WO2016208097A1 - リレー選択のための装置及び方法 - Google Patents

リレー選択のための装置及び方法 Download PDF

Info

Publication number
WO2016208097A1
WO2016208097A1 PCT/JP2016/000432 JP2016000432W WO2016208097A1 WO 2016208097 A1 WO2016208097 A1 WO 2016208097A1 JP 2016000432 W JP2016000432 W JP 2016000432W WO 2016208097 A1 WO2016208097 A1 WO 2016208097A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
link quality
selection
remote
relay terminal
Prior art date
Application number
PCT/JP2016/000432
Other languages
English (en)
French (fr)
Inventor
太一 大辻
一志 村岡
洋明 網中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017524568A priority Critical patent/JP6673350B2/ja
Priority to US15/579,735 priority patent/US20180184436A1/en
Publication of WO2016208097A1 publication Critical patent/WO2016208097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This disclosure relates to direct communication between devices (device-to-device (D2D) communication), and more particularly to selection of a relay terminal.
  • D2D device-to-device
  • the wireless terminal is configured to communicate directly with other wireless terminals. Such communication is called device-to-device (D2D) communication.
  • D2D communication includes at least one of direct communication and direct discovery.
  • a plurality of wireless terminals that support D2D communication form a D2D communication group autonomously or according to a network instruction, and communicate with other wireless terminals in the D2D communication group.
  • ProSe Proximity-based services
  • ProSe discovery ProSe discovery
  • ProSe direct communication ProSe discovery enables the detection of proximity of wireless terminals (in proximity).
  • ProSe discovery includes direct discovery (ProSe Direct Discovery) and network level discovery (EPC-level ProSe Discovery).
  • ProSe direct discovery is a wireless communication technology (for example, Evolved Universal Terrestrial Radio Access (E) where a wireless terminal capable of executing ProSe (ProSe-enabled User Equipment (UE)) has two other ProSe-enabled UEs. -UTRA) It is performed by the procedure to discover using only the ability of (technology).
  • EPC-level ProSe Discovery the core network (Evolved Packet Packet Core (EPC)) determines the proximity of two ProSe-enabled UEs and informs these UEs of this.
  • ProSe direct discovery may be performed by more than two ProSe-enabled UEs.
  • ProSe direct communication enables establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe discovery procedure.
  • ProSe-direct communication is directly connected to other ProSe-enabled UEs without going through the public land mobile communication network (Public Land Mobile Mobile Network (PLMN)) including the base station (eNodeB). Allows to communicate.
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNodeB), or wireless radio access network (WLAN) wireless technology (ie, IEEE 802.11 (radio technology) may be used.
  • E-UTRA technology wireless communication technology
  • WLAN wireless radio access network
  • ProSe direct discovery and ProSe direct communication are performed at the direct interface between UEs.
  • the direct interface is called a PC5 interface or sidelink. That is, ProSe direct discovery and ProSe direct communication are examples of D2D communication. Note that D2D communication can also be called side link communication, and can also be called peer-to-peer communication.
  • ProSe function communicates with ProSe-enabled UE via the public land mobile communication network (PLMN) to support ProSe discovery and ProSe direct communication (assist).
  • ProSe function is a logical function used for operations related to PLMN necessary for ProSe.
  • the functionality provided by ProSe function is, for example, (a) communication with third-party applications (ProSe Application Server), (b) UE authentication for ProSe discovery and ProSe direct communication, (c) ProSe Including transmission of setting information (for example, EPC-ProSe-User ID) for discovery and ProSe direct communication to the UE, and (d) provision of network level discovery (ie, EPC-level ProSe discovery).
  • ProSe function may be implemented in one or more network nodes or entities. In this specification, one or a plurality of network nodes or entities that execute a ProSe function are referred to as “ProSe function functions” or “ProSe function servers”.
  • 3GPP Release 12 specifies a partial coverage scenario in which one UE is outside the network coverage and the other UE is within the network coverage (for example, Sections 4.4.3 and 4.5 of Non-Patent Document 1). See 4 and 5.4.4).
  • UEs that are out of coverage are called remote UEs
  • UEs that are in coverage and relay between remote UEs and networks are called ProSe UE-to-Network Relays.
  • ProSe UE-to-Network Relay relays traffic (downlink and uplink) between remote UE and network (E-UTRA network (E-UTRAN) and EPC).
  • ProSe UE-to-Network Relay attaches to the network as a UE, establishes a PDN connection to communicate with a ProSe function ⁇ ⁇ entity or other packet Data Network (PDN), and performs ProSe direct communication. Communicate with the ProSe function entity to get started.
  • ProSe UE-to-Network Relay further performs a discovery procedure with remote UE, communicates with remote UE on the direct inter-UE interface (eg, side link or PC5 interface), and between remote UE and network To relay traffic (downlink and uplink).
  • IPv4 Internet Protocol Version 4
  • DHCPv4 Dynamic Host Configuration Configuration Protocol Version 4
  • NAT Network Address Translation
  • IPv6 IPv6
  • ProSe UE-to-UE Relay is a UE that relays traffic between two remote UEs.
  • the distributed relay selection architecture (see, for example, Non-Patent Documents 3-5, 7, and 8) in which the remote UE performs relay selection, and the base station (
  • a centralized relay selection architecture (for example, see Non-Patent Documents 6 and 7) in which elements in a network such as eNodeB (eNB)) perform relay selection
  • the UE-to-Network Relay selection criteria consider the D2D link quality between the remote UE and the relay UE, the backhaul link quality between the relay UE and the eNB, and the D2D link quality and It has been proposed to consider both backhaul link quality (see, for example, Non-Patent Documents 3-8).
  • Non-Patent Document 3-5 describes that both the D2D link quality and the backhaul link quality are considered in distributed relay selection.
  • the remote UE considers both D2D link quality and backhaul link quality using the evaluation formula w * D2D link quality + (1-w) * backhaul link quality, where w is preset It is a constant (see Non-Patent Document 3).
  • the relay UE transmits a discovery message indicating the radio quality of the backhaul link (between the relay UE and the eNB) in order to assist the relay selection by the remote UE (see Non-Patent Document 4). .
  • the relay UE may implicitly indicate the radio quality of the backhaul link to the remote UE in order to assist the relay selection by the remote UE.
  • the radio quality of the backhaul link for example, priority information in the discovery signal is used (see Non-Patent Document 5).
  • Non-Patent Document 6 describes that both D2D link quality and backhaul link quality are considered in centralized relay selection.
  • the remote UE reports the D2D link quality to the eNB, and the eNB selects a relay for the remote UE taking into account the reported D2D link quality and (reported) backhaul link quality.
  • the backhaul link quality may be obtained by measurement by an eNB or measurement report by a relay UE in an existing cellular network.
  • the eNB selects one or a plurality of relay UEs in consideration of the backhaul link quality. Only these relay candidate UEs can be discovered by the remote UE in the relay discovery procedure.
  • the remote UE selects a relay from one or more relay candidates based on the D2D link quality. Since the backhaul link quality is taken into account when selecting relay candidates by the eNB, it is therefore also indirectly taken into account by the relay selection by the remote UE.
  • a radio terminal having D2D communication capability and relay capability such as ProSe UE-to-Network Relay and ProSe UE-to-UE Relay is referred to as a "relay radio terminal” or “relay UE”.
  • a wireless terminal that receives a relay service by the relay UE is referred to as a “remote wireless terminal” or “remote UE”.
  • 3GPP TS 23.303 V12.4.0 (2015-03), “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 12) '', March 2015 3GPP TR 23.713 V1.4.0 (2015-06), “3rd Generation Partnership Project; Technical, Specification, Group, Services, and System, Aspects; Study, on, extended, architecture, support, for proximity-based services, (Release, 2015), June 3GPP® R1-152778, “Support of UE-Network relays”, Qualcomm Incorporated, May 2015 3GPP S2-150925, “UE-to-Network Relay conclusions”, Qualcomm Incorporated, April 2015 3GPP R1-153087, “Discussion on UE-to-Network Relay measurement”, Sony, May 2015 3GPP R2-152560, “Role of eNB when remote UE is in coverage”, Qualcomm Incorporated, May 2015 3GPP R1-151965, “Views on
  • D2D link quality and backhaul link quality have been proposed to consider either or both of D2D link quality and backhaul link quality in relay selection.
  • one of the objectives that the embodiments disclosed herein seek to achieve is to provide an apparatus, method, and program that contributes to improved relay selection to provide stable relay quality.
