WO2018032915A1 - 一种非授权频谱上的数据传输方法和设备 - Google Patents

一种非授权频谱上的数据传输方法和设备 Download PDF

Info

Publication number
WO2018032915A1
WO2018032915A1 PCT/CN2017/092632 CN2017092632W WO2018032915A1 WO 2018032915 A1 WO2018032915 A1 WO 2018032915A1 CN 2017092632 W CN2017092632 W CN 2017092632W WO 2018032915 A1 WO2018032915 A1 WO 2018032915A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data
time
transmitting
configuration
Prior art date
Application number
PCT/CN2017/092632
Other languages
English (en)
French (fr)
Inventor
庞继勇
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610874487.5A external-priority patent/CN107770872B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17840890.2A priority Critical patent/EP3474594B1/en
Publication of WO2018032915A1 publication Critical patent/WO2018032915A1/zh
Priority to US16/277,802 priority patent/US20190182003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus on an unlicensed spectrum.
  • LAA Licensed Assisted Access
  • eLAA Enhanced Authorized Spectrum Auxiliary Access
  • LBT Listening Before Talk
  • LBT Long Term Evolution
  • LTE-A Long-Term Evolution
  • LTE-A Long Term Evolution
  • radio resources are allocated and indicated in units of radio frames (frames) and sub-frames in the time dimension.
  • a radio frame length is 10 ms, and includes 10 subframes of 1 ms.
  • Each subframe is composed of a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each subframe is divided into two 0.5ms slots (Slot), and the frame structure is as shown in FIG. 1. Only a limited data transmission starting point is allowed in the LTE/LTE-A system, for example, the transmission can only start at the beginning of the subframe or time slot.
  • one subframe contains 14 OFDM symbols, each slot contains 7 OFDM symbols, and data transmission can only start at the first or The 7th OFDM symbol, that is, data transmission starts only at the slot boundary.
  • the base station eNB
  • the data transmission may be started as early as T0; if the eNB is at the time T0-T1 Between, that is, before the start time of the second time slot in the subframe i, the LBT is successfully executed, and the data transmission can be started as early as T1.
  • the initial half subframe is referred to as a partial subframe; if the eNB successfully performs the LBT between the time T1 - T2, that is, before the start time of the subframe i+1, the earliest may be at the earliest Data transmission starts at time T2.
  • 5G NR New Radio
  • the use of unlicensed spectrum will also be an indispensable technical means to meet business needs and enhance user experience.
  • the frame structure definition in the 5G NR standard may be more complicated, a variable length subframe structure (based on subcarrier spacing or the number of OFDM symbols included) may be defined, and coexistence between subframes of different lengths is allowed ( On different frequency bands in the same time period, or on the same frequency band in different time periods). Therefore, in the 5G NR system, the starting time after the LBT cannot follow the scheme of the LTE/LTE-A system. In the 5G NR system, there is no solution for how to transmit data on the unlicensed spectrum.
  • Embodiments of the present invention provide a data transmission method and device on an unlicensed spectrum, thereby providing an implementation scheme for transmitting data on an unlicensed spectrum in a 5G NR system.
  • a method for transmitting data on an unlicensed spectrum comprising:
  • the sender performs an LBT operation on the unlicensed spectrum
  • the transmitting end sends data to the receiving end by using the unlicensed spectrum at a second moment, where the second moment is greater than or equal to the first
  • the time is less than or equal to the third time
  • the third time is the start time of the reference subframe after the first time
  • the length of the reference subframe is one of the pre-configured at least two subframes The lengths are the same, and the adjacent reference subframes are consecutive in time.
  • the third time is the start time of the reference subframe after the first time, shortening the waiting time between the LBT and the data transmission start time, and improving Channel utilization.
  • the length of the reference subframe is the same as the length of the longest subframe of the at least two subframes, in order to balance the length of the pre-configured per-seed frame.
  • the third time is a start time of the first reference subframe after the first time.
  • the length of the at least two subframes is 2 K times the length of the first subframe, K is an integer greater than or equal to 0, and the second moment is a start time of the reference subframe where the first moment is located. Then, after ⁇ T, the ⁇ T is an integer multiple of the length of the first subframe, and the first subframe is a subframe having the shortest length among the at least two subframes.
  • the ⁇ T is smaller than the reference subframe length.
  • the time interval between the LBT and the data transmission start time is shortened, and the transmitting end is at the second moment.
  • adopting a fixed configuration subframe to send data to the receiving end through the unlicensed spectrum It includes the following five possible implementations:
  • the configuration of the first subframe for transmitting the data in the MCOT where the second moment is located is the same as the configuration of the first subframe, and the first subframe is the at least The shortest subframe among the two subframes.
  • the maximum length of the configuration of the first subframe in the MCOT for transmitting the data and the start time of the second moment and the next reference subframe The configuration of the subframe is the same.
  • the configuration of the first subframe in the MCOT for transmitting the data is the same as the configuration of the subframe used by the sending end on the licensed spectrum at the second moment.
  • a configuration of a subframe combination for transmitting the data in a first reference subframe length in the MCOT, and a configuration of the transmitting end on the licensed spectrum at the second moment The configuration of the subframe combination is the same.
  • a configuration of a subframe combination for transmitting the data between the second moment and the third moment in the MCOT, and the sending end are in the second moment
  • the configuration of the subframe combinations used on the licensed spectrum is the same.
  • the method in order to reduce the complexity of the data detection at the receiving end, in a possible implementation manner, before the sending end sends data to the receiving end by using the unlicensed spectrum at the second moment, the method Also includes:
  • the first indication information carries configuration information of a first subframe for transmitting the data, and is used for transmission in a first reference subframe length
  • Configuration information of a subframe combination of the data, configuration information of a first subframe for transmitting the data within a reference subframe length, and a subframe combination for transmitting the data within a reference subframe length At least one of the configuration information. So that the receiving end can know the configuration information of the subframe or subframe combination used by the transmitting end to transmit data.
  • the sending end sends data to the receiving end by using the unlicensed spectrum at the second moment, specifically:
  • the transmitting end uses M consecutive second subframes and other subframes of the N1 at least two subframes except the second subframe in the MCOT where the second moment is located.
  • the receiving end sends data, where the second subframe is a subframe having the largest length among the at least two subframes, and N1 is an integer greater than or equal to 0;
  • the transmitting end sends data to the receiving end by using M consecutive second subframes and N2 second partial subframes of the second subframe in the maximum channel occupation time MCOT where the second moment is located.
  • N2 is an integer greater than or equal to zero.
  • scheduling signaling of different time-frequency domain locations may be designed for different users or groups of users in the 5G NR, and demodulation of the scheduling signaling is not necessarily required
  • the frame boundary starts to be received, that is, the user or the user group can start receiving at a certain moment in the middle of the subframe, and the required scheduling signaling or data can be correctly demodulated.
  • the sending At the second moment, through the office
  • the unlicensed spectrum, sending data to the receiving end further includes:
  • the transmitting end sends the scheduling signaling corresponding to the data to the receiving end through the unlicensed spectrum, and the ⁇ t is a set time offset amount, when the transmitting end passes the ⁇ t time after the second time.
  • the receiving end only needs to add a set time offset ( ⁇ t) based on the transmission start time, so that the required scheduling signaling or data can be synchronously received.
  • the second time is a start time of one OFDM symbol in the set at least one orthogonal frequency division multiplexing OFDM symbol between the first time and the third time.
  • the second time is a start time of one of the set at least one OFDM symbol between the first time and the third time.
  • a data receiving method on an unlicensed spectrum comprising:
  • the length of the reference subframe is the same as the length of one of the pre-configured at least two subframes, and the adjacent reference subframes are consecutive in time.
  • the third time is the start time of the reference subframe after the first time, shortening the waiting time between the LBT and the data transmission start time, and improving Channel utilization.
  • the multiple reference sub-frames may be consecutive reference sub-frames.
  • a frame may also be a plurality of reference subframes that are not consecutive.
  • a possible implementation manner of the interval length of the two adjacent transmission start times detected by the receiving end includes:
  • the interval length of two adjacent transmission start times is the total length of the set number of OFDM symbols
  • the length of the interval between the two adjacent transmission start times is the same as the length of the first subframe, and the first subframe is the shortest subframe among the at least two subframes;
  • the length of the interval between two adjacent transmission start times is the same as the length of the second subframe, and the second subframe is the longest subframe among the at least two subframes.
  • the method further includes:
  • first indication information that is sent by the sending end, where the first indication information carries configuration information of a first subframe for transmitting the data, and is used in a first reference subframe length Configuration information of a subframe combination for transmitting the data, configuration information of a first subframe for transmitting the data within a reference subframe length, and a subframe for transmitting the data within a reference subframe length At least one of the combined configuration information;
  • the receiving end determines, according to the first indication information, a subframe or a subframe combination used by the sending end to send the data.
  • a possible implementation manner of a configuration of a subframe or a subframe combination for transmitting the data includes:
  • the configuration of the first subframe for transmitting the data is the same as the configuration of the first subframe, where the first subframe is the shortest subframe among the at least two subframes;
  • the configuration of the first subframe used for transmitting the data is the same as the configuration of the subframe used by the transmitting end determined by the receiving end at the same time on the authorized spectrum;
  • the configuration of the subframe combination for transmitting the data in the first reference subframe length is the same as the configuration of the subframe combination used by the transmitting end determined by the receiving end at the same time on the authorized spectrum;
  • the configuration of the subframe combination used for transmitting the data is the same as the configuration of the subframe combination used by the transmitting end determined by the receiving end at the same time on the authorized spectrum.
  • the receiving end adopts pre-configuration in the transmission start time in one or more reference subframes on the unlicensed spectrum.
  • the configuration of the at least one of the at least two types of subframes, detecting the data sent by the sending end including:
  • the receiving end detects the data sent by the sending end by using the configuration of the first subframe in the transmission start time in the reference subframe, where the first subframe is the shortest length of the at least two subframes.
  • the receiving end detects the data sent by the sending end by using the configuration of the second subframe in the transmission start time in the reference subframe, where the second subframe is the longest of the at least two subframes.
  • the receiving end detects the data sent by the sending end by using a configuration of each of the at least two subframes at a transmission start time in the reference subframe.
  • the method further includes:
  • the receiving end After receiving the data sent by the transmitting end at any possible transmission start time, the receiving end receives the scheduling signaling corresponding to the data, and ⁇ t is a set time offset.
  • a computer readable storage medium having stored therein executable program code for implementing the method of the first aspect.
  • a computer readable storage medium wherein executable program code is stored, the program code for implementing the method of the second aspect.
  • a sender device comprising means for performing the method of the first aspect Module.
  • a receiving end device comprising means for performing the method of the second aspect.
  • a transmitting device comprising: a processor, a transceiver, and a memory, wherein: the processor reads a program in the memory, and performs the method described in the first aspect.
  • a receiving end device comprising: a processor, a transceiver, and a memory, wherein: the processor reads a program in the memory, and performs the method described in the second aspect.
  • the embodiment of the present invention provides an implementation scheme for data transmission and reception on an unlicensed spectrum in a case where a plurality of subframes of different lengths are configured in a 5G NR system, because the transmitting end passes the unlicensed spectrum at the second moment.
  • Transmitting data wherein the second time is greater than or equal to the first time and less than or equal to the third time, the third time is a start time of the reference subframe after the first time, shortening the data after the LBT
  • the waiting time between transmission start times improves channel utilization.
  • 1 is a schematic structural diagram of a radio frame in an LTE/LTE-A system
  • 2 is a schematic diagram of possible transmission start times of the LAA
  • 3A is a schematic structural diagram of a subframe in a 5G NR system according to an embodiment of the present invention.
  • FIG. 3B is a schematic structural diagram of a subframe in another 5G NR system according to an embodiment of the present disclosure
  • 4A is a schematic diagram of a relationship between a subframe and a TTI in a 5G NR system according to an embodiment of the present invention
  • 4B is a schematic diagram of a relationship between a subframe and a TTI in another 5G NR system according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for sending data on an unlicensed spectrum according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for receiving data on an unlicensed spectrum according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a transmission start time and a transmission subframe according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a data receiving moment and a receiving subframe according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of a transmission start time and a transmission subframe according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a transmission start time and a transmission symbol according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of a configuration of a transmission subframe according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of another source device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of another receiving device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a configuration of a TTI according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of another TTI configuration according to an embodiment of the present invention.
  • an unlicensed spectrum (also referred to as an unlicensed spectrum or an unlicensed spectrum) can be understood as a physical frequency band that is open to an independent number of independent users and can be directly used without registration or alone.
  • unlicensed spectrum it can be used by any type of terminal device that meets usage rules (such as maximum level value, bandwidth limit, and duty cycle) without prior authorization.
  • the widely used Industrial Scientific Medical (ISM) band is an unlicensed physical frequency band that is not required for authorization and can be used by anyone;
  • a licensed spectrum (also known as an authorized spectrum or licensed spectrum) is a physical frequency band that requires special use rights, authorizations, or licenses to be used.
