WO2014023252A1 - 信号发送及接收方法、设备及设备发现系统 - Google Patents

信号发送及接收方法、设备及设备发现系统 Download PDF

Info

Publication number
WO2014023252A1
WO2014023252A1 PCT/CN2013/081109 CN2013081109W WO2014023252A1 WO 2014023252 A1 WO2014023252 A1 WO 2014023252A1 CN 2013081109 W CN2013081109 W CN 2013081109W WO 2014023252 A1 WO2014023252 A1 WO 2014023252A1
Authority
WO
WIPO (PCT)
Prior art keywords
discovery signal
signal
time
sending
configuration information
Prior art date
Application number
PCT/CN2013/081109
Other languages
English (en)
French (fr)
Inventor
潘学明
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014023252A1 publication Critical patent/WO2014023252A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal transmitting and receiving method, device, and device discovery system for device-to-device (D2D) communication.
  • D2D device-to-device
  • the network centralized control mode is adopted, that is, the uplink and downlink data of the user equipment (User Equipment, UE) are transmitted and received under the control of the network, and there is no direct relationship between the UE and the UE.
  • UE User Equipment
  • a network for example, an evolved base station (e B )
  • a simple device-to-device (D2D) communication means that the terminal and the terminal communicate directly through Bluetooth, wireless fidelity (Wifi), etc., and the communication utilizes an unlicensed band.
  • the resource is the user's own behavior and is not managed and controlled by the network operator.
  • the application scenario is limited.
  • D2D technology is introduced into a mobile communication carrier network, in which a certain direct communication is allowed between terminals, and these direct communication links can be established under network control or assistance, UE All or part of the traffic transmission between the direct communication links.
  • the communication mode is as shown in FIG. 2, and the evolved base station (eNodeB, eNB) establishes an uplink/downlink communication link (Uplink/Downlink) with UE1 and UE2 respectively under the control of the core network (Core Network, CN).
  • the UE1 and the UE2 are configured, and the configured two UEs can communicate based on the configuration information D2D.
  • D2D communication is only established between terminals that are close in distance and have a good direct communication link shield.
  • the D2D communication mode introduced in the Long Term Evolution (LTE) system needs to be completed under the control/assistance of the network.
  • the main reasons are as follows: 1) The D2D communication uses the carrier licensed frequency band of the existing LTE, and needs Strictly control the behavior of D2D communication, reduce or eliminate the negative effects caused by D2D, such as additional interference, resource overhead, etc.; 2) Network assistance can reduce the operation and processing complexity of D2D terminals, and is conducive to terminal energy conservation.
  • D2D communication can be divided into two phases: the first phase is terminal discovery; the second phase is direct communication.
  • the terminal detects whether there is a terminal close to the proximity of the network with the assistance of the network; in the second phase, the terminal establishes a direct communication link with the detected close-range terminal with the assistance of the network, and Direct communication.
  • the present invention provides a signal transmitting and receiving method, device and device discovery system for providing a specific implementation of mutual discovery between devices.
  • a signal transmission method, applied to device-to-device D2D communication includes:
  • the sending end device receives the configuration information of the network side, and configures the discovery signal according to the configuration information
  • the sending end device sends the discovery signal, where the discovery signal includes a signal part and a protection time part, where the signal part includes at least the device identifier of the sending end device, and the duration occupied by the protection time part is a protection time.
  • the transmitting device does not transmit any signal during the protection time.
  • a signal receiving method, applied to device-to-device D2D communication includes:
  • the receiving end device receives the discovery signal of the transmitting end device on the time-frequency resource, and the discovery signal is the foregoing discovery signal.
  • a sender device applied to device-to-device D2D communication, includes:
  • a receiving unit configured to receive configuration information on the network side, and configure a discovery signal according to the configuration information
  • a sending unit configured to send a discovery signal, where the discovery signal is the foregoing discovery signal.
  • a receiving end device applied to device to device D2D communication, includes:
  • the receiving unit is configured to receive configuration information on the network side, where the configuration information includes time-frequency resource information, and the discovery signal of the sending end device is received on the time-frequency resource, where the discovery signal is the foregoing discovery signal.
  • a device discovery system for device-to-device D2D communication including:
  • a sending end device configured to receive configuration information on the network side, configure a discovery signal according to the configuration information, and send the discovery signal, where the discovery signal includes a signal part and a protection time part, where the signal part includes at least the a device identifier of the sending device, where the duration of the protection time is a guard time, and the sending device does not send any signal during the protection time;
  • the receiving end device is configured to receive configuration information of the network side, and receive the discovery signal of the sending end device on a time-frequency resource included in the configuration information.
  • the sending end device configures the discovery signal according to the configuration information of the network side, and then sends the discovery signal, so that other devices can discover the sending end device by receiving the discovery information.
  • the discovery signal by designing the discovery signal, the sending end device configures the discovery signal according to the configuration information of the network side, and then sends the discovery signal, so that other devices can discover the sending end device by receiving the discovery information.
  • FIG. 1 is a schematic diagram of communication between network control UEs in the prior art
  • FIG. 2 is a schematic diagram of D2D communication performed by a network control UE in the prior art
  • FIG. 3 is a schematic structural diagram of a discovery signal according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another discovery signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an FDM multiplexing manner according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a TDM multiplexing manner according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a multiplexing manner of combining FDM and TDM according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a signal sending method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a signal sent on a downlink resource according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a discovery signal sent on an uplink resource according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a signal detection range found in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of processing a discovery signal that does not include a cyclic prefix portion in an embodiment of the present invention
  • FIG. 14 is a schematic diagram of processing a discovery signal including a cyclic prefix portion in an embodiment of the present invention.
  • 15 is a schematic diagram of a network node transmitting a discovery signal according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a receiving end device according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a device discovery system according to an embodiment of the present invention. detailed description
  • the embodiments of the present invention provide a signal sending and receiving method, a device, and a device discovery system for D2D communication, which are used to provide a specific implementation of mutual discovery between devices.
  • the discovery signal includes at least a signal portion and a Guard Time (GT) portion.
  • GT Guard Time
  • the signal part includes at least the device identifier of the sending end device, and the duration of the protection time part is the protection time, and the sending end device does not send any signal during the protection time.
  • the signal part further includes a service identifier of the sender device, and/or information other than the service identifier and the device identifier to be sent.
  • the information may be a specific sequence, such as a Zadoff-chu sequence, etc.; or a set of modulated bit sequences, and when the information is a modulated bit sequence, the signal portion further includes for demodulation. Reference signal.
  • the length of the time domain resource occupied by the signal part is proportional to the detection distance of the discovery signal. For example, in setting The probability of detection requires that the length of time that the signal portion takes up is longer if it is desired to detect the discovery signal over a larger geographic area.
