ACK/BA,MU MIMO方式回ACK/BA,或者MBA方式回ACK/BA;但是本较优实施方式中,不需要开销指示确认帧的传输方式。较好的节约了通信资源。
此处需要说明,各实施方式中,对于具体回复的是ACK还是BA,可以在MAC帧内通过MAC帧的类型进行识别,也可以通过需要应答的是聚合帧还是非聚合帧进行选取或默认选取,在此不赘述。即本发明实施方式主要针对ACK/BA的传输方式进行讨论,如OFDMA方式,MU MIMO方式还是广播 的MBA方式。对于发送的具体是ACK还是BA,或者是其他类型的确认帧,本发明各实施方式不做限制。此外,本发明个实施方式中,ACK或者BA可以看作是一种用户数为1的广义的MBA。
较优实施方式二
前文提到,由于存在多种ACK/BA的传输方式(传输方式),包括MBA方式,OFDMA ACK/BA方式,MU MIMO ACK/BA方式,因此本较优实施例二不同于较优实施例一,其中包括ACK/BA类型的指示。具体地说,AP可以在触发帧中针对整个信道上的多用户传输或进一步针对单个子信道上的传输指示对应的ACK/BA的传输方式。
参考图7,该方法具体流程为:
步骤201、AP发送触发帧,触发多个STA以OFDMA方式或MU MIMO方式或OFDMA与MU MIMO混合传输方式进行上行数据传输。
步骤201中的触发帧包含触发信令,所述触发信令将整个信道划分为若干个子信道,并为每个子信道指定使用该子信道的上行数据传输为单用户传输或多用户MIMO传输,以及使用该子信道的一个或多个STA。
一个具体例子中,AP在触发信令中指示是否发送一个MBA帧来传输针对所有STA的确认帧。例如,使用1比特的标识位,指示1,用于指示需要为所有STA发送一个MBA帧,即后续不进行进一步的子带分配;指示0,用于指示不需要为所有STA发送一个MBA帧,即指示后续进一步地进行子带分配。若指示不需要为所有STA发送一个MBA帧,则进一步地,AP在触发信令中,还可以包含针对每一个分配的子信道指示其ACK/BA的传输方式的指示,如MBA、OFDMA ACK/BA、MU MIMO ACK/BA等;若指示需要为所有STA发送一个MBA帧,则无需AP在触发信令中包含进一步的ACK/BA的传输方式的指示。
步骤202、STA在收到前述触发帧后,根据所述触发帧中的触发信令的指示,在相应的子信道上发送上行数据。
在步骤202中,若触发帧中的触发信令指示某个STA在某个子信道上以单用户传输的方式进行发送,则所述STA在所述子信道上的N个空间流中发送上行数据,其中N包含在该触发帧中的触发信令中。若触发帧中的触发信令指示某个STA在某个子信道上以多用户MIMO的传输方式进行发送,则所述每个STA在所述子信道上的相应空间流中发送上行数据,所述相应空间流的位置和个数包含在该触发帧中的触发信令中。
步骤203、AP在收到多个STA发送的上行数据之后,按照步骤201的触发信令中对于ACK/BA类型的指示发送ACK/BA。具体的,AP对所有用户发送一个广播的MBA帧,或者利用下行OFDMA的方式对多个子信道上的不同站点的OFDMA ACK/BA,MU MIMO ACK/BA和/或MBA进行发送。
具体地说,若触发信令指示AP将发送一个MBA帧来传输所有STA的确认信息(即由确认帧承载的关于确认数据是否成功接收的信息,简称确认信息),则AP在整个信道上发送MBA帧,或者在其主信道上发送MBA帧,或者同时在次信道上发送复制主信道的MBA帧。若触发信令指示AP将不会发送一个MBA帧来传输所有STA的确认信息,则AP在每个子信道上按照触发信令的指示发送相应类型的ACK/BA,例如MBA、OFDMA ACK/BA、MU MIMO ACK/BA等。
更具体的,上述MBA的传输方式,具体指在某一子信道上传输针对多个站点的数据的确认帧,例如采用图2b所示的结构。上述OFDMA ACK/BA的传输方式具体指在某一子信道上传输针对一个站点的数据的确认帧(针对所述子信道上传输的是单用户的数据的情况),或者,在某一子信道上的多个资源块上分别传输针对多个站点的数据的确认帧(针对所述子信道上传输的是多用户的数据的情况)。上述MU MIMO ACK/BA是指在某一子信道上采用MU  MIMO的方式传输多个确认帧,所述子信道上传输的所有空间流被分配给不同的STA,以便于传输针对各个STA的数据的各自的确认帧。
在本实施方式中,回复确认帧的每个子信道可以为与上行相同的子信道;也可以为按照某种缺省的规则进行子信道分配,如将整个带宽平均分成需要回复的确认信息的个数的子信道;还可以重新明确指示每个STA或者MU MIMO传输用户组的确认信息所在子信道的位置。
较优的实施方式三
较优的实施例一和较优的实施例二针对上行的数据进行确认帧(称为下行确认帧)的回复,本发明实施例三主要是针对AP的下行数据,如何指示站点进行确认帧(后续称为上行确认帧)的回复。
