WO2016208445A1 - Polishing method, composition for removing impurity, substrate, and method for manufacturing same - Google Patents

Polishing method, composition for removing impurity, substrate, and method for manufacturing same Download PDF

Info

Publication number
WO2016208445A1
WO2016208445A1 PCT/JP2016/067570 JP2016067570W WO2016208445A1 WO 2016208445 A1 WO2016208445 A1 WO 2016208445A1 JP 2016067570 W JP2016067570 W JP 2016067570W WO 2016208445 A1 WO2016208445 A1 WO 2016208445A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
composition
polished
acid
group
Prior art date
Application number
PCT/JP2016/067570
Other languages
French (fr)
Japanese (ja)
Inventor
康登 石田
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2016208445A1 publication Critical patent/WO2016208445A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing method for polishing a polishing object having an organic film on the surface, and a composition for removing impurities used in the polishing method. Moreover, this invention relates to the board
  • CMP chemical mechanical polishing
  • impurities abrasive grains derived from the polishing composition used in CMP, metals, organic substances (for example, anticorrosives, surfactants), silicon-containing materials and organic films that are objects to be polished, metal wirings, plugs, etc. This includes silicon-containing materials and metals generated by polishing, and organic substances such as pad scraps generated from the polishing pad used for polishing.
  • the surface of the semiconductor substrate is contaminated with these impurities, these impurities adversely affect the electrical characteristics of the semiconductor, which may reduce the reliability of the device. Furthermore, when the contamination by organic matter is significant, the device may be destroyed. Therefore, it is necessary to clean the semiconductor substrate after the CMP process to remove these impurities from the surface of the semiconductor substrate.
  • a cleaning agent is used for cleaning the semiconductor substrate.
  • impurities are removed from the surface of the semiconductor substrate by immersing the semiconductor substrate in the cleaning agent.
  • the technique disclosed in Patent Document 1 cannot sufficiently remove impurities from the surface of the semiconductor substrate, and there is a problem that a large amount of impurities may remain on the surface of an object to be polished such as a semiconductor substrate. there were.
  • an object of the present invention is to provide a polishing method capable of solving the above-described problems of the prior art and sufficiently removing impurities present on the polished object to be polished. It is another object of the present invention to provide an impurity removal composition that can sufficiently remove impurities present on a polishing object. Furthermore, it is another object to provide a substrate from which impurities are sufficiently removed from the surface and a method for manufacturing the same.
  • a polishing method includes a polishing step of polishing a polishing object having an organic film on a surface using a polishing composition containing abrasive grains, and a polishing step.
  • the surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and the water-soluble polymer has a hydrophobic main chain.
  • the gist of a method for manufacturing a substrate according to another aspect of the present invention includes a step of polishing a substrate having an organic film on the surface by the polishing method according to the above aspect. Furthermore, the gist of a substrate according to another aspect of the present invention is manufactured by the method for manufacturing a substrate according to the other aspect. Furthermore, the impurity removing composition according to another aspect of the present invention is an impurity removing composition used for removing impurities present on a polishing object having an organic film on the surface, wherein the organic compound is an organic compound.
  • the organic compound has at least one of a surfactant and a water-soluble polymer, and the surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and is water-soluble.
  • the main point of the functional polymer is that the main chain is hydrophobic.
  • impurities present on the object to be polished can be sufficiently removed.
  • the polishing method of this embodiment is a method for polishing a polishing object having an organic film on the surface, and polishing the polishing object having an organic film on the surface using a polishing composition containing abrasive grains.
  • the organic compound contained in the impurity removal composition has at least one of a surfactant and a water-soluble polymer.
  • This surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms.
  • the water-soluble polymer has a hydrophobic main chain.
  • the polishing object to which the polishing method of this embodiment is applied is one in which an organic film is formed on the surface of a substrate.
  • the material of the substrate is not particularly limited, and examples thereof include simple silicon, silicon compound, metal, ceramic, and resin.
  • Examples of the single silicon include single crystal silicon, polycrystalline silicon (polysilicon), and amorphous silicon.
  • Examples of the silicon compound include silicon nitride, silicon dioxide (for example, a silicon dioxide interlayer insulating film formed using tetraethoxysilane (TEOS)), silicon carbide, and the like.
  • Examples of the metal include tungsten, copper, aluminum, hafnium, cobalt, nickel, titanium, tantalum, gold, silver, platinum, palladium, rhodium, ruthenium, iridium, osmium and the like. These metals may be contained in the form of an alloy or a metal compound.
  • the type of the organic film is not particularly limited, and examples thereof include a color filter for a liquid crystal display device, a resist, an antireflection film, and a fluorine-containing silicon insulating film.
  • Specific examples of the polishing object having an organic film on the surface include a substrate having an organic film on the surface.
  • Examples of the substrate having an organic film on the surface to be polished by the polishing method of the present embodiment include a substrate having a positive or negative photoresist formed on a wafer, a color filter for a liquid crystal display device, and a liquid crystal display.
  • Organic insulation typified by substrates formed with organic films such as transparent resin for devices and black matrix for liquid crystal panels, and CFx (fluorocarbon) films formed by plasma CVD using a CHF organic source as a source gas
  • examples include a substrate having a film.
  • polishing method of this embodiment is a process of grind
  • the polishing conditions are not particularly limited, and a polishing composition containing abrasive grains is interposed between a polishing object (for example, a substrate) having an organic film on the surface and a polishing pad, for example, a polishing apparatus (one side)
  • a polishing object having an organic film on the surface can be polished by performing polishing under general polishing conditions using a polishing apparatus, a double-side polishing apparatus, or the like.
  • the kind of the polishing pad is not particularly limited, and may be a foam or a non-foam such as a cloth or a non-woven fabric, and a general non-woven fabric, a polyurethane foam, a porous fluororesin, or the like can be used. Further, the polishing pad may be subjected to groove processing for forming a groove in which the polishing composition is accumulated.
  • Polishing pad materials include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (nylon, aramid, etc.), polyimide, polyimide Resins such as amides, polysiloxane copolymers, oxirane compounds, phenol resins, polystyrenes, polycarbonates, and epoxy resins can be used.
  • the composition for polishing is not particularly limited as long as it contains abrasive grains, but may contain various additives in addition to the abrasive grains. Moreover, it is good also as the slurry which disperse
  • the polishing composition will be described in detail below. 2-1. Abrasive Grains
  • the abrasive grains contained in the polishing composition may be any of inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, and silicon nitride particles, silicon carbide particles, and boron nitride particles.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles. Among these, silica particles are preferable, and colloidal silica is particularly preferable. These abrasive grains may be used alone or in combination of two or more.
  • Abrasive grains may be surface-modified. Since ordinary colloidal silica has a zeta potential value close to zero under acidic conditions, silica particles are not electrically repelled with each other under acidic conditions and are likely to agglomerate. On the other hand, abrasive grains whose surfaces have been modified so that the zeta potential has a relatively large positive or negative value even under acidic conditions are strongly repelled and dispersed well even under acidic conditions. This will improve the storage stability.
  • Such surface-modified abrasive grains can be obtained, for example, by mixing a metal such as aluminum, titanium, zirconium or the like or an oxide thereof with the abrasive grains and doping the surface of the abrasive grains.
  • the surface-modified abrasive grains in the polishing composition may be silica with an organic acid immobilized on the surface.
  • colloidal silica having an organic acid immobilized thereon can be preferably used.
  • the organic acid is immobilized on the colloidal silica by chemically bonding a functional group of the organic acid to the surface of the colloidal silica. If the colloidal silica and the organic acid are simply allowed to coexist, the organic acid is not fixed to the colloidal silica.
  • sulfonic acid which is a kind of organic acid
  • colloidal silica see, for example, “Sulphonic acid-functionalized silica through quantative oxidation of thiol groups”, Chem. Commun. 246-247 (2003).
  • a silane coupling agent having a thiol group such as 3-mercaptopropyltrimethoxysilane is coupled to colloidal silica and then oxidized with hydrogen peroxide to fix the sulfonic acid on the surface.
  • the colloidal silica thus obtained can be obtained.
  • colloidal silica for example, “Novel Silane Coupling Agents Containing A Phototerbile 2-Nitrobenzyl Ester for GasotropyCorpoxyCarbonoxySolfoSepoxyGloSepoxyGlass. 229 (2000).
  • colloidal silica having a carboxylic acid immobilized on the surface can be obtained by irradiating light after coupling a silane coupling agent containing a photoreactive 2-nitrobenzyl ester to colloidal silica. .
  • Content of the abrasive grain in polishing composition can be 0.1 mass% or more, Preferably it is 0.5 mass% or more.
  • the content of abrasive grains in the polishing composition can also be 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less.
  • the material cost of the polishing composition can be suppressed, and the aggregation of the abrasive grains hardly occurs. Further, by polishing the object to be polished using the polishing composition, it is easy to obtain a surface to be polished with few surface defects.
  • the average primary particle diameter of the abrasive grains can be 5 nm or more, preferably 7 nm or more, more preferably 10 nm or more. As the average primary particle diameter of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases. In addition, the value of the average primary particle diameter of an abrasive grain can be calculated based on the specific surface area of the abrasive grain measured by BET method, for example.
  • the average primary particle diameter of the abrasive grains can also be 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less. As the average primary particle diameter of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
  • the average secondary particle diameter of the abrasive grains can be 300 nm or less, preferably 250 nm or less, more preferably 200 nm or less.
  • the value of the average secondary particle diameter of the abrasive grains can be measured by, for example, a laser light scattering method.
  • the average degree of association of the abrasive grains obtained by dividing the value of the average secondary particle diameter of the abrasive grains by the value of the average primary particle diameter can be 1.2 or more, preferably 1.5 or more. As the average degree of association of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases.
  • the average degree of association of the abrasive grains can also be 5 or less, preferably 4 or less, more preferably 3 or less. As the average degree of association of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
  • the pH of the polishing composition may be less than 10 and is preferably 5 or less. When the pH is 5 or less, the operability of the polishing composition is improved, more preferably 3 or less, and particularly preferably 2.5 or less. When the pH exceeds 5, the operability tends to decrease.
  • the lower limit of the pH of the polishing composition is not particularly limited. However, since the dispersibility of the abrasive grains in the polishing composition improves as the pH increases, it is preferably 1 or more.
  • a pH adjuster In order to improve the performance of the polishing composition, a pH adjuster, an oxidizing agent, a complexing agent, an anticorrosive, a surfactant, a water-soluble polymer, an antiseptic, Various additives such as an antifungal agent may be added.
  • a compound having three or more oxygen atoms O and a standard potential of 0.50 V or more may be added.
  • the pH adjuster used as necessary to adjust the pH of the polishing composition to a desired value may be either acid or alkali, and may be any of inorganic and organic compounds. Good.
  • As the pH adjuster for example, nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, citric acid and the like can be used.
  • Examples of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more include cerium ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]), metaperiodic acid (HIO 4 ), Orthoperiodic acid (H 5 IO 6 ), perchloric acid (HClO 4 ), perbromic acid (HBrO 4 ), potassium bromate (KBrO 3 ), sulfuric acid (H 2 SO 4 ), potassium permanganate ( KMnO 4 ), persulfuric acid (H 2 SO 5 ), oxone (registered trademark), vanadium pentoxide (V 2 O 5 ), potassium dichromate (K 2 Cr 2 O 7 ), manganese oxide (III) (Mn 2 O 3), potassium perruthenate (KRuO 4), ruthenium tetroxide (RuO 4), nickel oxide (Ni 2 O 3
  • Oxone is a double salt composed of potassium ion, hydrogen persulfate ion, sulfate ion, and hydrogen sulfate ion, and is a compound represented by the chemical formula 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 .
  • a compound having three or more oxygen atoms O and a standard potential of 0.50 V or more has a specific structure in which it has strong oxidizing properties and has three or more oxygen atoms O.
  • the terminal structure in the organic film can be changed from an insoluble one to a water-soluble one, and the affinity between the organic film and the abrasive grains can be increased and the mechanical action can be enhanced. .
  • the additive can have the above-mentioned specific structure with a standard potential of a certain level or more, and the polishing rate can be improved. Conceivable.
  • the terminal structure in the organic film changes from insoluble to water-soluble without having strong oxidizing properties. It tends to be difficult to do. Therefore, the affinity between the organic film and the abrasive grains is weak, and it tends to be difficult to increase the mechanical action.
  • the content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can be 0.005% by mass or more, and preferably 0.01% by mass or more. As the content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more increases, the terminal structure in the organic film can be changed to water-soluble, so that the mechanical action is improved. There is.
  • the content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can be 5.0% by mass or less, preferably 3.0% by mass or less, more preferably 1.0% by mass or less. If it is this range, the material cost of polishing composition can be held down.
  • the standard potential means an electrode potential when the activity of all chemical species involved in the reaction is 1 (standard state) and is in an equilibrium state for a certain electrochemical reaction. The standard potential can be measured by cyclic voltammetry or the like as a potential difference from the reference electrode.
  • a compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can act as a pH adjuster having a pH adjusting function.
  • the oxidizing agent has an action of oxidizing the surface of the object to be polished, and when an oxidizing agent is added to the polishing composition, there is an effect of improving the polishing rate by the polishing composition.
  • Content of the oxidizing agent in polishing composition can be 0.1 mass% or more of polishing composition, Preferably it is 0.5 mass% or more.
  • content of an oxidizing agent can be 4 mass% or less of polishing composition, Preferably it is 3 mass% or less.
  • the content of the oxidizing agent is less than 0.1% by mass or more than 4% by mass, it tends to be difficult to obtain a practical level of organic film polishing rate.
  • Usable oxidizing agent is, for example, peroxide.
  • the peroxide include persulfates such as hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid, sodium persulfate, potassium persulfate, and ammonium persulfate.
  • persulfate and hydrogen peroxide are preferable from the viewpoint of polishing rate, and hydrogen peroxide is particularly preferable from the viewpoint of stability in an aqueous solution and environmental load.
  • the complexing agent optionally contained in the polishing composition has a function of chemically etching the surface of the substrate having the organic film, and functions to improve the polishing rate by the polishing composition.
  • the upper limit of the content of the complexing agent optionally contained in the polishing composition can be 10% by mass, preferably 1% by mass. As the content of the complexing agent decreases, excessive etching on the surface of the substrate on which the organic film is formed is less likely to occur. As a result, excessive polishing can be suppressed.
  • the lower limit of the content of the complexing agent optionally contained in the polishing composition can be 0.01% by mass, preferably 0.1% by mass.
  • Complexing agents that can be used are, for example, inorganic acids, organic acids, and amino acids.
  • Specific examples of the inorganic acid include sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid.
  • organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n- Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, malein Examples include acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid.
  • Organic sulfuric acid such as methanesulfonic acid, ethanesulfonic acid, and isethionic acid can also be used.
  • a salt such as an alkali metal salt of an inorganic acid or an organic acid may be used instead of the inorganic acid or the organic acid or in combination with the inorganic acid or the organic acid.
  • amino acids include glycine, ⁇ -alanine, ⁇ -alanine, N-methylglycine, N, N-dimethylglycine, 2-aminobutyric acid, norvaline, valine, leucine, norleucine, isoleucine, phenylalanine, proline, sarcosine, Ornithine, lysine, taurine, serine, threonine, homoserine, tyrosine, bicine, tricine, 3,5-diiodo-tyrosine, ⁇ - (3,4-dihydroxyphenyl) -alanine, thyroxine, 4-hydroxy-proline, cysteine, methionine , Ethionine, lanthionine, cystathionine, cystine, cysteic acid, aspartic acid, glutamic acid, S- (carboxymethyl) -cysteine, 4-aminobutyric acid, asparagine, glutamine,
  • the content of the anticorrosive agent optionally contained in the polishing composition can be 0.1% by mass or more, preferably 0.2% by mass or more of the polishing composition. Moreover, content of anticorrosive agent can be 0.4 mass% or less of polishing composition, Preferably it is 0.3 mass% or less. When the content of the anticorrosive agent is less than 0.2% by mass or exceeds 0.4% by mass, it tends to be difficult to obtain a practical level of anticorrosive effect.