  • the time domain resources occupied by the signal part include, but are not limited to, any one of the following: occupying all Orthogonal Frequency Division Multiplexing (OFDM) symbols in one subframe or time slot (OFDM symbol cylinder is called OS) One or more consecutive OFDM symbols occupying more than one consecutive subframe or slot; occupying a portion of consecutive OFDM symbols within one subframe or slot.
  • OFDM symbol may be the length of time of an integer OFDM symbol or the length of time of a non-integer number of OFDM symbols.
  • the guard time portion is located after the signal portion in time, and the length of the time domain resource occupied by the guard time portion (ie, the length of the guard time) is proportional to the detection distance of the discovery signal, and the designed detection distance is larger, the required protection is needed. The longer the time.
  • the time domain resources occupied by the protection time part include, but are not limited to, any one of the following: occupying all OFDM symbols in one subframe or time slot; occupying more than one consecutive OFDM symbols in one or more consecutive subframes or time slots; A partial OFDM symbol within one subframe or time slot is occupied.
  • the OFDM symbol may be the length of time of an integer OFDM symbol or the length of time of a non-integer number of OFDM symbols.
  • the signal part is the same as the frequency resource occupied by the protection time part.
  • the frequency resources occupied by the signal part include, but are not limited to, any one of the following: occupying all subcarriers in one resource block (RB); occupying more than one consecutive subcarriers in one RB; occupying one RB Partially continuous subcarriers.
  • the time domain resources of the signal part and the frequency resource occupation modes can be arbitrarily combined to obtain time-frequency resources actually occupied by the signal part.
  • the time-frequency resources occupied by the signal parts of different formats are different, and the format of the actually transmitted signal part and the occupied time-frequency resources need to be determined through a network or the like.
  • the signal part is of the format type 1
  • the signal part configuring the format type occupies one time slot
  • the signal part is the format type 2
  • the signal part configuring the format type occupies one subframe and the like.
  • the time-frequency resource size occupied by the protection time part of different formats is different.
  • the format of the actual protection time part and its occupation need to be determined through network configuration. Time-frequency resources. For example, when the guard time part is format type 1, the guard time part of the format type is configured to occupy one OFDM symbol in time; when the guard time part is format type 2, the guard time part of the format type is configured to occupy in time. Two OFDM symbols, etc.
  • the discovery signal further includes a Cyclic Prefix (CP) portion of the signal portion before the signal portion, the cyclic prefix portion being obtained before copying the signal of the last set period of the signal portion to the signal portion.
  • CP Cyclic Prefix
  • the signal of the last t period of the signal portion is transmitted before being copied to the signal portion.
  • the difference between the duration of the cyclic prefix part and the guard time is not greater than a set threshold, and the cyclic prefix part is the same as the frequency resource occupied by the signal part and the guard time part.
  • the location of the time domain resource occupied by the discovery signal sent by a certain device in the radio frame is predetermined, and the determining manner may be a combination of one or more of a protocol convention, a network notification, and the like.
  • the location information of the time domain resource occupied by the discovery signal in the radio frame may include: sending period information, location information of the transmitting subframe, location information of the frequency domain RB, and a physical resource block pair (PRB Pair; PRB, Physical Resource Block)
  • PRB Pair The location information of the internal resource unit (Resource Element, RE).
  • the discovery signal may be sent on an uplink resource in the network, such as an uplink carrier in an FDD system or an uplink subframe in a TDD system; or may be sent on a downlink resource in the network, such as a downlink carrier in an FDD system, or Downlink subframes in the TDD system.
  • an uplink resource in the network such as an uplink carrier in an FDD system or an uplink subframe in a TDD system
  • a downlink resource in the network such as a downlink carrier in an FDD system, or Downlink subframes in the TDD system.
  • multiple discovery signals need to be supported to multiplex the same time-frequency resource, for example, multiple discovery signals are multiplexed into one PRB. Pair.
  • the manner in which multiple discovery signals multiplex time-frequency resources includes but is not limited to any one of the following: a time multiplexing (TDM) method, a frequency multiplexing (FDM) method, a combination of a TDM method and an FDM method, and code multiplexing. (Code Division Multiplexing, CDM) mode.
  • TDM time multiplexing
  • FDM frequency multiplexing
  • CDM Code Division Multiplexing
  • 5 is a schematic diagram of an FDM multiplexing mode
  • FIG. 6 is a schematic diagram of a TDM multiplexing mode
  • FIG. 7 is a schematic diagram of a multiplexing mode of combining FDM and TDM.
  • the discovery signals referred to in the following embodiments are all the above-mentioned discovery signals provided by the present invention.
  • Step 801 The sending end device receives the configuration information on the network side, and configures the discovery signal according to the configuration information. Specifically, the sending end device configures the discovery signal according to the configuration information, and may have the following two modes: The transmitting end device uses the time-frequency resource configured by the configuration information to configure the time-frequency resource of the discovery signal, and the sequence configuration specified by the configuration information is found. The sequence carried by the signal; or, in the set of resources specified by the sending device, the time-frequency resource that the discovery signal is obtained and the sequence carried by the discovery signal are competed with other devices according to the setting rules included in the configuration information.
  • the source device randomly selects the time-frequency resource of the discovery signal and the sequence carried by the discovery signal from the specified resource set with a medium probability.
  • Step 802 The sending end device sends a discovery signal.
  • the sending end device periodically sends the discovery signal according to a predetermined duration, or the transmitting end device sends a discovery signal when detecting the triggering event.
  • the transmitting device sends a discovery signal on a downlink resource of the network.
  • the sending end device takes the subframe subframe timing as a standard, and sends a discovery signal on the time-frequency resource. If the sending end device is a terminal that has been connected to the network, the downlink subframe timing is a timing at which the transmitting end device receives the downlink signal of the network; if the transmitting end device is a network node, the downlink subframe timing is the downlink of the transmitting end device. Subframe timing.
  • the transmitting device sends a discovery signal on an uplink resource of the network.
  • the sending end device is aligned with the uplink subframe timing, and the discovery signal is sent on the time-frequency resource.
  • the uplink subframe timing is the timing at which the transmitting device sends an uplink signal to the network.
  • FIG. 9 is a schematic diagram of a discovery signal transmitted on a downlink resource, where TD_1 is a propagation delay of UE1 as a transmitting end relative to an eNB (unit is time, such as second, the same below), and TD_2 is a UE2 as a receiving end.
  • TD_3 is the propagation delay of UE3 as the receiving end relative to the eNB, where TD_12 is the propagation delay between UE1 and UE2, and UE2 can correctly detect the precondition of the discovery signal sent by UE1.
  • the propagation delay between UE1 and UE2 does not exceed (GT+TD_2-TD_1), which limits the farthest distance between devices that can discover each other.
  • TA_1 is a timing advance of UE1 as a transmitting end relative to an eNB (ie, a propagation delay, the unit is time, such as ⁇ second, the same below)
  • TA_2 For the timing advance of the UE2 as the receiving end relative to the eNB
  • TA_3 is the timing advance of the UE3 as the receiving end relative to the eNB
  • TD_12 is the propagation delay between the UE1 and the UE2, and the UE2 can correctly detect the discovery signal sent by the UE1.
  • the precondition is: The propagation delay between UE1 and UE2 does not exceed (GT+TA_1-TA_2), which limits the farthest distance between devices that can discover each other.
  • FIG 11 shows the UE1, UE2 and the eNB in the network.
  • the propagation delay of each communication link is taken as an example.
  • the maximum range that the discovery signal transmitted by UE1 can be detected is within the effective radius Y determined by the maximum propagation delay TD_12_max (Y For distance), according to the positional relationship in the figure and the formula ( GT+TD_2-TD_1 ), it is necessary to satisfy TD_12_max ⁇ ( GT+TD 2-TD 1 ), that is, if it is necessary to ensure that UE2 is in any position within the effective radius.