由于上行传输无法采用广播的方式,因此对于上行确认帧的回复或者传输方式,不包括MBA的传输方式。其中上行确认帧的回复可以紧跟下行数据,也可以通过单独的触发帧trigger帧重新触发,分别如图8所示,本发明实施方式对此不作限制。
具体的,参考图8的a部分,其方法包括:
步骤301、AP发送触发帧(例如下行OFDMA数据帧),并在所述触发帧中包含ACK/BA传输方式的指示信息。所述指示信息可以位于所述数据帧的物理层前导序列的高效信令(High Efficient Signal,HE-SIG)字段,也可以位于所述数据帧的MAC帧帧头部分,如HE Control field中,分别如图9和图10所示。所述ACK/BA的传输方式包括OFDMA ACK/BA或者MU MIMO ACK/BA。
步骤302、STA接收下行OFDMA数据帧,根据ACK/BA的类型的指示信息,在每个子信道上发送响应类型的ACK/BA,如OFDMA ACK/BA或者MU MIMO ACK/BA。
其中每个子信道可以为与下行相对应(或者称为相同)的子信道;也 可以为按照某种缺省的规则进行子信道分配的子信道,如将整个带宽平均分成需要回复的确认信息的个数的子信道;还可以重新明确指示每个STA或者MU MIMO传输用户组的确认信息所在子信道的位置。
也可以如图8的b部分所示,在进行下行数据传输后,再通过单独的触发帧trigger frame触发上行多用户确认信息的传输,ACK/BA传输方式的指示信息也可以在下行数据后的Trigger frame中进行传输。
较优的实施方式四
较优的实施例二和较优实施例三为针对逐个站点或者MU MIMO传输的站点组进行ACK/BA传输方式的指示,而在本较优实施方式中针对每个区域(zone)进行ACK/BA传输方式的指示。可以按照指示或者按照某种缺省规则将整个带宽分配成多个区域,每个区域对应多个站点,这些信息包含在触发帧中的资源指示信息中。这样,触发帧中的资源指示信息包含站点标识的指示和分配给该站点的资源块的指示,这样,站点所属区域可以通过触发帧中的资源指示信息中的资源块的指示得知。某个站点传输数据时所在的区域,与站点传输ACK/BA时所在的区域相同(即对应)。
这里,将整个带宽按照某种预订模式分成多个部分,则每个部分叫做一个区域。举例来讲,整个带宽为80MHz,平均分配成4个部分,则共形成4个区域,每个区域20M;当然也可以进行其他方式更细致的划分,比如再针对其中一个20M的区域按照资源单元(最小资源块)分成9个子部分,则可以将该20M内每3个资源单元当作一个区域,这样总共有3+1+1+1=6个区域。如图11所示,整个带宽为40M,将整个带宽分为2个区域,然后对每个区域进行ACK/BA方式传输方式的指示,如第一个区域指示的值为00,用于指示采用MBA的方式回复ACK/BA,第二个区域指示的值为01,用于指示采用OFDMA的方式回复ACK/BA。这种方式的好处就是进一步节省开销,需要的确认帧指示的比特数仅为2*M,其中M为区域的个数。
从这里可看到,本实施方式中的区域是与子信道是不一样的概念,区域是在频域上的固定的划分;子信道是相对于站点或者站点组为单位的时频资源,分配给一个站点或者站点组的资源块被称为一个子信道,即子信道是根据站点或者站点组的资源块分配的不同而变化的。
在接收侧,根据资源指示信息,解析到每个区域里有哪些资源块及相应的站点,然后针对每个区域确认回复ACK/BA的传输方式,最后将每个区域看作一个子信道,在每个区域上采用不同的传输方式发送ACK/BA。
另外,AP可以在信标帧(Beacon)中携带一个字段进行一段时间内BA传输方式的半静态指示,AP或STA在接收到上行或下行OFDMA数据帧后,按照所述BA传输方式的指示进行ACK/BA的回复。在这种情况下,每隔较长的一段时间变化一次,例如几个信标帧周期的时长,变化频率没有那么快,效率比较高。
另一种可能的方式是,AP可以在信标帧(Beacon)中针对上行OFDMA传输和下行OFDMA传输分别进行ACK/BA传输方式的指示。对于上行OFDMA传输,ACK/BA传输方式包括MBA、OFDMA ACK/BA或者MU MIMO ACK/BA等;对于下行OFDMA传输,BA传输方式包括OFDMA ACK/BA或者MU MIMO ACK/BA,不包含MBA传输方式。AP或STA在接收到上行或下行OFDMA数据帧后,按照所述ACK/BA传输方式的指示进行ACK/BA的回复。AP可以根据不同的情况确定不同的ACK/BA的传输方式:
举例来讲,可以区分不同的场景确定不同的ACK/BA的传输方式。当处于室内场景时,传统格式的分组结构工作效果会比较好,对于上行数据的回复采用为所有用户回复MBA的方式仍然可以达到很好的效果。而对于室外场景,信道的频选特性比较明显,可以充分利用OFDMA ACK/BA的传输方式进行回复。