  • Examples of usable anticorrosives include heterocyclic compounds or heteroaryl compounds having at least a 5 to 6 membered ring, two or more double bonds, and one or more nitrogen atoms. . Examples thereof include compounds having a pyridine ring, a pyrazole ring, a pyrimidine ring, an imidazole ring, a triazole ring, and a benotriazole ring. Moreover, benzotriazole (BTA) can be used as an anticorrosive. When an anticorrosive agent is added, there is an effect of improving the polishing rate by the polishing composition.
  • the content of the surfactant optionally contained in the polishing composition can be 0.01% by mass or more, preferably 0.02% by mass or more of the polishing composition. Moreover, content of surfactant can be 2 mass% or less of polishing composition, Preferably it is 1 mass% or less.
  • the surfactant can include one or more selected from an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • anionic surfactants include polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, alkyl benzene sulfonic acid, alkyl phosphate ester, Examples thereof include oxyethylene alkyl phosphate ester, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof.
  • Examples of the cationic surfactant include alkyltrimethylammonium salt, alkyldimethylammonium salt, alkylbenzyldimethylammonium salt, alkylamine salt and the like.
  • Examples of amphoteric surfactants include alkylbetaines and alkylamine oxides.
  • Examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and alkyl alkanolamide. It is done.
  • preferable surfactants are polyoxyethylene alkyl ether acetate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, alkylbenzene sulfonate, and polyoxyethylene alkyl ether. Since these surfactants have high chemical or physical adsorption force to the surface of the object to be polished, it is possible to form a stronger film on the surface of the object to be polished. This is advantageous in improving the flatness of the surface of the object to be polished after polishing with the polishing composition.
  • the polishing composition can contain a water-soluble polymer.
  • the water-soluble polymer may be referred to as a surfactant.
  • the content of the water-soluble polymer can be 0.01% by mass or more of the polishing composition, and preferably 0.02% by mass or more.
  • content of a water-soluble polymer can be 2 mass% or less of polishing composition, Preferably it is 1 mass% or less.
  • water-soluble polymers that can be used include sodium polyacrylate, polyacrylamide, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, and polyvinylpyrrolidone.
  • the polishing composition can contain a preservative and a fungicide.
  • antiseptics and fungicides include isothiazoline-based antiseptics such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. And phenoxyethanol. These preservatives and fungicides may be used alone or in combination of two or more.
  • the polishing composition may contain a liquid medium such as water or an organic solvent.
  • the liquid medium functions as a dispersion medium or solvent for dispersing or dissolving each component (abrasive grains, additives, etc.) of the polishing composition.
  • the liquid medium include water and organic solvents.
  • One kind can be used alone, or two or more kinds can be mixed and used, but it is preferable to contain water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of each component. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
  • the polishing composition may be a one-component type or a multi-component type such as a two-component type. Further, the polishing composition may be prepared by diluting a stock solution of the polishing composition with a liquid medium such as water.
  • the impurity removal step in the polishing method of the present embodiment is performed by polishing the polishing object polished in the polishing step using an impurity removal composition containing an organic compound, This is a step of removing impurities present on the object to be polished.
  • the impurity-removing composition used in the impurity removing step does not contain abrasive grains, or even if it contains a small amount, chemical mechanical polishing is not substantially performed in the impurity removing step.
  • a process for removing impurities is performed.
  • a large amount of impurities (defects) may be present on the object to be polished after the polishing process.
  • impurities abrasive grains derived from the polishing composition used in the polishing step, metal, additives, and base material of the object to be polished (if the object to be polished is a substrate having an organic film on its surface, metal Examples include silicon-containing materials and metals generated by polishing wiring, plugs, and the like) and organic films, and pad scraps generated from polishing pads used for polishing.
  • the impurity removal composition of the present embodiment can be used for a polishing object polished using a polishing composition containing abrasive grains, but is not limited to a polishing object immediately after polishing. Further, it can be used for a polishing object before polishing, or can be used for a polishing object washed after polishing. That is, regardless of the situation of the object to be polished, the impurities existing on the surface can be sufficiently removed by performing the treatment for removing the impurities using the impurity removing composition of the present embodiment. Can do.
  • the impurity removal step is intended to remove impurities from the object to be polished and does not require polishing. Therefore, the polishing rate of the organic film in the impurity removal step may be 0.5 nm / min or less, preferably 0.3 nm / min or less, more preferably 0.1 nm / min or less, still more preferably 0.05 nm / min or less. That is, the polishing rate of the organic film in the impurity removal step is substantially zero.
  • the treatment conditions for removing impurities are not particularly limited, and an impurity removing composition is interposed between a polishing object (for example, a substrate) having an organic film on the surface and a polishing pad, for example, a polishing apparatus (one side)
  • a polishing object for example, a substrate
  • a polishing pad for example, a polishing apparatus (one side)
  • the type of polishing pad used in the impurity removal step is not particularly limited, and the polishing pad described above in item 2 can be used. However, it is preferable to use a soft polishing pad (soft pad). Specifically, the pad hardness is preferably 60 or less, and more preferably 50 or less. By using such a soft pad, scratches (scratches) generated in the organic film in the impurity removal step can be reduced. In the present specification, the pad hardness means the Shore D hardness of the polishing pad.
  • the impurities on the object to be polished are sufficiently removed by the impurity removing step, but a step of removing impurities remaining on the object to be polished may be further provided after the impurity removing step.
  • a water polishing step of polishing using water instead of a polishing composition or an impurity removal composition and a cleaning step of cleaning an object to be polished may be provided.
  • the processing content of the cleaning process is not particularly limited. For example, it may be a process of applying pressure with a brush such as a sponge made of polyvinyl alcohol while pouring water or a cleaning liquid onto the object to be polished.
  • the object to be polished after washing may be dried by removing droplets adhering to the surface with a spin dryer or the like.
  • the composition for removing impurities of the present embodiment is not particularly limited as long as it contains a specific organic compound to be described later, but various additives in addition to the specific organic compound can be used if desired. May be contained or abrasive grains may be contained. Alternatively, a solution in which an organic compound is dissolved in a solvent may be used.
  • the impurity removal composition of this embodiment will be described in detail below.
  • Organic compound contained in the impurity removal composition of the present embodiment has at least one of a surfactant and a water-soluble polymer.
  • This surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms. Further, this water-soluble polymer has a hydrophobic main chain of the polymer.
  • These organic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • impurities on the object to be polished are removed by the action of the organic compound.
  • an impurity adhesion preventing action and an impurity detaching action are considered.
  • the effect of preventing the adhesion of impurities occurs when the organic compound hydrophilizes the surface of the organic film.
  • the impurity detachment action occurs when an organic compound is emulsified and hydrated with impurities (especially organic matter) adhering to the surface of the organic film.
  • the organic compound itself may remain as a residue after polishing if the adsorption force of the organic compound on the organic film is strong, the adsorption force of the organic compound on the organic film may be too strong. Not suitable.
  • a sulfonic acid type surfactant described later has a hydrophilizing action, it may remain as a residue itself, so the amount of impurities (number of defects) on the surface of the organic film. ) Is less effective than sulfuric acid type, phosphoric acid type and carboxylic acid type surfactants.
  • the adsorptive power of the organic compound to the organic film is too weak, a hydrophilic film cannot be formed on the surface of the organic film, which may cause a problem that the anti-reattachment function cannot be provided. It is preferable to use an organic compound that has a suitable adsorbing power that is easily adsorbed on the organic film (the adsorbing speed is fast) and is easily desorbed.
  • the surfactant has a hydrophilic group and a hydrophobic group
  • the surface of the organic film can be hydrophilized, and impurities can be emulsified and hydrated.
  • the main chain of the water-soluble polymer is hydrophobic
  • the surface of the organic film can be made hydrophilic, and impurities can be emulsified and hydrated.
  • the type of the hydrophilic group of the surfactant is not particularly limited. For example, carboxy group (—COOH), sulfo group (—SO 3 H), ether group (—O—), hydroxy group (—OH) , At least one selected from a formyl group (—CHO) and an amino group (—NH 2 ).
  • hydrophilic groups are bonded to a hydrophobic group, but this hydrophobic group has a hydrocarbon group having 3 or more carbon atoms, and this hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group. . If the number of carbon atoms of the hydrocarbon group is 3 or more, the surfactant is easily adsorbed on the surface of the organic film by hydrophobic interaction.
  • an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used as the surfactant.
  • nonionic surfactant examples include polyoxyalkylene alkyl ethers, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, and alkyl alkanolamides.
  • anionic surfactant include coconut oil fatty acid sarcosine, polyoxyethylene alkyl sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, polyoxyethylene alkyl ether acetic acid, alkylbenzene sulfone.
  • Examples thereof include acids, alkyl phosphate esters, polyoxyethylene alkyl phosphate esters, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof.
  • the main chain of the water-soluble polymer is hydrophobic, the main chain does not have an atom having a local charge such as an oxygen atom, a nitrogen atom, or a sulfur atom, and preferably includes only a carbon atom and a hydrogen atom.
  • specific examples of the water-soluble polymer include polyvinyl alcohol, polyglycerin, and polyoxyethylene polyglyceryl ether, and polyethylene glycol and polypropylene glycol do not correspond to organic compounds contained in the impurity removal composition.
  • the content of the organic compound in the impurity removal composition of the present embodiment is not particularly limited, but may be 0.001% by mass or more and 10% by mass or less. If it is 0.001% by mass or more, the hydrophilic part of the organic compound will sufficiently hydrophilize the surface of the organic film, preventing the impurities from reattaching to the surface of the organic film, and the organic matter on the surface of the organic film. The effect of emulsifying and discharging out of the system is further exhibited. On the other hand, if it is 10 mass% or less, the possibility that the organic compound itself remains as a residue on the surface of the organic film is reduced, and the storage stability of the impurity removing composition is hardly deteriorated.
  • a pH adjuster In order to improve the performance of the impurity removal composition of the present embodiment, a pH adjuster, an oxidizing agent, a complexing agent, an anticorrosive, an antiseptic, and an antifungal agent are added as necessary. You may add various additives, such as. Since these additives that can be blended in the impurity removal composition of the present embodiment are the same as the additives described in Section 2-3, description thereof will be omitted.
  • the impurity removal composition of the present embodiment may be a solution in which an organic compound is dissolved in a solvent.
  • the kind of solvent is not particularly limited, and examples thereof include water and organic solvents. These solvents can be used alone or as a mixture of two or more, but preferably contain water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of the organic compound or additive. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
  • the impurity removing composition may or may not contain abrasive grains. When it contains abrasive grains, a small amount is preferred. When the composition for removing impurities does not contain abrasive grains, the composition for removing impurities may be in the form of a solution instead of a slurry without blending other solid materials. Moreover, when the composition for impurity removal contains an abrasive grain, the content is preferably 0% by mass to 0.01% by mass or less.
  • the type of abrasive grains is not particularly limited, and the abrasive grains described above in Section 2-1 can be used, but colloidal silica is preferred.
  • the particle size of the abrasive grains is not particularly limited, and the abrasive grains having the average primary particle diameter and the average secondary particle diameter described in Section 2-1 can be used.
  • Example 1 A polishing object having an organic film on the surface is polished with a polishing machine (chemical mechanical polishing) using a polishing composition containing abrasive grains, and then an impurity removing composition containing an organic compound is used. Polishing was performed with a polishing machine (treatment for removing impurities) to remove impurities present on the object to be polished. Then, the polishing object was water-polished with a polishing machine and further washed, and then the amount of impurities present on the polishing object was measured.
  • a polishing machine chemical mechanical polishing
  • the object to be polished is a silicon wafer, and a resist film using an ArF excimer laser (wavelength 193 nm) as an exposure light source is formed as an organic film on the surface.
  • the polishing composition is a slurry composed of colloidal silica (abrasive grains), polyvinylpyrrolidone (additive), and water (liquid medium).
  • the content of colloidal silica in the polishing composition is 2% by mass, and polyvinylpyrrolidone.
  • the content of is 0.1% by mass.
  • the average primary particle diameter of colloidal silica is 30 nm, and an average secondary particle diameter is 60 nm.
  • the impurity removal composition is a pH 7.0 aqueous solution composed of a surfactant (organic compound) and water, and the content of the surfactant in the impurity removal composition is 0.1% by mass.
  • a surfactant organic compound
  • coconut oil fatty acid sarcosine triethanolamine was used as shown in Table 1.
  • Coconut oil fatty acid sarcosine triethanolamine is an anionic surfactant having a carboxy group as a hydrophilic group and a hydrocarbon group constituting coconut oil fatty acid as a hydrophobic group.
  • a polishing apparatus As a polishing apparatus, a CMP apparatus F-REX300E (product name) manufactured by Ebara Manufacturing Co., Ltd. was used for any of chemical mechanical polishing, treatment for removing impurities, and water polishing.
  • a foamed polyurethane resin laminated polishing pad (trade name IC-1010) manufactured by Rohm and Haas is used for any of chemical mechanical polishing, treatment for removing impurities, and water polishing. It was.
  • the polishing conditions for chemical mechanical polishing are a polishing pressure of 3.4 kPa (0.5 psi), a platen and carrier rotation speed of 10 rpm, a polishing time of 5 seconds, and a polishing composition supply rate of 300 ml / min.
  • the polishing pressure is 3.4 kPa (0.5 psi)
  • the rotation speed of the surface plate and the carrier is 30 rpm
  • the polishing time is 60 seconds
  • the supply speed of the impurity removing composition is 300 ml / min.
  • the amount of impurities present on the object to be polished was measured using a wafer surface inspection device Surfscan SP1 manufactured by KLA-Tencor. Impurities detected by this apparatus have a diameter of 0.5 ⁇ m or more. The results are shown in Table 1.
  • Examples 2 to 11 and 13 In the same manner as in Example 1 except that the type of the organic compound used in the impurity removal composition was changed to the surfactant shown in Table 1, the chemical compound for the polishing object having an organic film on the surface was used. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1.
  • “POE” such as “POE dodecyl ether ammonium sulfate” described in Table 1 means “polyoxyethylene”
  • POA of “POA allyl phenyl ether ammonium sulfate” means “polyoxyalkylene”. .
  • Example 12 In the same manner as in Example 1 except that the type of the organic compound used in the impurity removal composition was changed to the water-soluble polymer shown in Table 1, the chemical compound for the polishing object having an organic film on the surface was used. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1.
  • Polyvinyl alcohol which is a water-soluble polymer has a hydroxyl group as a hydrophilic group and a hydrocarbon group constituting the main chain of polyvinyl alcohol as a hydrophobic group.
  • Example 14 to 19 Except for the point that the types of organic compounds used in the impurity removal composition were changed to the surfactants shown in Table 1, respectively, and the pH was adjusted to 2.7 by adding nitric acid to the impurity removal composition.
  • the object to be polished having an organic film on the surface is subjected to chemical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, and then present on the object to be polished. The amount of impurities was measured. The results are shown in Table 1.
  • Example 20 to 22 Implemented except that the type of organic compound used in the impurity removal composition was changed to the surfactant shown in Table 1 and that the pH was adjusted to 10 by adding ammonia to the impurity removal composition.
  • the pH was adjusted to 10 by adding ammonia to the impurity removal composition.
  • impurities existing on the polishing object are removed. The amount was measured. The results are shown in Table 1.
  • Comparative Example 1 In the treatment for removing impurities, except for using water instead of the composition for removing impurities, in the same manner as in Example 1, chemical mechanical polishing, impurities on a polishing object having an organic film on the surface The amount of impurities present on the object to be polished was measured after carrying out the treatment for removing water, water polishing, and cleaning. The results are shown in Table 1.
  • Example 2 (Comparative Examples 2 and 3) Except that the type of organic compound used in the impurity removal composition was changed to the polymer compound shown in Table 1, the same manner as in Example 1 was applied to the polishing object having an organic film on the surface. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1.