  • the relay selection device includes a memory and at least one processor coupled to the memory.
  • the at least one processor is based on a selection criterion that considers a time variation in device-to-device (D2D) link quality between each of one or more relay terminals and a remote terminal.
  • D2D device-to-device
  • At least one specific relay terminal suitable for the remote terminal is selected from a plurality of relay terminals.
  • the relay selection method is based on a selection criterion that takes into account time variations in device-to-device (D2D) link quality between each of one or more relay terminals and a remote terminal. Selecting at least one specific relay terminal suitable for the remote terminal from among the one or more relay terminals.
  • D2D device-to-device
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the second aspect described above when read by the computer.
  • FIG. 1 shows a configuration example of a wireless communication network according to some embodiments including this embodiment.
  • FIG. 1 shows an example related to UE-to-Network Relay. That is, the remote UE 1 has at least one radio transceiver, and D2D communication (eg, ProSe direct discovery and ProSe direct communication) with one or more relay UEs 2 on the D2D link 102 (eg, PC5 interface or side link). Is configured to do.
  • the remote UE 1 is configured to perform cellular communication within the cellular coverage 31 provided by one or a plurality of base stations 3.
  • the relay UE2 has at least one wireless transceiver, performs cellular communication on the cellular link 101 with the base station 3 in the cellular coverage 31, and performs D2D communication with the remote UE1 on the D2D link 102 (eg, ProSe direct discovery). And ProSe direct communication).
  • the base station 3 is an entity arranged in a radio access network (ie, E-UTRAN), provides a cellular coverage 31 including one or more cells, and uses cellular communication technology (eg, E-UTRA technology). Can be used to communicate with the relay UE2 in the cellular link 101. Furthermore, the base station 3 is configured to perform cellular communication with the remote UE 1 when the remote UE 1 is in the cellular coverage 31.
  • E-UTRAN radio access network
  • E-UTRA technology eg, E-UTRA technology
  • EPC 4 consists of multiple user plane entities (eg, Serving Gateway (S-GW) and Packet Data Gateway Network (P-GW)), and multiple control plane entities (Eg, Mobility Management Management Entity (MME) and Home Subscriber Server (HSS)).
  • S-GW Serving Gateway
  • P-GW Packet Data Gateway Network
  • MME Mobility Management Management Entity
  • HSS Home Subscriber Server
  • the plurality of user plane entities relay user data of the remote UE 1 and the relay UE 2 between the radio access network including the base station 3 and the external network.
  • the plurality of control plane entities perform various controls including mobility management, session management (bearer management), subscriber information management, and charging management of the remote UE1 and the relay UE2.
  • the remote UE 1 and the relay UE 2 are configured to communicate with the D2D controller 5 via the base station 3 and the core network 4 in order to use the proximity service (e.g., 3GPP ProSe).
  • the D2D controller 5 corresponds to a ProSe function entity.
  • the remote UE1 and the relay UE2 may use, for example, network level discovery (eg, EPC-level ProSe Discovery) provided by the D2D controller 5, or D2D communication (eg, ProSe direct discovery and ProSe direct communication).
  • the relay UE2 operates as a UE-to-Network Relay, and provides the relay operation between the remote UE1 and the cellular network (the base station 3 and the core network 4) to the remote UE1.
  • the relay UE2 relays the data flow (traffic) related to the remote UE1 between the remote UE1 and the cellular network (base station 3 and core network 4).
  • remote UE1 can communicate with the node 7 in the external network 6 via relay UE2 and a cellular network (base station 3 and core network 4).
  • the remote UE 1 is located outside the cellular coverage 31 (out-of-coverage). However, the remote UE 1 may be located in the cellular coverage 31 and may be in a state where it cannot connect to the cellular network (base station 3 and core network 4) based on some condition (for example, selection by the user). .
  • the remote UE1 performs D2D communication (e.g., direct communication) with the relay UE2 in a case where it is not possible to connect to the cellular network (e.g., out of coverage).
  • the inability of the remote UE 1 to connect to the cellular network means that the reception quality (eg, Reference Signal Received Power (RSRP) or Reference Signal Received Quality (RSRQ) transmitted from one or more base stations 3 in the cellular network. )) May be determined by being below a predetermined threshold.
  • the remote UE 1 may determine that it cannot connect to the cellular network because it cannot normally receive the wireless signal of the cellular network. Instead, the remote UE 1 can receive a radio signal from any of the base stations 3 but determines that it cannot connect to the cellular network when connection (attachment) to the core network 4 is rejected. May be.
  • the remote UE 1 is forced to communicate with the cellular network according to a user instruction or a control device (eg, base station 3, D2D controller 5, or operation management and maintenance (OAM) server) in the cellular network.
  • a control device eg, base station 3, D2D controller 5, or operation management and maintenance (OAM) server
  • OAM operation management and maintenance
  • FIG. 2 shows another example of the configuration of a wireless communication network according to some embodiments including this embodiment.
  • FIG. 2 shows an example regarding UE-to-UE Relay.
  • the relay UE2 operates as UE-to-UE-Relay, and relays traffic between the remote UE 1A and the remote UE 1B.
  • the relay UE2 performs D2D communication (eg, ProSe direct discovery and ProSe direct communication) with the remote UE1A in the one-to-one D2D link 201, and D2D communication with the remote UE1B in the one-to-one D2D link 202.
  • D2D communication eg, ProSe direct discovery and ProSe direct communication
  • the remote UEs 1A and 1B and the relay UE2 may be configured to communicate with the wireless infrastructure network 8.
  • the wireless infrastructure network 8 provides continuous communication compared to D2D communication between wireless terminals.
  • the wireless infrastructure network 8 may include a cellular network including the base station 3 and the core network 4 shown in FIG.
  • Cellular networks include, for example, Universal Mobile Telecommunications System (UMTS), Long Terminal Term Evolution (LTE), CDMA2000 (1xRTT, High Rate Packet Data (HRPD)) system, Global System Mobile for Communications (GSM (registered trademark)) / General Packete It may be a radio service (GPRS) system, WiMAX (IEEE 802.16-2004), or mobile WiMAX (IEEE 802.16e-2005).
  • the wireless infrastructure network 8 may include an infrastructure mode of Wireless Local Area Network (WLAN) (IEEE 802.11), such as a public WLAN.
  • WLAN Wireless Local Area Network
  • the D2D link 202 between the relay UE2 and the other remote UE1B can be regarded as a backhaul link when paying attention to the remote UE1A in FIG. 2 regarding the UE-to-UE Relay.
  • the backhaul link in this specification is a radio link with the next hop node (eg, base station 3 or other remote UE1) used by the relay UE2 to relay the traffic of the target remote UE1.
  • the backhaul link in this specification may be a cellular link (Wide Area Network (WAN) link) between the base station 3 and the relay UE2, or may be a relay with another remote UE1 that is not the remote UE1 of interest. It may be a D2D link with UE2.
  • WAN Wide Area Network
  • relay discovery for discovering a relay UE2 that can be used by the remote UE1, and at least one specific relay UE suitable for the remote UE1 among the one or more discovered relays UE2.
  • relay selection is required to select. As already explained, relay selection is performed by the remote UE 1 in some implementations (ie, distributed relay selection), and by other network elements such as the base station 3 in other implementations (ie, concentration ( centralized) relay selection).
  • FIG. 3 shows an example of a procedure (process 300) involving distributed relay selection.
  • the remote UE1 and the relay UE2 execute a relay discovery procedure for the remote UE1 to discover the relay UE2 as UE-to-Network Relay or UE-to-UE Relay.
  • the relay UE2 may transmit a discovery signal
  • the remote UE1 may discover the relay UE2 by detecting the discovery signal from the relay UE2.
  • the remote UE1 transmits a discovery signal indicating that it wants to relay
  • the relay UE2 transmits a response message to the discovery signal to the remote UE1.
  • the remote UE1 may discover the relay UE2 by receiving a response message from the relay UE2.
  • the discovery signal (model A) and response message (model B) transmitted from the relay UE2 may include the relay UE ID and the backhaul link quality.
  • the backhaul link quality is the reception quality (eg, RSRP, RSRQ, or signal-to-interference plus noise) at each relay UE2 of the signal transmitted from the next hop node (eg, base station 3 or other remote UE1). ratio (SINR)); data rate or throughput between the next hop node and each relay UE2; delay time of communication between each relay UE2 and next hop node; and each relay UE2 and next hop node May include at least one of a modulation scheme and a coding rate (eg, Modulation and Coding SchemeMC (MCS) index) applied to the communication.