  • the wireless spectrum resources used for cellular mobile communications are located within the authorized physical frequency band.
  • the government communications regulatory authority allocates the right to use the dedicated physical frequency band to the mobile communication infrastructure network operator to provide mobile communication and broadband data access. Into the service.
  • the concept of frames and subframes may still exist, but the definition may be different.
  • the length of the frame may also be consistent with LTE, fixed to 10ms, but when the length of the subframe is variable, the number of subframes included in one frame is no longer fixed.
  • the subframe length may vary with the subcarrier spacing and/or the OFDM symbol length, assuming that the subframe contains the same number of OFDM symbols, and the Cyclic Prefix (CP) length changes in proportion to the symbol length, as shown in FIG. 3A.
  • the 15KHz subcarrier spacing corresponds to a 1ms length subframe
  • the 30KHz subcarrier spacing corresponds to a 0.5ms length subframe.
  • the subframe length may also vary with the number of OFDM symbols included, assuming that the subcarrier spacing, the OFDM symbol length, and the CP length are unchanged, as shown in FIG. 3B, if 14 OFDM symbols form a subframe of 1 ms length. Then, 7 OFDM symbols form a subframe of 0.5 ms length. Furthermore, under the same subcarrier spacing and OFDM symbol length, the number of OFDM symbols included in the same 1 ms length subframe may also be different due to different CP lengths. Of course, the subframe length may also vary as the number of OFDM symbols and the subcarrier spacing change simultaneously.
  • a Transmission Time Interval refers to a time interval at which a transport block reaches a transport channel (with respect to a physical channel and a logical channel).
  • TTI Transmission Time Interval
  • the TTI of the broadcast channel is 40 ms
  • the TTI of the downlink shared channel may be 1 ms, which is equivalent to the length of one subframe.
  • the TTI involved in the embodiment of the present invention may be the minimum TTI supported on each transport channel, and the minimum TTI may be understood in the narrow sense as the minimum scheduling time unit in the physical layer time domain.
  • the 5G NR system there are two possible cases: 1) one or more TTIs are included in one subframe, as shown in FIG. 4A; 2) one or more subframes are included in one TTI, as shown in FIG. 4B. If the eNB can only start transmitting data at the start time of the TTI, the eNB in the first case has multiple possible transmission start times in one subframe, and the eNB in the second case has only multiple subframes. A possible transmission start time.
  • the sending end in the embodiment of the present invention may be a network side node (such as a base station) or a user equipment (such as a terminal).
  • the receiving end in the embodiment of the present invention may be a network side node (such as a base station) or a user equipment (such as a terminal).
  • the reference subframe in the embodiment of the present invention represents a reference metric reference of a time metric, such as a minimum scheduling interval and a minimum downlink control signaling time interval, in order to describe various transport channels, reference signals, periodic signaling, and the like. Time relationship. For transmissions on a physical channel, the description of their timing and timing relationships is based on the reference subframe.
  • the transmitting end or the receiving end simultaneously transmits or receives on two or more different physical channels (for example, two or more licensed spectrum channels are used simultaneously, or the licensed spectrum and the unlicensed spectrum are simultaneously used, or two Or multiple unlicensed spectrum channels are used simultaneously, or when the transmitting end or the receiving end simultaneously enters two or more different frequency domain subchannels on one physical channel
  • transmission on different channels or subchannels is also required to maintain timing alignment in the time dimension (for example, transmissions on different channels or subchannels are completely synchronized and adopt the same frame structure. , or different sub-frame structures on different channels or sub-channels but sub-frame boundaries or symbol boundaries at 1 ms are aligned).
  • a common reference subframe can be referred to as a reference for the timing and timing relationship.
  • the length of the reference subframe in the embodiment of the present invention is the same as the length of one of the pre-configured at least two subframes, and the adjacent reference subframes are consecutive in time.
  • the length of the reference subframe is the same as the length of the longest subframe of the at least two subframes configured in advance.
  • a method for transmitting data on an unlicensed spectrum including:
  • the transmitting end performs an LBT operation on the unlicensed spectrum.
  • the transmitting end sends data to the receiving end by using the unlicensed spectrum at a second moment, where the second moment is greater than or equal to the first moment and The third moment is less than or equal to the third moment, and the third moment is a starting moment of the reference subframe after the first moment.
  • the third moment may be a starting moment of any reference subframe after the first moment.
  • the third time is the starting time of the first reference subframe after the first moment.
  • the transmitting end after the first end time determines that the unlicensed spectrum is available, the transmitting end sends data to the receiving end through the unlicensed spectrum at the second moment, thereby providing a plurality of different configurations in the 5G NR system.
  • the third time is a start time of the reference subframe after the first time, shortening the waiting time between the LBT and the data transmission start time, and improving channel utilization.
  • a data receiving method on an unlicensed spectrum including:
  • the receiving end sends, at a transmission start time in one or more reference subframes on the unlicensed spectrum, a configuration of at least one of the at least two types of subframes configured in advance, and detects data sent by the sending end.
  • the receiving end receives data sent by the sending end according to the detection result.
  • the multiple reference sub-frames may be consecutive reference sub-frames.
  • a frame may also be a plurality of reference subframes that are not consecutive.
  • the receiving end uses the configuration of at least one of the at least one of the at least two types of subframes in the transmission start time of the one or more reference subframes on the unlicensed spectrum, and detects the sending by the sending end.
  • Data thereby providing an implementation scheme for transmitting and receiving data on an unlicensed spectrum in a case where a plurality of subframes of different lengths are configured in a 5G NR system, since the transmitting end transmits data through the unlicensed spectrum at the second moment, The second time is greater than or equal to the first time and less than or equal to the third time, and the third time is the start time of the reference subframe after the first time, shortening the LBT to the data transmission start The waiting time between times increases the channel utilization.
  • the eNB is used as an example, and the receiving end uses the UE as an example for description. Similarly, no more examples are given here.
  • Embodiment 1 the data transmission of the transmitting end needs to be aligned with the reference subframe boundary.
  • the transmitting end and the receiving end need to clarify the starting time of data transmission and data reception possible after the LBT to ensure the channel synchronization of both the transmitting and receiving parties, thereby completing the communication interaction.
  • the transmission may be selected according to its own scheduling.
  • Sub-frame configuration; for the receiving end, each possible transmission start time on the unlicensed spectrum is detected according to each seed frame configuration in the at least two subframes.
  • the pre-configured subframe length has three values, which are 0.25 ms, 0.5 ms, and 1 ms, respectively.
  • the maximum length of 1 ms in the configured subframe is used as the reference subframe on the time axis. Assuming that the transmission on the unlicensed spectrum needs to remain aligned with the reference subframe boundary, then:
  • the eNB may have four possible transmission start times on the unlicensed spectrum, namely T1, T2, T3, and T4. It further includes the following four possible transmission methods:
  • the eNB If the eNB starts transmission at time T1, there are three combinations of subframes for transmission between T1 and T4.
  • the first combination is that the eNB sequentially uses three 0.25 ms subframes for data transmission from the time T1, as shown by a in FIG. 7, and the second combination is that the eNB uses a 0.25 ms in sequence from the time T1.
  • the sub-frame and a 0.5 ms sub-frame perform data transmission, as shown by b in FIG. 7, and the third combination is that the eNB sequentially uses a 0.5 ms subframe and a 0.25 ms subframe for data transmission from the time T1.
  • the eNB may select the subframe configuration used for transmission between T1 and T4 times according to its own scheduling.
  • the eNB If the eNB starts transmission at time T2, there are two combinations of subframes for transmission between T2-T4 times. The first combination is that the eNB sequentially uses two 0.25 ms subframes for data transmission from the time T2, and the second combination is that the eNB uses a 0.5 ms subframe for data transmission from the time T2.
  • the eNB may select the subframe configuration used for transmission between T2-T4 times according to its own scheduling.
  • the eNB starts transmitting at time T4, there are 6 combinations of subframes for transmission in one reference subframe period, as shown by d in FIG. 7, where the first combination is eNB starting from time T4. Data transmission is performed using a 1 ms subframe.
  • the second combination is that the eNB uses four 0.25 ms subframes for data transmission from the time of T4.
  • the third combination is that the eNB uses two 0.25 ms in sequence from the time T4.
  • the subframe is transmitted with a 0.5 ms subframe.
  • the fourth combination is that the eNB uses a 0.25 ms subframe, a 0.5 ms subframe, and a 0.25 ms subframe for data transmission from the T4 time.
  • the five combinations are that the eNB uses two 0.5 ms subframes for data transmission from the time of T4.
  • the sixth combination is that the eNB uses a 0.5 ms subframe and two 0.25 ms subframes for data from the T4 time. transmission.
  • the eNB may select the subframe configuration used for transmission in one reference subframe period according to its own scheduling.
  • the UE since the UE does not know the location of the T0 time, the UE needs to try to receive/demodulate data from the eNB at each of the four positions t0-t3 in each reference subframe period. Assuming that the demodulation of the first subframe used for transmission is independent of the configuration of its subsequent subframes, as shown in FIG.
  • the UE at time t0, that is, with reference to the subframe boundary, the UE needs to be configured according to three possible subframe lengths ( 0.25ms, 0.5ms, and 1ms) to try to receive/demodulate; at times t1 and t2, the UE needs to try to receive/demodulate according to 2 possible subframe length configurations (0.25ms and 0.5ms); at time t3, The UE only needs to try to receive/demodulate according to 1 possible subframe length configuration (0.25 ms). If demodulation is assumed When a subframe is transmitted, it needs to jointly consider the subframe combination form in the reference subframe period in which it is located. As shown in FIG.
  • the UE needs to combine six possible subframes. To try to receive/demodulate; at time t1, the UE needs to try to receive/demodulate according to 3 possible subframe combinations; at time t2, the UE needs to try to receive/demodulate according to 2 possible subframe combinations; at t3 At the moment, the UE only needs to try to receive/demodulate according to one possible combination of subframes.
  • the length of the at least two subframes is 2 K times the length of the first subframe, and K is an integer greater than or equal to 0, and the first subframe is the at least two subframes.
  • the shortest subframe in the frame is 2 K times the length of the first subframe, and K is an integer greater than or equal to 0, and the first subframe is the at least two subframes.
  • the receiving end determines each possible transmission start time by using the shortest subframe among the at least two subframes as an interval.
  • the second time is after the starting time of the reference subframe in which the first time is located.
  • the ⁇ T is an integer multiple of the length of the first subframe, and the first subframe is a subframe having the shortest length among the at least two subframes.
  • the ⁇ T is smaller than the reference subframe length.
  • the time interval between the LBT and the data transmission start time is shortened, and the transmitting end is at the second moment.
  • a fixed configuration subframe is used to transmit data to the receiving end through the unlicensed spectrum.
  • the configuration of the first subframe for transmitting the data in the MCOT where the second moment is located is the same as the configuration of the first subframe, and the first subframe is the at least two subframes.
  • a subframe of a maximum length that can be accommodated between a configuration of a first subframe for transmitting the data and a start moment of the second moment and a next reference subframe in the MCOT
  • the configuration is the same.
  • the second embodiment is different from the first embodiment in that the data transmission of the transmitting end is not required to be aligned with the reference subframe boundary in this embodiment.
  • the transmission start time may be: a time when the start time of the reference subframe where the T0 time is located is at least one time length, and the first time length is the shortest length of the at least two subframes. The length of the sub-frame.
  • the possible transmission start time of the eNB is T1
  • the possible transmission start time of the eNB is T1
  • the eNB has three types of subframe configurations for transmission at the transmission start time, and the eNB can select the used subframe configuration according to its own scheduling.
  • Embodiment 3 the data transmission of the transmitting end is required to be aligned with the Orthogonal Frequency Division Multiplex (OFDM) symbol boundary.
  • OFDM Orthogonal Frequency Division Multiplex
  • the second time is a start time of any one of the OFDM symbols included between the first time and the third time.
  • the second time is one of the set at least one OFDM symbol between the first time and the third time The starting moment.
  • the 5G NR is consistent with the LTE system, and the 15KHz subcarrier is also used and the 14 symbols in 1ms are maintained (but the internal design of the subframe is not identical), in order to coordinate the coexistence of the LTE and 5G NR dual systems, it is required.
  • the symbol boundary of the 5G NR transmission is aligned with the symbol boundary of the LTE regular CP. Under the regular CP, one The 1 ms LTE subframe includes two 0.5 ms slots, each slot includes 7 OFDM symbols, and the CP length of the first OFDM symbol in each slot (ie, the 0th and 7th OFDM in one subframe) The symbol) is slightly longer than the remaining 6 OFDM symbols.
  • the transmission start time of the NR has a total of 14 possible positions (corresponding to the starting time of 14 OFDM symbols) in one reference subframe period.
  • the position of the OFDM symbols of the two long CPs of the NR in the time interval of 1 ms ie, the sequence number in the 14 OFDM symbols
  • the NR supports the OFDM symbol position of the long CP to be slidably placed within one reference subframe period.
  • the transmission start time is the 0th, 3rd, 7th, and 10th OFDM symbols in the reference subframe. The beginning time.
  • the sending end preferentially fills the MCOT with a fixed length subframe configuration in the maximum channel occupation time MCOT where the second time is located.
  • the sending end uses, in the MCOT where the second moment is located, the M consecutive second subframes and the N1 of the at least two subframes except the second subframe.
  • the other subframes send data to the receiving end, where the second subframe is the subframe with the largest length among the at least two subframes, and N1 is an integer greater than or equal to 0.
  • the sending end uses M consecutive second subframes and N2 partial subframes of the second subframe in the maximum channel occupation time MCOT where the second moment is located.
  • the sending end uses, in the MCOT where the second moment is located, the M consecutive second subframes and the N1′ of the at least two subframes except the second subframe.
  • the other subframes other than the frame and the partial subframes of the N2′ second subframes transmit data to the receiving end, where the second subframe is the subframe with the largest length among the at least two subframes.
  • N1' and N2' are integers greater than or equal to zero.
  • N1, N2, N1', and N2' are both 0.