Abstract

Provided is a polishing method with which it is possible to sufficiently remove impurities present on an object to be polished. An object to be polished that has an organic film on the surface thereof is polished using a polishing composition that contains abrasive grains, and is subsequently polished using an impurity-removing composition that contains an organic compound to eliminate impurities present on the object to be polished. The organic compound contains a surfactant and/or a water-soluble polymer. The surfactant contains a hydrophilic group and a hydrophobic group that includes a C3 or higher hydrocarbon group, and the main chain of the water-soluble polymer is hydrophobic.

Description

研磨方法及び不純物除去用組成物並びに基板及びその製造方法Polishing method, impurity removing composition, substrate and method for producing the same
 本発明は、表面に有機膜を有する研磨対象物を研磨する研磨方法及び該研磨方法に使用される不純物除去用組成物に関する。また、本発明は、前記研磨方法を用いて製造される基板及びその製造方法に関する。 The present invention relates to a polishing method for polishing a polishing object having an organic film on the surface, and a composition for removing impurities used in the polishing method. Moreover, this invention relates to the board | substrate manufactured using the said grinding | polishing method, and its manufacturing method.
 近年、半導体基板表面の多層配線化に伴い、デバイスを製造する際に、物理的に半導体基板を研磨して平坦化する、いわゆる、化学的機械的研磨(Chemical Mechanical Polishing;CMP)技術が利用されている。CMPは、砥粒、防食剤、界面活性剤等を含有する研磨用組成物(スラリー)を用いて、半導体基板等の研磨対象物の表面を平坦化する技術であり、シリコン、ポリシリコン、シリコン酸化膜、シリコン窒化物、金属等からなる配線、プラグ等や、半導体基板表面に形成された有機膜が研磨される。 2. Description of the Related Art In recent years, with the formation of multilayer wiring on the surface of a semiconductor substrate, a so-called chemical mechanical polishing (CMP) technique that physically polishes and flattens the semiconductor substrate is used. ing. CMP is a technique for flattening the surface of an object to be polished, such as a semiconductor substrate, using a polishing composition (slurry) containing abrasive grains, anticorrosives, surfactants, and the like. Silicon, polysilicon, silicon An oxide film, silicon nitride, metal wiring, plugs, and an organic film formed on the surface of the semiconductor substrate are polished.
 CMP工程後の半導体基板表面には、不純物(ディフェクト)が多量に残留している。不純物としては、CMPで使用された研磨用組成物由来の砥粒、金属、有機物(例えば防食剤、界面活性剤)や、研磨対象物であるシリコン含有材料及び有機膜や、金属配線、プラグ等を研磨することによって生じたシリコン含有材料及び金属や、さらには研磨に使用した研磨パッドから生じるパッド屑等の有機物などが含まれる。 A large amount of impurities (defects) remain on the surface of the semiconductor substrate after the CMP process. As impurities, abrasive grains derived from the polishing composition used in CMP, metals, organic substances (for example, anticorrosives, surfactants), silicon-containing materials and organic films that are objects to be polished, metal wirings, plugs, etc. This includes silicon-containing materials and metals generated by polishing, and organic substances such as pad scraps generated from the polishing pad used for polishing.
 半導体基板表面がこれらの不純物により汚染されると、これらの不純物が半導体の電気特性に悪影響を与えるため、デバイスの信頼性が低下するおそれがある。さらに、有機物による汚染が著しい場合は、デバイスが破壊されてしまうおそれがある。したがって、CMP工程後に半導体基板の洗浄を行い、半導体基板表面からこれらの不純物を除去する必要があった。 If the surface of the semiconductor substrate is contaminated with these impurities, these impurities adversely affect the electrical characteristics of the semiconductor, which may reduce the reliability of the device. Furthermore, when the contamination by organic matter is significant, the device may be destroyed. Therefore, it is necessary to clean the semiconductor substrate after the CMP process to remove these impurities from the surface of the semiconductor substrate.
 半導体基板の洗浄には洗浄剤が使用され、例えば特許文献1に開示の技術では、洗浄剤に半導体基板を浸漬することにより半導体基板表面から不純物を除去していた。
 しかしながら、特許文献1に開示の技術では、半導体基板表面から不純物を十分に除去することができず、半導体基板等の研磨対象物の表面に不純物が多量に残存してしまう場合があるという問題があった。
A cleaning agent is used for cleaning the semiconductor substrate. For example, in the technique disclosed in Patent Document 1, impurities are removed from the surface of the semiconductor substrate by immersing the semiconductor substrate in the cleaning agent.
However, the technique disclosed in Patent Document 1 cannot sufficiently remove impurities from the surface of the semiconductor substrate, and there is a problem that a large amount of impurities may remain on the surface of an object to be polished such as a semiconductor substrate. there were.
国際公開第2005/040324号パンフレットInternational Publication No. 2005/040324 Pamphlet 日本国特許公開公報 2005年第268409号Japan Patent Publication No. 268409, 2005 日本国特許公開公報 2004年第335896号Japanese Patent Publication No. 2004 No. 335896
 そこで、本発明は上記のような従来技術が有する問題点を解決し、研磨された研磨対象物上に存在する不純物を十分に除去することができる研磨方法を提供することを課題とする。また、研磨対象物上に存在する不純物を十分に除去することができる不純物除去用組成物を提供することを併せて課題とする。さらに、不純物が表面から十分に除去された基板及びその製造方法を提供することを併せて課題とする。 Therefore, an object of the present invention is to provide a polishing method capable of solving the above-described problems of the prior art and sufficiently removing impurities present on the polished object to be polished. It is another object of the present invention to provide an impurity removal composition that can sufficiently remove impurities present on a polishing object. Furthermore, it is another object to provide a substrate from which impurities are sufficiently removed from the surface and a method for manufacturing the same.
 前記課題を解決するため、本発明の一態様に係る研磨方法は、表面に有機膜を有する研磨対象物を、砥粒を含有する研磨用組成物を用いて研磨する研磨工程と、研磨工程で研磨された研磨対象物を、有機化合物を含有する不純物除去用組成物を用いて研磨して、研磨対象物上に存在する不純物を除去する不純物除去工程と、を備え、有機化合物は界面活性剤及び水溶性高分子の少なくとも一方を有し、界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有し、水溶性高分子は主鎖が疎水性であることを要旨とする。 In order to solve the above problems, a polishing method according to one embodiment of the present invention includes a polishing step of polishing a polishing object having an organic film on a surface using a polishing composition containing abrasive grains, and a polishing step. An impurity removing step of polishing the polished object using an impurity removing composition containing an organic compound to remove impurities present on the object to be polished, the organic compound being a surfactant And the surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and the water-soluble polymer has a hydrophobic main chain. It is a summary.
 また、本発明の他の態様に係る基板の製造方法は、表面に有機膜を有する基板を上記一態様に係る研磨方法により研磨する工程を備えることを要旨とする。
 さらに、本発明の他の態様に係る基板は、上記他の態様に係る基板の製造方法によって製造されたことを要旨とする。
 さらに、本発明の他の態様に係る不純物除去用組成物は、表面に有機膜を有する研磨対象物上に存在する不純物を除去するために使用される不純物除去用組成物であって、有機化合物を含有し、有機化合物は界面活性剤及び水溶性高分子の少なくとも一方を有し、界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有し、水溶性高分子は主鎖が疎水性であることを要旨とする。
The gist of a method for manufacturing a substrate according to another aspect of the present invention includes a step of polishing a substrate having an organic film on the surface by the polishing method according to the above aspect.
Furthermore, the gist of a substrate according to another aspect of the present invention is manufactured by the method for manufacturing a substrate according to the other aspect.
Furthermore, the impurity removing composition according to another aspect of the present invention is an impurity removing composition used for removing impurities present on a polishing object having an organic film on the surface, wherein the organic compound is an organic compound. The organic compound has at least one of a surfactant and a water-soluble polymer, and the surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and is water-soluble. The main point of the functional polymer is that the main chain is hydrophobic.
 本発明によれば、研磨対象物上に存在する不純物を十分に除去することができる。 According to the present invention, impurities present on the object to be polished can be sufficiently removed.
 本発明の一実施形態について以下に詳細に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態の研磨方法は、表面に有機膜を有する研磨対象物を研磨する方法であって、表面に有機膜を有する研磨対象物を、砥粒を含有する研磨用組成物を用いて研磨する研磨工程と、研磨工程で研磨された研磨対象物を、有機化合物を含有する不純物除去用組成物を用いて研磨して、研磨対象物上に存在する不純物を除去する不純物除去工程と、を備えている。
An embodiment of the present invention will be described in detail below. In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
The polishing method of this embodiment is a method for polishing a polishing object having an organic film on the surface, and polishing the polishing object having an organic film on the surface using a polishing composition containing abrasive grains. A polishing step, and an impurity removal step of polishing the polishing object polished in the polishing step with an impurity removing composition containing an organic compound to remove impurities present on the polishing object. ing.
 不純物除去用組成物に含有される有機化合物は、界面活性剤及び水溶性高分子の少なくとも一方を有する。そして、この界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有する。また、水溶性高分子は、主鎖が疎水性である。
 このような研磨方法によって、表面に有機膜を有する研磨対象物を研磨すれば、不純物を十分に除去しつつ研磨対象物の研磨を行うことができる。すなわち、研磨工程において研磨された後の研磨対象物上には種々の不純物が存在するが、研磨対象物上に存在する不純物を不純物除去工程において十分に除去することができるので、不純物が十分に除去された研磨対象物を得ることができる。
The organic compound contained in the impurity removal composition has at least one of a surfactant and a water-soluble polymer. This surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms. The water-soluble polymer has a hydrophobic main chain.
When a polishing object having an organic film on the surface is polished by such a polishing method, the polishing object can be polished while sufficiently removing impurities. That is, various impurities are present on the object to be polished after being polished in the polishing step, but the impurities present on the object to be polished can be sufficiently removed in the impurity removing step, so that the impurities are sufficiently The removed polishing object can be obtained.
 以下に、本実施形態の研磨方法及び不純物除去用組成物について、さらに詳細に説明する。
1.研磨対象物について
 本実施形態の研磨方法が適用される研磨対象物は、基体の表面に有機膜が形成されたものである。基体の材質は特に限定されるものではなく、単体シリコン、シリコン化合物、金属、セラミック、樹脂等があげられる。
Hereinafter, the polishing method and the impurity removing composition of this embodiment will be described in more detail.
1. About the polishing object The polishing object to which the polishing method of this embodiment is applied is one in which an organic film is formed on the surface of a substrate. The material of the substrate is not particularly limited, and examples thereof include simple silicon, silicon compound, metal, ceramic, and resin.
 単体シリコンとしては、例えば単結晶シリコン、多結晶シリコン(ポリシリコン)、アモルファスシリコン等があげられる。また、シリコン化合物としては、例えば窒化ケイ素、二酸化ケイ素(例えば、テトラエトキシシラン(TEOS)を用いて形成される二酸化ケイ素層間絶縁膜)、炭化ケイ素等があげられる。
 また、金属としては、例えば、タングステン、銅、アルミニウム、ハフニウム、コバルト、ニッケル、チタン、タンタル、金、銀、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等があげられる。これらの金属は、合金又は金属化合物の形態で含まれていてもよい。
Examples of the single silicon include single crystal silicon, polycrystalline silicon (polysilicon), and amorphous silicon. Examples of the silicon compound include silicon nitride, silicon dioxide (for example, a silicon dioxide interlayer insulating film formed using tetraethoxysilane (TEOS)), silicon carbide, and the like.
Examples of the metal include tungsten, copper, aluminum, hafnium, cobalt, nickel, titanium, tantalum, gold, silver, platinum, palladium, rhodium, ruthenium, iridium, osmium and the like. These metals may be contained in the form of an alloy or a metal compound.
 一方、有機膜の種類は特に限定されるものではなく、例えば、液晶ディスプレイ装置用カラーフィルター、レジスト、反射防止膜、フッ素含有シリコン絶縁膜があげられる。
 表面に有機膜を有する研磨対象物の具体例としては、表面に有機膜を有する基板があげられる。本実施形態の研磨方法の研磨対象となる表面に有機膜を有する基板としては、例えば、ウェハ上に形成されるポジ型又はネガ型フォトレジストを有する基板や、液晶ディスプレイ装置用カラーフィルター、液晶ディスプレイ装置用透明樹脂、液晶パネル用ブラックマトリックス等の有機膜が形成された基板や、CHF系有機ソースを原料ガスとして用いてプラズマCVD等によって成膜されるCFx(フロロカーボン)膜に代表される有機絶縁膜を有する基板があげられる。
On the other hand, the type of the organic film is not particularly limited, and examples thereof include a color filter for a liquid crystal display device, a resist, an antireflection film, and a fluorine-containing silicon insulating film.
Specific examples of the polishing object having an organic film on the surface include a substrate having an organic film on the surface. Examples of the substrate having an organic film on the surface to be polished by the polishing method of the present embodiment include a substrate having a positive or negative photoresist formed on a wafer, a color filter for a liquid crystal display device, and a liquid crystal display. Organic insulation typified by substrates formed with organic films such as transparent resin for devices and black matrix for liquid crystal panels, and CFx (fluorocarbon) films formed by plasma CVD using a CHF organic source as a source gas Examples include a substrate having a film.
2.研磨工程及び研磨用組成物について
 本実施形態の研磨方法における研磨工程は、表面に有機膜を有する研磨対象物を、砥粒を含有する研磨用組成物を用いて研磨する工程である。この工程により、研磨対象物の有機膜や基体の化学的機械的研磨が行われる。研磨条件は特に限定されるものではなく、表面に有機膜を有する研磨対象物(例えば基板)と研磨パッドとの間に、砥粒を含有する研磨用組成物を介在させ、例えば研磨装置(片面研磨装置、両面研磨装置等)を用いて一般的な研磨条件で研磨を行うことによって、表面に有機膜を有する研磨対象物の研磨を行うことができる。
2. About a grinding | polishing process and a polishing composition The grinding | polishing process in the grinding | polishing method of this embodiment is a process of grind | polishing the grinding | polishing target object which has an organic film on the surface using the polishing composition containing an abrasive grain. By this step, chemical mechanical polishing of the organic film or the substrate to be polished is performed. The polishing conditions are not particularly limited, and a polishing composition containing abrasive grains is interposed between a polishing object (for example, a substrate) having an organic film on the surface and a polishing pad, for example, a polishing apparatus (one side) A polishing object having an organic film on the surface can be polished by performing polishing under general polishing conditions using a polishing apparatus, a double-side polishing apparatus, or the like.
 研磨パッドの種類は特に限定されるものではなく、発泡体でもよいし、布、不織布等の非発泡体でもよく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用できる。また、研磨パッドには、研磨用組成物が溜まるような溝を形成する溝加工が施されていてもよい。研磨パッドの材質としてはポリウレタン、アクリル、ポリエステル、アクリル-エステル共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリ4-メチルペンテン、セルロース、セルロースエステル、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリイミドアミド、ポリシロキサン共重合体、オキシラン化合物、フェノール樹脂、ポリスチレン、ポリカーボネート、エポキシ樹脂等の樹脂が使用できる。 The kind of the polishing pad is not particularly limited, and may be a foam or a non-foam such as a cloth or a non-woven fabric, and a general non-woven fabric, a polyurethane foam, a porous fluororesin, or the like can be used. Further, the polishing pad may be subjected to groove processing for forming a groove in which the polishing composition is accumulated. Polishing pad materials include polyurethane, acrylic, polyester, acrylic-ester copolymer, polytetrafluoroethylene, polypropylene, polyethylene, poly-4-methylpentene, cellulose, cellulose ester, polyamide (nylon, aramid, etc.), polyimide, polyimide Resins such as amides, polysiloxane copolymers, oxirane compounds, phenol resins, polystyrenes, polycarbonates, and epoxy resins can be used.
 研磨用組成物は、砥粒を含有していれば、その組成は特に限定されるものではないが、砥粒の他に各種添加剤を含有していてもよい。また、砥粒を液状媒体に分散させたスラリーとしてもよい。研磨用組成物について以下に詳細に説明する。
2-1 砥粒について
 研磨用組成物に含まれる砥粒は、無機粒子、有機粒子、及び有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、並びに、窒化ケイ素粒子、炭化ケイ素粒子、及び窒化ホウ素粒子があげられる。有機粒子の具体例としては、例えばポリメタクリル酸メチル(PMMA)粒子があげられる。これらの中でもシリカ粒子が好ましく、コロイダルシリカが特に好ましい。これらの砥粒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The composition for polishing is not particularly limited as long as it contains abrasive grains, but may contain various additives in addition to the abrasive grains. Moreover, it is good also as the slurry which disperse | distributed the abrasive grain in the liquid medium. The polishing composition will be described in detail below.
2-1. Abrasive Grains The abrasive grains contained in the polishing composition may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, and silicon nitride particles, silicon carbide particles, and boron nitride particles. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles. Among these, silica particles are preferable, and colloidal silica is particularly preferable. These abrasive grains may be used alone or in combination of two or more.
 砥粒は表面修飾されていてもよい。通常のコロイダルシリカは、酸性条件下でゼータ電位の値がゼロに近いために、酸性条件下ではシリカ粒子同士が互いに電気的に反発せず凝集を起こしやすい。これに対し、酸性条件でもゼータ電位が比較的大きな正若しくは負の値を有するように表面修飾された砥粒は、酸性条件下においても互いに強く反発して良好に分散する結果、研磨用組成物の保存安定性を向上させることになる。このような表面修飾砥粒は、例えば、アルミニウム、チタン、ジルコニウム等の金属又はそれらの酸化物を砥粒と混合して砥粒の表面にドープさせることにより得ることができる。 砥 Abrasive grains may be surface-modified. Since ordinary colloidal silica has a zeta potential value close to zero under acidic conditions, silica particles are not electrically repelled with each other under acidic conditions and are likely to agglomerate. On the other hand, abrasive grains whose surfaces have been modified so that the zeta potential has a relatively large positive or negative value even under acidic conditions are strongly repelled and dispersed well even under acidic conditions. This will improve the storage stability. Such surface-modified abrasive grains can be obtained, for example, by mixing a metal such as aluminum, titanium, zirconium or the like or an oxide thereof with the abrasive grains and doping the surface of the abrasive grains.