  • MCS Modulation and Coding SchemeMC
  • the remote UE1 selects an appropriate at least one specific relay UE2 from the one or more relays UE2 discovered in block 301. Details of the relay selection criterion (relay selection criterion) according to the present embodiment will be described later.
  • the remote UE1 establishes a connection for one-to-one D2D communication (direct communication) with one of the selected at least one specific relay UE.
  • the remote UE1 may transmit a direct communication request (or relay request) to the relay UE2.
  • the relay UE2 may start a procedure for mutual authentication in response to receiving the direct communication request (or relay request).
  • FIG. 4 shows an example of centralized relay selection (process 400).
  • the remote UE1 and the relay UE2 execute a relay discovery procedure for the remote UE1 to discover the relay UE2 as UE-to-Network Relay or UE-to-UE Relay.
  • the remote UE 1 transmits a measurement report to the base station 3.
  • the measurement report relates to one or more relay UEs 2 discovered at block 401 and includes, for example, D2D link quality (between the remote UE 1 and the relay UE 2).
  • the D2D link quality may include, for example, at least one of received power, signal-to-interference plus noise ratio (SINR), and data rate (or throughput).
  • the measurement report may include the cellular link quality between the remote UE 1 and the base station 3 as in the existing measurement report.
  • the measurement report may include backhaul link quality (between base station 3 and relay UE2).
  • the base station 3 reports the reported D2D link quality between the remote UE1 and the relay UE2, the reported link quality between the remote UE1 and the base station 3, and the back link between the base station 3 and the relay UE2. Based on the hall link quality, an appropriate at least one specific relay UE2 is selected from one or more relays UE2 discovered by the remote UE1.
  • the backhaul link quality between the base station 3 and the relay UE2 may be included in the measurement report from the remote UE1.
  • the backhaul link quality may be acquired by the base station 3 measuring an uplink signal from each relay UE2.
  • the backhaul link quality may be the reception quality at the base station 3 of the uplink signal transmitted from each relay UE2. Details of the relay selection criterion (relay selection criterion) according to the present embodiment will be described later.
  • the base station 3 instructs the remote UE1 to connect to the selected specific relay UE2.
  • the remote UE 1 establishes a connection for one-to-one ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ D2D communication (direct communication) with a specific relay UE according to an instruction from the base station 3.
  • the relay selection may be performed by another network element different from the base station 3, for example, the D2D controller 5.
  • the relay selection entity is based on a selection criterion that takes into account a parameter representing a time change in D2D link quality between each of the one or more relay UEs 2 and the remote UE 1. Is selected to select at least one specific relay UE suitable for the remote UE1.
  • the relay selection entity according to the present embodiment may be a remote UE 1 if it is a distributed relay selection architecture, or a network element (eg, It may be a base station 3 or a D2D controller 5).
  • the D2D link quality may include, for example, at least one of received power (e.g., RSRP or RSRQ), signal-to-interference plus noise ratio (SINR), and data rate.
  • received power e.g., RSRP or RSRQ
  • SINR signal-to-interference plus noise ratio
  • the parameter indicating the time change of the D2D link quality indicates, for example, at least one of the magnitude of the time change of the D2D link quality, the speed of the time change of the D2D link quality, and the trend of the time change of the D2D link quality. Also good.
  • the parameter in order to indicate the magnitude, speed, or trend of D2D link quality over time, the parameter is derived from the difference (time ⁇ derivative) of multiple measurements of D2D link quality. You may be.
  • the parameter in order to indicate the magnitude or tendency of the temporal change in the D2D link quality, the parameter may represent a statistical variation of the D2D link quality (statistical variability, statistical dispersion). To represent statistical variability, the parameters may include D2D link quality variance, standard deviation, or interquartile range (IQR).
  • the relay selection criteria is such that the relay UE2 having a smaller time change in D2D link quality (between the remote UE1 and the relay UE2) is more likely to be selected as a specific relay UE for the remote UE1. May be defined.
  • a relay UE2 with a small time change in D2D link quality can be expected to provide a stable D2D link quality to remote UE1, so relay UE2 is stable overall. ) It can be expected to provide relay quality.
  • the relay selection criteria may be defined, for example, by the following equation (1):
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • f ij is the magnitude of the time change of the D2D link quality (absolute Value).
  • the arg min operator in equation (1) refers to a set of UE i for which f ij is the minimum value.
  • at least one relay UE2 (UE i) for which the parameter f ij representing the magnitude of the change in D2D link quality has its minimum value is selected for the remote UE1 (UE j). It shows that.
  • the relay selection criteria are more likely to be selected as a specific relay UE for the remote UE 1 as the relay UE 2 has a smaller time change rate of D2D link quality (between the remote UE 1 and the relay UE 2).
  • the relay UE2 having a small time change in the D2D link quality (between the remote UE1 and the relay UE2) can be expected to provide the remote UE1 with a stable D2D link quality, and therefore the relay UE2 has a stable overall (overall) ) It can be expected to provide relay quality.
  • it is possible to reduce the possibility of selecting the relay UE2 that passes by only a short time from the remote UE1.
  • the parameter indicating the speed of time change of D2D link quality may be the magnitude of change of D2D link quality per unit time, or the absolute value of time derivative of D2D link quality (time derivative) It may be.
  • the relay selection criterion is that the relay UE2 with a time-varying trend in which the D2D link quality (between the remote UE1 and the relay UE2) gradually improves over the relay UE2 that does not have that trend.
  • a gradual improvement in D2D link quality (between remote UE1 and relay UE2) can be determined that relay UE2 and remote UE1 tend to approach each other, so relay UE2 is a stable overall relay. We can expect to provide quality.
  • the possibility of selecting the relay UE2 that tends to move away from the remote UE1 can be reduced by considering the time change tendency of the D2D link quality at the time of relay selection.
  • the parameter indicating the time change tendency of the D2D link quality may be a sum of time derivative values of the D2D link quality (sum of time derivatives).
  • the sum of the time derivative values of the D2D link quality becomes a larger positive value as the D2D link quality tends to gradually improve, and becomes a larger negative value as the D2D link quality tends to deteriorate gradually.
  • the sum of the time differential values of the D2D link quality approaches zero.
  • the sum of the time differential values of the D2D link quality approaches zero.
  • relay selection criteria considering the time change of the D2D link quality described above may be used in appropriate combination.
  • FIG. 5 is a flowchart showing an example (process 500) of a relay selection procedure performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the relay selection entity obtains a measurement result of the D2D link quality between each of the one or more relays UE2 and the remote UE1.
  • the measurement result may be obtained by the remote UE 1 and used by the remote UE 1 as a relay selection entity.
  • the said measurement result may be acquired by remote UE1 or each relay UE2, and may be reported from the remote UE1 or each relay UE2 to the base station 3 or D2D controller 5 as a relay selection entity.
  • the relay selection entity selects at least one specific relay UE2 suitable for the remote UE1 from among one or more relay UE2 based on a relay selection criterion that takes into account a parameter representing time variation of D2D link quality. select.
  • remote UE1 when relay selection is performed by a network node (eg, base station 3 or D2D controller 5), remote UE1 performs time change (eg, magnitude, speed, or tendency of time change) of D2D link quality.
  • time change eg, magnitude, speed, or tendency of time change
  • a measurement report including parameters to represent may be transmitted at block 501.
  • the time change of the D2D link quality (for example, the magnitude, speed or tendency of the time change, or any combination thereof) is considered as the relay selection criterion.
  • the relay selection criteria and relay selection procedure according to the present embodiment can contribute to the improvement of relay selection to provide stable overall relay quality.
  • the relay selection criteria and relay selection procedure according to the present embodiment can suppress frequent relay reselection.
  • the relay selection criterion considers the time change of the backhaul link quality (between the next hop node and the relay UE2) in addition to the time change of the D2D link quality (between the remote UE1 and the relay UE2).
  • the next hop node is the base station 3 in the case of UE-to-Network Relay, and in the case of UE-to-UE Relay, it is another remote UE1 different from the remote UE1 of interest. .
  • the relay selection entity (eg, remote UE 1, base station 3 or D2D controller 5) according to the present embodiment changes the time change of the backhaul link quality between each relay UE 2 and the next hop node at the time of relay selection.
  • the size, the speed of time change, or the tendency of time change is further considered.