  • a signal receiving method is also provided, and the detailed flow of the method is as follows:
  • Step 1201 The receiving end device receives configuration information on the network side, where the configuration information includes time-frequency resource information.
  • the receiving end device completes downlink synchronization with the network, and the following subframe subframe timing is normal, and the discovery signal is received and processed on the time-frequency resource determined and notified by the network.
  • the receiving end device may periodically receive and process the discovery signal, or may receive and process the discovery signal by an event trigger.
  • the receiving end device when the receiving end device receives the discovery signal, it detects the discovery signal in the processing window.
  • the receiving end device detects the discovery signal for the processing window by using the time period corresponding to the signal part and the guard time part determined by the own frame timing; If the signal is found to contain the cyclic prefix portion, the receiving device detects the discovery signal for the processing window by the time period corresponding to the signal portion determined by the own frame timing.
  • the receiving end device processes a discovery signal that does not include a cyclic prefix part, where the discovery signal sent by the UE2 and the UE3 occupies one subframe, that is, the subframe 1, and the UE1 receives the discovery signal, and sets The processing window occupies one subframe and occupies the subframe 1 determined by the UE1 frame timing.
  • the receiving device processes a discovery signal including a cyclic prefix portion, where the discovery signal sent by the UE2 and the UE3 occupies one sub-frame.
  • the frame, i.e., subframe 1 UE1 receives the discovery signal, and sets a processing window in a time period corresponding to the signal portion of the discovery signal in subframe 1 determined by the UE1 frame timing.
  • the receiving end device feeds back the detected discovery signal to the network side.
  • the receiving end device feeds back the identification information of the detected discovery signal to the network side.
  • a network node e.g., a base station, etc.
  • a network node causes the terminal to recognize the presence of the network node by transmitting a discovery signal designed by the present invention, as shown in FIG.
  • the embodiment of the present invention further provides a transmitting end device.
  • a transmitting end device For the specific implementation of the sending end device, refer to the implementation of the sending end device in the foregoing method, and the repeated description is not repeated, as shown in FIG.
  • the sender device mainly includes the following units:
  • the receiving unit 1601 is configured to receive configuration information on the network side, and configure a discovery signal according to the configuration information.
  • the sending unit 1602 is configured to send the discovery signal.
  • the receiving unit 1601 is specifically configured to: configure a time-frequency resource specified by the configuration information as a time-frequency resource of the discovery signal, and configure a sequence specified by the configuration information as a sequence carried by the discovery signal;
  • the time-frequency resource of the discovery signal and the sequence carried by the discovery signal are competed with other devices according to the setting rules included in the configuration information.
  • the sending unit 1602 is specifically configured to send a discovery signal on a downlink resource of the network.
  • the sending unit 1602 is specifically configured to: send a discovery signal on the time-frequency resource according to the following subframe subframe timing.
  • the sending unit 1602 is specifically configured to: send a discovery signal on an uplink resource of the network.
  • the sending unit 1602 is specifically configured to: send the discovery signal on the time-frequency resource according to the timing of the uplink subframe.
  • the sending unit 1602 is specifically configured to: periodically send a discovery signal according to a predetermined duration, or send a discovery signal when a trigger event is detected.
  • the embodiment of the present invention further provides a receiving end device.
  • a receiving end device For the specific implementation of the receiving end device, refer to the implementation of the receiving end device in the foregoing method, and the repeated description is not repeated, as shown in FIG.
  • the receiving device mainly includes the following units:
  • the receiving unit 1701 is configured to receive configuration information on the network side, where the configuration information includes time-frequency resource information, and the discovery signal of the sending end device is received on the time-frequency resource. There is further included a detecting unit 1702, configured to detect a discovery signal in a processing window.
  • the detecting unit 1702 is specifically configured to: if the discovery signal does not include a cyclic prefix part, the time period corresponding to the signal part and the guard time part determined by the frame timing of the receiving end device is a processing window detection discovery signal; if the discovery signal includes The cyclic prefix portion detects a discovery signal for the processing window by a time period corresponding to the signal portion determined by the own frame timing of the receiving device.
  • the embodiment of the present invention further provides a device discovery system.
  • a device discovery system For the specific implementation, refer to the specific implementation of the above method.
  • the system includes:
  • the sending end device 1801 is configured to receive configuration information on the network side, configure a discovery signal according to the configuration information, and send the discovery signal.
  • the receiving end device 1802 is configured to receive configuration information of the network side, and receive a discovery signal of the sending end device on the time-frequency resource included in the configuration information.
  • the source device includes a transceiver and at least one processor coupled to the transceiver, wherein:
  • the transceiver is configured to receive configuration information on the network side and transmit the configuration information to the processor for processing;
  • the processor is configured to configure the discovery signal based on the configuration information and trigger the transceiver to transmit the discovery signal.
  • the transceiver is configured to configure a time-frequency resource specified by the configuration information as a time-frequency resource of the discovery signal, and configure a sequence specified by the configuration information as a sequence carried by the discovery signal;
  • the time-frequency resource of the discovery signal and the sequence carried by the discovery signal are competed with other devices according to the setting rules included in the configuration information.
  • the transceiver is configured to send a discovery signal on a downlink resource of the network.
  • the transceiver is configured to be specifically used for the following subframe subframe timing, and the discovery signal is sent on the time-frequency resource.
  • the transceiver is configured to transmit a discovery signal on an uplink resource of the network.
  • the transceiver is configured to be specifically used for the subframe subframe timing, and the discovery signal is sent on the time-frequency resource. Based on the above two preferred implementation manners, the transceiver is configured to periodically transmit the discovery signal according to a predetermined duration, or to transmit the discovery signal when the trigger event is detected.
  • the receiving device includes a transceiver and at least one connected to the transceiver Processor, where:
  • the transceiver is configured to receive configuration information on the network side, where the configuration information includes time-frequency resource information, and receiving a discovery signal of the sending end device on the time-frequency resource;
  • the processor is configured to detect the discovery signal within the processing window.
  • the processor is configured to detect the discovery signal for the processing window by using a time period corresponding to the signal portion and the guard time portion determined by the self-frame timing of the receiving device;
  • the signal includes a cyclic prefix portion, and the processor is configured to detect a discovery signal for the processing window specifically for a time period corresponding to the signal portion determined by the self-frame timing of the receiving device.
  • the sending end device by designing the discovery signal, the sending end device configures the discovery signal according to the configuration information of the network side, and then sends the discovery signal, so that other devices can discover the sending end device by receiving the discovery information. Thereby achieving mutual discovery between devices.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发送及接收方法、设备及设备发现系统,用以提供设备之间互相发现的具体实现。其中,信号发送方法包括:发送端设备接收网络侧的配置信息,并根据所述配置信息配置发现信号;所述发送端设备发送所述发现信号,所述发现信号包括信号部分和保护时间部分,所述信号部分至少包括所述发送端设备的设备标识,所述保护时间部分占用的时长为保护时间,在所述保护时间内所述发送端设备不发送任何信号。