 あるいは、研磨用組成物中の表面修飾砥粒は、表面に有機酸を固定化したシリカであってもよい。中でも有機酸を固定化したコロイダルシリカを好ましく使用することができる。コロイダルシリカへの有機酸の固定化は、コロイダルシリカの表面に有機酸の官能基を化学的に結合させることにより行われる。コロイダルシリカと有機酸を単に共存させただけでは、コロイダルシリカへの有機酸の固定化は果たされない。 Alternatively, the surface-modified abrasive grains in the polishing composition may be silica with an organic acid immobilized on the surface. Of these, colloidal silica having an organic acid immobilized thereon can be preferably used. The organic acid is immobilized on the colloidal silica by chemically bonding a functional group of the organic acid to the surface of the colloidal silica. If the colloidal silica and the organic acid are simply allowed to coexist, the organic acid is not fixed to the colloidal silica.
 有機酸の一種であるスルホン酸をコロイダルシリカに固定化するのであれば、例えば、“Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups”,Chem. Commun.246-247(2003)に記載の方法で行うことができる。具体的には、3-メルカプトプロピルトリメトキシシラン等のチオール基を有するシランカップリング剤をコロイダルシリカにカップリングさせた後に過酸化水素でチオール基を酸化することにより、スルホン酸が表面に固定化されたコロイダルシリカを得ることができる。 If sulfonic acid, which is a kind of organic acid, is immobilized on colloidal silica, see, for example, “Sulphonic acid-functionalized silica through quantative oxidation of thiol groups”, Chem. Commun. 246-247 (2003). Specifically, a silane coupling agent having a thiol group such as 3-mercaptopropyltrimethoxysilane is coupled to colloidal silica and then oxidized with hydrogen peroxide to fix the sulfonic acid on the surface. The colloidal silica thus obtained can be obtained.
 あるいは、カルボン酸をコロイダルシリカに固定化するのであれば、例えば、“Novel Silane Coupling Agents Containing a Photolabile 2-Nitrobenzyl Ester for Introduction of a Carboxy Group on the Surface of Silica Gel”,Chemistry Letters,3,228-229(2000)に記載の方法で行うことができる。具体的には、光反応性2-ニトロベンジルエステルを含むシランカップリング剤をコロイダルシリカにカップリングさせた後に光照射することにより、カルボン酸が表面に固定化されたコロイダルシリカを得ることができる。 Alternatively, if the carboxylic acid is to be immobilized on colloidal silica, for example, “Novel Silane Coupling Agents Containing A Phototerbile 2-Nitrobenzyl Ester for GasotropyCorpoxyCarbonoxySolfoSepoxyGloSepoxyGlass. 229 (2000). Specifically, colloidal silica having a carboxylic acid immobilized on the surface can be obtained by irradiating light after coupling a silane coupling agent containing a photoreactive 2-nitrobenzyl ester to colloidal silica. .
 研磨用組成物中の砥粒の含有量は0.1質量%以上とすることができ、好ましくは0.5質量%以上である。砥粒の含有量が多くなるにつれて、研磨用組成物による研磨対象物の除去速度(研磨速度)が向上する利点がある。
 研磨用組成物中の砥粒の含有量はまた、20質量%以下とすることができ、好ましくは15質量%以下、より好ましくは10質量%以下である。砥粒の含有量が少なくなるにつれて、研磨用組成物の材料コストを抑えることができることに加え、砥粒の凝集が起こりにくい。また、研磨用組成物を用いて研磨対象物を研磨することにより、表面欠陥の少ない被研磨面が得られやすい。
Content of the abrasive grain in polishing composition can be 0.1 mass% or more, Preferably it is 0.5 mass% or more. As the content of abrasive grains increases, there is an advantage that the removal rate (polishing rate) of the object to be polished by the polishing composition is improved.
The content of abrasive grains in the polishing composition can also be 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less. As the content of the abrasive grains decreases, the material cost of the polishing composition can be suppressed, and the aggregation of the abrasive grains hardly occurs. Further, by polishing the object to be polished using the polishing composition, it is easy to obtain a surface to be polished with few surface defects.
 砥粒の平均一次粒子径は5nm以上とすることができ、好ましくは7nm以上、より好ましくは10nm以上である。砥粒の平均一次粒子径が大きくなるにつれて、研磨用組成物による研磨対象物の研磨速度が向上する。なお、砥粒の平均一次粒子径の値は、例えば、BET法で測定される砥粒の比表面積に基づいて計算することができる。
 砥粒の平均一次粒子径はまた、100nm以下とすることができ、好ましくは90nm以下、より好ましくは80nm以下である。砥粒の平均一次粒子径が小さくなるにつれて、研磨用組成物を用いて研磨対象物を研磨することにより表面欠陥の少ない被研磨面が得られやすい。
The average primary particle diameter of the abrasive grains can be 5 nm or more, preferably 7 nm or more, more preferably 10 nm or more. As the average primary particle diameter of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases. In addition, the value of the average primary particle diameter of an abrasive grain can be calculated based on the specific surface area of the abrasive grain measured by BET method, for example.
The average primary particle diameter of the abrasive grains can also be 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less. As the average primary particle diameter of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
 砥粒の平均二次粒子径は300nm以下とすることができ、好ましくは250nm以下、より好ましくは200nm以下である。砥粒の平均二次粒子径の値は、例えば、レーザー光散乱法により測定することができる。
 砥粒の平均二次粒子径の値を平均一次粒子径の値で除することにより得られる砥粒の平均会合度は1.2以上とすることができ、好ましくは1.5以上である。砥粒の平均会合度が大きくなるにつれて、研磨用組成物による研磨対象物の研磨速度が向上する。
 砥粒の平均会合度はまた、5以下とすることができ、好ましくは4以下、より好ましくは3以下である。砥粒の平均会合度が小さくなるにつれて、研磨用組成物を用いて研磨対象物を研磨することにより表面欠陥の少ない被研磨面が得られやすい。
The average secondary particle diameter of the abrasive grains can be 300 nm or less, preferably 250 nm or less, more preferably 200 nm or less. The value of the average secondary particle diameter of the abrasive grains can be measured by, for example, a laser light scattering method.
The average degree of association of the abrasive grains obtained by dividing the value of the average secondary particle diameter of the abrasive grains by the value of the average primary particle diameter can be 1.2 or more, preferably 1.5 or more. As the average degree of association of the abrasive grains increases, the polishing rate of the object to be polished by the polishing composition increases.
The average degree of association of the abrasive grains can also be 5 or less, preferably 4 or less, more preferably 3 or less. As the average degree of association of the abrasive grains decreases, a surface to be polished with few surface defects is easily obtained by polishing the object to be polished using the polishing composition.
2-2 pHについて
 研磨用組成物のpHは、10未満としてもよく、5以下であることが好ましい。pHが5以下であると、研磨用組成物の操作性が向上し、3以下であるとより好ましく、2.5以下であると特に好ましい。pHが5を超えると操作性が低下する傾向にある。研磨用組成物のpHの下限は特に限定されない。ただし、pHが高くなるほど、研磨用組成物中の砥粒の分散性が向上するため、1以上であることが好ましい。
2-2 About pH The pH of the polishing composition may be less than 10 and is preferably 5 or less. When the pH is 5 or less, the operability of the polishing composition is improved, more preferably 3 or less, and particularly preferably 2.5 or less. When the pH exceeds 5, the operability tends to decrease. The lower limit of the pH of the polishing composition is not particularly limited. However, since the dispersibility of the abrasive grains in the polishing composition improves as the pH increases, it is preferably 1 or more.
2-3 添加剤について
 研磨用組成物には、その性能を向上させるために、必要に応じてpH調整剤、酸化剤、錯化剤、防食剤、界面活性剤、水溶性ポリマー、防腐剤、防カビ剤等の各種添加剤を添加してもよい。また、添加剤として、酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物を添加してもよい。
2-3 Additives In order to improve the performance of the polishing composition, a pH adjuster, an oxidizing agent, a complexing agent, an anticorrosive, a surfactant, a water-soluble polymer, an antiseptic, Various additives such as an antifungal agent may be added. As an additive, a compound having three or more oxygen atoms O and a standard potential of 0.50 V or more may be added.
〔pH調整剤について〕
 研磨用組成物のpHを所望の値に調整するために必要に応じて使用されるpH調整剤は、酸及びアルカリのいずれであってもよく、また無機及び有機の化合物のいずれであってもよい。pH調整剤としては、例えば、硝酸、リン酸、塩酸、硫酸、クエン酸等を用いることができる。
[About pH adjuster]
The pH adjuster used as necessary to adjust the pH of the polishing composition to a desired value may be either acid or alkali, and may be any of inorganic and organic compounds. Good. As the pH adjuster, for example, nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, citric acid and the like can be used.
〔酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物について〕
 酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物としては、例えば、硝酸セリウムアンモニウム((NH[Ce(NO])、メタ過ヨウ素酸(HIO)、オルト過ヨウ素酸(HIO)、過塩素酸(HClO)、過臭素酸(HBrO)、臭素酸カリウム(KBrO)、硫酸(HSO)、過マンガン酸カリウム(KMnO)、過硫酸(HSO)、オキソン(登録商標)、五酸化バナジウム(V)、二クロム酸カリウム(KCr)、酸化マンガン(III )(Mn)、過ルテニウム酸カリウム(KRuO)、四酸化ルテニウム(RuO)、酸化ニッケル(Ni)、水酸化パラジウム(Pd(OH))、メタ錫酸(HSnO)、硝酸(HNO)、ペルオキシ二硫酸アンモニウム((NH)、セレン酸(HSeO)、ペルオキシ二硫酸(H)、硝酸アルミニウム(Al(NO)、過硫酸アンモニウム((NHSO)、過塩素酸アンモニウム(NHClO)、過マンガン酸アンモニウム(NHMnO)等があげられるが、これらに限定されるものではない。
[Compounds having three or more oxygen atoms O and a standard potential of 0.50 V or more]
Examples of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more include cerium ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]), metaperiodic acid (HIO 4 ), Orthoperiodic acid (H 5 IO 6 ), perchloric acid (HClO 4 ), perbromic acid (HBrO 4 ), potassium bromate (KBrO 3 ), sulfuric acid (H 2 SO 4 ), potassium permanganate ( KMnO 4 ), persulfuric acid (H 2 SO 5 ), oxone (registered trademark), vanadium pentoxide (V 2 O 5 ), potassium dichromate (K 2 Cr 2 O 7 ), manganese oxide (III) (Mn 2 O 3), potassium perruthenate (KRuO 4), ruthenium tetroxide (RuO 4), nickel oxide (Ni 2 O 3), palladium hydroxide (Pd (OH) 4), metastannic acid (H 2 S O 3), nitric acid (HNO 3), ammonium peroxydisulfate ((NH 4) 2 S 2 O 8), selenate (H 2 SeO 4), peroxydisulfate (H 2 S 2 O 8) , aluminum nitrate (Al (NO 3 ) 3 ), ammonium persulfate ((NH 4 ) 2 SO 5 ), ammonium perchlorate (NH 4 ClO 4 ), ammonium permanganate (NH 4 MnO 4 ), and the like. It is not something.
 なお、オキソンは、カリウムイオン、過硫酸水素イオン、硫酸イオン、及び硫酸水素イオンからなる複塩であり、化学式2KHSO・KHSO・KSOで表される化合物である。
 理論に拘束されるものではないが、酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物は、強い酸化性を有するとともに酸素原子Oを3つ以上有するという特定の構造を備えることにより、有機膜中の末端構造を不溶性のものから水溶性のものへ変化させることができるとともに、有機膜と砥粒との親和性を高め、メカニカル作用を強めることができるものと考えられる。
Oxone is a double salt composed of potassium ion, hydrogen persulfate ion, sulfate ion, and hydrogen sulfate ion, and is a compound represented by the chemical formula 2KHSO 5 · KHSO 4 · K 2 SO 4 .
Without being bound by theory, a compound having three or more oxygen atoms O and a standard potential of 0.50 V or more has a specific structure in which it has strong oxidizing properties and has three or more oxygen atoms O. By providing, the terminal structure in the organic film can be changed from an insoluble one to a water-soluble one, and the affinity between the organic film and the abrasive grains can be increased and the mechanical action can be enhanced. .
 これは、単に標準電位が高い(酸化力が強い)化合物を酸化剤として選定して研磨対象物の表面を脆い酸化物に変化させ、その酸化物を砥粒のメカニカル作用で削り取る、又は、錯化剤で溶解することで研磨速度を向上させるという技術とは異なり、添加剤が一定以上の標準電位とともに上記特定の構造を備えることで上記メカニズムを発現し、研磨速度を向上させることができると考えられる。 This is simply by selecting a compound having a high standard potential (strong oxidizing power) as an oxidizing agent and changing the surface of the object to be polished into a brittle oxide, and scraping the oxide by the mechanical action of the abrasive grains, Unlike the technique of improving the polishing rate by dissolving with an agent, the additive can have the above-mentioned specific structure with a standard potential of a certain level or more, and the polishing rate can be improved. Conceivable.
 酸素原子Oが3つ未満であるか、又は、標準電位が0.50V未満であると、強い酸化性を有することがなく、有機膜中の末端構造が不溶性のものから水溶性のものへ変化しにくくなる傾向にある。そのため、有機膜と砥粒との親和性が弱く、メカニカル作用を高くすることが難しくなる傾向にある。
 酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物の含有量は、0.005質量%以上とすることができ、0.01質量%以上であることが好ましい。酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物の含有量が多くなるにつれて、有機膜中の末端構造を水溶性へ変化させることができるため、メカニカル作用が向上する利点がある。
If the number of oxygen atoms O is less than 3 or the standard potential is less than 0.50 V, the terminal structure in the organic film changes from insoluble to water-soluble without having strong oxidizing properties. It tends to be difficult to do. Therefore, the affinity between the organic film and the abrasive grains is weak, and it tends to be difficult to increase the mechanical action.
The content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can be 0.005% by mass or more, and preferably 0.01% by mass or more. As the content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more increases, the terminal structure in the organic film can be changed to water-soluble, so that the mechanical action is improved. There is.
 また、酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物の含有量は、5.0質量%以下とすることができ、好ましくは3.0質量%以下、より好ましくは1.0質量%以下である。この範囲であれば、研磨用組成物の材料コストを抑えることができる。
 なお、標準電位とは、ある電気化学反応について、反応に関与する全ての化学種の活量が1(標準状態)であり、且つ、平衡状態となっている時の電極電位を意味する。標準電位は、基準電極との電位差として、サイクリックボルタンメトリー等によって測定することができる。
 また、酸素原子Oを3つ以上有し且つ標準電位が0.50V以上の化合物は、pH調整機能を有するpH調整剤として作用することができる。
The content of the compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can be 5.0% by mass or less, preferably 3.0% by mass or less, more preferably 1.0% by mass or less. If it is this range, the material cost of polishing composition can be held down.
The standard potential means an electrode potential when the activity of all chemical species involved in the reaction is 1 (standard state) and is in an equilibrium state for a certain electrochemical reaction. The standard potential can be measured by cyclic voltammetry or the like as a potential difference from the reference electrode.
A compound having three or more oxygen atoms O and a standard potential of 0.50 V or more can act as a pH adjuster having a pH adjusting function.
〔酸化剤について〕
 酸化剤は研磨対象物の表面を酸化する作用を有し、研磨用組成物中に酸化剤を加えた場合は、研磨用組成物による研磨速度の向上効果がある。研磨用組成物中の酸化剤の含有量は、研磨用組成物の0.1質量%以上とすることができ、好ましくは0.5質量%以上である。また、酸化剤の含有量は、研磨用組成物の4質量%以下とすることができ、好ましくは3質量%以下である。酸化剤の含有量が0.1質量%未満又は4質量%を超える場合には、実用的なレベルの有機膜の研磨速度を得にくい傾向がある。
[About oxidizing agents]
The oxidizing agent has an action of oxidizing the surface of the object to be polished, and when an oxidizing agent is added to the polishing composition, there is an effect of improving the polishing rate by the polishing composition. Content of the oxidizing agent in polishing composition can be 0.1 mass% or more of polishing composition, Preferably it is 0.5 mass% or more. Moreover, content of an oxidizing agent can be 4 mass% or less of polishing composition, Preferably it is 3 mass% or less. When the content of the oxidizing agent is less than 0.1% by mass or more than 4% by mass, it tends to be difficult to obtain a practical level of organic film polishing rate.
 使用可能な酸化剤は、例えば過酸化物である。過酸化物の具体例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩があげられる。これらの中でも過硫酸塩、過酸化水素が研磨速度の観点から好ましく、水溶液中での安定性及び環境負荷への観点から過酸化水素が特に好ましい。 Usable oxidizing agent is, for example, peroxide. Specific examples of the peroxide include persulfates such as hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid, sodium persulfate, potassium persulfate, and ammonium persulfate. Among these, persulfate and hydrogen peroxide are preferable from the viewpoint of polishing rate, and hydrogen peroxide is particularly preferable from the viewpoint of stability in an aqueous solution and environmental load.
〔錯化剤について〕
 研磨用組成物中に任意に含まれる錯化剤は、有機膜を有する基板の表面を化学的にエッチングする作用を有し、研磨用組成物による研磨速度を向上させる働きをする。
 研磨用組成物中に任意に含まれる錯化剤の含有量の上限は、10質量%とすることができ、好ましくは1質量%である。錯化剤の含有量が少なくなるにつれて、有機膜が形成された基板の表面に対する過剰なエッチングが起こりにくくなる。その結果、過剰な研磨を抑制することができる。
[About complexing agents]
The complexing agent optionally contained in the polishing composition has a function of chemically etching the surface of the substrate having the organic film, and functions to improve the polishing rate by the polishing composition.
The upper limit of the content of the complexing agent optionally contained in the polishing composition can be 10% by mass, preferably 1% by mass. As the content of the complexing agent decreases, excessive etching on the surface of the substrate on which the organic film is formed is less likely to occur. As a result, excessive polishing can be suppressed.
 研磨用組成物中に任意に含まれる錯化剤の含有量の下限は、0.01質量%とすることができ、好ましくは0.1質量%である。錯化剤の含有量が多くなるにつれて、有機膜が形成された基板の表面へのエッチング効果が増す。その結果、研磨用組成物による研磨速度の向上を助長する。
 使用可能な錯化剤は、例えば、無機酸、有機酸、及びアミノ酸である。無機酸の具体例としては、硫酸、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、リン酸があげられる。有機酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸があげられる。メタンスルホン酸、エタンスルホン酸、イセチオン酸等の有機硫酸も使用可能である。無機酸又は有機酸の代わりに、あるいは無機酸又は有機酸と組み合わせて、無機酸又は有機酸のアルカリ金属塩等の塩を用いてもよい。
The lower limit of the content of the complexing agent optionally contained in the polishing composition can be 0.01% by mass, preferably 0.1% by mass. As the content of the complexing agent increases, the etching effect on the surface of the substrate on which the organic film is formed increases. As a result, improvement of the polishing rate by the polishing composition is promoted.
Complexing agents that can be used are, for example, inorganic acids, organic acids, and amino acids. Specific examples of the inorganic acid include sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid. Specific examples of organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n- Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, malein Examples include acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid. Organic sulfuric acid such as methanesulfonic acid, ethanesulfonic acid, and isethionic acid can also be used. A salt such as an alkali metal salt of an inorganic acid or an organic acid may be used instead of the inorganic acid or the organic acid or in combination with the inorganic acid or the organic acid.