  • the parameter representing the time change of the backhaul link quality may be defined in the same manner as the parameter representing the time change of the D2D link quality described in the first embodiment. That is, the parameter representing the time change of the backhaul link quality may be derived from a difference (time-derivative) between a plurality of measured values of the backhaul link quality.
  • the parameter may represent a statistical variation of the backhaul link quality (statistical variability, statistical dispersion) in order to indicate the magnitude or tendency of the backhaul link quality over time.
  • the parameters may include backhaul link quality variance, standard deviation, or interquartile range (IQR).
  • the time change of the backhaul link quality may be considered in the relay selection, for example, similarly to the time change of the D2D link quality described in the first embodiment. That is, in some implementations, the relay selection criteria is selected as a specific relay UE for the remote UE 1 as the relay UE 2 has a smaller temporal change in the backhaul link quality (between the next hop node and the relay UE 2). It may be defined so that it is easy to be done.
  • the relay UE2 with a small amount of time change in the backhaul link quality (between the next hop node and the relay UE2) can be expected to provide a stable backhaul link quality to the remote UE1, and therefore stable overall ( overall) It can be expected to provide relay quality.
  • the relay selection criteria may be defined, for example, by the following equations (2) to (4):
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • RBQ i (t) is the relay UE2 (UE i at time t).
  • the weight w 1 is a preset constant between 0 and 1
  • f ij is the magnitude of the D2D link quality over time (absolute value)
  • a parameter that takes into account both the magnitude (absolute value) of the time change of the backhaul link quality is a parameter that takes into account both the magnitude (absolute value) of the time change of the backhaul link quality.
  • the relay selection criteria is selected as a specific relay UE for the remote UE1 as the relay UE2 has a lower time change rate of the backhaul link quality (between the next hop node and the relay UE2). It may be defined so that it is easy to be done.
  • a relay UE2 with a small time change in backhaul link quality can be expected to provide a stable backhaul link quality to the remote UE1, so the relay UE2 is a stable aggregate. Can be expected to provide overall relay quality.
  • the relay UE2 that passes through the cellular coverage 31 (particularly, the region where the amount of change in the cellular power is large) at a high speed is selected by considering the time change speed of the backhaul link quality when selecting the relay. The possibility can be reduced.
  • the parameter indicating the speed of time change of the backhaul link quality may be a magnitude of the change of the backhaul link quality per unit time, or a time derivative of the backhaul link quality (time derivative). May be an absolute value of.
  • the relay selection criteria may be that relay UE2 with a time-varying trend of backhaul link quality (between the next hop node and relay UE2) gradually does not have that tendency. You may define so that it may become easy to select as specific relay UE for remote UE1 rather than UE2. A progressive improvement in backhaul link quality (between the next hop node and relay UE2) can be determined that relay UE2 is moving away from the coverage hole or out of coverage, and therefore relay UE2 continues to be good. It can be expected to remain in the cellular communication environment. In other words, the possibility of selecting the relay UE2 that tends to move away from the center of the cell or approach the cell edge can be reduced by considering the tendency of the backhaul link quality to change at the time of relay selection.
  • the parameter indicating the time change tendency of the backhaul link quality may be a sum of time derivative values of the backhaul link quality (sum of time derivatives).
  • relay selection criteria considering the time change of the backhaul link quality described above may be used in appropriate combination.
  • FIG. 6 is a flowchart showing an example (process 600) of a relay selection procedure performed by the relay selection entity (e.g., remote remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the relay selection entity obtains a measurement result of the D2D link quality between each of the one or more relays UE2 and the remote UE1.
  • the measurement result may be obtained by the remote UE 1 and used by the remote UE 1 as a relay selection entity.
  • the said measurement result may be acquired by remote UE1 or each relay UE2, and may be reported from the remote UE1 or each relay UE2 to the base station 3 or D2D controller 5 as a relay selection entity.
  • the relay selection entity obtains the measurement result of the backhaul link quality of each relay UE2.
  • each relay UE2 may measure the backhaul link quality and inform the remote UE1 of the measurement result of the backhaul link quality using a discovery signal or a response message at the time of relay discovery.
  • the remote UE1 as a relay selection entity may use the backhaul link quality received from each relay UE2 for relay selection. Instead, the remote UE1 may report the backhaul link quality received from each relay UE2 to the network node (e.g., base station 3 or D2D controller 5) as a relay selection entity. Instead, the network node (eg, base station 3 or D2D controller 5) as the relay selection entity uses the reception quality of the uplink received signal from each relay UE 2 measured by the base station 3 as the backhaul link quality. May be used.
  • the relay selection entity is configured to select at least one suitable for the remote UE1 from among the one or more relay UE2 based on relay selection criteria that considers both the D2D link quality time change and the backhaul link quality time change.
  • One specific relay UE2 is selected.
  • remote UE1 when relay selection is performed by a network node (eg, base station 3 or D2D controller 5), remote UE1 performs time change (eg, magnitude, speed, or tendency of time change) of D2D link quality.
  • a measurement report including parameters to represent may be transmitted at block 601.
  • the remote UE 1 may also transmit a measurement report at block 602 that includes a parameter that represents a time change in backhaul link quality (e.g., the magnitude, speed, or trend of drought time change).
  • the time change of the backhaul link quality (for example, the magnitude, speed or tendency of the time change, or any combination thereof) is considered as the relay selection criterion.
  • the relay selection criteria and relay selection procedure according to the present embodiment can contribute to the improvement of relay selection to provide stable overall relay quality.
  • the relay selection criteria and relay selection procedure according to the present embodiment can suppress frequent relay reselection.
  • the relay selection criteria according to the present embodiment include D2D link quality (between remote UE1 and relay UE2) over time, D2D link quality itself (quality level), and backhaul link quality itself (quality level).
  • the relay selection criterion according to the present embodiment may take into account the temporal change of the backhaul link quality.
  • FIG. 7 is a flowchart showing an example of a relay selection procedure (process 700) performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the processing in blocks 701 and 702 is the same as the processing in blocks 601 and 602 shown in FIG.
  • the relay selection entity selects at least one specific one suitable for the remote UE1 from among one or more relays UE2 based on relay selection criteria that considers D2D link quality and its time variation and backhaul link quality. Select relay UE2.
  • D2D link quality and backhaul link quality may be considered as follows for relay selection, for example.
  • the D2D link quality itself quality level
  • the relay UE2 is highly likely to provide stable relay quality. Therefore, when there is a relay UE2 whose D2D link quality (between the remote UE1 and the relay UE2) is equal to or higher than the first predetermined value, the relay selection entity can select the relay UE2 regardless of the time change state of the D2D link quality. May be selected for remote UE1.
  • the relay selection entity determines that the second predetermined value (however, the second predetermined value is the first predetermined value).
  • a specific relay UE2 for the remote UE1 may be selected according to a selection criterion based on a time change of the D2D link quality among one or more relay UE2s that have obtained a lower (greater) D2D link quality.
  • the relay UE2 is likely to be able to provide stable relay quality. Therefore, when there is a relay UE2 whose backhaul link quality is equal to or higher than the first predetermined value, the relay selection entity (between the remote UE1 and the relay UE2) concerned relay UE2 concerned regardless of the state of the link quality over time. May be selected for remote UE1.
  • the relay selection entity determines that the second predetermined value (however, the second predetermined value is the first predetermined value).
  • a specific relay UE2 for the remote UE1 may be selected from among one or more relays UE2 having a higher backhaul link quality (lower than the value) according to a selection criterion based on time variation of the backhaul link quality .
  • the relay selection criteria that considers D2D link quality and its time variation may be defined by the following equations (5) and (6):
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • weight w 2 is a preset constant
  • f ij is ,
  • the arg max operator in equation (5) refers to the set of UE i for which f ij is the maximum value.
  • the equation (5) indicates that at least one relay UE2 (UE i) having the maximum value f ij taking into account the D2D link quality and the magnitude (absolute value) of the time change is the remote UE1 (UE j ) To be selected.
  • the relay selection criteria that considers D2D link quality and its time variation and backhaul link quality may be defined by the following equations (7) and (8):
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • RBQ i (t) is the relay UE2 (UE i at time t).
  • the weights w 2 and w 3 are preset constants
  • f ij is the D2D link quality and the magnitude of its time change (absolute value) and This parameter considers backhaul link quality.
  • relay selection criteria that take into account D2D link quality and its time variation and backhaul link quality and its time variation may be defined by the following equations (9)-(11):
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • RBQ i (t) is the relay UE2 (UE i at time t).