Description

信号发送及接收方法、 设备及设备发现系统 本申请要求在 2012年 8月 10日提交中国专利局、 申请号为 201210285673.7、 发明名 称为"信号发送及接收方法、 设备及设备发现系统"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种应用于设备到设备 ( D2D )通信的信号发送 及接收方法、 设备及设备发现系统。 背景技术
在传统的移动通信系统中,釆取的是网络集中控制方式,即用户设备(User Equipment, UE ) 的上下行数据都在网络的控制下进行发送和接收, UE与 UE之间不存在直接的通信 链路, 两者之间的通信需要通过网络(例如, 演进型基站( e B ) )进行转发和控制, 也不 允许 UE自行发送上行数据, 如附图 1所示。
现有技术中, 单纯的设备到设备(Device to Device, D2D ) 的通信, 是指终端和终端 之间通过蓝牙、 无线保真 (Wifi )等技术直接通信, 这种通信利用的是免授权频段资源, 是用户自身的行为, 不受网络运营商的管理和控制, 应用场景比较受限。
另一种模式下是将 D2D技术引入到移动通信运营商网络中,该通信模式下终端之间允 许进行一定的直接通信, 这些直接通信链路可以是在网络控制或者辅助下建立起来的, UE 之间通过该直接通信链路进行全部或部分的业务传输。 该通信模式如附图 2所示, 在核心 网 (Core Network, CN ) 的控制下演进型基站(eNodeB, 筒称 eNB )分别与 UE1、 UE2 建立上 /下行通信链路(Uplink/Downlink )以对 UE1、 UE2进行配置, 配置后的两个 UE可 以基于配置信息 D2D通信。 通常情况下, D2D通信仅建立在距离接近、 且具有较好的直 接通信链路盾量的终端之间。
在长期演进 ( Long Term Evolution, LTE ) 系统中引入的 D2D通信模式需要在网络的 控制 /辅助下完成,主要原因在于: 1 )该 D2D通信所使用的是现有 LTE的运营商授权频段, 需要严格控制 D2D通信的行为, 减少或消除 D2D带来的负面影响, 例如额外的千扰、 资 源开销等; 2 ) 网络辅助能够减少 D2D终端操作和处理复杂度, 有利于终端节能等。
D2D通信可分为两个阶段: 第一阶段为终端发现; 第二阶段为直接通信。 该第一阶段 中, 终端在网络的辅助下探测周围是否有距离接近的终端; 第二阶段中, 终端在网络的辅 助下, 在与探测到的近距离终端之间建立直接通信链路, 并进行直接通信。
由此可见,终端发现是实现 D2D通信的第一步, 而现有技术中并没有给出如何进行终 端发现的具体实现。 发明内容
本发明提供一种信号发送及接收方法、 设备及设备发现系统, 用以提供设备之间互相 发现的具体实现。
本发明实施例提供的具体技术方案如下:
一种信号发送方法, 应用于设备到设备 D2D通信, 包括:
发送端设备接收网络侧的配置信息, 并根据所述配置信息配置发现信号;
所述发送端设备发送所述发现信号, 所述发现信号包括信号部分和保护时间部分, 所 述信号部分至少包括所述发送端设备的设备标识, 所述保护时间部分占用的时长为保护时 间, 在所述保护时间内所述发送端设备不发送任何信号。
一种信号接收方法, 应用于设备到设备 D2D通信, 包括:
接收端设备接收网络侧的配置信息, 所述配置信息中包括时频资源信息;
所述接收端设备在所述时频资源上接收发送端设备的发现信号, 所述发现信号为上述 的发现信号。
一种发送端设备, 应用于设备到设备 D2D通信, 包括:
接收单元, 用于接收网络侧的配置信息, 并根据所述配置信息配置发现信号; 发送单元, 用于发送发现信号, 所述发现信号为上述的发现信号。
一种接收端设备, 应用于设备到设备 D2D通信, 包括:
接收单元, 用于接收网络侧的配置信息, 所述配置信息中包括时频资源信息, 以及在 所述时频资源上接收发送端设备的发现信号, 所述发现信号为上述的发现信号。
一种设备发现系统, 应用于设备到设备 D2D通信, 包括:
发送端设备, 用于接收网络侧的配置信息, 并根据所述配置信息配置发现信号, 以及 发送所述发现信号, 所述发现信号包括信号部分和保护时间部分, 所述信号部分至少包括 所述发送端设备的设备标识, 所述保护时间部分占用的时长为保护时间, 在所述保护时间 内所述发送端设备不发送任何信号;
接收端设备, 用于接收网络侧的配置信息, 以及在所述配置信息包含的时频资源上接 收所述发送端设备的所述发现信号。
基于上述技术方案, 本发明实施例中, 通过设计发现信号, 发送端设备根据网络侧的 配置信息配置该发现信号后发送该发现信号, 使得其它设备能够通过接收该发现信息发现 该发送端设备, 从而实现设备之间的互相发现。 附图说明
图 1为现有技术中网络控制 UE之间通信的示意图;
图 2为现有技术中网络控制 UE进行 D2D通信的示意图;
图 3为本发明实施例提供的发现信号的结构示意图;
图 4为本发明实施例提供的另一发现信号结构示意图;
图 5为本发明实施例中 FDM复用方式示意图;
图 6为本发明实施例中 TDM复用方式示意图;
图 7为本发明实施例中 FDM与 TDM结合的复用方式示意图;
图 8为本发明实施例中信号发送方法流程图;
图 9为本发明实施例中发现信号在下行资源上发送的示意图;
图 10为本发明实施例中发现信号在上行资源上发送的示意图;
图 11为本发明实施例中发现信号检测范围示意图;
图 12为本发明实施例中信号接收方法流程图;
图 13为本发明实施例中处理未包含循环前缀部分的发现信号的示意图;
图 14为本发明实施例中处理包含循环前缀部分的发现信号的示意图;
图 15为本发明实施例中网络节点传输发现信号的示意图;
图 16为本发明实施例中发送端设备的结构示意图;
图 17为本发明实施例中接收端设备的结构示意图;
图 18为本发明实施例中设备发现系统架构示意图。 具体实施方式
本发明实施例提供了一种应用于 D2D通信的信号发送及接收方法、设备及设备发现系 统, 用以提供设备之间互相发现的具体实现。
下面结合附图对本发明优选的实施方式进行详细说明。
本发明实施例中, 提供了一种发现信号, 如附图 3所示, 该发现信号至少包括信号部 分和保护时间 (Guard Time, GT )部分。
其中, 信号部分至少包括发送端设备的设备标识, 保护时间部分占用的时长为保护时 间, 在保护时间内发送端设备不发送任何信号。
较佳地, 信号部分还包括发送端设备的业务标识, 和 /或, 需要发送的除业务标识和设 备标识之外的信息。 例如, 该信息可以是一个特定的序列, 如 Zadoff-chu序列等; 也可以 是一组经过调制的比特序列, 且在该信息为经过调制的比特序列时, 信号部分还包括用于 解调的参考信号。
其中, 信号部分占用的时域资源的长度与发现信号的检测距离成正比。 例如, 在设定 的检测概率要求下, 如果希望在更大的地理范围内能够检测到发现信号, 信号部分占用的 时间长度越长。
具体地, 信号部分占用的时域资源包括但不限于以下任意一种: 占用一个子帧或时隙 内的全部正交频分复用( Orthogonal Frequency Division Multiplexing, OFDM )符号( OFDM 符号筒称 OS ); 占用一个以上连续子帧或时隙内的一个以上连续 OFDM符号; 占用一个子 帧或时隙内的部分连续 OFDM符号。该 OFDM符号可以是整数的 OFDM符号的时间长度, 也可以是非整数个 OFDM符号的时间长度。