  • the pre-configured sub-frame length has three values, which are 0.25 ms, 0.5 ms, and 1 ms, respectively, and the fixed length is the length of the 1 ms subframe configuration, and the eNB starts from the MCOT start time.
  • the transmission is performed using a subframe configuration of length 1 ms. If the MCOT duration is not an integer multiple of 1 ms, it may be filled with a partial subframe designed by the 1 ms subframe or by a 0.5 ms subframe, a 0.25 ms subframe, or a differently configured subframe or subframe combination.
  • the transmitting end before sending the data to the receiving end by using the unlicensed spectrum at the second moment, further includes:
  • the first indication information carries configuration information of a first subframe for transmitting the data, and is used for transmission in a first reference subframe length
  • Configuration information of a subframe combination of the data, configuration information of a first subframe for transmitting the data within a reference subframe length, and a subframe combination for transmitting the data within a reference subframe length At least one of the configuration information.
  • the information related to the subframe configuration/combination in the next MCOT is notified by the receiving end through the control signaling or the broadcast message.
  • the information includes a configuration in which the MCOT initiates the first subframe.
  • it can be assumed that there are at most P possible subframe configurations and/or Q possible subframe combinations. or or Bit information indicating different subframe configurations or subframe combinations. among them, Indicates rounding up.
  • control signaling may be L1 (layer 1 physical layer) signaling, L2 (layer 2 data link layer) signaling (mainly Media Access Control (MAC) layer signaling). And L3 (Layer 3) signaling (such as a combination of one or more of Radio Resource Control (RRC) signaling).
  • L1 layer 1 physical layer
  • L2 layer 2 data link layer
  • MAC Media Access Control
  • L3 Layer 3
  • the broadcast message may be sent by using a public broadcast channel, a dedicated broadcast channel, or a broadcast information included in a Discovery Reference Signal (DRS).
  • DRS Discovery Reference Signal
  • control signaling or the broadcast message may be sent in an MCOT before the second moment on the unlicensed spectrum, or may be delivered in a DRS transmission before the second moment. It is also possible to send and receive the licensed spectrum before the second moment.
  • the default indication may be used to implicitly notify the receiving end of the subframe configuration and/or the subframe combination used in the MCOT where the second moment is located.
  • the configuration of the first subframe in the MCOT for transmitting the data is the same as the configuration of the subframe used by the sending end on the licensed spectrum at the second moment.
  • a configuration of a subframe combination for transmitting the data in a first reference subframe length in the MCOT, and a configuration of the transmitting end on the licensed spectrum at the second moment The configuration of the subframe combination is the same.
  • a configuration of a subframe combination for transmitting the data between the second moment and the third moment in the MCOT, and the sending end being at the second moment The configuration of the subframe combinations used on the licensed spectrum is the same.
  • the sending end sends data to the receiving end by using the unlicensed spectrum at the second moment, and further includes:
  • the transmitting end sends the scheduling signaling corresponding to the data to the receiving end through the unlicensed spectrum at the time when the second end passes the ⁇ t, and the ⁇ t is a set time offset.
  • scheduling signaling of different time-frequency domain locations may be designed for different users or groups of users in the 5G NR, and demodulation of the scheduling signaling does not necessarily start from a subframe boundary.
  • Reception ie, the user or group of users can start receiving at some point in the middle of the subframe, and can also correctly demodulate the required scheduling signaling or data.
  • the receiving end only needs to add the set time offset ( ⁇ t) based on the transmission start time, so that the required scheduling signaling or data can be synchronously received.
  • the ⁇ t may be sent to the receiving end through control signaling or a broadcast message.
  • the transmission start time may occur not only at the subframe boundary (in which case the subframe boundary may be considered to coincide with the TTI boundary), but also the TTI boundary in the subframe.
  • Embodiment 5 is exemplified by FIG. 16 (wherein the vertical solid line is a subframe and a TTI boundary, and the vertical dashed line is a TTI boundary that does not overlap with a subframe boundary, and the vertical solid line and the virtual solid line both represent possible transmission start times) .
  • the pre-configured sub-frame length has three values, which are 0.25ms, 0.5ms and 1ms respectively.
  • the TTI interval is 0.125 ms, that is, two, four, and eight TTIs are included in the three length subframes.
  • the transmission on the unlicensed spectrum needs to be aligned with the reference subframe boundary (ie, the reference subframe boundary cannot be in the subframe for transmission or / Intermediate to TTI, but should coincide with the sub-frame or / and TTI boundary used for transmission).
  • the transmitting end as the eNB as an example, there are 8 situations in which the eNB may start the transmission on the unlicensed spectrum, which is T00-T07:
  • T06-T08 If the eNB starts transmission at time T06 or T07, there are three combinations of subframes or TTIs for transmission in the current reference subframe period (T06-T08, or T07-T08).
  • the UE since the UE does not know the exact transmission start time, the UE needs to try to receive/receive at the 8 positions (possible transmission start time) of T00-T07 in each reference subframe period.
  • the data from the eNB is demodulated.
  • the sixth embodiment is different from the fifth embodiment.
  • the number of TTIs included in the subframe is fixed to 2, that is, the length of the TTI is equal to half of the length of the subframe.
  • the subframes corresponding to the three length values have TTI lengths of 0.125 ms, 0.25 ms, and 0.5 ms, respectively.
  • the maximum length of the subframe is 1 ms as the reference subframe on the time axis, assuming that the transmission on the unlicensed spectrum needs to remain aligned with the reference subframe boundary. Then there are 8 situations in which the eNB may start transmission on the unlicensed spectrum, which is T00’-T07’:
  • the UE since the UE does not know the exact transmission start time, the UE needs to try at the 8 positions (possible transmission start time) of T00'-T07' in each reference subframe period. Receive/demodulate data from the eNB.
  • Embodiment 7 The foregoing Embodiments 5 and 6 assume that the transmission needs to be aligned with the reference subframe boundary. For the assumption of the second embodiment, if the eNB determines that the unlicensed spectrum is available idle at time T0, if the transmission and the reference sub are not required. If the frame boundary is aligned, the transmission start time may be: at least one first time interval of the reference time interval of the reference subframe where the T0 time is located. At the time of the length of time, the first 'time length is the length of the TTI in the shortest subframe of the at least two subframes.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • the embodiment of the present invention further provides a transmitting end device.
  • the principle of the device is similar to the foregoing method. Therefore, the implementation of the device can be referred to the related description in the foregoing method embodiment. No longer.
  • a sender device including:
  • a channel monitoring module 121 configured to perform an LBT operation on an unlicensed spectrum
  • the sending module 122 is configured to: if the channel monitoring module determines that the unlicensed spectrum is available idle at the first moment, send data to the receiving end by using the unlicensed spectrum at the second moment, where the second moment
  • the third time is greater than or equal to the first time and less than or equal to the third time, the third time is a start time of the reference subframe after the first time, and the length of the reference subframe is at least two pre-configured One of the subframes has the same length, and the adjacent reference subframes are consecutive in time.
  • the length of the reference subframe is the same as the length of the longest subframe of the at least two subframes.
  • the third moment is a start time of the first reference subframe after the first moment.
  • the length of the at least two subframes is 2 K times the length of the first subframe, K is an integer greater than or equal to 0, and the second moment is a reference subframe where the first moment is located.
  • the ⁇ T is an integer multiple of the length of the first subframe after the start time of the ⁇ T, and the first subframe is the shortest subframe of the at least two subframes.
  • the ⁇ T is smaller than the reference subframe length.
  • the configuration of the first subframe for transmitting the data in the MCOT where the second time is located is the same as the configuration of the first subframe, where the first subframe is in the at least two subframes.
  • the configuration of the first subframe in the MCOT for transmitting the data is the same as the configuration of the maximum length subframe that can be accommodated between the second moment and the start time of the next reference subframe; or
  • the configuration of the first subframe in the MCOT for transmitting the data is the same as the configuration of the subframe used by the device on the licensed spectrum at the second moment; or
  • the configuration of the subframe combination for transmitting the data within the first reference subframe length in the MCOT is the same as the configuration of the subframe combination used by the device on the licensed spectrum at the second moment; or
  • the sending module before sending the data to the receiving end by using the unlicensed spectrum at the second moment, the sending module is further configured to:
  • first indication information carries configuration information of a first subframe for transmitting the data, and a length of the first reference subframe for transmitting the data.
  • Configuration information of a subframe combination, configuration information of a first subframe for transmitting the data within a reference subframe length, and configuration information of a subframe combination for transmitting the data within a reference subframe length At least one message.
  • the sending module is specifically configured to:
  • the second subframe is a subframe having the largest length among the at least two subframes, and N1 is an integer greater than or equal to 0;
  • the second time is a start time of one OFDM symbol in the set at least one orthogonal frequency division multiplexing OFDM symbol between the first time and the third time.
  • the sending module is further configured to: send, by using the unlicensed spectrum, the scheduling signaling corresponding to the data by using the unlicensed spectrum at a time when the second time passes ⁇ t, where ⁇ t is Set the time offset.
  • another type of transmitting device including: a transceiver 131, a processor 132, and a memory 133, wherein:
  • the processor 132 reads the program in the memory 133 and performs the following process:
  • the transceiver 131 is configured to send data to the receiving end through the unlicensed spectrum at the second moment, where
  • the second time is greater than or equal to the first time and less than or equal to the third time
  • the third time is a start time of the reference subframe after the first time
  • the length of the reference subframe is in advance
  • One of the configured at least one of the two subframes has the same length, and the adjacent reference subframes are consecutive in time;
  • the transceiver 131 is configured to receive and transmit data under the control of the processor 132.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor 132 and various circuits of the memory represented by the memory 133.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 131 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the processor 132 is responsible for managing the bus architecture and general processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 133 can store data used by the processor 132 when performing operations.
  • the processor 132 may be a central embedding device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex Complex Programmable Logic Device (CPLD).
  • CPU central embedding device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex Complex Programmable Logic Device
  • the processor 132 For the processing performed by the processor 132, refer to the related descriptions of the channel monitoring module 121 and the sending module 122 in the embodiment shown in FIG. 12, and details are not described herein again.
  • the embodiment of the present invention further provides a receiving end device.
  • the principle of solving the problem is similar to the foregoing method. Therefore, the implementation of the device can be referred to the related description in the foregoing method embodiment. No longer.
  • a receiving end device including:
  • the detecting module 141 is configured to detect, by using a configuration of at least one of the pre-configured at least one of the at least one subframes, the data sent by the sending end, in a transmission start time in one or more reference subframes on the unlicensed spectrum. ;
  • the processing module 142 is configured to receive data sent by the sending end according to the detection result of the detecting module 141;
  • the length of the reference subframe is the same as the length of one of the pre-configured at least two subframes, and the adjacent reference subframes are consecutive in time.
  • the length of the reference subframe is the same as the length of the longest subframe of the at least two subframes.
  • the interval length between two adjacent transmission start times is a total length of the set number of OFDM symbols
  • the length of the interval between the two adjacent transmission start times is the same as the length of the first subframe, and the first subframe is the shortest subframe among the at least two subframes;
  • the length of the interval between two adjacent transmission start times is the same as the length of the second subframe, and the second subframe is the longest subframe among the at least two subframes.
  • processing module is further configured to:
  • first indication information carries configuration information of a first subframe for transmitting the data, and is used for transmitting the data in a first reference subframe length
  • Configuration information of a subframe combination configuration information of a first subframe for transmitting the data within a reference subframe length, and configuration information of a subframe combination for transmitting the data within a reference subframe length At least one of the information;
  • the configuration of the first subframe for transmitting the data is the same as the configuration of the first subframe, where the first subframe is the shortest subframe among the at least two subframes;
  • the configuration of the first subframe for transmitting the data is the same as the configuration of the subframe used by the transmitting end determined by the device at the same time on the authorized spectrum;
  • the configuration of the subframe combination for transmitting the data within the first reference subframe length is the same as the configuration of the subframe combination used by the transmitting end determined by the device at the same time on the licensed spectrum;
  • the configuration of the subframe combination used for transmitting the data is the same as the configuration of the subframe combination used by the transmitting end determined by the device at the same time on the licensed spectrum.
  • the detecting module is specifically configured to:
  • processing module is further configured to:
  • the timing of the ⁇ t is received, and the scheduling signaling corresponding to the data is received, and ⁇ t is a set time offset.
  • another receiving device including: a transceiver 151, a processor 152, and a memory 153, wherein:
  • the processor 152 reads the program in the memory 153 and performs the following process:
  • the transceiver 151 is configured to receive and send data under the control of the processor 152;
  • the length of the reference subframe is the same as the length of one of the pre-configured at least two subframes, and the adjacent reference subframes are consecutive in time.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor 152 and various circuits of the memory represented by the memory 153.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 151 may be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the processor 152 is responsible for managing the bus architecture and general processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 153 can store data used by the processor 152 when performing operations.
  • the processor 152 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions are provided for implementing one or more processes and/or block diagrams in the flowchart The steps of the function specified in the box or in multiple boxes.