  • weight w 1 is a preset constant between 0 and 1
  • weights w 2 and w 3 are preset constants
  • the relay selection criteria is limited by the lesser of D2D link quality (between remote UE1 and relay UE2) and backhaul link quality (between next hop node and relay UE2). It may be defined so that a relay UE2 having a good overall relay quality is more likely to be selected as a specific relay terminal for the remote UE1. This is because one of the poor quality of the D2D link and the backhaul link is likely to become a bottleneck that limits the relay quality.
  • the relay selection criteria defined by equation (12) or (13) may be used:
  • DQ ij (t) is the D2D link quality between relay UE2 (UE i) and remote UE1 (UE j) at time t
  • RBQ i (t) is the relay UE2 (UE i at time t).
  • the parameter f ij is limited by the smaller of the D2D link quality and the backhaul link quality at each time, and thus represents the overall relay quality.
  • the significance of the parameter f ij represented by the equations (12) and (13) can be understood from the specific example shown in FIG. FIG. 8 shows an example of a plurality of measured values of the D2D link quality and a plurality of measured values of the backhaul link quality in a certain time range T1 to T2.
  • the parameter f ij represented by the equations (12) and (13) uses the smaller one of the D2D link quality and the backhaul link quality. Therefore, the hatched area in FIG. 8 is used for relay selection.
  • the parameters f ij represented by the equations (12) and (13) indicate the quality of one of the D2D link and the backhaul link that becomes a bottleneck at each time. This can be effectively taken into account when selecting a relay.
  • the relay selection criterion considers other parameters related to the load of the relay UE2 in addition to the time change of the D2D link quality (between the remote UE1 and the relay UE2).
  • a parameter regarding the load of the relay UE2 for example, the number of the remote UE1 that each relay UE2 is already serving as a relay may be considered.
  • the transmission data amount of each relay UE2 itself eg, uplink transmission data amount, or buffer amount of uplink data to be transmitted
  • the relay selection criteria according to the present embodiment may further consider the temporal change of the backhaul link quality as in the second and third embodiments, or the D2D link quality itself (quality level) and The backhaul link quality itself (quality level) may be further considered.
  • FIG. 9 is a flowchart showing an example (process 900) of the relay selection procedure performed by the relay selection entity (e.g., remote UE1, base station 3, or D2D controller 5) according to the present embodiment.
  • the processing in block 901 is the same as the processing in block 501 in FIG. 5, block 601 in FIG. 6, or block 701 in FIG.
  • the relay selection entity obtains the load (e.g., number of connected remote UEs, or amount of transmission data) of each relay UE2.
  • the relay selection entity may select at least one particular suitable for the remote UE1 from among one or more relay UE2 based on relay selection criteria that takes into account the time variation of the D2D link quality and the load of each relay UE. Select relay UE2.
  • the relay selection entity selects two or more relay UE2s for one remote UE1 based on the relay selection criteria.
  • the relay selection criterion may be any of a plurality of relay selection criteria described in the first to fourth embodiments.
  • the relay selection entity can preliminarily designate the spare relay UE2 for the remote UE1.
  • the remote UE 1 starts communication with the first priority relay UE 2 among the two or more relay UEs 2, and the first priority relay UE 2 when the relay quality of the first priority relay UE 2 deteriorates.
  • the second priority relay UE2 Thereby, the continuation time of communication disconnection resulting from relay reselection can be reduced.
  • the relay selection entity may select two or more relays UE2 according to the same relay selection criteria. Thereby, the relay selection entity can easily determine the relay UE2 having the first priority and the relay UE (s) 2 having the second or lower priority.
  • the relay selection entity may select two or more relays UE2 according to different relay selection criteria. Thereby, the relay selection entity can select several relay UE2 from which an attribute differs.
  • the relay selection entity includes a first relay selection criterion in which a relay UE2 having high D2D link quality and high backhaul link quality is preferentially selected, and a relay with small time variation of D2D link quality and backhaul link quality.
  • a second relay selection criterion in which UE2 is preferentially selected may be used.
  • the relay selection entity can expect the first relay UE2 that can expect high relay quality (throughput) even in a short time, and stable relay quality over a long period of time, although it may not be so high.
  • a possible second relay UE2 can be selected for the remote UE1.
  • FIG. 10 is a flowchart showing an example (processing 1000) of the operation of the remote UE 1 according to the present embodiment.
  • the remote UE1 selects a plurality of relays UE2 based on relay selection criteria.
  • relay selection in block 1001 may be performed by a network node (e.g., base station 3 or D2D controller 5) instead of remote UE1.
  • the remote UE1 establishes a connection with the relay UE2 having the first priority.
  • the remote UE1 determines whether or not the relay quality by the relay UE2 having the first priority is unstable. If the relay quality of the first priority relay UE2 is unstable (YES in block 1003), the remote UE1 determines to switch from the first priority relay UE2 to the second priority relay UE2, and block In 1001, a connection is established with the relay UE2 having the second priority determined in advance.
  • FIG. 11 is a block diagram illustrating a configuration example of the remote UE 1.
  • the relay UE2 may also have a configuration similar to that shown in FIG.
  • the Radio Frequency (RF) transceiver 1101 performs analog RF signal processing to communicate with the base station 3.
  • Analog RF signal processing performed by the RF transceiver 1101 includes frequency up-conversion, frequency down-conversion, and amplification.
  • RF transceiver 1101 is coupled with antenna 1102 and baseband processor 1103.
  • the RF transceiver 1101 receives modulation symbol data (or OFDM symbol data) from the baseband processor 1103, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1102. Further, the RF transceiver 1101 generates a baseband received signal based on the received RF signal received by the antenna 1102 and supplies this to the baseband processor 1103.
  • the baseband processor 1103 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing consists of (a) data compression / decompression, (b) data segmentation / concatenation, (c) ⁇ transmission format (transmission frame) generation / decomposition, and (d) transmission path encoding / decoding.
  • E modulation (symbol mapping) / demodulation
  • IFFT Inverse Fast Fourier Transform
  • control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, radio resource management, hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Communication management).
  • the digital baseband signal processing by the baseband processor 1103 includes signal processing of Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer. But you can. Further, the control plane processing by the baseband processor 1103 may include Non-Access Stratum (NAS) protocol, RRC protocol, and MAC ⁇ CE processing.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Stratum
  • PHY Packet Data Convergence Protocol
  • the control plane processing by the baseband processor 1103 may include Non-Access Stratum (NAS) protocol, RRC protocol, and MAC ⁇ CE processing.
  • NAS Non-Access Stratum
  • the baseband processor 1103 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)).
  • DSP Digital Signal Processor
  • protocol stack processor eg, Central Processing Unit (CPU) that performs control plane processing, or Micro Processing Unit. (MPU)
  • CPU Central Processing Unit
  • MPU Micro Processing Unit.
  • a protocol stack processor that performs control plane processing may be shared with an application processor 1104 described later.
  • the application processor 1104 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1104 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1104 is a system software program (Operating System (OS)) read from the memory 1106 or a memory (not shown) and various application programs (for example, a call application, a web browser, a mailer, a camera operation application, music playback) By executing the application, various functions of the remote UE 1 are realized.
  • OS Operating System
  • the baseband processor 1103 and the application processor 1104 may be integrated on a single chip, as indicated by the dashed line (1105) in FIG.
  • the baseband processor 1103 and the application processor 1104 may be implemented as one System on Chip (SoC) device 1105.
  • SoC System on Chip
  • An SoC device is sometimes called a system Large Scale Integration (LSI) or chipset.
  • the memory 1106 is a volatile memory, a nonvolatile memory, or a combination thereof.
  • the memory 1106 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • the memory 1106 may include an external memory device accessible from the baseband processor 1103, the application processor 1104, and the SoC 1105.
  • Memory 1106 may include an embedded memory device integrated within baseband processor 1103, application processor 1104, or SoC 1105.
  • the memory 1106 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1106 may store a software module (computer program) including an instruction group and data for performing processing by the remote UE 1 described in the plurality of embodiments.
  • the baseband processor 1103 or the application processor 1104 reads the software module from the memory 1106 and executes the software module, thereby performing the processing of the remote UE 1 described using the sequence diagram and the flowchart in the above-described embodiment. It may be configured to do.
  • FIG. 12 is a block diagram illustrating a configuration example of the base station 3 according to the above-described embodiment.
  • the base station 3 includes an RF transceiver 1201, a network interface 1203, a processor 1204, and a memory 1205.