 アミノ酸の具体例としては、グリシン、α-アラニン、β-アラニン、N-メチルグリシン、N,N-ジメチルグリシン、2-アミノ酪酸、ノルバリン、バリン、ロイシン、ノルロイシン、イソロイシン、フェニルアラニン、プロリン、サルコシン、オルニチン、リシン、タウリン、セリン、トレオニン、ホモセリン、チロシン、ビシン、トリシン、3,5-ジヨード-チロシン、β-(3,4-ジヒドロキシフェニル)-アラニン、チロキシン、4-ヒドロキシ-プロリン、システイン、メチオニン、エチオニン、ランチオニン、シスタチオニン、シスチン、システイン酸、アスパラギン酸、グルタミン酸、S-(カルボキシメチル)-システイン、4-アミノ酪酸、アスパラギン、グルタミン、アザセリン、アルギニン、カナバニン、シトルリン、δ-ヒドロキシ-リシン、クレアチン、ヒスチジン、1-メチル-ヒスチジン、3-メチル-ヒスチジン及びトリプトファンがあげられる。これらの中でも錯化剤としては、研磨性向上の観点から、グリシン、アラニン、リンゴ酸、酒石酸、クエン酸、グリコール酸、イセチオン酸又はそれらの塩が好ましい。 Specific examples of amino acids include glycine, α-alanine, β-alanine, N-methylglycine, N, N-dimethylglycine, 2-aminobutyric acid, norvaline, valine, leucine, norleucine, isoleucine, phenylalanine, proline, sarcosine, Ornithine, lysine, taurine, serine, threonine, homoserine, tyrosine, bicine, tricine, 3,5-diiodo-tyrosine, β- (3,4-dihydroxyphenyl) -alanine, thyroxine, 4-hydroxy-proline, cysteine, methionine , Ethionine, lanthionine, cystathionine, cystine, cysteic acid, aspartic acid, glutamic acid, S- (carboxymethyl) -cysteine, 4-aminobutyric acid, asparagine, glutamine, azaserine, arginine, canavanine, cystein Berlin, .delta.-hydroxy - lysine, creatine, histidine, 1-methyl - histidine, 3-methyl - histidine and tryptophan and the like. Among these, as the complexing agent, glycine, alanine, malic acid, tartaric acid, citric acid, glycolic acid, isethionic acid, or a salt thereof is preferable from the viewpoint of improving polishing properties.
〔防食剤について〕
 研磨用組成物に任意に含まれる防食剤の含有量は、研磨用組成物の0.1質量%以上とすることができ、好ましくは0.2質量%以上である。また、防食剤の含有量は、研磨用組成物の0.4質量%以下とすることができ、好ましくは0.3質量%以下である。防食剤の含有量が0.2質量%未満又は0.4質量%を超える場合には、実用的なレベルの防食効果を得にくい傾向がある。
[Anti-corrosive]
The content of the anticorrosive agent optionally contained in the polishing composition can be 0.1% by mass or more, preferably 0.2% by mass or more of the polishing composition. Moreover, content of anticorrosive agent can be 0.4 mass% or less of polishing composition, Preferably it is 0.3 mass% or less. When the content of the anticorrosive agent is less than 0.2% by mass or exceeds 0.4% by mass, it tends to be difficult to obtain a practical level of anticorrosive effect.
 使用可能な防食剤の例としては、少なくとも5~6員環を有し、2つ以上の二重結合を有し、1つ以上の窒素原子を有する複素環式化合物又は複素アリール化合物があげられる。例えば、ピリジン環、ピラゾール環、ピリミジン環、イミダゾール環、トリアゾール環、ベノトリアゾール環を有する化合物があげられる。また、防食剤として、ベンゾトリアゾール(BTA)を使用することができる。防食剤を加えた場合には、研磨用組成物による研磨速度の向上効果がある。 Examples of usable anticorrosives include heterocyclic compounds or heteroaryl compounds having at least a 5 to 6 membered ring, two or more double bonds, and one or more nitrogen atoms. . Examples thereof include compounds having a pyridine ring, a pyrazole ring, a pyrimidine ring, an imidazole ring, a triazole ring, and a benotriazole ring. Moreover, benzotriazole (BTA) can be used as an anticorrosive. When an anticorrosive agent is added, there is an effect of improving the polishing rate by the polishing composition.
〔界面活性剤について〕
 研磨用組成物に任意に含まれる界面活性剤の含有量は、研磨用組成物の0.01質量%以上とすることができ、好ましくは0.02質量%以上である。また、界面活性剤の含有量は、研磨用組成物の2質量%以下とすることができ、好ましくは1質量%以下である。界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、及び非イオン性界面活性剤から選ばれる1以上を含むことができる。
[Surfactant]
The content of the surfactant optionally contained in the polishing composition can be 0.01% by mass or more, preferably 0.02% by mass or more of the polishing composition. Moreover, content of surfactant can be 2 mass% or less of polishing composition, Preferably it is 1 mass% or less. The surfactant can include one or more selected from an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
 陰イオン性界面活性剤の例としては、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキル硫酸エステル、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸、アルキルエーテル硫酸、アルキルベンゼンスルホン酸、アルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンスルホコハク酸、アルキルスルホコハク酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、及びこれらの塩等があげられる。 Examples of anionic surfactants include polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, alkyl benzene sulfonic acid, alkyl phosphate ester, Examples thereof include oxyethylene alkyl phosphate ester, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof.
 陽イオン性界面活性剤の例としては、アルキルトリメチルアンモニウム塩、アルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルアミン塩等があげられる。
 両性界面活性剤の例としては、アルキルベタイン、アルキルアミンオキシド等があげられる。
 非イオン性界面活性剤の例としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、及びアルキルアルカノールアミド等があげられる。
Examples of the cationic surfactant include alkyltrimethylammonium salt, alkyldimethylammonium salt, alkylbenzyldimethylammonium salt, alkylamine salt and the like.
Examples of amphoteric surfactants include alkylbetaines and alkylamine oxides.
Examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and alkyl alkanolamide. It is done.
 これらの中でも好ましい界面活性剤は、ポリオキシエチレンアルキルエーテル酢酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、及びポリオキシエチレンアルキルエーテルである。
 これらの界面活性剤は、研磨対象物の表面への化学的又は物理的吸着力が高いため、研磨対象物の表面により強固な膜を形成することができる。このことは、研磨用組成物を用いて研磨した後の、研磨対象物の表面の平坦性を向上させる上で有利である。
Among these, preferable surfactants are polyoxyethylene alkyl ether acetate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, alkylbenzene sulfonate, and polyoxyethylene alkyl ether.
Since these surfactants have high chemical or physical adsorption force to the surface of the object to be polished, it is possible to form a stronger film on the surface of the object to be polished. This is advantageous in improving the flatness of the surface of the object to be polished after polishing with the polishing composition.
〔水溶性ポリマーについて〕
 研磨用組成物は水溶性ポリマーを含有することができる。なお、水溶性ポリマーを界面活性剤と称する場合がある。水溶性ポリマーの含有量は、研磨用組成物の0.01質量%以上とすることができ、好ましくは0.02質量%以上である。また、水溶性ポリマーの含有量は、研磨用組成物の2質量%以下とすることができ、好ましくは1質量%以下である。使用できる水溶性ポリマーとしては、ポリアクリル酸ナトリウム、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンオキシド、ポリビニルピロリドン等があげられる。
[About water-soluble polymers]
The polishing composition can contain a water-soluble polymer. The water-soluble polymer may be referred to as a surfactant. The content of the water-soluble polymer can be 0.01% by mass or more of the polishing composition, and preferably 0.02% by mass or more. Moreover, content of a water-soluble polymer can be 2 mass% or less of polishing composition, Preferably it is 1 mass% or less. Examples of water-soluble polymers that can be used include sodium polyacrylate, polyacrylamide, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, and polyvinylpyrrolidone.
〔防腐剤及び防カビ剤について〕
 研磨用組成物は防腐剤及び防カビ剤を含有することができる。防腐剤及び防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤や、パラオキシ安息香酸エステル類や、フェノキシエタノールがあげられる。これら防腐剤及び防カビ剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
[About preservatives and fungicides]
The polishing composition can contain a preservative and a fungicide. Examples of antiseptics and fungicides include isothiazoline-based antiseptics such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. And phenoxyethanol. These preservatives and fungicides may be used alone or in combination of two or more.
2-4 液状媒体について
 研磨用組成物は、水、有機溶剤等の液状媒体を含有してもよい。液状媒体は、研磨用組成物の各成分(砥粒、添加剤等)を分散又は溶解するための分散媒又は溶媒として機能する。液状媒体としては水、有機溶剤があげられ、1種を単独で用いることができるし、2種以上を混合して用いることができるが、水を含有することが好ましい。ただし、各成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水を用いることが好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、あるいは蒸留水が好ましい。
 また、研磨用組成物は一液型であってもよいし、二液型を始めとする多液型であってもよい。さらに、研磨用組成物は、研磨用組成物の原液を水等の液状媒体で希釈することにより調製されてもよい。
2-4 Liquid medium The polishing composition may contain a liquid medium such as water or an organic solvent. The liquid medium functions as a dispersion medium or solvent for dispersing or dissolving each component (abrasive grains, additives, etc.) of the polishing composition. Examples of the liquid medium include water and organic solvents. One kind can be used alone, or two or more kinds can be mixed and used, but it is preferable to contain water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of each component. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
The polishing composition may be a one-component type or a multi-component type such as a two-component type. Further, the polishing composition may be prepared by diluting a stock solution of the polishing composition with a liquid medium such as water.
3.不純物除去工程及び不純物除去用組成物について
 本実施形態の研磨方法における不純物除去工程は、研磨工程で研磨された研磨対象物を、有機化合物を含有する不純物除去用組成物を用いて研磨して、研磨対象物上に存在する不純物を除去する工程である。不純物除去工程において使用される不純物除去用組成物は、砥粒を含有しないか、又は、含有する場合でも少量であるため、不純物除去工程においては化学的機械的研磨は実質的には行われず、不純物を除去する処理が行われる。
3. About the impurity removal step and the impurity removal composition The impurity removal step in the polishing method of the present embodiment is performed by polishing the polishing object polished in the polishing step using an impurity removal composition containing an organic compound, This is a step of removing impurities present on the object to be polished. The impurity-removing composition used in the impurity removing step does not contain abrasive grains, or even if it contains a small amount, chemical mechanical polishing is not substantially performed in the impurity removing step. A process for removing impurities is performed.
 研磨工程後の研磨対象物上には、不純物(ディフェクト)が多量に存在する場合がある。不純物としては、研磨工程で使用された研磨用組成物由来の砥粒、金属、添加剤や、研磨対象物の基材(研磨対象物が表面に有機膜を有する基板である場合には、金属配線、プラグ等を研磨することによって生じたシリコン含有材料及び金属)及び有機膜や、研磨に使用した研磨パッドから生じるパッド屑等が含まれる。このような不純物が表面上に存在する研磨対象物を不純物除去用組成物を用いて研磨することにより、不純物が十分に除去された研磨対象物を得ることができる。 A large amount of impurities (defects) may be present on the object to be polished after the polishing process. As impurities, abrasive grains derived from the polishing composition used in the polishing step, metal, additives, and base material of the object to be polished (if the object to be polished is a substrate having an organic film on its surface, metal Examples include silicon-containing materials and metals generated by polishing wiring, plugs, and the like) and organic films, and pad scraps generated from polishing pads used for polishing. By polishing a polishing object having such impurities on the surface using the impurity removing composition, a polishing object from which impurities are sufficiently removed can be obtained.
 なお、本実施形態の不純物除去用組成物は、砥粒を含有する研磨用組成物を用いて研磨された研磨対象物に対して使用することができるが、研磨直後の研磨対象物に限らず、研磨前の研磨対象物に対して使用することもできるし、研磨後に洗浄した研磨対象物に対して使用することもできる。すなわち、どのような状況の研磨対象物であっても、本実施形態の不純物除去用組成物を用いて不純物を除去する処理を行うことにより、その表面上に存在する不純物を十分に除去することができる。 The impurity removal composition of the present embodiment can be used for a polishing object polished using a polishing composition containing abrasive grains, but is not limited to a polishing object immediately after polishing. Further, it can be used for a polishing object before polishing, or can be used for a polishing object washed after polishing. That is, regardless of the situation of the object to be polished, the impurities existing on the surface can be sufficiently removed by performing the treatment for removing the impurities using the impurity removing composition of the present embodiment. Can do.
 不純物除去工程は、研磨対象物から不純物を除去することが目的であり、研磨を行う必要はないので、不純物除去工程における有機膜の研磨速度は、0.5nm/min以下としてもよく、好ましくは0.3nm/min以下、より好ましくは0.1nm/min以下、さらに好ましくは0.05nm/min以下である。すなわち、不純物除去工程における有機膜の研磨速度は実質的にはゼロである。 The impurity removal step is intended to remove impurities from the object to be polished and does not require polishing. Therefore, the polishing rate of the organic film in the impurity removal step may be 0.5 nm / min or less, preferably 0.3 nm / min or less, more preferably 0.1 nm / min or less, still more preferably 0.05 nm / min or less. That is, the polishing rate of the organic film in the impurity removal step is substantially zero.
 不純物を除去する処理の条件は特に限定されるものではなく、表面に有機膜を有する研磨対象物(例えば基板)と研磨パッドとの間に不純物除去用組成物を介在させ、例えば研磨装置(片面研磨装置、両面研磨装置等)を用いて一般的な研磨条件で研磨を行うことによって、表面に有機膜を有する研磨対象物上に存在する不純物の除去を行うことができる。 The treatment conditions for removing impurities are not particularly limited, and an impurity removing composition is interposed between a polishing object (for example, a substrate) having an organic film on the surface and a polishing pad, for example, a polishing apparatus (one side) By performing polishing under general polishing conditions using a polishing apparatus, a double-side polishing apparatus, or the like, impurities existing on an object to be polished having an organic film on the surface can be removed.
 不純物除去工程において使用する研磨パッドの種類は特に限定されるものではなく、2項において前述した研磨パッドを使用することができる。ただし、軟質な研磨パッド(ソフトパッド)を使用することが好ましく、具体的には、パッド硬度が60以下であることが好ましく、50以下であることがより好ましい。このようなソフトパッドを用いることにより、不純物除去工程において有機膜に生じる傷(スクラッチ)を低減することができる。なお、本明細書においてパッド硬度とは、研磨パッドのショアD硬度を意味する。 The type of polishing pad used in the impurity removal step is not particularly limited, and the polishing pad described above in item 2 can be used. However, it is preferable to use a soft polishing pad (soft pad). Specifically, the pad hardness is preferably 60 or less, and more preferably 50 or less. By using such a soft pad, scratches (scratches) generated in the organic film in the impurity removal step can be reduced. In the present specification, the pad hardness means the Shore D hardness of the polishing pad.
 不純物除去工程により研磨対象物上の不純物は十分に除去されているが、不純物除去工程の後に、研磨対象物上に残存した不純物を除去する工程をさらに設けてもよい。例えば、研磨用組成物や不純物除去用組成物に代えて水を用いて研磨を行う水研磨工程、及び、研磨対象物を洗浄する洗浄工程の少なくとも一方を設けてもよい。洗浄工程の処理内容は特に限定されるものではないが、例えば、水や洗浄液を研磨対象物に流し掛けながら、ポリビニルアルコール製スポンジ等のブラシで圧力をかけて擦る工程としてもよい。洗浄後の研磨対象物は、スピンドライヤ等により、表面に付着した液滴を払い落として乾燥させてもよい。 The impurities on the object to be polished are sufficiently removed by the impurity removing step, but a step of removing impurities remaining on the object to be polished may be further provided after the impurity removing step. For example, at least one of a water polishing step of polishing using water instead of a polishing composition or an impurity removal composition and a cleaning step of cleaning an object to be polished may be provided. The processing content of the cleaning process is not particularly limited. For example, it may be a process of applying pressure with a brush such as a sponge made of polyvinyl alcohol while pouring water or a cleaning liquid onto the object to be polished. The object to be polished after washing may be dried by removing droplets adhering to the surface with a spin dryer or the like.
 本実施形態の不純物除去用組成物は、後述する特定の有機化合物を含有しているならば、その組成は特に限定されるものではないが、所望により、特定の有機化合物の他に各種添加剤を含有していてもよいし、砥粒を含有していてもよい。また、有機化合物を溶媒に溶解させた溶液としてもよい。本実施形態の不純物除去用組成物について以下に詳細に説明する。 The composition for removing impurities of the present embodiment is not particularly limited as long as it contains a specific organic compound to be described later, but various additives in addition to the specific organic compound can be used if desired. May be contained or abrasive grains may be contained. Alternatively, a solution in which an organic compound is dissolved in a solvent may be used. The impurity removal composition of this embodiment will be described in detail below.
3-1 有機化合物について
 本実施形態の不純物除去用組成物に含有される有機化合物は、界面活性剤及び水溶性高分子の少なくとも一方を有する。そして、この界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有する。また、この水溶性高分子は、高分子の主鎖が疎水性である。これらの有機化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
3-1 Organic Compound The organic compound contained in the impurity removal composition of the present embodiment has at least one of a surfactant and a water-soluble polymer. This surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms. Further, this water-soluble polymer has a hydrophobic main chain of the polymer. These organic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 不純物除去工程においては、この有機化合物の作用により、研磨対象物上の不純物が除去される。有機化合物により研磨対象物上の不純物が除去されるメカニズムとしては、不純物の付着防止作用と不純物の脱離作用とが考えられる。
 不純物の付着防止作用は、有機化合物が有機膜の表面を親水化することにより発生する。また、不純物の脱離作用は、有機化合物が有機膜の表面に付着した不純物(特に有機物)を乳化して水和させることにより発生する。
In the impurity removal step, impurities on the object to be polished are removed by the action of the organic compound. As a mechanism by which the impurities on the object to be polished are removed by the organic compound, an impurity adhesion preventing action and an impurity detaching action are considered.
The effect of preventing the adhesion of impurities occurs when the organic compound hydrophilizes the surface of the organic film. In addition, the impurity detachment action occurs when an organic compound is emulsified and hydrated with impurities (especially organic matter) adhering to the surface of the organic film.
 不純物の付着防止作用については、有機膜に対する有機化合物の吸着力が強いと、有機化合物自体が研磨後に残渣として残ってしまうおそれがあることから、有機膜に対する有機化合物の吸着力は強すぎても適していない。具体的には、後述するスルホン酸タイプの界面活性剤は親水化作用を有しているが、それ自体が残渣として残ってしまうおそれがあるため、有機膜の表面上の不純物の量(欠陥数)を低減させる作用が、硫酸タイプ、リン酸タイプ、カルボン酸タイプの界面活性剤と比較して弱い。一方、有機膜に対する有機化合物の吸着力が弱すぎても、親水性の膜を有機膜の表面上に形成できないので、再付着防止作用を持たせることができないという問題が生じるおそれがある。有機化合物は、有機膜に吸着しやすく(吸着する速度が速い)、且つ、脱離しやすい適度な吸着力を有するものを用いることが好ましい。 As for the effect of preventing the adhesion of impurities, since the organic compound itself may remain as a residue after polishing if the adsorption force of the organic compound on the organic film is strong, the adsorption force of the organic compound on the organic film may be too strong. Not suitable. Specifically, although a sulfonic acid type surfactant described later has a hydrophilizing action, it may remain as a residue itself, so the amount of impurities (number of defects) on the surface of the organic film. ) Is less effective than sulfuric acid type, phosphoric acid type and carboxylic acid type surfactants. On the other hand, even if the adsorptive power of the organic compound to the organic film is too weak, a hydrophilic film cannot be formed on the surface of the organic film, which may cause a problem that the anti-reattachment function cannot be provided. It is preferable to use an organic compound that has a suitable adsorbing power that is easily adsorbed on the organic film (the adsorbing speed is fast) and is easily desorbed.