Abstract

本发明公开了一种非授权频谱上的数据传输方法和设备。方法包括:发送端在非授权频谱上进行LBT操作;若在第一时刻确定非授权频谱空闲可用,在第二时刻,通过非授权频谱,向接收端发送数据,第二时刻大于或等于第一时刻且小于或等于第三时刻,第三时刻为第一时刻之后的参考子帧的起始时刻,参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的参考子帧在时间上连续。从而在配置了多种不同长度子帧的情况下,实现了非授权频谱上的数据发送和接收,由于第二时刻大于或等于第一时刻且小于或等于第三时刻,而第三时刻为第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。

Description

一种非授权频谱上的数据传输方法和设备
本申请要求于2016年8月19日提交中国专利局、申请号为CN 201610698159.4、申请名称为“一种非授权频谱上的数据传输方法和设备”的中国专利申请的优先权,以及于2016年9月30日提交中国专利局、申请号为CN 201610874487.5、申请名称为“一种非授权频谱上的数据传输方法和设备”的中国专利申请的优先权,两件中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种非授权频谱上的数据传输方法和设备。
背景技术
随着无线数据业务量的急剧增大,授权频谱可能无法满足通信所需的频谱需求。3GPP分别在版本13(Release-13,简称R-13)和R-14中引入了授权频谱辅助接入(License Assisted Access,简称LAA)和增强的授权频谱辅助接入(enhanced LAA,简称eLAA)技术,即在非授权频谱上非独立(Non-standalone)的部署LTE/LTE-A系统,通过授权频谱的辅助来最大可能的利用非授权频谱资源。
在非授权频谱上部署的通信系统通常采用竞争的方式来使用/共享无线资源。站点(如电气电子工程师学会(Institute of Electrical and Electronics Engineers,简称IEEE)802.11协议框架下的站点(Station),包括接入点(AP)和非AP站点STA)间采用相同或相近的原则来公平的竞争和使用非授权频谱资源。一般地,站点在发送信号之前首先会监听非授权频谱是否空闲,比如通过非授权频谱上的接收功率的大小来判断其忙闲状态,如果接收功率小于一定门限,则认为非授权频谱处于空闲状态,可以在所述非授权频谱上发送信号,否则不发送信号。这种先监听后发送的机制被称作先监听后发送(Listen Before Talk,简称LBT)。LBT的引入避免了站点间在使用非授权频谱资源时的冲突,但也使得站点发送信号的起始时刻是不可预测的。会造成该发送信号的目的接收站点需要始终检测非授权频谱上是否有信号,这样才能确保在任何可能的时刻接收到属于自己的数据,即站点无法依照事先已知的定时间隔(如授权频谱上的长期演进(Long Term Evolution,简称LTE)/长期演进增强(LTE-Advanced,简称LTE-A)系统的子帧定时)来在特定时刻去取得接收同步。
LTE/LTE-A系统中,无线资源在时间维度上都是以无线帧(Radio Frame,简称帧)和子帧(Subframe)为单位进行分配和指示的。一个无线帧长度为10ms,包含10个1ms的子帧,每个子帧由多个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号组成。同时,每个子帧又被划分为2个0.5ms的时隙(Slot),帧结构如图1所示。LTE/LTE-A系统中仅允许有限的数据传输起始点,比如,传输仅能开始于子帧或时隙的起始时刻。在适用于LAA辅小区的子帧类型3中,一个子帧中含有14个OFDM符号,每个时隙包含7个OFDM符号,数据传输仅能开始于第1个或 第7个OFDM符号,即仅在时隙边界开始数据传输。具体如图2所示,如果基站(eNB)在T0时刻之前,即在子帧i起始时刻之前,成功执行完LBT,则其最早可以在T0时刻开始数据传输;如果eNB在T0-T1时刻之间,即在子帧i中第2个时隙起始时刻之前,成功执行完LBT,则其最早可以在T1时刻开始数据传输。其中,初始的半个子帧被称为部分子帧(partial subframe);如果eNB在T1-T2时刻之间,即在子帧i+1起始时刻之前,成功执行完LBT,则其最早可以在T2时刻开始数据传输。
可以预见,在未来的5G(5th-generation,第五代)NR(New Radio,新无线电)中,非授权频谱的使用也会是一个必不可少的满足业务需求、提升用户体验的技术手段。但由于5G NR标准中的帧结构定义可能会更为复杂,可能会定义长度可变的子帧结构(基于子载波间隔或所含OFDM符号数),且允许不同长度的子帧间的共存(相同时间段内的不同的频带上,或不同时间段的相同频带上)。因此,5G NR系统中,LBT之后的起始时刻无法沿用LTE/LTE-A系统的方案。5G NR系统中,如何在非授权频谱上传输数据,目前还没有解决方案。
发明内容
本发明实施例提供了一种非授权频谱上的数据传输方法和设备,从而提供了一种5G NR系统中在非授权频谱上传输数据的实现方案。
第一方面,提供了一种非授权频谱上的数据发送方法,所述方法包括:
发送端在非授权频谱上进行LBT操作;
若在第一时刻确定所述非授权频谱空闲可用,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于所述第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
本发明实施例,在配置了多种不同长度子帧的情况下,实现了非授权频谱上的数据发送,由于发送端在第二时刻通过非授权频谱发送数据,而所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。
为了兼顾预先配置的每种子帧的长度,一种可能的实现方式中,所述参考子帧的长度与所述至少两种子帧中最长的子帧的长度相同。
为了缩短LBT之后至数据传输起始时刻之间的等待时间,一种可能的实现方式中:
所述第三时刻为所述第一时刻之后的第一个参考子帧的起始时刻。
为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,一种可能的实现方式中:
所述至少两种子帧的长度均为第一子帧的长度的2K倍,K为大于或等于0的整数,所述第二时刻为所述第一时刻所在的参考子帧的起始时刻之后经过ΔT的时刻,所述ΔT为所述第一子帧的长度的整数倍,所述第一子帧为所述至少两种子帧中长度最短的子帧。
为了进一步缩短LBT之后至数据传输起始时刻之间的等待时间,一种可能的实现 方式中:所述ΔT小于所述参考子帧长度。
本发明实施例中,为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,缩短了LBT之后至数据传输起始时刻之间的时间间隔,所述发送端在所述第二时刻,采用固定配置的子帧,通过所述非授权频谱,向接收端发送数据。具体包括以下五种可能的实现方式:
第一种可能的方式中,所述第二时刻所在的MCOT内第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧。
第二种可能的方式中,所述MCOT内第一个用于传输所述数据的子帧的配置与所述第二时刻与下一个参考子帧的起始时刻之间能够容纳的最大长度的子帧的配置相同。
第三种可能的方式中,所述MCOT内第一个用于传输所述数据的子帧的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧的配置相同。
第四种可能的方式中,所述MCOT内第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧组合的配置相同。
第五种可能的方式中,所述MCOT内所述第二时刻与所述第三时刻之间用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻通在授权频谱上使用的子帧组合的配置相同。
本发明实施例中,为了降低接收端数据检测的复杂度,一种可能的实施方式中,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据之前,所述方法还包括:
所述发送端向所述接收端发送第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息。以使所述接收端能够获知到所述发送端发送数据所使用的子帧或子帧组合的配置信息。
本发明实施例中,为了降低接收端数据检测的复杂度,一种可能的实施方式中,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据,具体为:
所述发送端在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1个所述至少两个子帧中除所述第二子帧之外的其他子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1为大于或等于0的整数;
和/或
所述发送端在所述第二时刻所在的最大信道占用时间MCOT内,使用M个连续的第二子帧和N2个所述第二子帧的部分子帧,向所述接收端发送数据,N2为大于或等于0的整数。
本发明实施例中,考虑到5G NR中可能针对不同的用户或者用户组设计不同时频域位置(时频域栅格)的调度信令,且解调所述调度信令并非一定要从子帧边界开始接收,即用户或用户组可以在子帧中间的某一时刻开始接收,同样能正确解调所需的调度信令或数据,基于此,一种可能的实施方式中,所述发送端在第二时刻,通过所 述非授权频谱,向接收端发送数据,还包括:
所述发送端在所述第二时刻之后经过Δt的时刻,通过所述非授权频谱,向所述接收端发送所述数据对应的调度信令,Δt为设定时间偏移量。
相应的,接收端只需要在传输起始时刻基础上添加设定的时间偏移量(Δt),即可同步接收到所需调度信令或数据。
本发明实施例中,若要求发送端的数据传输与OFDM符号边界对齐,一种可能的实施方式中:
所述第二时刻为所述第一时刻与所述第三时刻之间的设定的至少一个正交频分复用OFDM符号中的一个OFDM符号的起始时刻。
为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,一种可能的实施方式中:
所述第二时刻为所述第一时刻与所述第三时刻之间的设定的至少一个OFDM符号中的一个OFDM符号的起始时刻。
第二方面,提供了一种非授权频谱上的数据接收方法,所述方法包括:
接收端在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据;
所述接收端根据检测结果,接收发送端发送的数据;
其中,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
本发明实施例,在配置了多种不同长度子帧的情况下,实现了非授权频谱上的数据接收,由于发送端在第二时刻通过非授权频谱发送数据,而所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。
本发明实施例中,接收端在非授权频谱上的多个参考子帧中的传输起始时刻,检测所述发送端发送的数据时,该多个参考子帧可以是连续的多个参考子帧,也可以是不连续的多个参考子帧。
本发明实施例中,所述参考子帧的长度的可能实现方式请参见第一方面中的相关描述,此处不再赘述。
本发明实施例中,接收端所检测的相邻的两个传输起始时刻的间隔长度的可能实现方式包括:
相邻的两个传输起始时刻的间隔长度为设定数目的OFDM符号的总长度;
或者
相邻的两个传输起始时刻的间隔长度与第一子帧的长度相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;
或者
相邻的两个传输起始时刻的间隔长度与第二子帧的长度相同,所述第二子帧为所述至少两种子帧中最长的子帧。
本发明实施例中,为了降低接收端数据检测的复杂度,一种可能的实施方式中,所述方法还包括:
所述接收端接收所述发送端发送的第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息;
所述接收端根据所述第一指示信息,确定所述发送端发送所述数据时使用的子帧或子帧组合。
本发明实施例中,用于传输所述数据的子帧或子帧组合的配置可能的实现方式包括:
第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;
或者
第一个用于传输所述数据的子帧的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧的配置相同;
或者
第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同;
或者
用于传输所述数据的子帧组合的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同。
本发明实施例中,为了降低接收端数据检测的复杂度,一种可能的实施方式中,所述接收端在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据,包括:
所述接收端在所述参考子帧中的传输起始时刻,采用第一子帧的配置,检测所述发送端发送的数据,所述第一子帧为所述至少两种子帧中长度最短的子帧;
和/或
所述接收端在所述参考子帧中的传输起始时刻,采用第二子帧的配置,检测所述发送端发送的数据,所述第二子帧为所述至少两种子帧中最长的子帧;
和/或
所述接收端在所述参考子帧中的传输起始时刻,分别采用所述至少两种子帧中的每种子帧的配置,检测所述发送端发送的数据。
本发明实施例中,一种可能的实施方式中,所述方法还包括:
所述接收端在任一可能的传输起始时刻检测到所述发送端发送的数据后,经过Δt的时刻,接收所述数据对应的调度信令,Δt为设定时间偏移量。
第三方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第一方面所述的方法。
第四方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第二方面所述的方法。
第五方面,提供了一种发送端设备,所述设备包括用于执行第一方面中的方法的 模块。
第六方面,提供了一种接收端设备,所述设备包括用于执行第二方面中的方法的模块。
第七方面,提供了一种发送端设备,包括:处理器、收发机、以及存储器,其中:所述处理器读取所述存储器中的程序,执行第一方面所述的方法。
第八方面,提供了一种接收端设备,包括:处理器、收发机、以及存储器,其中:所述处理器读取所述存储器中的程序,执行第二方面所述的方法。
本发明实施例提供了一种5G NR系统中,在配置了多种不同长度子帧的情况下,非授权频谱上的数据发送和接收的实现方案,由于发送端在第二时刻通过非授权频谱发送数据,而所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。
附图说明
图1为LTE/LTE-A系统中的无线帧的结构示意图;
图2为LAA可能的传输起始时刻的示意图;
图3A为本发明实施例提供的一种5G NR系统中的子帧结构示意图;
图3B为本发明实施例提供的另一种5G NR系统中的子帧结构示意图;
图4A为本发明实施例提供的一种5G NR系统中子帧与TTI之间的关系的示意图;
图4B为本发明实施例提供的另一种5G NR系统中子帧与TTI之间的关系的示意图;
图5为本发明实施例提供的一种非授权频谱上的数据发送方法的流程示意图;
图6为本发明实施例提供的一种非授权频谱上的数据接收方法的流程示意图;
图7为本发明实施例一中提供的一种传输起始时刻及传输子帧的示意图;
图8为本发明实施例一中提供的一种数据接收时刻及接收子帧的示意图;
图9为本发明实施例二中提供的一种传输起始时刻及传输子帧的示意图;
图10为本发明实施例三中提供的一种传输起始时刻及传输符号的示意图;
图11为本发明实施例四中提供的一种传输子帧配置示意图;
图12为本发明实施例提供的一种发送端设备的示意图;
图13为本发明实施例提供的另一发送端设备的示意图;
图14为本发明实施例提供的一种接收端设备的示意图;
图15为本发明实施例提供的另一种接收端设备的示意图;