或者,当大部分站点离接入点比较近的时候,信道质量一般较好,可 以采用MU MIMO ACK/BA的传输方式,以充分利用空间上的增益传输;而当边缘站点比较多,或者需要照顾边缘站点时,则可以采用OFDMA ACK/BA的传输方式,利用资源块上的调度以及子信道上的功率增益进一步增强边缘站点的接收鲁棒性。
其它实施方式
站点标识
现有技术中,在利用OFDMA和MU-MIMO对多用户进行传输时需要对单个站点或者一组MU-MIMO用户组进行标识。对于单个站点可以利用关联标识(Associate Identifier,AID)或者部分关联标识(Partial AID,PAID)进行标识,其中PAID为AID的部分比特信息与BSSID进行算数操作得出,是一种利用较少比特对站点进行标识的方法。对于一组MU-MIMO用户组,则利用组标识(Group Identifier,GID)进行标识,GID是为一组特定的参与MU-MIMO传输的4个站点进行标识。当站点或者用户组读到标识信息时,则得知接入点正在调度自己进行数据的上行发送或者下行接收。
具体实施过程中,在进行多播/广播帧(例如前述各实施方式中的MBA帧等)的发送时,需要进行站点标识。由于其MBA帧内包含多个用户的信息,因此无法利用AID/PAID进行标识;对于GID,由于其需要同时标识MU-MIMO组用户,容易造成混淆,因此需要特别的机制指示多播/广播帧所属的站点的标识,或者需要特殊的方式,使得站点能够高效的解析发给自己的多播/广播帧。
可以在多播/广播帧(例如前述MBA)的资源指示信息中进行站点标识的指示,该方法包括:
步骤401、发送方站点(如AP)发送触发帧,在触发帧的资源指示信息内,包含是否是多播/广播帧的指示,以及:承载单播帧的资源块信息及相 应的站点的标识,和,承载多播/广播帧的资源块信息及相应的站点的标识。其中,承载单播帧的资源块信息及相应的站点的标识与现有技术相同,后续不再赘述。该资源指示信息可以位于高效信令字段内,也可以位于触发帧的MAC帧部分。
步骤402、接收站点根据该触发帧的资源指示信息确定是否有发送给自己的单播帧,或者,多播/广播帧,并在相应的资源上接收单播帧,或者,多播/广播帧。
但是,上述是否是多播/广播帧的指示有多种实现的方式:
方式一、在触发帧的资源指示信息内,包含接收单播帧的站点的标识AID/PAID/GID及其相应的资源块的信息;还包含用于承载多播/广播帧的资源块和特定的AID/PAID/GID信息(特殊的采用接收单播帧的站点的标识的数据结构的标识信息),该特定的标识用于指示该帧是多播/广播帧,如全0或者全1的特定标识,而不特指某个接收单播帧的站点/用户组。
这样,在步骤402、接收方站点接收该触发帧,当解析到该AID/PAID/GID后,会从相应的资源块上解析单播帧。当任一站点在资源指示信息内读到该特定的标识时,知道该帧为多播/广播帧,继续去读取相应的资源块的数据部分的MAC帧,然后在MAC帧中进一步读取帧MAC地址和/或接收多播/广播帧的站点个数,及每个站点的AID标识来进一步明确自己是否需要接收该多播/广播帧。
方式二、在触发帧的资源指示信息内,可以直接明示的指示是单播帧还是多播/广播帧,即对单播帧或者多播/广播帧的资源指示进行区分,例如,如可以利用1比特指示位进行明示的标识;也可以隐示的指示是单播帧还是多播/广播帧:例如,可以先分别指示单播帧的个数和多播/广播帧的个数,然后先对单播帧进行指示,再对多播/广播帧进行指示,则这样无需对单播或者多播/广播进行明示的区分,也达到区分的效果。
在步骤402、接收方接收到该触发帧后,先通过是否是多播/广播的指示解析该资源指示信息是单播帧的,还是多播/广播的;当解析到该资源指示信息是多播/广播的资源指示信息时,对于多播/广播的站点标识,可以利用MU-MIMO用户组的组标识,或者采取更多比特位的多播组标识来标识接收该多播帧的多个站点,而不会与单播帧的站点标识造成混淆。当某一站点读到触发帧中的自己所属的多播组的标识时,则会在相应的资源块读取数据;若该站点读到的触发帧中的组标识为自己不在的多播组,则自己不会在相应的资源块上读取数据,从而达到节省功率的效果。对于广播标识,则可采取特殊的多播组标识进行指示。
方式三、在方式一和方式二的基础上,在触发帧的资源指示信息内,包含是否是多播/广播的指示,以及:承载单播帧的资源块信息及相应的站点的标识,和,承载多播/广播帧的资源块信息。换句话说,在单播帧的资源指示信息内,包含AID/PAID/GID及其相应的资源块的信息(资源块的信息可以是明示的或者隐式的);但是,对于多播/广播帧,不进行站点的标识,而只进行资源块的指示,从而在一定程度上节省通信资源。
在步骤402、接收方接收到该触发帧后,先通过是否是多播/广播的指示解析该资源指示信息是单播帧的,还是多播/广播帧的;当解析到该资源指示信息是单播帧的,继续解析AID/PAID/GID后,会从相应的资源块上解析单播帧;当解析到该资源指示信息是多播/广播帧的资源指示信息,接收方会统一到MAC帧中读取相关信息,在MAC帧中进一步读取资源指示信息(即资源块信息)映射的相应位置的数据部分的帧MAC地址和/或接收多播/广播帧的站点个数,及每个站点的AID标识来进一步明确该资源指示信息中是否包含每个站点自己的标识。