 界面活性剤は、親水基及び疎水基を有しているので、有機膜の表面を親水化することができ、且つ、不純物を乳化して水和させることができる。また、水溶性高分子は、高分子の主鎖が疎水性であるので、有機膜の表面を親水化することができ、且つ、不純物を乳化して水和させることができる。
 界面活性剤の親水基の種類は特に限定されるものではないが、例えば、カルボキシ基(-COOH)、スルホ基(-SOH)、エーテル基(-O-)、ヒドロキシ基(-OH)、ホルミル基(-CHO)、アミノ基(-NH)から選ばれる少なくとも1つがあげられる。
Since the surfactant has a hydrophilic group and a hydrophobic group, the surface of the organic film can be hydrophilized, and impurities can be emulsified and hydrated. Further, since the main chain of the water-soluble polymer is hydrophobic, the surface of the organic film can be made hydrophilic, and impurities can be emulsified and hydrated.
The type of the hydrophilic group of the surfactant is not particularly limited. For example, carboxy group (—COOH), sulfo group (—SO 3 H), ether group (—O—), hydroxy group (—OH) , At least one selected from a formyl group (—CHO) and an amino group (—NH 2 ).
 これらの親水基は疎水基に結合しているが、この疎水基は炭素数3以上の炭化水素基を有し、この炭化水素基は芳香族炭化水素基でもよいし脂肪族炭化水素基でもよい。炭化水素基の炭素数が3以上であれば、疎水性相互作用によって界面活性剤が有機膜の表面に吸着しやすい。
 界面活性剤としては、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤を用いることができる。
These hydrophilic groups are bonded to a hydrophobic group, but this hydrophobic group has a hydrocarbon group having 3 or more carbon atoms, and this hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group. . If the number of carbon atoms of the hydrocarbon group is 3 or more, the surfactant is easily adsorbed on the surface of the organic film by hydrophobic interaction.
As the surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
 非イオン性界面活性剤の具体例としては、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、アルキルアルカノールアミドがあげられる。
 また、陰イオン性界面活性剤の具体例としては、ヤシ油脂肪酸サルコシン、ポリオキシエチレンアルキル硫酸エステル、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸、アルキルエーテル硫酸、ポリオキシエチレンアルキルエーテル酢酸、アルキルベンゼンスルホン酸、アルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンスルホコハク酸、アルキルスルホコハク酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、又はこれらの塩があげられる。
Specific examples of the nonionic surfactant include polyoxyalkylene alkyl ethers, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, and alkyl alkanolamides.
Specific examples of the anionic surfactant include coconut oil fatty acid sarcosine, polyoxyethylene alkyl sulfate, alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkyl ether sulfate, polyoxyethylene alkyl ether acetic acid, alkylbenzene sulfone. Examples thereof include acids, alkyl phosphate esters, polyoxyethylene alkyl phosphate esters, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, and salts thereof.
 一方、水溶性高分子は、主鎖が疎水性であるから、主鎖は酸素原子、窒素原子、硫黄原子等の局所電荷を持ちやすい原子を有さず、好ましくは炭素原子及び水素原子のみからなる。したがって、水溶性高分子の具体例としては、ポリビニルアルコール、ポリグリセリン、ポリオキシエチレンポリグリセリルエーテルがあげられ、ポリエチレングリコールやポリプロピレングリコールは、不純物除去用組成物に含有される有機化合物には該当しない。 On the other hand, since the main chain of the water-soluble polymer is hydrophobic, the main chain does not have an atom having a local charge such as an oxygen atom, a nitrogen atom, or a sulfur atom, and preferably includes only a carbon atom and a hydrogen atom. Become. Therefore, specific examples of the water-soluble polymer include polyvinyl alcohol, polyglycerin, and polyoxyethylene polyglyceryl ether, and polyethylene glycol and polypropylene glycol do not correspond to organic compounds contained in the impurity removal composition.
 本実施形態の不純物除去用組成物中の有機化合物の含有量は、特に限定されるものではないが、0.001質量%以上10質量%以下とすることができる。0.001質量%以上であれば、有機化合物の親水部が有機膜の表面を十分に親水化し、不純物が有機膜の表面に再付着することを防止する効果や、有機膜の表面の有機物を乳化させ系外に排出する効果がより一層奏される。一方、10質量%以下であれば、有機化合物自体が有機膜の表面に残渣として残る可能性が低くなるとともに、不純物除去用組成物の保存安定性が悪化しにくい。 The content of the organic compound in the impurity removal composition of the present embodiment is not particularly limited, but may be 0.001% by mass or more and 10% by mass or less. If it is 0.001% by mass or more, the hydrophilic part of the organic compound will sufficiently hydrophilize the surface of the organic film, preventing the impurities from reattaching to the surface of the organic film, and the organic matter on the surface of the organic film. The effect of emulsifying and discharging out of the system is further exhibited. On the other hand, if it is 10 mass% or less, the possibility that the organic compound itself remains as a residue on the surface of the organic film is reduced, and the storage stability of the impurity removing composition is hardly deteriorated.
3-2 添加剤について
 本実施形態の不純物除去用組成物には、その性能を向上させるために、必要に応じてpH調整剤、酸化剤、錯化剤、防食剤、防腐剤、防カビ剤等の各種添加剤を添加してもよい。本実施形態の不純物除去用組成物に配合可能なこれら添加剤については、2-3項において前述した添加剤と同様であるので、その説明は省略する。
3-2 Additives In order to improve the performance of the impurity removal composition of the present embodiment, a pH adjuster, an oxidizing agent, a complexing agent, an anticorrosive, an antiseptic, and an antifungal agent are added as necessary. You may add various additives, such as. Since these additives that can be blended in the impurity removal composition of the present embodiment are the same as the additives described in Section 2-3, description thereof will be omitted.
3-3 溶媒について
 前述の通り、本実施形態の不純物除去用組成物は、有機化合物を溶媒に溶解させた溶液としてもよい。溶媒の種類は特に限定されるものではなく、水、有機溶剤があげられる。これらの溶媒は、1種を単独で用いることができるし、2種以上を混合して用いることができるが、水を含有することが好ましい。ただし、有機化合物や添加剤の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水を用いることが好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、あるいは蒸留水が好ましい。
3-3 Solvent As described above, the impurity removal composition of the present embodiment may be a solution in which an organic compound is dissolved in a solvent. The kind of solvent is not particularly limited, and examples thereof include water and organic solvents. These solvents can be used alone or as a mixture of two or more, but preferably contain water. However, it is preferable to use water containing as little impurities as possible from the viewpoint of suppressing the inhibition of the action of the organic compound or additive. Specifically, pure water, ultrapure water, or distilled water from which foreign substances are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
3-4 砥粒について
 不純物除去用組成物は、砥粒を含有してもしなくてもよい。砥粒を含有する場合は、少量が好ましい。不純物除去用組成物が砥粒を含有しない場合は、その他の固形物を配合せずに、不純物除去用組成物をスラリー状ではなく溶液状としてもよい。また、不純物除去用組成物が砥粒を含有する場合は、その含有量は0質量%超過0.01質量%以下とすることが好ましい。砥粒の種類は特に限定されるものではなく、2-1項において前述した砥粒を使用することができるが、コロイダルシリカが好ましい。砥粒の粒径は特に限定されるものではないが、2-1項において前述した平均一次粒子径、平均二次粒子径を有する砥粒を用いることができる。
3-4 Abrasive Grains The impurity removing composition may or may not contain abrasive grains. When it contains abrasive grains, a small amount is preferred. When the composition for removing impurities does not contain abrasive grains, the composition for removing impurities may be in the form of a solution instead of a slurry without blending other solid materials. Moreover, when the composition for impurity removal contains an abrasive grain, the content is preferably 0% by mass to 0.01% by mass or less. The type of abrasive grains is not particularly limited, and the abrasive grains described above in Section 2-1 can be used, but colloidal silica is preferred. The particle size of the abrasive grains is not particularly limited, and the abrasive grains having the average primary particle diameter and the average secondary particle diameter described in Section 2-1 can be used.
〔実施例〕
 以下に実施例及び比較例を示して、表1を参照しながら本発明をさらに具体的に説明する。
 (実施例1)
 表面に有機膜を有する研磨対象物を、砥粒を含有する研磨用組成物を用いて研磨機で研磨(化学的機械的研磨)した後に、有機化合物を含有する不純物除去用組成物を用いて研磨機で研磨(不純物を除去する処理)して、研磨対象物上に存在する不純物を除去した。そして、研磨対象物を研磨機で水研磨し、さらに洗浄した後に、研磨対象物上に存在する不純物の量を測定した。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to Table 1 by showing Examples and Comparative Examples.
(Example 1)
A polishing object having an organic film on the surface is polished with a polishing machine (chemical mechanical polishing) using a polishing composition containing abrasive grains, and then an impurity removing composition containing an organic compound is used. Polishing was performed with a polishing machine (treatment for removing impurities) to remove impurities present on the object to be polished. Then, the polishing object was water-polished with a polishing machine and further washed, and then the amount of impurities present on the polishing object was measured.
 研磨対象物はシリコンウェハであり、その表面には、ArFエキシマーレーザー(波長193nm)を露光光源とするレジストの被膜が有機膜として形成されている。
 研磨用組成物は、コロイダルシリカ(砥粒)とポリビニルピロリドン(添加剤)と水(液状媒体)とからなるスラリーであり、研磨用組成物中のコロイダルシリカの含有量は2質量%、ポリビニルピロリドンの含有量は0.1質量%である。また、コロイダルシリカの平均一次粒子径は30nmであり、平均二次粒子径は60nmである。
The object to be polished is a silicon wafer, and a resist film using an ArF excimer laser (wavelength 193 nm) as an exposure light source is formed as an organic film on the surface.
The polishing composition is a slurry composed of colloidal silica (abrasive grains), polyvinylpyrrolidone (additive), and water (liquid medium). The content of colloidal silica in the polishing composition is 2% by mass, and polyvinylpyrrolidone. The content of is 0.1% by mass. Moreover, the average primary particle diameter of colloidal silica is 30 nm, and an average secondary particle diameter is 60 nm.
 不純物除去用組成物は、界面活性剤(有機化合物)と水とからなるpH7.0の水溶液であり、不純物除去用組成物中の界面活性剤の含有量は0.1質量%である。界面活性剤としては、表1に示す通り、ヤシ油脂肪酸サルコシントリエタノールアミンを用いた。ヤシ油脂肪酸サルコシントリエタノールアミンは陰イオン性界面活性剤であり、親水基としてカルボキシ基、疎水基としてヤシ油脂肪酸を構成する炭化水素基を有する。 The impurity removal composition is a pH 7.0 aqueous solution composed of a surfactant (organic compound) and water, and the content of the surfactant in the impurity removal composition is 0.1% by mass. As the surfactant, coconut oil fatty acid sarcosine triethanolamine was used as shown in Table 1. Coconut oil fatty acid sarcosine triethanolamine is an anionic surfactant having a carboxy group as a hydrophilic group and a hydrocarbon group constituting coconut oil fatty acid as a hydrophobic group.
 研磨装置としては、化学的機械的研磨、不純物を除去する処理、水研磨のいずれにおいても、株式会社荏原製作所製のCMP装置F-REX300E(製品名)を用いた。また、研磨パッドとしては、化学的機械的研磨、不純物を除去する処理、水研磨のいずれにおいても、ローム・アンド・ハース社製の発泡ポリウレタン樹脂製積層研磨パッド(商品名IC-1010)を用いた。 As a polishing apparatus, a CMP apparatus F-REX300E (product name) manufactured by Ebara Manufacturing Co., Ltd. was used for any of chemical mechanical polishing, treatment for removing impurities, and water polishing. As the polishing pad, a foamed polyurethane resin laminated polishing pad (trade name IC-1010) manufactured by Rohm and Haas is used for any of chemical mechanical polishing, treatment for removing impurities, and water polishing. It was.
 研磨条件は、化学的機械的研磨では、研磨圧力3.4kPa(0.5psi)、定盤及びキャリアーの回転速度10rpm、研磨時間5秒間、研磨用組成物の供給速度:300ml/min、であり、不純物を除去する処理では、研磨圧力3.4kPa(0.5psi)、定盤及びキャリアーの回転速度30rpm、研磨時間60秒間、不純物除去用組成物の供給速度:300ml/min、である。
 研磨対象物上に存在する不純物の量の測定は、ケーエルエー・テンコール社製のウェハ表面検査装置Surfscan SP1を用いて行った。この装置で検出される不純物は、径が0.5μm以上のものである。結果を表1に示す。
The polishing conditions for chemical mechanical polishing are a polishing pressure of 3.4 kPa (0.5 psi), a platen and carrier rotation speed of 10 rpm, a polishing time of 5 seconds, and a polishing composition supply rate of 300 ml / min. In the treatment for removing impurities, the polishing pressure is 3.4 kPa (0.5 psi), the rotation speed of the surface plate and the carrier is 30 rpm, the polishing time is 60 seconds, and the supply speed of the impurity removing composition is 300 ml / min.
The amount of impurities present on the object to be polished was measured using a wafer surface inspection device Surfscan SP1 manufactured by KLA-Tencor. Impurities detected by this apparatus have a diameter of 0.5 μm or more. The results are shown in Table 1.
 (実施例2~11及び13)
 不純物除去用組成物に使用する有機化合物の種類を、表1に示す界面活性剤にそれぞれ変更した点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。
 なお、表1に記載の「POEドデシルエーテル硫酸アンモニウム」等の「POE」とは「ポリオキシエチレン」を意味し、「POAアリルフェニルエーテル硫酸アンモニウム」の「POA」とは「ポリオキシアルキレン」を意味する。
(Examples 2 to 11 and 13)
In the same manner as in Example 1 except that the type of the organic compound used in the impurity removal composition was changed to the surfactant shown in Table 1, the chemical compound for the polishing object having an organic film on the surface was used. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1.
In addition, “POE” such as “POE dodecyl ether ammonium sulfate” described in Table 1 means “polyoxyethylene”, and “POA” of “POA allyl phenyl ether ammonium sulfate” means “polyoxyalkylene”. .
 (実施例12)
 不純物除去用組成物に使用する有機化合物の種類を、表1に示す水溶性高分子に変更した点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。なお、水溶性高分子であるポリビニルアルコールは、親水基としてヒドロキシ基、疎水基としてポリビニルアルコールの主鎖を構成する炭化水素基を有する。
Example 12
In the same manner as in Example 1 except that the type of the organic compound used in the impurity removal composition was changed to the water-soluble polymer shown in Table 1, the chemical compound for the polishing object having an organic film on the surface was used. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1. Polyvinyl alcohol which is a water-soluble polymer has a hydroxyl group as a hydrophilic group and a hydrocarbon group constituting the main chain of polyvinyl alcohol as a hydrophobic group.
 (実施例14~19)
 不純物除去用組成物に使用する有機化合物の種類を、表1に示す界面活性剤にそれぞれ変更した点と、不純物除去用組成物に硝酸を添加してpHを2.7に調整した点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。
(Examples 14 to 19)
Except for the point that the types of organic compounds used in the impurity removal composition were changed to the surfactants shown in Table 1, respectively, and the pH was adjusted to 2.7 by adding nitric acid to the impurity removal composition. In the same manner as in Example 1, the object to be polished having an organic film on the surface is subjected to chemical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, and then present on the object to be polished. The amount of impurities was measured. The results are shown in Table 1.
 (実施例20~22)
 不純物除去用組成物に使用する有機化合物の種類を、表1に示す界面活性剤にそれぞれ変更した点と、不純物除去用組成物にアンモニアを添加してpHを10に調整した点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。
(Examples 20 to 22)
Implemented except that the type of organic compound used in the impurity removal composition was changed to the surfactant shown in Table 1 and that the pH was adjusted to 10 by adding ammonia to the impurity removal composition. In the same manner as in Example 1, after performing chemical mechanical polishing, treatment for removing impurities, water polishing, and cleaning on a polishing object having an organic film on the surface, impurities existing on the polishing object are removed. The amount was measured. The results are shown in Table 1.
 (比較例1)
 不純物を除去する処理において、不純物除去用組成物の代わりに水を用いた点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。
(Comparative Example 1)
In the treatment for removing impurities, except for using water instead of the composition for removing impurities, in the same manner as in Example 1, chemical mechanical polishing, impurities on a polishing object having an organic film on the surface The amount of impurities present on the object to be polished was measured after carrying out the treatment for removing water, water polishing, and cleaning. The results are shown in Table 1.
 (比較例2、3)
 不純物除去用組成物に使用する有機化合物の種類を、表1に示す高分子化合物にそれぞれ変更した点以外は、実施例1と同様にして、表面に有機膜を有する研磨対象物に対して化学的機械的研磨、不純物を除去する処理、水研磨、及び洗浄を施した後に、研磨対象物上に存在する不純物の量を測定した。結果を表1に示す。
(Comparative Examples 2 and 3)
Except that the type of organic compound used in the impurity removal composition was changed to the polymer compound shown in Table 1, the same manner as in Example 1 was applied to the polishing object having an organic film on the surface. After performing mechanical mechanical polishing, treatment for removing impurities, water polishing, and cleaning, the amount of impurities present on the object to be polished was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、実施例1~22は、比較例1~3に比べて、研磨対象物上に存在する不純物の量が少なく、有機化合物を含有する不純物除去用組成物を用いて研磨機で研磨することにより、不純物が十分に除去されていることが分かる。比較例2、3は、不純物除去用組成物に配合されている有機化合物である高分子化合物の主鎖が疎水性ではなく親水性であるため、不純物を除去する処理によって不純物が十分に除去されなかった。 From the results shown in Table 1, in Examples 1 to 22, the amount of impurities present on the object to be polished was smaller than that in Comparative Examples 1 to 3, and polishing was performed using an impurity removing composition containing an organic compound. It can be seen that the impurities are sufficiently removed by polishing with a machine. In Comparative Examples 2 and 3, since the main chain of the polymer compound, which is an organic compound blended in the impurity removal composition, is hydrophilic rather than hydrophobic, the impurities are sufficiently removed by the treatment for removing the impurities. There wasn't.