图16是本发明实施例提供的一种TTI的配置示意图;
图17是本发明实施例提供的另一种TTI的配置示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中的,非授权频谱(也称为非授权型频谱或免许可型频谱)可以理解为开放给不定人数的独立用户的无需注册或者单独允许即可直接使用的物理频段。对于非授权频谱,无需事先取得使用授权,就可以被符合使用规则(比如:最大电平数值、带宽限制与工作周期)的任何类型终端设备使用。应用广泛的工业科学及医疗(Industrial Scientific Medical,简称ISM)频带,就是无须授权、任何人均可使用的非授权型物理频段;
授权频谱(也称为授权型频谱或许可型频谱)为需要获得专用使用权、授权或许可才可以使用的物理频段。传统上,用于蜂窝移动通信的无线频谱资源均位于授权型物理频段之内,其中,政府通信监管部门为移动通信基础网络运营商分配专用物理频段的使用权,以提供移动通信及宽带数据接入服务。
在5G NR系统中,帧和子帧的概念可能还会存在,但其定义可能会不同。比如,帧的长度可能还会与LTE保持一致,固定为10ms,但当子帧长度可变时,一个帧中包含的子帧数目就不再固定。子帧长度可以随着子载波间隔和/或OFDM符号长度而变化,假定子帧中包含相同的OFDM符号个数,且循环前缀(Cyclic Prefix,CP)长度与符号长度同比例变化,如图3A所示,15KHz的子载波间隔对应1ms长度的子帧,而30KHz的子载波间隔对应0.5ms长度的子帧。子帧长度也可以随着所包含的OFDM符号个数而变化,假定子载波间隔、OFDM符号长度和CP长度均不变,如图3B所示,若14个OFDM符号组成一个1ms长度的子帧,则7个OFDM符号组成一个0.5ms长度的子帧。再者,相同的子载波间隔和OFDM符号长度下,还可能由于不同的CP长度而造成同样的1ms长度的子帧内所包含的OFDM符号数目也会有所不同。当然,子帧长度也可以随着OFDM符号数目和子载波间隔的同时变化而变化。
另外,在LTE系统中,传输时间间隔(Transmission Time Interval,TTI)是指传输块(Transport Block)到达传输信道(Transport Channel,相对于物理信道和逻辑信道而言)的时间间隔,对于不同业务,其在对应传输信道上的TTI也是不同的。比如,广播信道的TTI是40ms,而下行共享信道的TTI可以是1ms,等同于一个子帧的长度。本发明实施例中所涉及的TTI可以是各传输信道上所支持的最小TTI,狭义上可以将最小TTI理解为物理层时间域上的最小调度时间单位。在5G NR系统中,存在两种可能的情况:1)一个子帧中包含一个或多个TTI,如图4A所示;2)一个TTI中包含一个或多个子帧,如图4B所示。如果eNB只能在TTI的起始时刻开始传输数据,则第一种情况中的eNB在一个子帧中有多个可能的传输起始时刻,第二种情况中的eNB在多个子帧中只有一个可能的传输起始时刻。
本发明实施例中的发送端可以是网络侧节点(如基站),也可以是用户设备(如终端)。本发明实施例中的接收端可以是网络侧节点(如基站),也可以是用户设备(如终端)。
本发明实施例中的参考子帧表示的是一种时间度量的参考间隔基准,如最小调度间隔,最小下行控制信令时间间隔,以便描述各种传输信道、参考信号、周期性信令等的时间关系。对于一个物理信道上的传输,其定时及时序关系的描述以参考子帧为基准。同时,当发送端或接收端同时在两个或多个不同物理信道上进行发送或接收时(如两个或多个授权频谱信道同时使用,或授权频谱和非授权频谱同时使用,或两个或多个非授权频谱信道同时使用),或当发送端或接收端同时在一个物理信道上的两个或多个不同频域子信道上进 行发送或接收时,为了便利于协调的收发,也会要求不同信道或子信道上的传输在时间维度上保持时序对齐(比如,不同信道或子信道上的传输完全同步且采用相同的帧结构,或不同信道或子信道上子帧结构不同但每1ms处的子帧边界或符号边界是对齐的)。此时,两个或多个信道或子信道上的传输,可以参照一个共同的参考子帧作为定时及时序关系的描述基准。本发明实施例中的参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
一种可能的实施方式中,所述参考子帧的长度与预先配置的至少两种子帧中最长的子帧的长度相同。
下面结合说明书附图对本发明实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
图5所示实施例中,提供了一种非授权频谱上的数据发送方法,包括:
S51、发送端在非授权频谱上进行LBT操作;
S52、若在第一时刻确定所述非授权频谱空闲可用,发送端在第二时刻,通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻。
本发明实施例中,所述第三时刻可以是所述第一时刻之后的任一参考子帧的起始时刻。为了避免长时间不发送数据导致非授权频谱被其他发送端占用,所述第三时刻为所述第一时刻之后的第一个参考子帧的起始时刻。
本发明实施例中,发送端在第一时刻确定非授权频谱空闲可用后,在第二时刻,通过非授权频谱,向接收端发送数据,从而提供了5G NR系统中,在配置了多种不同长度子帧的情况下,非授权频谱上的数据发送的实现方案,由于发送端在第二时刻通过非授权频谱发送数据,而所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。
图6所示实施例中,提供了一种非授权频谱上的数据接收方法,包括:
S61、接收端在非授权频谱上的一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测发送端发送的数据;
S62、所述接收端根据检测结果,接收所述发送端发送的数据。
本发明实施例中,接收端在非授权频谱上的多个参考子帧中的传输起始时刻,检测所述发送端发送的数据时,该多个参考子帧可以是连续的多个参考子帧,也可以是不连续的多个参考子帧。
本发明实施例中,接收端在非授权频谱上的一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测发送端发送的数据,从而提供了5G NR系统中,在配置了多种不同长度子帧的情况下,非授权频谱上的数据发送和接收的实现方案,由于发送端在第二时刻通过非授权频谱发送数据,而所述第二时刻大于或等于第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,缩短了LBT之后至数据传输起始时刻之间的等待时间,提高了信道利用率。
下面通过四个具体实施例,对本发明实施例提供的非授权频谱上的数据传输方法进行详细说明。以下实施例中发送端均以eNB为例,接收端均以UE为例进行说明,其他情况 类似,此处不再一一举例说明。
实施例一、本实施例中,发送端的数据传输需要与参考子帧边界对齐。发送端和接收端需要彼此明确LBT之后可能的数据发送和数据接收的起始时刻,以保证收发双方的信道同步,从而完成通信交互。在配置了至少两种子帧,即子帧有多种可能的配置(如时间长度)时,对于发送端,在确定非授权频谱空闲可用后,可以根据自身的调度来选择本次传输所采用的子帧配置;对于接收端,在非授权频谱上每个可能的传输起始时刻,按照所述至少两种子帧中的每种子帧配置,进行检测。
如图7所示,假定预先配置的子帧长度有三种取值,分别为0.25ms,0.5ms和1ms。以所配置的子帧中长度最大值1ms作为时间轴上的参考子帧。假定非授权频谱上的传输需要保持与参考子帧边界的对齐,则:
若eNB在T0时刻确定所述非授权频谱空闲可用,则eNB在非授权频谱上可能的传输起始时刻有四个,分别是T1、T2、T3和T4。进一步包括以下四种可能的传输方式:
1)若eNB在T1时刻开始传输,则在T1-T4时刻之间,用于传输的子帧组合有3种。其中,第一种组合为eNB从T1时刻开始依次使用三个0.25ms的子帧进行数据传输,如图7中的a所示,第二种组合为eNB从T1时刻开始依次使用一个0.25ms的子帧和一个0.5ms的子帧进行数据传输,如图7中的b所示,第三种组合为eNB从T1时刻开始依次使用一个0.5ms的子帧和一个0.25ms的子帧进行数据传输,如图7中的c所示。eNB可以根据自身的调度,来选择在T1-T4时刻之间传输所使用的子帧配置。
2)若eNB在T2时刻开始传输,则在T2-T4时刻之间,用于传输的子帧组合有2种。其中,第一种组合为eNB从T2时刻开始依次使用两个0.25ms的子帧进行数据传输,第二种组合为eNB从T2时刻开始使用一个0.5ms的子帧进行数据传输。eNB可以根据自身的调度,来选择在T2-T4时刻之间传输所使用的子帧配置。
3)若eNB在T3时刻开始传输,则在T3-T4时刻之间,用于传输的子帧组合只有1种,即eNB从T2时刻开始使用一个0.25ms的子帧进行数据传输。
4)若eNB在T4时刻开始传输,则在一个参考子帧周期内,用于传输的子帧组合有6种,如图7中d所示,其中,第一种组合为eNB从T4时刻开始使用一个1ms的子帧进行数据传输,第二种组合为eNB从T4时刻开始依次使用四个0.25ms的子帧进行数据传输,第三种组合为eNB从T4时刻开始依次使用两个0.25ms的子帧和一个0.5ms的子帧进行数据传输,第四种组合为eNB从T4时刻开始依次使用一个0.25ms的子帧、一个0.5ms的子帧和一个0.25ms的子帧进行数据传输,第五种组合为eNB从T4时刻开始依次使用两个0.5ms的子帧进行数据传输,第六种组合为eNB从T4时刻开始依次使用一个0.5ms的子帧和两个0.25ms的子帧进行数据传输。eNB可以根据自身的调度,来选择在一个参考子帧周期内传输所使用的子帧配置。
相应地,由于UE并不知道T0时刻的位置,因此,UE在每个参考子帧周期内,均需要在t0-t3这四个位置分别去尝试接收/解调来自于eNB的数据。假定用于传输的第一个子帧的解调与其后续子帧的配置无关,则如图8所示,在t0时刻,即参考子帧边界,UE需要按照3种可能的子帧长度配置(0.25ms、0.5ms和1ms)来尝试接收/解调;在t1和t2时刻,UE需要按照2种可能的子帧长度配置(0.25ms和0.5ms)来尝试接收/解调;在t3时刻,UE只需要按照1种可能的子帧长度配置(0.25ms)来尝试接收/解调。若假定解调第 一个传输子帧时需要联合考虑其所在的参考子帧周期内的子帧组合形式,则同样如图8所示,在t0时刻,即参考子帧边界,UE需要按照6种可能的子帧组合来尝试接收/解调;在t1时刻,UE需要按照3种可能子帧组合来尝试接收/解调;在t2时刻,UE需要按照2种可能的子帧组合来尝试接收/解调;在t3时刻,UE只需要按照1种可能的子帧组合来尝试接收/解调。
一种可能的实现方式中,所述至少两种子帧的长度均为第一子帧的长度的2K倍,K为大于或等于0的整数,所述第一子帧为所述至少两种子帧中长度最短的子帧。
该方式中,接收端以所述至少两种子帧中长度最短的子帧为间隔,确定每个可能的传输起始时刻。
该方式中,为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,一种可能的实现方式,所述第二时刻为所述第一时刻所在的参考子帧的起始时刻之后经过△T的时刻,所述△T为所述第一子帧的长度的整数倍,所述第一子帧为所述至少两种子帧中长度最短的子帧。
一种可能的实现方式,为了缩短了LBT之后至数据传输起始时刻之间的时间间隔,所述△T小于所述参考子帧长度。
本实施例中,为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,缩短了LBT之后至数据传输起始时刻之间的时间间隔,所述发送端在所述第二时刻,采用固定配置的子帧,通过所述非授权频谱,向接收端发送数据。
一种可能的方式,所述第二时刻所在的MCOT内第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧。
一种可能的方式,所述MCOT内第一个用于传输所述数据的子帧的配置与所述第二时刻与下一个参考子帧的起始时刻之间能够容纳的最大长度的子帧的配置相同。
实施例二、本实施例与实施例一的不同之处在于,本实施例中不要求发送端的数据传输与参考子帧边界对齐。
本实施例中,传输起始时刻可以是:T0时刻所在的参考子帧的起始时刻间隔至少一个第一时间长度的时刻,所述第一时间长度为所述至少两种子帧中长度最短的子帧的长度。
图9所示的实施例中,eNB可能的传输起始时刻为T1,以及在传输开始后的每一个与参考子帧等长的间隔内,用于传输的子帧组合有6种,如图9所示,eNB在传输起始时刻,可能的用于传输的子帧配置都有3种,eNB可以根据自身的调度,选择所使用的子帧配置。
实施例三、本实施例中,要求发送端的数据传输与正交频分复用(Orthogonal Frequency Division Multiplex,简称OFDM)符号边界对齐。
相应的,所述第二时刻为所述第一时刻与所述第三时刻之间包含的OFDM符号中的任一OFDM符号的起始时刻。
为了降低接收端的数据检测的复杂度,减少接收端尝试接收的次数,所述第二时刻为所述第一时刻与所述第三时刻之间的设定的至少一个OFDM符号中的一个OFDM符号的起始时刻。
举例说明,如果5G NR与LTE系统一致,也采用15KHz的子载波以及维持1ms内14个符号(但不表示子帧内部设计完全相同),则为了协调LTE和5G NR双系统的共存,会要求5G NR传输的符号边界与LTE常规CP时的符号边界是对齐的。在常规CP下,一个 1ms的LTE子帧包括2个0.5ms时隙,每时隙包括7个OFDM符号,每时隙中的第一个OFDM符号的CP长度(即一个子帧中的第0个和第7个OFDM符号)与其余6个OFDM符号不同,长度略长一些。
如果要求NR与LTE的OFDM符号边界对齐,则在一个参考子帧周期内,NR的传输起始时刻共有14中可能的位置(对应于14个OFDM符号的起始时刻)。特别地,NR在1ms的时间间隔内的两个长CP的OFDM符号的位置(即在14个OFDM符号中的序号)会随着NR传输起始时刻与参考子帧的偏移的不同而变化,共计有7种情况,如图10所示。这要求NR能够支持长CP的OFDM符号位置在一个参考子帧周期内滑动放置。
为了减少UE的检测复杂度,可以预先约定有限个可能的起始位置,例如,传输起始时刻为参考子帧中的第0个、第3个、第7个和第10个OFDM符号的起始时刻。
实施例四、发送端在所述第二时刻所在的最大信道占用时间MCOT内,优先以固定长度的子帧配置来填充该MCOT。
一种可能的实现方式,所述发送端在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1个所述至少两个子帧中除所述第二子帧之外的其他子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1为大于或等于0的整数。
另一种可能的实现方式中,所述发送端在所述第二时刻所在的最大信道占用时间MCOT内,使用M个连续的第二子帧和N2个所述第二子帧的部分子帧,向所述接收端发送数据,N2为大于或等于0的整数。
再一种可能的实现方式中,所述发送端在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1’个所述至少两个子帧中除所述第二子帧之外的其他子帧以及N2’个所述第二子帧的部分子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1’和N2’为大于或等于0的整数。
本实施例中,若MCOT的长度为第二子帧长度的整数倍,则N1、N2、N1’和N2’均为0。
举例说明,如图11所示,假定预先配置的子帧长度有三种取值,分别为0.25ms,0.5ms和1ms,固定长度为1ms子帧配置的长度,则eNB从MCOT起始时刻,开始采用长度为1ms的子帧配置进行传输。若MCOT时长不是1ms的整数倍,则可以用1ms子帧为基底设计的部分子帧来填充,或者用0.5ms子帧、0.25ms子帧或其不同配置的子帧或子帧组合来填充。
基于上述任一实施例,为了降低接收端数据检测的复杂度,所述发送端在所述第二时刻,通过所述非授权频谱,向接收端发送数据之前,还包括:
所述发送端向所述接收端发送第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息。
具体的,在传输数据之前,通过控制信令或广播消息,通知接收端下一次MCOT中与子帧配置/组合相关的信息。例如,所述信息包含MCOT起始第一子帧的配置。又如,假定最多有P种可能的子帧配置和/或Q种可能的子帧组合,则可以用