  • the RF transceiver 1201 performs analog RF signal processing to communicate with the remote UE1 and the relay UE2.
  • the RF transceiver 1201 may include multiple transceivers.
  • RF transceiver 1201 is coupled to antenna 1202 and processor 1204.
  • the RF transceiver 1201 receives modulation symbol data (or OFDM symbol data) from the processor 1204, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1202. Further, the RF transceiver 1201 generates a baseband received signal based on the received RF signal received by the antenna 1202 and supplies this to the processor 1204.
  • the network interface 1203 is used to communicate with network nodes (e.g., Mobility Management Entity (MME) and Serving Gateway (S-GW)).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the network interface 1203 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1204 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • the digital baseband signal processing by the processor 1204 may include signal processing of a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the control plane processing by the processor 1204 may include S1 protocol, RRC protocol, and MAC-CE processing.
  • the processor 1204 may include a plurality of processors.
  • the processor 1204 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • DSP digital baseband signal processing
  • protocol stack processor e.g., CPU or MPU
  • the memory 1205 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • Memory 1205 may include storage located remotely from processor 1204. In this case, the processor 1204 may access the memory 1205 via the network interface 1203 or an I / O interface not shown.
  • the memory 1205 may store a software module (computer program) including an instruction group and data for performing processing by the base station 3 described in the above-described embodiments.
  • the processor 1204 is configured to read and execute the software module from the memory 1205 to perform the processing of the base station 3 described using the sequence diagrams and flowcharts in the above-described embodiment. Also good.
  • FIG. 13 is a block diagram illustrating a configuration example of the D2D controller 5 according to the above-described embodiment.
  • the D2D controller 5 includes a network interface 1301, a processor 1302, and a memory 1303.
  • the network interface 1301 is used to communicate with the remote UE1 and the relay UE2.
  • the network interface 1301 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 1302 reads out and executes software (computer program) from the memory 1303, thereby performing the processing of the D2D controller 5 described with reference to the sequence diagram and the flowchart in the above-described embodiment.
  • the processor 1302 may be, for example, a microprocessor, MPU, or CPU.
  • the processor 1302 may include a plurality of processors.
  • the memory 1303 is configured by a combination of a volatile memory and a nonvolatile memory.
  • Memory 1303 may include storage located remotely from processor 1302. In this case, the processor 1302 may access the memory 1303 via an I / O interface (not shown).
  • the memory 1303 is used to store a software module group including a control module for D2D communication.
  • the processor 1302 can perform the processing of the D2D controller 5 described in the above-described embodiment by reading these software module groups from the memory 1303 and executing them.
  • each of the processors included in the remote UE 1, the relay UE 2, the base station 3, and the D2D controller 5 uses the algorithm described with reference to the drawings as a computer.
  • One or a plurality of programs including a group of instructions to be executed is executed.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the relay selection criterion considering the time change of the backhaul link quality described in the second embodiment may be used independently of the relay selection criterion considering the time change of the D2D link quality. In other words, the relay selection criterion considering the time change of the backhaul link quality described in the second embodiment can be used even when the time change of the D2D link quality is not considered.
  • the relay selection criteria considering the time change of the backhaul link quality can reduce, for example, the possibility of selecting the relay UE2 having a large fluctuation of the backhaul link quality, and the cellular coverage 31 (particularly, the amount of change in the cellular power is small).
  • relay selection criteria that take into account the time variation of backhaul link quality improves relay selection to provide stable overall relay quality, even when the time variation of D2D link quality is not considered. Can contribute.
  • the relay selection criterion that considers the load of the relay UE2 described in the fourth embodiment may be used independently of the relay selection criterion that considers the time change of the D2D link quality. In other words, the relay selection criterion that considers the load of the relay UE2 described in the fourth embodiment can be used even when the time change of the D2D link quality is not considered.
  • the relay selection criterion that considers the load of the relay UE2 can avoid the concentration of the load on the specific relay UE2 even when the time change of the D2D link quality is not taken into consideration. Can be adjusted.
  • the process of selecting a plurality of relay UEs 2 for one remote UE 1 described in the fifth embodiment may be used independently of a relay selection criterion that considers a time change in D2D link quality.
  • the process of pre-selecting a plurality of relays UE2 for one remote UE1 described in the fifth embodiment can be used even when the time change of the D2D link quality is not considered in the relay selection.
  • the process of selecting a plurality of relays UE2 in advance for one remote UE1 can contribute to the reduction in the duration of communication interruption due to relay reselection even when the time change of the D2D link quality is not considered.