Claims (12)

  1.  表面に有機膜を有する研磨対象物を、砥粒を含有する研磨用組成物を用いて研磨する研磨工程と、
     前記研磨工程で研磨された前記研磨対象物を、有機化合物を含有する不純物除去用組成物を用いて研磨して、前記研磨対象物上に存在する不純物を除去する不純物除去工程と、
    を備え、
     前記有機化合物は界面活性剤及び水溶性高分子の少なくとも一方を有し、
     前記界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有し、前記水溶性高分子は主鎖が疎水性である研磨方法。
    A polishing step of polishing an object to be polished having an organic film on the surface using a polishing composition containing abrasive grains;
    Polishing the polishing object polished in the polishing step using an impurity-removing composition containing an organic compound to remove impurities present on the polishing object; and
    With
    The organic compound has at least one of a surfactant and a water-soluble polymer,
    The polishing method wherein the surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and the water-soluble polymer has a hydrophobic main chain.
  2.  前記不純物除去用組成物は砥粒を含有しない請求項1に記載の研磨方法。 The polishing method according to claim 1, wherein the impurity removing composition does not contain abrasive grains.
  3.  前記不純物除去工程における前記有機膜の研磨速度が0.5nm/min以下である請求項1又は請求項2に記載の研磨方法。 The polishing method according to claim 1 or 2, wherein a polishing rate of the organic film in the impurity removing step is 0.5 nm / min or less.
  4.  前記不純物除去用組成物中の前記有機化合物の含有量が0.001質量%以上10質量%以下である請求項1~3のいずれか一項に記載の研磨方法。 The polishing method according to any one of claims 1 to 3, wherein the content of the organic compound in the impurity removing composition is 0.001 mass% or more and 10 mass% or less.
  5.  前記親水基がカルボキシ基、スルホ基、エーテル基、及びヒドロキシ基から選ばれる少なくとも1つである請求項1~4のいずれか一項に記載の研磨方法。 The polishing method according to any one of claims 1 to 4, wherein the hydrophilic group is at least one selected from a carboxy group, a sulfo group, an ether group, and a hydroxy group.
  6.  表面に有機膜を有する基板を請求項1~5のいずれか一項に記載の研磨方法により研磨する工程を備える基板の製造方法。 A method for producing a substrate comprising a step of polishing a substrate having an organic film on the surface by the polishing method according to any one of claims 1 to 5.
  7.  請求項6に記載の基板の製造方法によって製造された基板。 A substrate manufactured by the method for manufacturing a substrate according to claim 6.
  8.  表面に有機膜を有する研磨対象物上に存在する不純物を除去するために使用される不純物除去用組成物であって、
     有機化合物を含有し、
     前記有機化合物は界面活性剤及び水溶性高分子の少なくとも一方を有し、
     前記界面活性剤は、親水基と、炭素数3以上の炭化水素基を有する疎水基と、を有し、前記水溶性高分子は主鎖が疎水性である不純物除去用組成物。
    An impurity removing composition used for removing impurities present on an object to be polished having an organic film on its surface,
    Contains organic compounds,
    The organic compound has at least one of a surfactant and a water-soluble polymer,
    The surfactant has a hydrophilic group and a hydrophobic group having a hydrocarbon group having 3 or more carbon atoms, and the water-soluble polymer has a hydrophobic main chain.
  9.  砥粒を含有しない請求項8に記載の不純物除去用組成物。 The composition for removing impurities according to claim 8, which contains no abrasive grains.
  10.  砥粒を含有する研磨用組成物を用いて研磨された前記研磨対象物に対して使用される請求項8又は請求項9に記載の不純物除去用組成物。 The impurity removing composition according to claim 8 or 9, which is used for the polishing object polished using a polishing composition containing abrasive grains.
  11.  前記有機化合物の含有量が0.001質量%以上10質量%以下である請求項8~10のいずれか一項に記載の不純物除去用組成物。 The impurity removal composition according to any one of claims 8 to 10, wherein the content of the organic compound is 0.001% by mass or more and 10% by mass or less.
  12.  前記親水基がカルボキシ基、スルホ基、エーテル基、及びヒドロキシ基から選ばれる少なくとも1つである請求項8~11のいずれか一項に記載の不純物除去用組成物。 12. The impurity removing composition according to claim 8, wherein the hydrophilic group is at least one selected from a carboxy group, a sulfo group, an ether group, and a hydroxy group.
PCT/JP2016/067570 2015-06-25 2016-06-13 Polishing method, composition for removing impurity, substrate, and method for manufacturing same WO2016208445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-128105 2015-06-25
JP2015128105A JP2017011225A (en) 2015-06-25 2015-06-25 Polishing method, composition for removing impurity, and substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016208445A1 true WO2016208445A1 (en) 2016-12-29