对于上面提到的每种情况,都需要指示单播帧或者多播/广播帧的资源块,但可以显示的指示,或者是隐式的指示,如较优实施例一中的ACK/BA的位置信息可以看作一种隐式指示(与发送数据的子信道相同)。
本领域技术人员可以知道,上述关于如何发送多播/广播帧的资源指示信息的方法,不仅可以结合到前面提到的发送确认帧MBA的实施方式中,还可以应用到所有其它需要发送多播/广播帧和单播帧的方案中,此处不再赘述。其中单播(英文:unicast)是指封包在计算机网络的传输中,目的地址为单一目标的一种传输方式。它是现今网络应用最为广泛,通常所使用的网络协议或服务大多采用单播传输,例如一切基于TCP的协议。除单播传输方式外,还有广播(broadcast)和多播(multicast)。它们与单播的区别是,广播的目的地址为网络中的全体目标,而多播的目的地址是一组目标,加入该组的成员均是封包的目的地。这里与前文单用户传输的数据和多用户传输的数据并不相同。
相应的,另一实施方式提供了一种确认帧传输处理装置(未示出),应用于采用OFDMA技术的无线局域网,包含处理单元,用于生成或者处理(发送或者接收)针对传输的数据的是否传输成功的确认帧。具体的传输方法,可以参考前述各实施方式中所述的方法,此处不再赘述。处理单元可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。容易理解的,上述资源指示的处理装置,当具体为发送该包含资源指示字段的帧时,可以位于接入点;当具体为接收该包含资源指示字段的帧时,可以位于站点。
图12是本发明另一实施例的接入点的框图。图12的接入点包括接口101、处理单元102和存储器103。处理单元102控制接入点100的操作。存储器103可以包括只读存储器和随机存取存储器,并向处理单元102提供指令和 数据。存储器103的一部分还可以包括非易失行随机存取存储器(NVRAM)。接入点100的各个组件通过总线系统109耦合在一起,其中总线系统109除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统109。
上述本发明实施例揭示的发送前述各种帧的方法可以应用于处理单元102中,或者由处理单元102实现。在实现过程中,上述方法的各步骤可以通过处理单元102中的硬件的集成逻辑电路或者软件形式的指令完成。处理单元102可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器103,处理单元102读取存储器103中的信息,结合其硬件完成上述方法的步骤。
图13是本发明另一实施例的站点的框图。图13的接入点包括接口111、处理单元112和存储器113。处理单元112控制站点110的操作。存储器113可以包括只读存储器和随机存取存储器,并向处理单元112提供指令和数据。存储器113的一部分还可以包括非易失行随机存取存储器(NVRAM)。站点110的各个组件通过总线系统119耦合在一起,其中总线系统119除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统119。
上述本发明实施例揭示的接收前述各种帧的方法可以应用于处理单元112中,或者由处理单元112实现。在实现过程中,上述方法的各步骤可以通过处理单元112中的硬件的集成逻辑电路或者软件形式的指令完成。处理 单元112可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器113,处理单元112读取存储器113中的信息,结合其硬件完成上述方法的步骤。
具体地,存储器113存储使得处理单元112执行如下操作的指令:确定资源状态信息,该资源状态信息指示接入点与站点进行数据传输的信道资源的子资源的忙闲状态;向接入点发送资源状态信息,以便于该接入点根据资源状态信息进行资源分配。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根 据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能 单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字STA线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (30)

  1. 一种无线局域网中的确认帧传输方法,其特征在于,
    接入点AP发送触发帧,所述触发帧用于触发多个STA在一个或者多个子信道上进行上行的单用户或者多用户的数据传输;