Abstract

リレー選択装置(1、3、又は5)は、1又は複数のリレー端末(2)の各々とリモート端末(1)の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準に基づいて、これら1又は複数のリレー端末(2)の中から当該リモート端末(1)に適した少なくとも1つの特定のリレー端末(2)を選択するよう構成されている。これにより、例えば、安定したリレー品質をもたらすためのリレー選択の改良に寄与できる。

Description

リレー選択のための装置及び方法
 本開示は、端末間直接通信(device-to-device(D2D)通信)に関し、特にリレー端末の選択に関する。
 いくつかの実装において、無線端末は、他の無線端末と直接的に通信できるよう構成される。このような通信は、device-to-device(D2D)通信と呼ばれる。D2D通信は、ダイレクト通信およびダイレクト・ディスカバリの少なくとも一方を含む。いくつかの実装において、D2D通信をサポートする複数の無線端末は、自律的に又はネットワークの指示に従ってD2D通信グループを形成し、当該D2D通信グループ内の他の無線端末と通信を行う。
 3GPP Release 12は、Proximity-based services(ProSe)について規定している(例えば、非特許文献1を参照)。ProSeは、ProSeディスカバリ(ProSe discovery)及びProSeダイレクト通信(ProSe direct communication)を含む。ProSeディスカバリは、無線端末が近接していること(in proximity)の検出を可能にする。ProSeディスカバリは、ダイレクト・ディスカバリ(ProSe Direct Discovery)及びネットワークレベル・ディスカバリ(EPC-level ProSe Discovery)を含む。
 ProSeダイレクト・ディスカバリは、ProSeを実行可能な無線端末(ProSe-enabled User Equipment(UE))が他のProSe-enabled UEをこれら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いて発見する手順により行われる。これに対して、EPC-level ProSe Discoveryでは、コアネットワーク(Evolved Packet Core (EPC))が2つのProSe-enabled UEsの近接を判定し、これをこれらのUEsに知らせる。ProSeダイレクト・ディスカバリは、3つ以上のProSe-enabled UEsにより行われてもよい。
 ProSeダイレクト通信は、ProSeディスカバリ手順の後に、ダイレクト通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSeダイレクト通信は、ProSe-enabled UEが、基地局(eNodeB)を含む公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を経由せずに、他のProSe-enabled UEと直接的に通信することを可能にする。ProSeダイレクト通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、wireless radio access network (WLAN)の無線技術(つまり、IEEE 802.11 radio technology)を用いて行われてもよい。
 ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、UE間のダイレクトインタフェースにおいて行われる。当該ダイレクトインタフェースは、PC5インタフェース又はサイドリンク(sidelink)と呼ばれる。すなわち、ProSeダイレクト・ディスカバリ及びProSeダイレクト通信は、D2D通信の一例である。なお、D2D通信は、サイドリンク通信と呼ぶこともでき、peer-to-peer通信と呼ぶこともできる。
 3GPP Release 12では、ProSe functionが公衆地上移動通信ネットワーク(PLMN)を介してProSe-enabled UEと通信し、ProSeディスカバリ及びProSeダイレクト通信を支援(assist)する。ProSe functionは、ProSeのために必要なPLMNに関連した動作に用いられる論理的な機能(logical function)である。ProSe functionによって提供される機能(functionality)は、例えば、(a)third-party applications(ProSe Application Server)との通信、(b)ProSeディスカバリ及びProSeダイレクト通信のためのUEの認証、(c)ProSeディスカバリ及びProSeダイレクト通信のための設定情報(例えば、EPC-ProSe-User IDなど)のUEへの送信、並びに(d)ネットワークレベル・ディスカバリ(i.e., EPC-level ProSe discovery)の提供、を含む。ProSe functionは、1又は複数のネットワークノード又はエンティティに実装されてもよい。本明細書では、ProSe functionを実行する1又は複数のネットワークノード又はエンティティを“ProSe function エンティティ”又は“ProSe functionサーバ”と呼ぶ。
 さらに、3GPP Release 12は、一方のUEがネットワークカバレッジ外であり、他方のUEがネットワークカバレッジ内であるパーシャルカバレッジ・シナリオについて規定している(例えば、非特許文献1のセクション4.4.3、4.5.4および5.4.4を参照)。パーシャルカバレッジ・シナリオにおいて、カバレッジ外のUEはremote UEと呼ばれ、カバレッジ内かつremote UEとネットワークを中継するUEはProSe UE-to-Network Relayと呼ばれる。ProSe UE-to-Network Relayは、remote UEとネットワーク(E-UTRA  network(E-UTRAN)及びEPC)との間でトラフィック(ダウンリンク及びアップリンク)を中継する。
 より具体的に述べると、ProSe UE-to-Network Relayは、UEとしてネットワークにアタッチし、ProSe function エンティティ又はその他のPacket Data Network(PDN)と通信するためのPDN connectionを確立し、ProSeダイレクト通信を開始するためにProSe function エンティティと通信する。ProSe UE-to-Network Relayは、さらに、remote UEとの間でディスカバリ手順を実行し、UE間ダイレクトインタフェース(e.g., サイドリンク又はPC5インタフェース)においてremote UEと通信し、remote UEとネットワークとの間でトラフィック(ダウンリンク及びアップリンク)を中継する。Internet Protocol version 4(IPv4)が用いられる場合、ProSe UE-to-Network Relayは、Dynamic Host Configuration Protocol Version 4 (DHCPv4) Server及びNetwork Address Translation (NAT) として動作する。IPv6が用いられる場合、ProSe UE-to-Network Relayは、stateless DHCPv6 Relay Agentとして動作する。
 さらに、3GPP Release 13ではProSeの拡張が議論されている(例えば、非特許文献2-8を参照)。当該議論は、ProSe UE-to-Network Relay 及びProSe UE-to-UE Relayを選択するためのリレー選択基準(relay selection criteria)に関する議論、及びリレー選択の配置を含むリレー選択手順に関する議論を含む。ここで、ProSe UE-to-UE Relayは、2つのremote UEの間でトラフィックを中継するUEである。
 UE-to-Network Relayのリレー選択の配置に関しては、リモートUEがリレー選択を行う分散(distributed)リレー選択アーキテクチャ(例えば、非特許文献3-5、7、及び8を参照)と、基地局(eNodeB(eNB))等のネットワーク内の要素がリレー選択を行う集中(centralized)リレー選択アーキテクチャ(例えば、非特許文献6及び7を参照)が提案されている。UE-to-Network Relayのリレー選択基準に関しては、リモートUEとリレーUEの間のD2Dリンク品質を考慮すること、リレーUEとeNBの間のバックホールリンク品質を考慮すること、並びにD2Dリンク品質及びバックホールリンク品質の両方を考慮することが提案されている(例えば、非特許文献3-8を参照)。
 例えば、非特許文献3-5は、分散(distributed)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEは、w * D2D link quality + (1-w) * backhaul link qualityという評価式を用いてD2Dリンク品質及びバックホールリンク品質の両方を考慮する、ここでwは予め設定される定数である(非特許文献3を参照)。幾つかの実装において、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンク(リレーUEとeNBの間)の無線品質を示すディスカバリメッセージを送信する(非特許文献4を参照)。これに代えて、リレーUEは、リモートUEによるリレー選択をアシストするために、バックホールリンクの無線品質を暗示的に(implicitly)リモートUEに示してもよい。バックホールリンクの無線品質を暗示的に示すために、例えば、ディスカバリ信号内の優先度情報(priority information)が使用される(非特許文献5を参照)。
 例えば、非特許文献6は、集中(centralized)リレー選択においてD2Dリンク品質及びバックホールリンク品質の両方を考慮することを記載している。一例において、リモートUEはD2Dリンク品質をeNBに報告し、eNBは報告されたD2Dリンク品質と(報告された)バックホールリンク品質を考慮してリモートUEのためのリレーを選択する。バックホールリンク品質は、既存のセルラーネットワークにおけるeNBによる測定又はリレーUEによる測定報告によって取得されてもよい。
 例えば、非特許文献7及び8は、eNBが、バックホールリンク品質を考慮して1又は複数のリレー候補(candidate)UEを選択する。これらのリレー候補UEのみがリレーディスカバリ手順においてリモートUEにより発見されることができる。リモートUEは、D2Dリンク品質に基づいて1又は複数のリレー候補の中からリレーを選択する。バックホールリンク品質はeNBによるリレー候補の選択の際に考慮されているから、したがってリモートUEによるリレー選択にも間接的に考慮されている。
 本明細書では、ProSe UE-to-Network Relay及びProSe UE-to-UE RelayのようなD2D通信能力およびリレー能力を持つ無線端末を「リレー無線端末」、又は「リレーUE」と呼ぶ。また、リレーUEによる中継サービスを受ける無線端末を「リモート無線端末」又は「リモートUE」と呼ぶ。
3GPP TS 23.303 V12.4.0 (2015-03), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Proximity-based services (ProSe); Stage 2 (Release 12)", March 2015 3GPP TR 23.713 V1.4.0 (2015-06), "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on extended architecture support for proximity-based services (Release 13)", June 2015 3GPP R1-152778, "Support of UE-Network relays", Qualcomm Incorporated, May 2015 3GPP S2-150925, "UE-to-Network Relay conclusions", Qualcomm Incorporated, April 2015 3GPP R1-153087, "Discussion on UE-to-Network Relay measurement", Sony, May 2015 3GPP R2-152560, "Role of eNB when remote UE is in coverage", Qualcomm Incorporated, May 2015 3GPP R1-151965, "Views on UE-to-Network Relay Discovery", NTT DOCOMO, April 2015 3GPP R1-153188, "Discussion on Relay Selection" , NTT DOCOMO, May 2015
 上述したように、リレー選択においてD2Dリンク品質及びバックホールリンク品質のいずれか又は両方を考慮することが提案されている。しかしながら、D2Dリンク及びバックホールリンク品質のレベル(大きさ)のみに依存してリレー選択を行うことはいくつかのケースにおいて適切でないかもしれない。例えば、瞬間的な(スナップショットの)D2Dリンク品質の大きさに基づいてD2Dリンク品質が良好なリレーUEを選ぶと、リモートUEと短時間ですれ違うだけのリレーUEを選んでしまうかもしれないし、又はリモートUEから遠ざかる傾向にあるリレーUEを選んでしまうかもしれない。これらの無線端末は、安定したリレー品質をリモートUEに提供できない可能性がある。