其中, 保护时间部分在时间上位于信号部分之后, 保护时间部分占用的时域资源的长 度(即保护时间的长度) 与发现信号的检测距离成正比, 设计的检测距离越大, 则需要的 保护时间越长。
具体地, 保护时间部分占用的时域资源包括但不限于以下任意一种: 占用一个子帧或 时隙内的全部 OFDM符号; 占用一个以上连续子帧或时隙内的一个以上连续 OFDM符号; 占用一个子帧或时隙内的部分连续 OFDM符号。该 OFDM符号可以是整数的 OFDM符号 的时间长度, 也可以是非整数个 OFDM符号的时间长度。
其中, 信号部分与保护时间部分占用的频率资源相同。
具体地, 信号部分占用的频率资源包括但不限于以下任意一种: 占用一个资源块 ( Resource Block, RB ) 内的所有子载波; 占用一个 RB 内的一个以上连续子载波; 占用 一个 RB内的部分连续子载波。
实际应用中, 信号部分的时域资源和频率资源的占用方式可以任意组合, 得到信号部 分实际占用的时频资源。 具体实现中, 在系统支持多种格式的信号部分时, 则不同格式的 信号部分占用的时频资源大小不同, 需要通过网络等方式确定实际发送的信号部分的格式 以及所占用的时频资源。 例如, 在信号部分为格式类型 1时, 配置该格式类型的信号部分 占用一个时隙;在信号部分为格式类型 2时,配置该格式类型的信号部分占用一个子帧等。
与信号部分相似, 在系统支持多种格式的保护时间部分时, 则不同格式的保护时间部 分占用的时频资源大小不同, 需要通过网络配置等方式确定实际发送的保护时间部分的格 式及其占用的时频资源。 例如, 在保护时间部分为格式类型 1时, 配置该格式类型的保护 时间部分在时间上占用一个 OFDM符号; 在保护时间部分为格式类型 2时, 配置该格式类 型的保护时间部分在时间上占用两个 OFDM符号等。
优选地, 发现信号在信号部分之前还包括信号部分的循环前缀(Cyclic Prefix, CP ) 部分, 该循环前缀部分为将信号部分最后的设定时间段的信号复制到信号部分之前获得。 如附图 4所示, 将信号部分最后 t时间段的信号复制到信号部分之前进行发送。
其中, 循环前缀部分的时长与保护时间的差值不大于设定阈值, 且循环前缀部分与信 号部分、 保护时间部分占用的频率资源相同。 实际应用中, 某一设备发送的发现信号所占用的时域资源在无线帧中的位置是预先确 定的, 确定方式可以是协议约定、 网络通知等方式中的一种或者多种的组合。 具体地, 发 现信号所占用的时域资源在无线帧中的位置信息可以包括: 发送周期信息、 发送子帧的位 置信息、频域 RB的位置信息、一个物理资源块对( PRB Pair; PRB, Physical Resource Block ) 内部的资源单元(Resource Element, RE )位置信息等。
其中,发现信号可以在网络中的上行资源上发送,如 FDD系统中的上行载波或者 TDD 系统中的上行子帧; 也可以在网络中的下行资源上发送, 如 FDD 系统中的下行载波, 或 者 TDD系统中的下行子帧。
较佳地, 在发现信号占用的时频资源较小时 (例如小于一个 PRB Pair ), 为了充分利 用物理资源, 需要支持多个发现信号复用同一时频资源, 例如多个发现信号复用一个 PRB Pair。 具体地, 多个发现信号复用时频资源的方式包括但不限于以下任意一种: 时间复用 ( TDM )方式;频率复用( FDM )方式; TDM方式与 FDM方式的结合;码复用( Code Division Multiplexing, CDM ) 方式。 其中, 附图 5所示为 FDM复用方式示意图, 附图 6所示为 TDM复用方式示意图, 附图 7所示为 FDM与 TDM结合的复用方式示意图。
以下实施例中所涉及的发现信号均为本发明所提供的上述发现信号。
本发明第一实施例中, 如附图 8所示, 提供了一种信号发送方法, 该方法的详细流程 如下:
步骤 801 : 发送端设备接收网络侧的配置信息, 并根据该配置信息配置发现信号。 具体地, 发送端设备根据配置信息配置发现信号, 可以有以下两种方式: 发送端设备 釆用配置信息指定的时频资源配置发现信号的时频资源, 以及釆用配置信息指定的序列配 置发现信号携带的序列; 或者, 发送端设备在配置信息中指定的资源集合中, 按照配置信 息中包含的设定规定与其它设备竟争获得发现信号的时频资源以及发现信号携带的序列。
例如, 发送端设备从指定的资源集合中等概率随机挑选发现信号的时频资源以及发现 信号携带的序列。
步骤 802: 发送端设备发送发现信号。
具体地, 发送端设备按照预定时长周期性发送发现信号, 或者, 发送端设备检测到触 发事件时发送发现信号。
在一个具体实现中, 发送端设备在网络的下行资源上发送发现信号。 具体地, 发送端 设备以下行子帧定时为准, 在时频资源上发送发现信号。 其中, 若发送端设备为已接入网 络中的终端, 下行子帧定时为发送端设备接收到网络的下行信号的定时; 若发送端设备为 网络节点, 下行子帧定时为发送端设备的下行子帧定时。
在另一个具体实现中, 发送端设备在网络的上行资源上发送发现信号。 具体地, 发送 端设备以上行子帧定时为准, 在时频资源上发送发现信号。 其中, 若发送端设备为已接入 网络中的终端, 上行子帧定时为发送端设备向网络发送上行信号的定时。
例如, 如附图 9所示为发现信号在下行资源上发送的示意图, TD_1 为作为发送端的 UE1相对于 eNB的传播延时 (单位为时间, 如 秒, 下同), TD_2为作为接收端的 UE2 相对于 eNB的传播延时, 同样, TD_3为作为接收端的 UE3相对于 eNB的传播延时, 其 中 TD_12为 UE1和 UE2之间的传播延时, 则 UE2可正确检测 UE1发送的发现信号的前 提条件为: UE1与 UE2之间的传播延时不超过( GT+TD_2-TD_1 ), 这也就限制了能够互 相发现的设备之间的最远距离。
例如, 如附图 10所示为发现信号在上行资源上发送的示意图, TA_1为作为发送端的 UE1相对 eNB的定时提前量(即传播延时, 单位为时间, 如^ 秒, 下同), TA_2为作为接 收端的 UE2相对 eNB的定时提前量, 同样, TA_3为作为接收端的 UE3相对 eNB的定时 提前量, TD_12为 UE1和 UE2之间的传播延时,则 UE2可正确检测 UE1发送的发现信号 的前提条件为: UE1与 UE2之间的传播延时不超过( GT+TA_1-TA_2 ), 这也就限制了能 够互相发现的设备之间的最远距离。
由以上定时分析可知, 发现信号检测成功要求两 UE之间的距离有所限制, 该限制与 系统设备的保护时间长度直接相关, 图 11所示给出了网络中 UE1、 UE2以及与 eNB之间 的各个通信链路的传播延时, 以发现信号在下行资源上发送为例, 其中, UE1发送的发现 信号能够被检测到的最大范围为由最大传播延时 TD_12_max确定的有效半径 Y内 ( Y为 距离), 根据图中的位置关系以及公式 ( GT+TD_2-TD_1 )可知, 需要满足 TD_12_max< ( GT+TD 2-TD 1 ), 即若需要保证 UE2在有效半径内的任何位置均能正确搜索到 UE1发 送的发现信号, 则要求 GT>=2Y/C, 其中, C为光速。 若发现信号在上行资源上发送, 则 可得出相同的结论, 此处不再赘述。
本发明第二实施例中, 如附图 12 所示, 还提供了一种信号接收方法, 该方法的详细 流程如下:
步骤 1201 : 接收端设备接收网络侧的配置信息, 该配置信息中包括时频资源信息。 步骤 1202: 接收端设备在时频资源上接收发送端设备的发现信号。