    所述AP在接收多个STA发送的所述单用户或者多用户的数据之后,针对每一个子信道上的数据,分别在与所述每一个子信道相同的子信道上回复确认帧:
    如果所述每一个子信道上发送的是单用户传输的数据,则用正交频分多址确认帧OFDMA ACK/BA的传输方式回复所述确认帧;如果所述每一个子信道上发送的是多用户MIMO传输的数据,则采用多用户块确认帧MBA的传输方式回复所述确认帧。
  2. 一种无线局域网中的确认帧传输方法,其特征在于,
    无线局域网中的站点STA接收接入点AP发送的触发帧,所述触发帧用于触发多个STA在一个或者多个子信道上进行上行的单用户或者多用户的数据传输;
    所述STA根据所述触发帧在所述一个或者多个子信道中的一个子信道上发送所述STA的上行数据;
    所述STA接收所述AP在与所述STA发送所述数据的所述子信道相同的子信道上回复的确认帧:其中,如果在所述STA发送所述数据的所述子信道上发送的是单用户传输的数据,则所述确认帧是用正交频分多址确认帧OFDMA ACK/BA的传输方式回复的;如果在所述STA发送所述数据的所述子信道上发送的是多用户MIMO传输的数据,则所述确认帧是采用多用户块确认帧MBA的传输方式回复的。
  3. 根据权利要求1或者2的方法,其特征在于,
    所述OFDMA ACK/BA的传输方式,具体指在所述子信道上传输针对一个站点的数据的确认帧;
    所述MBA的传输方式,具体指在所述子信道上传输针对多个站点的数据的确认帧。
  4. 根据权利要求1-3任一所述的方法,其特征在于,
    所述触发帧中包含:关于每一个子信道上是单用户传输数据,还是多用户MIMO传输数据的指示。
  5. 根据权利要求1-4任一所述的方法,其特征在于,
    当采用多用户块确认帧MBA的传输方式回复所述确认帧时,在所述触发帧内包含所述回复的确认帧是否是多播/广播帧的指示。
  6. 根据权利要求5所述的方法,其特征在于,
    所述是否是多播/广播帧的指示具体为:特定的站点标识AID/PAID/GID信息,专门的1比特位,或者,隐式的指示。
  7. 一种无线局域网中的确认帧传输方法,其特征在于,
    无线局域网中的接入点AP发送:针对上行数据的下行确认帧的传输方式的指示;所述AP根据所述指示的下行确认帧的传输方式发送所述下行确认帧;
    或者,
    无线局域网中的接入点AP发送针对下行数据的上行确认帧的传输方式的指示;所述AP接收所述无线局域网中的站点STA根据所述指示的上行确认帧的传输方式发送的上行确认帧。
  8. 一种无线局域网中的确认帧传输方法,其特征在于,
    无线局域网中的站点STA接收接入点AP发送的针对上行数据的下行确认帧的传输方式的指示,所述STA接收所述AP根据所述指示的下行确认帧的传输方式发送的所述下行确认帧;
    或者,
    无线局域网中的站点STA接收接入点AP发送的针对下行数据的上行确 认帧的传输方式的指示,所述STA根据所述指示的上行确认帧的传输方式发送所述上行确认帧。
  9. 根据权利要求7或者8的方法,其特征在于,所述方法还包括:
    所述针对上行数据的下行确认帧的传输方式的指示承载于所述AP发送的触发帧或者信标帧(Beacon)中;或者,
    所述针对下行数据的上行确认帧的传输方式的指示承载于所述AP发送的触发帧、下行数据帧、或者信标帧(Beacon)中。
  10. 根据权利要求7或者8的方法,其特征在于,所述方法还包括:
    所述针对下行数据的上行确认帧的传输方式的指示位于所述下行数据帧的物理层前导序列的高效信令(HE-SIG)字段,或者,位于所述下行数据帧的MAC帧帧头部分。
  11. 根据权利要求7-10任一所述的方法,其特征在于,
    所述针对上行数据的下行确认帧的传输方式的指示具体为:针对每一个子信道中的上行数据的下行确认帧的传输方式的指示;或者,所述针对下行数据的上行确认帧的传输方式的指示具体为:针对每一个子信道中的下行数据的上行确认帧的传输方式的指示;
    所述下行确认帧或者所述上行确认帧是在所述每一个子信道对应的子信道上发送或者接收的,
    所述每一个子信道对应的子信道具体为:与所述每个子信道相同的子信道,或者,按照缺省的规则重新对整个带宽进行子信道分配后的特定子信道,或者,由所述AP指示的每个STA或者多用户多输入多输出MU MIMO传输用户组的确认帧所在的子信道。
  12. 根据权利要求7-10任一所述的方法,其特征在于,
    所述针对上行数据的下行确认帧的传输方式的指示具体为:针对每一个区域中的上行数据的下行确认帧的传输方式的指示;或者,所述针对下行数据的上行确认帧的传输方式的指示具体为:针对每一个区域中的下行数据的 上行确认帧的传输方式的指示;所述区域指将整个带宽按照预定的方式分成多个部分,则每个部分叫做一个区域;