Figure PCTCN2017092632-appb-000001
Figure PCTCN2017092632-appb-000002
Figure PCTCN2017092632-appb-000003
个比特信息,表示不同的子帧配置或者子帧组合。其中,
Figure PCTCN2017092632-appb-000004
表示向上取整。
可选的,所述控制信令可以是L1(层1物理层)信令,L2(层2数据链路层)信令(主要是媒体接入控制(Media Access Control,简称MAC)层信令)和L3(层3)信令(如无线资源控制(Radio Resource Control,简称RRC)信令中的一种或多种的组合。
可选的,所述广播消息可以通过公共广播信道、专用广播信道、或者发现参考信号(Discovery Reference Signal,简称DRS)中包含的广播信息中下发。
可选的,所述控制信令或和广播消息可以在非授权频谱上的所述第二时刻之前的一个MCOT中下发,也可以在所述第二时刻之前的一次DRS传输中下发,还可以在所述第二时刻之前的授权频谱上下发。
基于上述任一实施例,为了降低信令开销,可以采用默认指示的方式隐含通知接收端所述第二时刻所在的MCOT内所使用的子帧配置和/或子帧组合。
一种可能的实现方式中,所述MCOT内第一个用于传输所述数据的子帧的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧的配置相同。
一种可能的实现方式中,所述MCOT内第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧组合的配置相同。
一种可能的实现方式中,所述MCOT内所述第二时刻与所述第三时刻之间用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧组合的配置相同。
基于上述任一实施例,一种可能的实施方式中,所述发送端在所述第二时刻,通过所述非授权频谱,向接收端发送数据,还包括:
所述发送端在所述第二时刻之后经过△t的时刻,通过所述非授权频谱,向所述接收端发送所述数据对应的调度信令,△t为设定时间偏移量。
具体的,考虑到5G NR中可能针对不同的用户或者用户组设计不同时频域位置(时频域栅格)的调度信令,且解调所述调度信令并非一定要从子帧边界开始接收,即用户或用户组可以在子帧中间的某一时刻开始接收,同样能正确解调所需的调度信令或数据。此时,接收端只需要在传输起始时刻基础上添加设定的时间偏移量(△t),即可同步接收到所需调度信令或数据。所述△t可以通过控制信令或广播消息中发送给接收端。
上述实施例中,存在传输起始时刻之间的最小间隔与所述至少两种子帧中长度最短的子帧的长度相同的情形,且传输起始时刻与子帧边界是对齐的,也即假设一个子帧中包含一个TTI。对于一个子帧中包含多个TTI的情况,传输起始时刻不仅可以发生在子帧边界(此时可以认为子帧边界与TTI边界重合),还可以发生在子帧中的TTI边界。
实施例五、以图16为例(其中,竖实线为子帧和TTI边界,竖虚线为与子帧边界不重叠的TTI边界,竖实线与虚实线均代表可能的传输起始时刻)。预先配置的子帧长度有三种取值,分别为0.25ms,0.5ms和1ms。TTI间隔为0.125ms,即三种长度的子帧中分别包含2个、4个和8个TTIs。以所配置的子帧中长度最大值1ms作为时间轴上的参考子帧,假定非授权频谱上的传输需要与参考子帧边界对齐(即参考子帧边界不能处于用于传输的子帧或/和TTI中间,而应该与用于传输的子帧或/和TTI边界重合)。仍以发送端为eNB为例,eNB在非授权频谱上可能的传输起始时刻有8种情形,分别是T00-T07:
1)若eNB在T00时刻开始传输,即在参考子帧边界开始传输,则在一个参考子帧周期内(T00-T08),用于传输的子帧组合有6种,与图7中d中所示相同;
2)若eNB在T01、T02或T03时刻开始传输,在当前参考子帧周期内(T01-T08,T02-T08、或T03-T08),用于传输的子帧或和TTI组合均有6种;
3)若eNB在T04或T05时刻开始传输,在当前参考子帧周期内(T04-T08、或T05-T08),用于传输的子帧或和TTI组合有4种;
4)若eNB在T06或T07时刻开始传输,在当前参考子帧周期内(T06-T08、或T07-T08),用于传输的子帧或和TTI组合有3种。
相应地,由于UE并不知道准确的传输起始时刻,因此,UE在每个参考子帧周期内,最多需要在T00-T07这8个位置(可能的传输起始时刻)分别去尝试接收/解调来自于eNB的数据。
实施例六、与实施例五不同的是,本实施例中假定子帧中所包含的TTI个数固定为2,即TTI长度等于子帧长度的一半。对应于三种长度取值的子帧,其TTI长度分别为0.125ms、0.25ms和0.5ms。以图17为例(其中,竖实线为子帧和TTI边界,竖虚线为与子帧边界不重叠的TTI边界,竖实线与虚实线均代表可能的传输起始时刻),以所配置的子帧中长度最大值1ms作为时间轴上的参考子帧,假定非授权频谱上的传输需要保持与参考子帧边界的对齐。则eNB在非授权频谱上可能的传输起始时刻有8种情形,分别是T00’-T07’:
1)若eNB在T00’时刻开始传输,即在参考子帧边界开始传输,则在一个参考子帧周期内(T00’-T08’),用于传输的子帧组合有6种,与实施例五中T00时刻的情形相同;
2)若eNB在T01’时刻开始传输,在当前参考子帧周期内(T01’-T08’),用于传输的子帧或和TTI组合有3种;
3)若eNB在T02’时刻开始传输,在当前参考子帧周期内(T02’-T08’),用于传输的子帧或和TTI组合有5种;
4)若eNB在T03’时刻开始传输,在当前参考子帧周期内(T03’-T08’),用于传输的子帧或和TTI组合有2种;
5)若eNB在T04’时刻开始传输,在当前参考子帧周期内(T04’-T08’),用于传输的子帧或和TTI组合有4种;
6)若eNB在T05’时刻开始传输,在当前参考子帧周期内(T05’-T08’),用于传输的子帧或和TTI组合有1种;
7)若eNB在T06’时刻开始传输,在当前参考子帧周期内(T06’-T08’),用于传输的子帧或和TTI组合有2种;
8)若eNB在T07’时刻开始传输,在当前参考子帧周期内(T07’-T08’),用于传输的子帧或和TTI组合有1种。
相应地,由于UE并不知道准确的传输起始时刻,因此,UE在每个参考子帧周期内,最多需要在T00’-T07’这8个位置(可能的传输起始时刻)分别去尝试接收/解调来自于eNB的数据。
实施例七、上述实施例五和六是假定传输需要与参考子帧边界对齐,对于类似实施例二的假设,若eNB在T0时刻确定所述非授权频谱空闲可用,如果不要求传输与参考子帧边界对齐,则传输起始时刻可以是:T0时刻所在的参考子帧的起始时刻间隔至少一个第一’ 时间长度的时刻,所述第一’时间长度为所述至少两种子帧中长度最短的子帧中的TTI的长度。假定eNB在T1时刻开始传输,则在传输开始后的每一个与参考子帧等长的时间间隔内,用于传输的子帧或/和TTI组合都有6种,可以参考图16中T00时刻或图17中T00’时刻所起始的一个参考子帧间隔内的子帧或/和TTI组合。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一发明构思,本发明实施例中还提供了一种发送端设备,由于该设备解决问题的原理与上述方法相似,因此该设备的实施可以参见上述方法实施例中的相关描述,重复之处不再赘述。
图12所示实施例中,提供了一种发送端设备,包括:
信道监听模块121,用于在非授权频谱上进行LBT操作;
发送模块122,用于若所述信道监听模块在第一时刻确定所述非授权频谱空闲可用,在第二时刻,通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于所述第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
可选的,所述参考子帧的长度与所述至少两种子帧中长度最长的子帧的长度相同。
可选的,所述第三时刻为所述第一时刻之后的第一个参考子帧的起始时刻。
可选的,所述至少两种子帧的长度均为第一子帧的长度的2K倍,K为大于或等于0的整数,所述第二时刻为所述第一时刻所在的参考子帧的起始时刻之后经过△T的时刻,所述△T为所述第一子帧的长度的整数倍,所述第一子帧为所述至少两种子帧中长度最短的子帧。
可选的,所述△T小于所述参考子帧长度。
可选的,所述第二时刻所在的MCOT内第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
所述MCOT内第一个用于传输所述数据的子帧的配置与所述第二时刻与下一个参考子帧的起始时刻之间能够容纳的最大长度的子帧的配置相同;或者
所述MCOT内第一个用于传输所述数据的子帧的配置,与所述设备在所述第二时刻在授权频谱上使用的子帧的配置相同;或者
所述MCOT内第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述设备在所述第二时刻在授权频谱上使用的子帧组合的配置相同;或者
所述MCOT内所述第二时刻与所述第三时刻之间用于传输所述数据的子帧组合的配置,与所述设备在所述第二时刻通在授权频谱上使用的子帧组合的配置相同。
可选的,所述发送模块在第二时刻,通过所述非授权频谱,向接收端发送数据之前,还用于:
向所述接收端发送第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息。
可选的,所述发送模块具体用于:
在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1个所述至少两个子帧中除所述第二子帧之外的其他子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1为大于或等于0的整数;
和/或
在所述第二时刻所在的最大信道占用时间MCOT内,使用M个连续的第二子帧和N2个所述第二子帧的部分子帧,向所述接收端发送数据,N2为大于或等于0的整数。
可选的,所述第二时刻为所述第一时刻与所述第三时刻之间的设定的至少一个正交频分复用OFDM符号中的一个OFDM符号的起始时刻。
可选的,所述发送模块还用于:在所述第二时刻之后经过△t的时刻,通过所述非授权频谱,向所述接收端发送所述数据对应的调度信令,△t为设定时间偏移量。
图13所示实施例中,提供了另一种发送端设备,包括:收发机131、处理器132、以及存储器133,其中:
所述处理器132读取所述存储器133中的程序,执行如下过程:
在非授权频谱上进行LBT操作;若在第一时刻确定所述非授权频谱空闲可用,在第二时刻,控制所述收发机131通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于所述第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续;
所述收发机131,用于在所述处理器132的控制下接收和发送数据。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由所述处理器132代表的一个或多个处理器和所述存储器133代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机131可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。所述处理器132负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。所述存储器133可以存储所述处理器132在执行操作时所使用的数据。
可选的,所述处理器132可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,简称CPLD)。
本发明实施例中,所述处理器132所执行的处理具体参见图12所示实施例中信道监听模块121和发送模块122的相关描述,此处不再赘述。
基于同一发明构思,本发明实施例中还提供了一种接收端设备,由于该设备解决问题的原理与上述方法相似,因此该设备的实施可以参见上述方法实施例中的相关描述,重复之处不再赘述。
图14所示实施例中,提供了一种接收端设备,包括:
检测模块141,用于在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据;
处理模块142,用于根据所述检测模块141的检测结果,接收发送端发送的数据;
其中,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
可选的,所述参考子帧的长度与所述至少两种子帧中长度最长的子帧的长度相同。
可选的,相邻的两个传输起始时刻的间隔长度为设定数目的OFDM符号的总长度;
或者
相邻的两个传输起始时刻的间隔长度与第一子帧的长度相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;
或者
相邻的两个传输起始时刻的间隔长度与第二子帧的长度相同,所述第二子帧为所述至少两种子帧中最长的子帧。
可选的,所述处理模块还用于:
接收所述发送端发送的第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息;
根据所述第一指示信息,确定所述发送端发送所述数据时使用的子帧或子帧组合。
可选的,第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;
或者
第一个用于传输所述数据的子帧的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧的配置相同;
或者
第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同;或者
用于传输所述数据的子帧组合的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同。
可选的,所述检测模块具体用于:
在所述参考子帧中的每个传输起始时刻,采用第一子帧的配置,检测所述发送端发送的数据,所述第一子帧为所述至少两种子帧中长度最短的子帧;
和/或
在所述参考子帧中的每个传输起始时刻,采用第二子帧的配置,检测所述发送端发送的数据,所述第二子帧为所述至少两种子帧中最长的子帧;
和/或
在所述参考子帧中的每个传输起始时刻,分别采用所述至少两种子帧中的每种子帧的配置,检测所述发送端发送的数据。
可选的,所述处理模块还用于:
在任一可能的传输起始时刻检测到所述发送端发送的数据后,经过△t的时刻,接收所述数据对应的调度信令,△t为设定时间偏移量。
图15所示实施例中,提供了另一种接收端设备,包括:收发机151、处理器152、以及存储器153,其中:
所述处理器152读取所述存储器153中的程序,执行如下过程:
在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据;
根据检测结果,通过所述收发机151接收发送端发送的数据;
所述收发机151,用于在所述处理器152的控制下接收和发送数据;
其中,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由所述处理器152代表的一个或多个处理器和所述存储器153代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机151可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。所述处理器152负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。所述存储器153可以存储所述处理器152在执行操作时所使用的数据。
可选的,所述处理器152可以是CPU、ASIC、FPGA或CPLD。
本发明实施例中,所述处理器152所执行的处理具体参见图14所示实施例中检测模块141和处理模块142的相关描述,此处不再赘述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (24)