具体地, 接收端设备与网络完成下行同步, 以下行子帧定时为准, 在网络确定并通知 的时频资源上接收并处理发现信号。
其中, 接收端设备可以是周期性接收并处理发现信号, 也可以是由事件触发接收并处 理发现信号。
本实施例中, 接收端设备接收发现信号时, 在处理窗口 ( Processing Window ) 内检测 发现信号。
具体地, 若发现信号不包含循环前缀部分, 接收端设备以自身帧定时确定的与信号部 分和保护时间部分对应的时间段为处理窗口检测发现信号; 若发现信号包含循环前缀部分, 接收端设备以自身帧定时确定的与信号部分对应的时 间段为处理窗口检测发现信号。
例如, 如附图 13 所示为接收端设备处理未包含循环前缀部分的发现信号的示意图, 其中 UE2、 UE3发送的发现信号占用一个子帧, 即子帧 1 , UE1接收该发现信号, 并设置 处理窗口占用一个子帧且占用 UE1帧定时确定的子帧 1 ; 如附图 14所示为接收端设备处 理包含循环前缀部分的发现信号的示意图, 其中, UE2、 UE3发送的发现信号占用一个子 帧, 即子帧 1 , UE1接收该发现信号, 并在 UE1帧定时确定的子帧 1中与发现信号的信号 部分对应的时间段设置处理窗口。
可选地, 接收端设备检测到发现信号后, 将检测到的发现信号反馈给网络侧, 例如, 接收端设备反馈检测到的发现信号的标识信息给网络侧。
以上实施例中提供的方法除可用于终端之间互相发现之外, 还适用于网络节点之间的 发现, 以及终端与网络节点之间的发现。 例如, 网络节点 (如 基站等)通过发送本发明 设计的发现信号使得终端识别到该网络节点的存在, 如附图 15所示。
基于同一发明构思, 本发明实施例还提供了一种发送端设备, 发送端设备的具体实施 可参见上述方法中发送端设备的实施, 重复之处不再赘述, 如附图 16 所示, 该发送端设 备主要包括以下单元:
接收单元 1601 , 用于接收网络侧的配置信息, 并根据该配置信息配置发现信号; 发送单元 1602, 用于发送发现信号。
其中, 接收单元 1601 具体用于: 将配置信息指定的时频资源配置为发现信号的时频 资源, 以及将配置信息指定的序列配置为发现信号携带的序列;
或者, 在配置信息中指定的资源集合中, 按照配置信息中包含的设定规定与其它设备 竟争获得发现信号的时频资源以及发现信号携带的序列。
其中, 发送单元 1602具体用于在网络的下行资源上发送发现信号。
其中, 发送单元 1602具体用于: 以下行子帧定时为准, 在时频资源上发送发现信号。 其中, 发送单元 1602具体用于: 在网络的上行资源上发送发现信号。
其中, 发送单元 1602具体用于: 以上行子帧定时为准, 在时频资源上发送发现信号。 其中, 发送单元 1602具体用于: 按照预定时长周期性发送发现信号, 或者, 检测到 触发事件时发送发现信号。
基于同一发明构思, 本发明实施例还提供了一种接收端设备, 接收端设备的具体实施 可参见上述方法中接收端设备的实施, 重复之处不再赘述, 如附图 17 所示, 该接收端设 备主要包括以下单元:
接收单元 1701 , 用于接收网络侧的配置信息, 该配置信息中包括时频资源信息, 以及 在该时频资源上接收发送端设备的发现信号。 其中, 还包括检测单元 1702, 用于在处理窗口内检测发现信号。
其中, 检测单元 1702具体用于: 若发现信号不包含循环前缀部分, 以接收端设备的 自身帧定时确定的与信号部分和保护时间部分对应的时间段为处理窗口检测发现信号; 若发现信号包含循环前缀部分, 以接收端设备的自身帧定时确定的与信号部分对应的 时间段为处理窗口检测发现信号。
基于同一发明构思, 本发明实施例还提供了一种设备发现系统, 其具体实施可参见上 述方法的具体实施, 重复之处不再赘述, 如附图 18所示, 该系统主要包括:
发送端设备 1801 , 用于接收网络侧的配置信息, 并根据该配置信息配置发现信号, 以 及发送该发现信号;
接收端设备 1802, 用于接收网络侧的配置信息, 以及在该配置信息包含的时频资源上 接收发送端设备的发现信号。
下面结合具体硬件结构, 对本发明实施例提供的发送端设备的结构、 处理方式进行说 明。
在图 16 的实施例中, 发送端设备包括收发信机、 以及与该收发信机连接的至少一个 处理器, 其中:
收发信机被配置用于接收网络侧的配置信息, 并将该配置信息传输至处理器进行处 理;
处理器被配置用于根据该配置信息配置发现信号, 并触发收发信机发送该发现信号。 在实施中, 收发信机被配置具体用于将配置信息指定的时频资源配置为发现信号的时 频资源, 以及将配置信息指定的序列配置为发现信号携带的序列;
或者, 在配置信息中指定的资源集合中, 按照配置信息中包含的设定规定与其它设备 竟争获得发现信号的时频资源以及发现信号携带的序列。
作为一种优选的实现方式, 收发信机被配置具体用于在网络的下行资源上发送发现信 号;
其中, 收发信机被配置具体用于以下行子帧定时为准, 在时频资源上发送发现信号。 作为另一种优选的实现方式, 收发信机被配置具体用于在网络的上行资源上发送发现 信号。
其中, 收发信机被配置具体用于以上行子帧定时为准, 在时频资源上发送发现信号。 基于上述两种优选的实现方式, 收发信机被配置具体用于按照预定时长周期性发送发 现信号, 或者, 检测到触发事件时发送发现信号。
下面结合具体硬件结构, 对本发明实施例提供的接收端设备的结构、 处理方式进行说 明。
在图 17 的实施例中, 接收端设备包括收发信机、 以及与该收发信机连接的至少一个 处理器, 其中:
收发信机被配置用于接收网络侧的配置信息, 该配置信息中包括时频资源信息, 以及 在该时频资源上接收发送端设备的发现信号;
处理器被配置用于在处理窗口内检测发现信号。
在实施中, 若发现信号不包含循环前缀部分, 处理器被配置具体用于以接收端设备的 自身帧定时确定的与信号部分和保护时间部分对应的时间段为处理窗口检测发现信号; 若发现信号包含循环前缀部分, 处理器被配置具体用于以接收端设备的自身帧定时确 定的与信号部分对应的时间段为处理窗口检测发现信号。
基于上述技术方案, 本发明实施例中, 通过设计发现信号, 发送端设备根据网络侧的 配置信息配置该发现信号后发送该发现信号, 使得其它设备能够通过接收该发现信息发现 该发送端设备, 从而实现设备之间的互相发现。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种信号发送方法, 应用于设备到设备 D2D通信, 其特征在于, 包括: 发送端设备接收网络侧的配置信息, 并根据所述配置信息配置发现信号;
所述发送端设备发送所述发现信号, 所述发现信号包括信号部分和保护时间部分, 所 述信号部分至少包括所述发送端设备的设备标识, 所述保护时间部分占用的时长为保护时 间, 在所述保护时间内所述发送端设备不发送任何信号。
2、 如权利要求 1 所述的方法, 其特征在于, 所述信号部分还包括所述发送端设备的 业务标识, 和 /或, 需要发送的除所述业务标识和所述设备标识之外的信息。
3、 如权利要求 2 所述的方法, 其特征在于, 所述信号部分与所述保护时间部分占用 的频率资源相同。
4、 如权利要求 1 所述的方法, 其特征在于, 所述发现信号在所述信号部分之前还包 括所述信号部分的循环前缀部分, 所述循环前缀部分为将所述信号部分最后的设定时间段 的信号复制到所述信号部分之前获得。
5、 如权利要求 4 所述的方法, 其特征在于, 所述循环前缀部分的时长与所述保护时 间的差值不大于设定阈值。
6、 如权利要求 5 所述的方法, 其特征在于, 所述信号部分、 所述保护时间部分以及 所述循环前缀部分占用的频率资源相同。