    所述下行确认帧或者所述上行确认帧是在所述每一个区域中发送或者接收的。
  13. 根据权利要求7-12任一所述的方法,其特征在于,
    所述下行确认帧的传输方式包括多用户块确认帧MBA、正交频分多址确认帧OFDMA ACK/BA或者多用户多输入多输出确认帧MU MIMO ACK/BA;
    所述上行确认帧的传输方式包括OFDMA ACK/BA或者MU MIMO ACK/BA,不包括MBA。
  14. 根据权利要求7-13的方法,其特征在于,
    所述OFDMA ACK/BA的传输方式,具体指在所述子信道上传输针对一个站点的数据的确认帧,或者在所述子信道上的多个资源块上分别传输针对多个站点的数据的确认帧;
    所述MU MIMO ACK/BA的传输方式,具体指在所述子信道上传输的所有空间流被分配给不同的STA,以便于传输针对各个STA的数据的各自的确认帧;或者,
    所述MBA的传输方式,具体指在所述子信道上传输针对多个STA的数据的确认帧。
  15. 根据权利要求7-14的方法,其特征在于,
    所述方法还包含:所述AP发送:用于指示是否将发送一个MBA帧来传输针对所有STA的下行确认帧的标识;
    其中,所述AP发送的是用于指示将发送一个MBA帧来传输针对所有STA的下行确认帧的标识时,所述下行确认帧具体为:所述AP在整个信道上发送的MBA帧,或者仅在其主信道上发送的MBA帧,或者同时其主信道和次信道上发送的MBA帧。
  16. 根据权利要求7-15任一所述的方法,其特征在于,
    当采用多用户块确认帧MBA的传输方式回复所述确认帧时,
    在所述触发帧内包含所述回复的确认帧是否是多播/广播帧的指示。
  17. 根据权利要求16所述的方法,其特征在于,
    所述是否是多播/广播帧的指示具体为:特定的站点标识AID/PAID/GID信息,专门的1比特位,或者,隐式的指示。
  18. 一种无线局域网中的通信装置,包括接入点AP或者设置于AP的处理设备,其特征在于,所述通信装置包括:
    第一单元,用于发送触发帧,所述触发帧用于触发多个STA在一个或者多个子信道上进行单用户或者多用户的数据传输;
    第二单元,用于在接收多个STA发送的所述单用户或者多用户的数据之后,针对每一个子信道的数据,分别在与所述每一个子信道相同的子信道回复确认帧:
    如果所述每一个子信道上发送的是单用户传输的数据,则用正交频分多址确认帧OFDMA ACK/BA的传输方式回复所述确认帧;如果所述每一个子信道上发送的是多用户MIMO传输的数据,则用多用户块确认帧MBA的传输方式回复所述确认帧。
  19. 一种无线局域网中的通信装置,包括站点STA或者设置于STA的处理设备,其特征在于,所述通信装置包括:
    第一单元,用于接收接入点AP发送的触发帧,所述触发帧用于触发多个STA在一个或者多个子信道上进行上行的单用户或者多用户的数据传输;
    第二单元,用于根据所述触发帧在所述一个或者多个子信道中的一个子信道上发送所述STA的上行数据;接收所述AP在在与所述STA发送所述数据的所述子信道相同的子信道上回复的确认帧:其中,如果在所述STA发送所述数据的所述子信道上发送的是单用户传输的数据,则所述确认帧是用正交频分多址确认帧OFDMA ACK/BA的传输方式回复的;如果在所述STA发送 所述数据的所述子信道上发送的是多用户MIMO传输的数据,则所述确认帧是在相同的子信道上采用多用户块确认帧MBA的传输方式回复的。
  20. 根据权利要求14或者15的通信装置,其特征在于,
    所述OFDMA ACK/BA的传输方式,具体指在所述子信道上传输针对一个站点的数据的确认帧;
    所述MBA的传输方式,具体指在所述子信道上传输针对多个站点的数据的确认帧。
  21. 根据权利要求18-19任一所述的通信装置,其特征在于,
    所述触发帧中包含:关于每一个子信道上是单用户的传输数据,还是多用户MIMO传输数据的指示。
  22. 一种无线局域网中的通信装置,包括接入点AP或者设置于AP的处理设备,其特征在于,所述通信装置包括:
    第一单元,用于发送针对上行数据的下行确认帧的传输方式的指示,或者,针对下行数据的上行确认帧的传输方式的指示;
    第二单元,用于在上下行数据传输过程中,根据所述指示的下行确认帧的传输方式发送所述下行确认帧,或者,接收所述无线局域网中的站点STA根据所述指示的上行确认帧的传输方式发送的上行确认帧。
  23. 一种无线局域网中的通信装置,包括站点STA或者设置于STA的处理设备,其特征在于,所述通信装置包括:
    第一单元,用于接收接入点AP发送的针对上行数据的下行确认帧的传输方式的指示,或者,针对下行数据的上行确认帧的传输方式的指示;