  1. 一种非授权频谱上的数据发送方法,其特征在于,所述方法包括:
    发送端在非授权频谱上进行先监听后发送LBT操作;
    若在第一时刻确定所述非授权频谱空闲可用,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于所述第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两种子帧的长度均为第一子帧的长度的2K倍,K为大于或等于0的整数,所述第二时刻为所述第一时刻所在的参考子帧的起始时刻之后经过ΔT的时刻,所述ΔT为所述第一子帧的长度的整数倍,所述第一子帧为所述至少两种子帧中长度最短的子帧。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二时刻所在的最大信道占用时间MCOT内第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
    所述MCOT内第一个用于传输所述数据的子帧的配置与所述第二时刻与下一个参考子帧的起始时刻之间能够容纳的最大长度的子帧的配置相同;或者
    所述MCOT内第一个用于传输所述数据的子帧的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧的配置相同;或者
    所述MCOT内第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻在授权频谱上使用的子帧组合的配置相同;
    或者所述MCOT内所述第二时刻与所述第三时刻之间用于传输所述数据的子帧组合的配置,与所述发送端在所述第二时刻通在授权频谱上使用的子帧组合的配置相同。
  4. 根据权利要求1或2所述的方法,其特征在于,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据之前,所述方法还包括:
    所述发送端向所述接收端发送第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息。
  5. 根据权利要求1或2所述的方法,其特征在于,所述发送端在第二时刻,通过所述非授权频谱,向接收端发送数据,包括:
    所述发送端在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1个所述至少两个子帧中除所述第二子帧之外的其他子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1为大于或等于0的整数;和/或
    所述发送端在所述第二时刻所在的最大信道占用时间MCOT内,使用M个连续的第二子帧和N2个所述第二子帧的部分子帧,向所述接收端发送数据,N2为大于或等于0的整数。
  6. 根据权利要求1所述的方法,其特征在于,所述第二时刻为所述第一时刻与所述 第三时刻之间的设定的至少一个正交频分复用OFDM符号中的一个OFDM符号的起始时刻。
  7. 一种非授权频谱上的数据接收方法,其特征在于,所述方法包括:
    接收端在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据;
    所述接收端根据检测结果,接收发送端发送的数据;
    其中,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
  8. 根据权利要求7所述的方法,其特征在于,相邻的两个传输起始时刻的间隔长度为设定数目的OFDM符号的总长度;或者
    相邻的两个传输起始时刻的间隔长度与第一子帧的长度相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
    相邻的两个传输起始时刻的间隔长度与第二子帧的长度相同,所述第二子帧为所述至少两种子帧中最长的子帧。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述接收端接收所述发送端发送的第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息;
    所述接收端根据所述第一指示信息,确定所述发送端发送所述数据时使用的子帧或子帧组合。
  10. 根据权利要求7所述的方法,其特征在于,第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
    第一个用于传输所述数据的子帧的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧的配置相同;或者
    第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同;或者
    用于传输所述数据的子帧组合的配置,与所述接收端在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同。
  11. 根据权利要求7所述的方法,其特征在于,所述接收端在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据,包括:
    所述接收端在所述参考子帧中的传输起始时刻,采用第一子帧的配置,检测所述发送端发送的数据,所述第一子帧为所述至少两种子帧中长度最短的子帧;和/或
    所述接收端在所述参考子帧中的传输起始时刻,采用第二子帧的配置,检测所述发送端发送的数据,所述第二子帧为所述至少两种子帧中最长的子帧;和/或
    所述接收端在所述参考子帧中的传输起始时刻,分别采用所述至少两种子帧中的每种子帧的配置,检测所述发送端发送的数据。
  12. 一种发送端设备,其特征在于,所述设备包括:
    信道监听模块,用于在非授权频谱上进行先监听后发送LBT操作;
    发送模块,用于若所述信道监听模块在第一时刻确定所述非授权频谱空闲可用,在第二时刻,通过所述非授权频谱,向接收端发送数据,其中,所述第二时刻大于或等于所述第一时刻且小于或等于第三时刻,所述第三时刻为所述第一时刻之后的参考子帧的起始时刻,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
  13. 根据权利要求12所述的设备,其特征在于,所述至少两种子帧的长度均为第一子帧的长度的2K倍,K为大于或等于0的整数,所述第二时刻为所述第一时刻所在的参考子帧的起始时刻之后经过△T的时刻,所述△T为所述第一子帧的长度的整数倍,所述第一子帧为所述至少两种子帧中长度最短的子帧。
  14. 根据权利要求12或13所述的设备,其特征在于,
    所述第二时刻所在的最大信道占用时间MCOT内第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
    所述MCOT内第一个用于传输所述数据的子帧的配置与所述第二时刻与下一个参考子帧的起始时刻之间能够容纳的最大长度的子帧的配置相同;或者
    所述MCOT内第一个用于传输所述数据的子帧的配置,与所述设备在所述第二时刻在授权频谱上使用的子帧的配置相同;或者
    所述MCOT内第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述设备在所述第二时刻在授权频谱上使用的子帧组合的配置相同;
    或者所述MCOT内所述第二时刻与所述第三时刻之间用于传输所述数据的子帧组合的配置,与所述设备在所述第二时刻通在授权频谱上使用的子帧组合的配置相同。
  15. 根据权利要求12或13所述的设备,其特征在于,所述发送模块在第二时刻,通过所述非授权频谱,向接收端发送数据之前,还用于:
    向所述接收端发送第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息。
  16. 根据权利要求12或13所述的设备,其特征在于,所述发送模块具体用于:
    在所述第二时刻所在的MCOT内,使用M个连续的第二子帧和N1个所述至少两个子帧中除所述第二子帧之外的其他子帧,向所述接收端发送数据,所述第二子帧为所述至少两个子帧中长度最大的子帧,N1为大于或等于0的整数;和/或
    在所述第二时刻所在的最大信道占用时间MCOT内,使用M个连续的第二子帧和N2个所述第二子帧的部分子帧,向所述接收端发送数据,N2为大于或等于0的整数。
  17. 根据权利要求12所述的设备,其特征在于,所述第二时刻为所述第一时刻与所述第三时刻之间的设定的至少一个正交频分复用OFDM符号中的一个OFDM符号的起始时刻。
  18. 一种接收端设备,其特征在于,所述设备包括:
    检测模块,用于在非授权频谱上一个或多个参考子帧中的传输起始时刻,采用预先配置的至少两种子帧中的至少一种子帧的配置,检测所述发送端发送的数据;
    处理模块,用于根据所述检测模块的检测结果,接收发送端发送的数据;
    其中,所述参考子帧的长度与预先配置的至少两种子帧中的一种子帧的长度相同,相邻的所述参考子帧在时间上连续。
  19. 根据权利要求18所述的设备,其特征在于,相邻的两个传输起始时刻的间隔长度为设定数目的OFDM符号的总长度;或者
    相邻的两个传输起始时刻的间隔长度与第一子帧的长度相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者
    相邻的两个传输起始时刻的间隔长度与第二子帧的长度相同,所述第二子帧为所述至少两种子帧中最长的子帧。
  20. 根据权利要求18所述的设备,其特征在于,所述处理模块还用于:
    接收所述发送端发送的第一指示信息,所述第一指示信息中携带第一个用于传输所述数据的子帧的配置信息、第一个参考子帧长度内用于传输所述数据的子帧组合的配置信息、一个参考子帧长度内第一个用于传输所述数据的子帧的配置信息、以及一个参考子帧长度内用于传输所述数据的子帧组合的配置信息中的至少一个信息;
    根据所述第一指示信息,确定所述发送端发送所述数据时使用的子帧或子帧组合。
  21. 根据权利要求18所述的设备,其特征在于,第一个用于传输所述数据的子帧的配置与第一子帧的配置相同,所述第一子帧为所述至少两种子帧中长度最短的子帧;或者第一个用于传输所述数据的子帧的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧的配置相同;或者
    第一个参考子帧长度内用于传输所述数据的子帧组合的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同;或者
    用于传输所述数据的子帧组合的配置,与所述设备在授权频谱上同一时刻确定出的所述发送端使用的子帧组合的配置相同。
  22. 根据权利要求18所述的设备,其特征在于,所述检测模块具体用于:
    在所述参考子帧中的每个传输起始时刻,采用第一子帧的配置,检测所述发送端发送的数据,所述第一子帧为所述至少两种子帧中长度最短的子帧;和/或
    在所述参考子帧中的每个传输起始时刻,采用第二子帧的配置,检测所述发送端发送的数据,所述第二子帧为所述至少两种子帧中最长的子帧;和/或
    在所述参考子帧中的每个传输起始时刻,分别采用所述至少两种子帧中的每种子帧的配置,检测所述发送端发送的数据。
  23. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的数据发送方法。
  24. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求7-11任意一项所述的数据接收方法。
PCT/CN2017/092632 2016-08-19 2017-07-12 一种非授权频谱上的数据传输方法和设备 WO2018032915A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17840890.2A EP3474594B1 (en) 2016-08-19 2017-07-12 Method and device for transmitting data on unlicensed spectrum
US16/277,802 US20190182003A1 (en) 2016-08-19 2019-02-15 Data transmission method on unlicensed spectrum, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610698159.4 2016-08-19
CN201610698159 2016-08-19
CN201610874487.5A CN107770872B (zh) 2016-08-19 2016-09-30 一种非授权频谱上的数据传输方法和设备
CN201610874487.5 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/277,802 Continuation US20190182003A1 (en) 2016-08-19 2019-02-15 Data transmission method on unlicensed spectrum, and device