7、 如权利要求 3或 6所述的方法, 其特征在于, 所述信号部分占用的频率资源包括 以下任意一种:
占用一个资源块 RB内的所有子载波;
占用一个 RB内的一个以上连续子载波;
占用一个 RB内的部分连续子载波。
8、 如权利要求 1 所述的方法, 其特征在于, 所述信号部分占用的时域资源包括以下 任意一种:
占用一个子帧或时隙内的全部正交频分复用 OFDM符号;
占用一个以上连续子帧或时隙内的一个以上连续 OFDM符号;
占用一个子帧或时隙内的部分连续 OFDM符号。
9、 如权利要求 1 所述的方法, 其特征在于, 所述保护时间部分占用的时域资源为以 下任意一种:
占用一个子帧或时隙内的全部正交频分复用 OFDM符号;
占用一个以上连续子帧或时隙内的一个以上连续 OFDM符号;
占用一个子帧或时隙内的部分连续 OFDM符号。
10、 如权利要求 8或 9所述的方法, 其特征在于, 所述信号部分以及所述保护时间部 分占用的时域资源的长度与所述发现信号的检测距离成正比。
11、 如权利要求 7所述的方法, 其特征在于, 所述发现信号通过以下方式中的任意一 种与其它发现信号复用所述时频资源:
时间复用 TDM方式;
频率复用 FDM方式;
TDM方式与 FDM方式的结合;
码复用 CDM方式。
12、 如权利要求 1-6、 8、 9、 11任一项所述的方法, 其特征在于, 所述发送端设备根 据所述配置信息配置所述发现信号, 具体包括:
所述发送端设备将所述配置信息指定的时频资源配置为所述发现信号的时频资源, 以 及将所述配置信息指定的序列配置为所述发现信号携带的序列;
或者,
所述发送端设备在所述配置信息中指定的资源集合中, 按照所述配置信息中包含的设 定规定与其它设备竟争获得所述发现信号的时频资源以及所述发现信号携带的序列。
13、 如权利要求 12 所述的方法, 其特征在于, 所述发送端设备发送所述发现信号, 具体包括:
所述发送端设备在网络的下行资源上发送所述发现信号。
14、 如权利要求 13 所述的方法, 其特征在于, 所述发送端设备在网络的下行资源上 发送所述发现信号, 具体包括:
所述发送端设备以下行子帧定时为准, 在所述时频资源上发送所述发现信号。
15、 如权利要求 14 所述的方法, 其特征在于, 若所述发送端设备为已接入网络中的 终端, 所述下行子帧定时为所述发送端设备接收到网络的下行信号的定时;
若所述发送端设备为网络节点, 所述下行子帧定时为所述发送端设备的下行子帧定 时。
16、 如权利要求 12 所述的方法, 其特征在于, 所述发送端设备发送所述发现信号, 具体包括:
所述发送端设备按照预定时长周期性发送所述发现信号;
或者, 所述发送端设备检测到触发事件时发送所述发现信号。
17、 如权利要求 12 所述的方法, 其特征在于, 所述发送端设备发送所述发现信号, 具体包括:
所述发送端设备在网络的上行资源上发送所述发现信号。
18、 如权利要求 17 所述的方法, 其特征在于, 所述发送端设备在网络的上行资源上 发送所述发现信号, 具体包括: 所述发送端设备以上行子帧定时为准, 在时频资源上发送所述发现信号。
19、 如权利要求 18 所述的方法, 其特征在于, 若所述发送端设备为已接入网络中的 终端, 所述上行子帧定时为所述发送端设备向网络发送上行信号的定时。
20、 一种信号接收方法, 应用于设备到设备 D2D通信, 其特征在于, 包括: 接收端设备接收网络侧的配置信息, 所述配置信息中包括时频资源信息;
所述接收端设备在所述时频资源上接收发送端设备的发现信号, 所述发现信号为权利 要求 1-11任一项所述的发现信号。
21、 如权利要求 20 所述的方法, 其特征在于, 所述接收端设备接收所述发现信号, 具体包括:
所述接收端设备在处理窗口内检测所述发现信号。
22、 如权利要求 21 所述的方法, 其特征在于, 所述接收端设备在处理窗口内检测所 述发现信号, 具体包括:
若所述发现信号不包含循环前缀部分, 所述接收端设备以自身帧定时确定的与信号部 分和保护时间部分对应的时间段为处理窗口检测所述发现信号;
若所述发现信号包含循环前缀部分, 所述接收端设备以自身帧定时确定的与信号部分 对应的时间段为处理窗口检测所述发现信号。
23、 一种发送端设备, 应用于设备到设备 D2D通信, 其特征在于, 包括: 接收单元, 用于接收网络侧的配置信息, 并根据所述配置信息配置发现信号; 发送单元, 用于发送所述发现信号, 所述发现信号为权利要求 1-11任一项所述的发现 信号。
24、 如权利要求 23所述的发送端设备, 其特征在于, 所述接收单元具体用于: 将所述配置信息指定的时频资源配置为所述发现信号的时频资源, 以及将所述配置信 息指定的序列配置为所述发现信号携带的序列;
或者,
在所述配置信息中指定的资源集合中, 按照所述配置信息中包含的设定规定与其它设 备竟争获得所述发现信号的时频资源以及所述发现信号携带的序列。
25、 如权利要求 24 所述的发送端设备, 其特征在于, 所述发送单元具体用于: 在网 络的下行资源上发送所述发现信号。
26、 如权利要求 25 所述的发送端设备, 其特征在于, 所述发送单元具体用于: 以下 行子帧定时为准, 在所述时频资源上发送所述发现信号。
27、 如权利要求 24 所述的发送端设备, 其特征在于, 所述发送单元具体用于: 在网 络的上行资源上发送所述发现信号。
28、 如权利要求 27 所述的发送端设备, 其特征在于, 所述发送单元具体用于: 以上 行子帧定时为准, 在时频资源上发送所述发现信号。
29、 如权利要求 23-28任一项所述的发送端设备, 其特征在于, 所述发送单元具体用 于: 按照预定时长周期性发送所述发现信号, 或者,检测到触发事件时发送所述发现信号。
30、 一种接收端设备, 应用于设备到设备 D2D通信, 其特征在于, 包括:
接收单元, 用于接收网络侧的配置信息, 所述配置信息中包括时频资源信息, 以及在 所述时频资源上接收发送端设备的发现信号,所述发现信号为权利要求 1-11任一项所述的 发现信号。
31、 如权利要求 30 所述的接收端设备, 其特征在于, 还包括检测单元, 用于在处理 窗口内检测所述发现信号。
32、 如权利要求 31 所述的接收端设备, 其特征在于, 所述检测单元具体用于: 若所 述发现信号不包含循环前缀部分, 以接收端设备的自身帧定时确定的与信号部分和保护时 间部分对应的时间段为处理窗口检测所述发现信号;
若所述发现信号包含循环前缀部分, 以接收端设备的自身帧定时确定的与信号部分对 应的时间段为处理窗口检测所述发现信号。
33、 一种设备发现系统, 应用于设备到设备 D2D通信, 其特征在于, 包括: 发送端设备, 用于接收网络侧的配置信息, 并根据所述配置信息配置发现信号, 以及 发送所述发现信号, 所述发现信号包括信号部分和保护时间部分, 所述信号部分至少包括 所述发送端设备的设备标识, 所述保护时间部分占用的时长为保护时间, 在所述保护时间 内所述发送端设备不发送任何信号;
接收端设备, 用于接收网络侧的配置信息, 以及在所述配置信息包含的时频资源上接 收所述发送端设备的所述发现信号。
PCT/CN2013/081109 2012-08-10 2013-08-08 信号发送及接收方法、设备及设备发现系统 WO2014023252A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210285673.7 2012-08-10
CN201210285673.7A CN103581093B (zh) 2012-08-10 2012-08-10 信号发送及接收方法、设备及设备发现系统