    第二单元,用于在上下行数据传输过程中接收所述AP根据所述指示的下行确认帧的传输方式发送的所述下行确认帧,或者,所述STA根据所述指示的上行确认帧的传输方式发送上行确认帧。
  24. 根据权利要求22或者23的通信装置,其特征在于,所述方法还包括:
    所述针对上行数据的下行确认帧的传输方式的指示承载于所述AP发送的触发帧或者信标帧(Beacon)中;或者,
    所述针对下行数据的上行确认帧的传输方式的指示承载于所述AP发送的触发帧、下行数据帧、或者信标帧(Beacon)中。
  25. 根据权利要求23或者24的通信装置,其特征在于,所述方法还包括:
    所述针对下行数据的上行确认帧的传输方式的指示位于所述下行数据帧的物理层前导序列的高效信令(HE-SIG)字段,或者,位于所述下行数据帧的MAC帧帧头部分。
  26. 根据权利要求22-25任一所述的通信装置,其特征在于,
    所述针对上行数据的下行确认帧的传输方式的指示具体为:针对每一个子信道中的上行数据的下行确认帧的传输方式的指示;或者,所述针对下行数据的上行确认帧的传输方式的指示具体为:针对每一个子信道中的下行数据的上行确认帧的传输方式的指示;
    所述下行确认帧或者所述上行确认帧是在所述每一个子信道对应的子信道上发送或者接收的,
    所述每一个子信道对应的子信道具体为:与所述每个子信道相同的子信道,或者,按照缺省的规则重新对整个带宽进行子信道分配后的特定子信道,或者,由所述AP指示的每个STA或者多用户多输入多输出MU MIMO传输用户组的确认帧所在的子信道。
  27. 根据权利要求22-26任一所述的通信装置,其特征在于,
    所述针对上行数据的下行确认帧的传输方式的指示具体为:针对每一个区域中的上行数据的下行确认帧的传输方式的指示;或者,所述针对下行数据的上行确认帧的传输方式的指示具体为:针对每一个区域中的下行数据的上行确认帧的传输方式的指示;所述区域指将整个带宽按照预定的方式分成多个部分,则每个部分叫做一个区域;
    所述下行确认帧或者所述上行确认帧是在所述每一个区域中发送或者接收的。
  28. 根据权利要求22-27任一所述的通信装置,其特征在于,
    所述下行确认帧的传输方式包括多用户块确认帧MBA、正交频分多址确认帧OFDMA ACK/BA或者多用户多输入多输出确认帧MU MIMO ACK/BA;
    所述上行确认帧的传输方式包括OFDMA ACK/BA或者MU MIMO ACK/BA,不包括MBA。
  29. 根据权利要求23-28任一的方法,其特征在于,
    所述OFDMA ACK/BA的传输方式,具体指在所述子信道上传输针对一个站点的数据的确认帧,或者在所述子信道上的一个资源块上分别传输针对一个站点的数据的确认帧;
    所述MU MIMO ACK/BA的传输方式,具体指在所述子信道上传输的所有空间流被分配给不同的STA,以便于传输针对各个STA的数据的各自的确认帧;或者,
    所述MBA的传输方式,具体指在所述子信道上传输针对多个STA的数据的确认帧。
  30. 根据权利要求23-29任一的通信装置,其特征在于,
    所述方法还包含:所述AP发送:是否将发送一个MBA帧来传输针对所有STA的下行确认帧的标识;
    其中,所述AP发送的是将发送一个MBA帧来传输针对所有STA的下行确认帧的标识时,所述下行确认帧具体为:所述AP在整个信道上发送的MBA帧,或者仅在其主信道上发送的MBA帧,或者同时其主信道和次信道上发送的MBA帧。
PCT/CN2015/073518 2015-03-02 2015-03-02 无线局域网中的确认帧传输方法及通信装置 WO2016138623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073518 WO2016138623A1 (zh) 2015-03-02 2015-03-02 无线局域网中的确认帧传输方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073518 WO2016138623A1 (zh) 2015-03-02 2015-03-02 无线局域网中的确认帧传输方法及通信装置

Publications (1)

Publication Number Publication Date
WO2016138623A1 true WO2016138623A1 (zh) 2016-09-09

Family

ID=56848193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073518 WO2016138623A1 (zh) 2015-03-02 2015-03-02 无线局域网中的确认帧传输方法及通信装置

Country Status (1)

Country Link