Publications (1)

Publication Number Publication Date
WO2018032915A1 true WO2018032915A1 (zh) 2018-02-22

Family

ID=61196301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092632 WO2018032915A1 (zh) 2016-08-19 2017-07-12 一种非授权频谱上的数据传输方法和设备

Country Status (1)

Country Link
WO (1) WO2018032915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142876A1 (en) * 2019-01-07 2020-07-16 Nec Corporation Method, device and computer readable medium for partial slot in nr-u transmission
CN113936613A (zh) * 2020-06-29 2022-01-14 京东方科技集团股份有限公司 显示面板的驱动方法及驱动装置、显示设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306180A (zh) * 2014-07-28 2016-02-03 上海朗帛通信技术有限公司 一种laa通信方法和装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN105657847A (zh) * 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站
WO2016108584A1 (en) * 2014-12-31 2016-07-07 Samsung Electronics Co., Ltd. Methods and apparatus for uplink channel access and transmissions for lte on unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306180A (zh) * 2014-07-28 2016-02-03 上海朗帛通信技术有限公司 一种laa通信方法和装置
WO2016108584A1 (en) * 2014-12-31 2016-07-07 Samsung Electronics Co., Ltd. Methods and apparatus for uplink channel access and transmissions for lte on unlicensed spectrum
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN105657847A (zh) * 2016-01-08 2016-06-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置、终端和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Other issues related to LBT for eLAA", 3GPPTSG RAN WG1 84 MEETING, RL-160741, 15 February 2016 (2016-02-15), XP051054068 *
HUAWEI ET AL.: "UL LBT to Enable UE Multiplexing of Uplink Transmissions", 3GPPTSG RAN WG1 MEETING #84, RL-160280, 15 February 2016 (2016-02-15), XP051053620 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142876A1 (en) * 2019-01-07 2020-07-16 Nec Corporation Method, device and computer readable medium for partial slot in nr-u transmission
CN113936613A (zh) * 2020-06-29 2022-01-14 京东方科技集团股份有限公司 显示面板的驱动方法及驱动装置、显示设备和存储介质
CN113936613B (zh) * 2020-06-29 2023-07-07 京东方科技集团股份有限公司 显示面板的驱动方法及驱动装置、显示设备和存储介质

Similar Documents

Publication Publication Date Title
US11848875B2 (en) Communications device
US10383117B2 (en) Method and apparatus for determining resource pool
CN105940752B (zh) 通信设备及方法
CN107770872B (zh) 一种非授权频谱上的数据传输方法和设备
EP3331311A1 (en) Wireless communication system, and base station side and user equipment side device and method
WO2015180551A1 (zh) 信息发送方法、信息接收方法、装置及系统
KR20200050848A (ko) Nr v2x 시스템에서 harq 피드백 절차 수행 방법 및 그 장치
US20200053782A1 (en) System and Method for Supporting Bursty Communications in Wireless Communications Systems
JP2020504546A (ja) リソース指示方法、ユーザ機器、およびネットワークデバイス
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2017133368A1 (zh) 一种非授权频谱中prach信号的传输方法和设备
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
WO2014023252A1 (zh) 信号发送及接收方法、设备及设备发现系统
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2019174584A1 (zh) 一种数据传输方法、相关设备及系统
KR20200020536A (ko) Nr v2x 시스템을 위한 동기화 신호 송수신 방법 및 그 장치
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2018032915A1 (zh) 一种非授权频谱上的数据传输方法和设备
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
US20230156745A1 (en) Method performed by user equipment, and user equipment
CN115706628A (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017840890

Country of ref document: EP

Effective date: 20190117

NENP Non-entry into the national phase

Ref country code: DE