Publications (1)

Publication Number Publication Date
WO2014023252A1 true WO2014023252A1 (zh) 2014-02-13

Family

ID=50052042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081109 WO2014023252A1 (zh) 2012-08-10 2013-08-08 信号发送及接收方法、设备及设备发现系统

Country Status (2)

Country Link
CN (1) CN103581093B (zh)
WO (1) WO2014023252A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376869A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、系统及接入点
TWI657709B (zh) * 2014-03-14 2019-04-21 英特爾智財公司 裝置對裝置發現與通訊的系統、方法及裝置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609502B2 (en) * 2014-02-24 2017-03-28 Intel IP Corporation Adaptive silencing mechanism for device-to-device (D2D) discovery
WO2015139304A1 (zh) * 2014-03-21 2015-09-24 富士通株式会社 资源池配置方法、资源选择方法、装置以及通信系统
EP3627945B1 (en) 2014-05-16 2021-02-17 Sun Patent Trust D2d communication method and d2d-enabled wireless device
US9680678B2 (en) * 2014-06-23 2017-06-13 Intel IP Corporation Communication systems and methods
US10321435B2 (en) 2014-06-27 2019-06-11 Qualcomm Incorporated Method and apparatus for lightweight messaging during initial synchronization, discovery, and association in directional wireless systems
EP3282770A4 (en) * 2015-04-10 2018-08-22 Fujitsu Limited Discovery information transmission method, device and communication system
CN106900063B (zh) * 2015-12-21 2021-12-14 中兴通讯股份有限公司 一种下行资源共享方法和装置
CN110999499B (zh) * 2016-02-26 2023-08-22 苹果公司 第五代(5g)新无线(nr)事物网络中的用户设备(ue)和副链路通信方法
CN107241678B (zh) * 2016-03-28 2019-08-06 电信科学技术研究院 一种进行通信配置的方法和设备
EP3410794B1 (en) 2016-05-12 2021-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Inter-device communication method and apparatus
WO2018171809A1 (zh) * 2017-03-24 2018-09-27 中兴通讯股份有限公司 配置方法及装置、计算机存储介质
CN110167108B (zh) 2018-02-13 2021-01-29 华为技术有限公司 信号传输的方法和装置
CN111491378B (zh) * 2019-01-29 2024-02-02 华为技术有限公司 用于传输下行控制信道的方法、终端设备和网络设备
CN111757459B (zh) * 2019-03-29 2022-01-11 华为技术有限公司 一种通信方法及装置
CN111800789B (zh) * 2019-08-20 2023-04-25 维沃移动通信有限公司 一种配置pc5连接的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431363A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 一种时分双工系统及其数据传输方法
CN102037752A (zh) * 2008-05-19 2011-04-27 高通股份有限公司 无线对等网络中的基础设施辅助发现
CN102547871A (zh) * 2012-02-07 2012-07-04 华为技术有限公司 一种d2d通信中的资源协商方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576846B2 (en) * 2005-10-05 2013-11-05 Qualcomm Incorporated Peer-to-peer communication in ad hoc wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431363A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 一种时分双工系统及其数据传输方法
CN102037752A (zh) * 2008-05-19 2011-04-27 高通股份有限公司 无线对等网络中的基础设施辅助发现
CN102547871A (zh) * 2012-02-07 2012-07-04 华为技术有限公司 一种d2d通信中的资源协商方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657709B (zh) * 2014-03-14 2019-04-21 英特爾智財公司 裝置對裝置發現與通訊的系統、方法及裝置
CN105376869A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种在非授权载波上发送发现信号的方法、系统及接入点
EP3185633A4 (en) * 2014-08-22 2017-08-23 ZTE Corporation Method and device for sending discovery signal on unlicensed carrier, and access point

Also Published As

Publication number Publication date
CN103581093A (zh) 2014-02-12
CN103581093B (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
WO2014023252A1 (zh) 信号发送及接收方法、设备及设备发现系统
US20210360693A9 (en) Channelization and bwp
JP6519762B2 (ja) 装置間(d2d)通信における改良されたリソース割当て
JP6441237B2 (ja) Dtx/drxを考慮したtdd再構成
TWI746970B (zh) 存取點及於其中使用的方法
KR101965945B1 (ko) 비허가된 라디오 주파수 스펙트럼 대역을 이용하는 송신들을 위해 프레임 구조 및 리슨-비포-토크 프로시저 (lbt) 를 향상시키는 기법들
WO2020143745A1 (zh) V2x的通信方法及装置、存储介质和电子装置
WO2015106684A1 (zh) 一种d2d通信方法及设备
WO2014110714A1 (zh) 无线通信方法、用户设备和网络侧设备
WO2014210185A1 (en) Communications in an ad-hoc multicast network
KR20130114274A (ko) 피어 투 피어 통신을 확립하기 위한 방법 및 장치
US9756150B2 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
WO2016184309A1 (zh) 一种资源协调的指示方法及装置
WO2011057470A1 (zh) 一种用户设备双工制式信息的获取方法及设备
JP7305797B2 (ja) ランダムアクセスプリアンブル送信方法及び通信装置
WO2013029545A1 (zh) 一种传输数据的方法和设备
US10070420B2 (en) Mobile communication system and user terminal
JP7379663B2 (ja) Dmrsポート決定方法および通信装置
CN113330709B (zh) 终端设备、网络设备及其中的方法
JP6526723B2 (ja) 高効率ワイヤレスネットワークにおける改良された保護モードのためのシステムおよび方法
US9661634B2 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
CN115336356A (zh) 用于新无线电侧链路的感测测量及报告的方法及设备
CN106063311B (zh) 设备和方法
WO2015018358A1 (zh) 一种通信方法及设备
WO2015169239A1 (zh) 一种d2d通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827874

Country of ref document: EP

Kind code of ref document: A1