Family

ID=57585285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067570 WO2016208445A1 (en) 2015-06-25 2016-06-13 Polishing method, composition for removing impurity, substrate, and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2017011225A (en)
TW (1) TWI730970B (en)
WO (1) WO2016208445A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034077A (en) * 2017-09-22 2019-04-01 가부시키가이샤 후지미인코퍼레이티드 Composition for surface treatment, method for producing composition for surface treatment, surface treatment method, and method for producing semiconductor substrate
JP2019062174A (en) * 2017-09-22 2019-04-18 株式会社フジミインコーポレーテッド Surface-processing composition, manufacturing method thereof, surface processing method, and manufacturing of semiconductor substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377627B2 (en) 2017-03-14 2022-07-05 Fujimi Incorporated Composition for surface treatment, method for producing the same, and surface treatment method using the same
JP6901297B2 (en) 2017-03-22 2021-07-14 株式会社フジミインコーポレーテッド Polishing composition
TWI827126B (en) * 2017-09-26 2023-12-21 日商福吉米股份有限公司 Surface treatment composition, method of making same and surface treatment method using same
JP7299102B2 (en) * 2018-09-25 2023-06-27 株式会社フジミインコーポレーテッド Intermediate raw material, and polishing composition and surface treatment composition using the same
US11060051B2 (en) 2018-10-12 2021-07-13 Fujimi Incorporated Composition for rinsing or cleaning a surface with ceria particles adhered
JP7215267B2 (en) * 2019-03-20 2023-01-31 三菱ケミカル株式会社 Post-CMP cleaning liquid, cleaning method, and semiconductor wafer manufacturing method
KR102520371B1 (en) 2019-10-18 2023-04-10 삼성에스디아이 주식회사 Etching composition for silicon nitride layer and etching process of silicon nitride layer using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268409A (en) * 2004-03-17 2005-09-29 Toshiba Corp Method for chemically and mechanically polishing slurry for organic film and organic film
JP2007150184A (en) * 2005-11-30 2007-06-14 Jsr Corp Chemical mechanical polishing slurry for organic film polishing, chemical mechanical polishing method, and manufacturing method of semiconductor device
JP2008543060A (en) * 2005-05-26 2008-11-27 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Copper-inactivated chemical mechanical post-polishing cleaning composition and method of use

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029494A1 (en) * 2002-08-09 2004-02-12 Souvik Banerjee Post-CMP cleaning of semiconductor wafer surfaces using a combination of aqueous and CO2 based cryogenic cleaning techniques
TWI241626B (en) * 2003-06-02 2005-10-11 Toshiba Corp Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
JP4736445B2 (en) * 2004-02-09 2011-07-27 三菱化学株式会社 Substrate cleaning solution for semiconductor device and cleaning method
JP2006228955A (en) * 2005-02-17 2006-08-31 Fuji Photo Film Co Ltd Polishing liquid and polishing method utilizing the same
JP2007288155A (en) * 2006-03-22 2007-11-01 Fujifilm Corp Cleaning solution for substrate for semiconductor device and cleaning method using it
JP2009070904A (en) * 2007-09-11 2009-04-02 Mitsui Chemicals Inc Polishing composition
JP5561914B2 (en) * 2008-05-16 2014-07-30 関東化学株式会社 Semiconductor substrate cleaning liquid composition
JP5401359B2 (en) * 2010-02-16 2014-01-29 花王株式会社 Alkali detergent composition for hard surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268409A (en) * 2004-03-17 2005-09-29 Toshiba Corp Method for chemically and mechanically polishing slurry for organic film and organic film
JP2008543060A (en) * 2005-05-26 2008-11-27 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Copper-inactivated chemical mechanical post-polishing cleaning composition and method of use
JP2007150184A (en) * 2005-11-30 2007-06-14 Jsr Corp Chemical mechanical polishing slurry for organic film polishing, chemical mechanical polishing method, and manufacturing method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034077A (en) * 2017-09-22 2019-04-01 가부시키가이샤 후지미인코퍼레이티드 Composition for surface treatment, method for producing composition for surface treatment, surface treatment method, and method for producing semiconductor substrate
JP2019062174A (en) * 2017-09-22 2019-04-18 株式会社フジミインコーポレーテッド Surface-processing composition, manufacturing method thereof, surface processing method, and manufacturing of semiconductor substrate
JP7216478B2 (en) 2017-09-22 2023-02-01 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing surface treatment composition, method for surface treatment, and method for production of semiconductor substrate
KR102588218B1 (en) * 2017-09-22 2023-10-13 가부시키가이샤 후지미인코퍼레이티드 Composition for surface treatment, method for producing composition for surface treatment, surface treatment method, and method for producing semiconductor substrate

Also Published As

Publication number Publication date
TW201724236A (en) 2017-07-01
TWI730970B (en) 2021-06-21
JP2017011225A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016208445A1 (en) Polishing method, composition for removing impurity, substrate, and method for manufacturing same
JP6762390B2 (en) Polishing composition, polishing method and substrate manufacturing method
KR101525249B1 (en) Polishing composition
US8262435B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit
JP6156630B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
EP2071615A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method for semiconductor device
WO2011021599A1 (en) Polishing solution for cmp and polishing method
WO2014069457A1 (en) Polishing composition
JP5576112B2 (en) Chemical mechanical polishing composition containing iodate and chemical mechanical polishing method
KR20090038038A (en) Metal polishing liquid and polishing method using it
TWI808121B (en) Composition for chemical mechanical polishing and polishing method
WO2009064365A2 (en) Compositions and methods for ruthenium and tantalum barrier cmp
WO2013115172A1 (en) Polishing fluid for metal and polishing method
JP2013120885A (en) Cmp polishing liquid and polishing method using this polishing liquid
WO2011093195A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method using same, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP2015209523A (en) Composition for polishing organic film and polishing method
JP7015663B2 (en) Polishing composition, its manufacturing method and polishing method
WO2015140850A1 (en) Polishing composition, and polishing method
JP6557243B2 (en) Polishing composition
WO2017163942A1 (en) Polishing composition for objects to be polished having metal-containing layer
KR20210132204A (en) Additives to improve particle dispersion for CMP slurries
EP4259736A1 (en) Chemical mechanical planarization (cmp) for copper and through-silicon via (tsv)
KR20100080095A (en) Cmp slurry composition for polishing metal wiring
JP2015018996A (en) Polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814216

Country of ref document: EP

Kind code of ref document: A1