WO (1) WO2016138623A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114490470A (zh) * 2020-11-11 2022-05-13 瑞昱半导体股份有限公司 串行传输系统以及串行传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412944A (zh) * 2010-03-29 2012-04-11 英特尔公司 用于无线网络中的有效率的确认的技术
CN102859924A (zh) * 2010-04-23 2013-01-02 高通股份有限公司 用于多用户传输的顺序ack
CN102948101A (zh) * 2010-06-15 2013-02-27 高通股份有限公司 用于发送甚高吞吐量wlan确认帧的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412944A (zh) * 2010-03-29 2012-04-11 英特尔公司 用于无线网络中的有效率的确认的技术
CN102859924A (zh) * 2010-04-23 2013-01-02 高通股份有限公司 用于多用户传输的顺序ack
CN102948101A (zh) * 2010-06-15 2013-02-27 高通股份有限公司 用于发送甚高吞吐量wlan确认帧的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114490470A (zh) * 2020-11-11 2022-05-13 瑞昱半导体股份有限公司 串行传输系统以及串行传输方法

Similar Documents

Publication Publication Date Title
JP7246396B2 (ja) データ伝送方法及び装置、コンピュータ記憶媒体
US10548156B2 (en) Resource indication processing method and processing apparatus, access point, and station
WO2017045496A1 (zh) 一种下行控制方法及装置
CN110612693B (zh) 用于在无线通信系统中传输下行链路控制信道的方法和装置
CN113785520B (zh) 已配置许可上行链路控制信息(uci)映射规则
WO2020220230A1 (zh) 上行数据传输方法、装置及存储介质
US11121848B2 (en) Communication method and network device
WO2018171481A1 (zh) 一种传输方法和装置
WO2020199967A1 (zh) 一种数据的接收和发送方法及终端装置
US20230132212A1 (en) Multi-dci based pdsch scheduling for urllc
WO2021208673A1 (zh) 空间参数确定方法及装置
US20230179354A1 (en) Receiving time overlapping downlink reference signals and channels
CN115516805A (zh) 涉及子时隙物理上行链路控制信道(pucch)重复的系统和方法
US20220361211A1 (en) Support of enhanced dynamic codebook with different dci formats
US20200083933A1 (en) Data Transmission Method, Apparatus, and System
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2021062580A1 (zh) 确定侧行链路传输资源的方法和装置
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
CN113993221A (zh) 用于冲突处理和物理下行链路共享信道释放的系统和方法
WO2019153853A1 (zh) 资源指示方法、用户设备及网络侧设备
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
WO2018170877A1 (zh) 信息发送方法、装置、终端、接入网设备及系统
WO2016138623A1 (zh) 无线局域网中的确认帧传输方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883680

Country of ref document: EP

Kind code of ref document: A1