 したがって、本明細書に開示される実施形態が達成しようとする目的の1つは、安定したリレー品質をもたらすためのリレー選択の改良に寄与する装置、方法、及びプログラムを提供することである。
 第1の態様では、リレー選択装置は、メモリと、前記メモリに結合された少なくとも1つのプロセッサとを含む。前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々とリモート端末の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準(selection criterion)に基づいて、前記1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択するよう構成されている。
 第2の態様では、リレー選択方法は、1又は複数のリレー端末の各々とリモート端末の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準(selection criterion)に基づいて、前記1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択することを含む。
 第3の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第2の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、安定したリレー品質をもたらすためのリレー選択の改良に寄与する装置、方法、及びプログラムを提供できる。
いくつかの実施形態に係る無線通信ネットワークの構成例を示す図である。 いくつかの実施形態に係る無線通信ネットワークの構成例を示す図である。 いくつかの実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 いくつかの実施形態に係るリレーを開始するための手順の一例を示すシーケンス図である。 第1の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第2の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第3の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第3の実施形態に係るリレー選択手順を説明するためのD2Dリンク品質とバックホールリンク品質の関係の一例を示すグラフである。 第4の実施形態に係るリレー選択手順の一例を示すフローチャートである。 第5の実施形態に係るリモートUEの動作の一例を示すフローチャートである。 いくつかの実施形態に係る無線端末の構成例を示すブロック図である。 いくつかの実施形態に係る基地局の構成例を示すブロック図である。 いくつかの実施形態に係るD2Dコントローラの構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1は、本実施形態を含むいくつかの実施形態に係る無線通信ネットワークの構成例を示している。具体的には、図1は、UE-to-Network Relayに関する例を示している。すなわち、リモートUE1は、少なくとも1つの無線トランシーバを有し、D2Dリンク102(e.g., PC5インタフェース又はサイドリンク)上で1又は複数のリレーUE2とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。また、図1には示されていないが、リモートUE1は、1又は複数の基地局3により提供されるセルラーカバレッジ31内においてセルラー通信を行うよう構成されている。
 リレーUE2は、少なくとも1つの無線トランシーバを有し、セルラーカバレッジ31内において基地局3とのセルラーリンク101においてセルラー通信を行うとともに、D2Dリンク102上でリモートUE1とD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行うよう構成されている。
 基地局3は、無線アクセスネットワーク(i.e., E-UTRAN)内に配置されたエンティティであり、1又は複数のセルを含むセルラーカバレッジ31を提供し、セルラー通信技術(e.g., E-UTRA technology)を用いてリレーUE2とセルラーリンク101において通信することができる。さらに、基地局3は、リモートUE1がセルラーカバレッジ31内にいる場合に、リモートUE1とセルラー通信を行うよう構成されている。
 コアネットワーク(i.e., Evolved Packet Core(EPC))4は、複数のユーザープレーン・エンティティ(e.g., Serving Gateway (S-GW)及びPacket Data Network Gateway (P-GW))、及び複数のコントロールプレーン・エンティティ(e.g., Mobility Management Entity(MME)及びHome Subscriber Server(HSS))を含む。複数のユーザープレーン・エンティティは、基地局3を含む無線アクセスネットワークと外部ネットワークとの間でリモートUE1及びリレーUE2のユーザデータを中継する。複数のコントロールプレーン・エンティティは、リモートUE1及びリレーUE2のモビリティ管理、セッション管理(ベアラ管理)、加入者情報管理、及び課金管理を含む様々な制御を行う。
 いくつかの実装において、近接サービス(e.g., 3GPP ProSe)を利用するために、リモートUE1及びリレーUE2は、基地局3及びコアネットワーク4を介してD2Dコントローラ5と通信するよう構成される。例えば、3GPP ProSeの場合、D2Dコントローラ5は、ProSe function エンティティに相当する。リモートUE1及びリレーUE2は、例えば、D2Dコントローラ5によって提供されるネットワークレベル・ディスカバリ(e.g., EPC-level ProSe Discovery)を利用してもよいし、D2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)のリモートUE1及びリレーUE2における起動(有効化、activation)を許可することを示すメッセージをD2Dコントローラ5から受信してもよいし、セルラーカバレッジ31におけるD2D通信に関する設定情報をD2Dコントローラ5から受信してもよい。
 図1の例では、リレーUE2は、UE-to-Network Relayとして動作し、リモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)の間でのリレー動作をリモートUE1に提供する。言い換えると、リレーUE2は、リモートUE1に関するデータフロー(トラフィック)をリモートUE1とセルラーネットワーク(基地局3及びコアネットワーク4)との間で中継する。これにより、リモートUE1は、リレーUE2及びセルラーネットワーク(基地局3及びコアネットワーク4)を経由して外部ネットワーク6内のノード7と通信することができる。
 図1の例では、リモートUE1は、セルラーカバレッジ31の外に位置している(アウト・オブ・カバレッジ)。しかしながら、リモートUE1は、セルラーカバレッジ31内に位置してもよく、何らかの条件(例えば、ユーザーによる選択)に基づいてセルラーネットワーク(基地局3及びコアネットワーク4)に接続不能な状態であってもよい。リモートUE1は、セルラーネットワークに接続できない条件の場合に(e.g., カバレッジ外)、リレーUE2とのD2D通信(e.g., ダイレクト通信)を行う。
 リモートUE1がセルラーネットワークに接続不能であることは、セルラーネットワーク内の1又は複数の基地局3から送信される無線信号の受信品質(e.g., Reference Signal Received Power(RSRP)又はReference Signal Received Quality(RSRQ))が所定の閾値以下であることにより判定されてもよい。言い換えると、リモートUE1は、セルラーネットワークの無線信号を正常に受信できないことにより、セルラーネットワークに接続不能であることを判定してもよい。これに代えて、リモートUE1は、いずれかの基地局3からの無線信号を受信できるものの、コアネットワーク4への接続(アタッチ)を拒絶された場合に、セルラーネットワークに接続不能であることを判定してもよい。これに代えて、リモートUE1は、ユーザの指示又はセルラーネットワーク内の制御装置(e.g., 基地局3、D2Dコントローラ5、又はOperation Administration and Maintenance(OAM)サーバ)の指示により強制的にセルラーネットワークとの接続を切断又は不活性化(deactivate)する場合に、セルラーネットワークに接続不能であることを判定してもよい。
 図2は、本実施形態を含むいくつかの実施形態に係る無線通信ネットワークの構成の他の例を示している。具体的には、図2は、UE-to-UE Relayに関する例を示している。図2の例では、リレーUE2は、UE-to-UE Relayとして動作し、リモートUE1AとリモートUE1Bの間でトラフィックを中継する。言い換えると、リレーUE2は、one-to-one D2Dリンク201においてリモートUE1AとD2D通信(e.g., ProSeダイレクト・ディスカバリ及びProSeダイレクト通信)を行い、one-to-one D2Dリンク202においてリモートUE1BとD2D通信を行う。
 リモートUE1A及び1B並びにリレーUE2は、無線インフラストラクチャ・ネットワーク8と通信するよう構成されてもよい。無線インフラストラクチャ・ネットワーク8は、無線端末間のD2D通信に比べて継続的な通信を提供する。無線インフラストラクチャ・ネットワーク8は、図1に示された基地局3及びコアネットワーク4を含むセルラーネットワークを含んでもよい。セルラーネットワークは、例えば、Universal Mobile Telecommunications System(UMTS)、Long Term Evolution(LTE)、CDMA2000(1xRTT、High Rate Packet Data(HRPD))システム、Global System for Mobile communications(GSM(登録商標))/General packet radio service(GPRS)システム、WiMAX(IEEE 802.16-2004)、又はモバイルWiMAX(IEEE 802.16e-2005)であってもよい。さらに又はこれに代えて、無線インフラストラクチャ・ネットワーク8は、インフラストラクチャー・モードのWireless Local Area Network(WLAN)(IEEE 802.11)、例えば公衆WLAN、を含んでもよい。
 なお、UE-to-UE Relayに関する図2のリモートUE1Aに着目すると、リレーUE2と他のリモートUE1Bとの間のD2Dリンク202はバックホールリンクとみなすことができる。すなわち、本明細書におけるバックホールリンクは、着目するリモートUE1のトラフィックを中継するためにリレーUE2が使用するネクストホップ・ノード(e.g., 基地局3又は他のリモートUE1)との間の無線リンクを意味する。したがって、本明細書におけるバックホールリンクは、基地局3とリレーUE2の間のセルラーリンク(Wide Area Network(WAN)リンク)であってもよいし、着目するリモートUE1ではない他のリモートUE1とリレーUE2との間のD2Dリンクであってもよい。
 続いて、以下では、本実施形態を含むいくつかの実施形態に係るリレーを開始するための手順について図3及び図4を用いて説明する。リレーを開始するためには、リモートUE1が利用できるリレーUE2を発見するための“リレーディスカバリ”と、発見された1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUEを選択する“リレー選択”が必要である。既に説明したように、リレー選択は、幾つかの実装においてリモートUE1により行われ(i.e., 分散(distributed)リレー選択)、他の実装において基地局3などのネットワーク要素により行われる(i.e., 集中(centralized)リレー選択)。
 図3は、分散リレー選択を伴う手順の一例(処理300)を示している。ブロック301では、リモートUE1及びリレーUE2は、リモートUE1がUE-to-Network Relay又はUE-to-UE RelayとしてのリレーUE2を発見するためのリレーディスカバリ手順を実行する。例えば、いわゆるアナウンスメント・モデル(モデルA)に従って、リレーUE2がディスカバリ信号を送信し、リモートUE1はリレーUE2からのディスカバリ信号を検出することによってリレーUE2を発見してもよい。これに代えて、いわゆる依頼(solicitation)/応答(response)モデル(モデルB)に従って、リモートUE1がリレーを希望すること示すディスカバリ信号を送信し、リレーUE2が当該ディスカバリ信号に対する応答メッセージをリモートUE1に送信し、リモートUE1はリレーUE2からの応答メッセージを受信することによってリレーUE2を発見してもよい。
 リレーUE2から送信されるディスカバリ信号(モデルA)及び応答メッセージ(モデルB)は、リレーUE ID及びバックホールリンク品質を含んでもよい。バックホールリンク品質は、ネクストホップ・ノード(e.g., 基地局3又は他のリモートUE1)から送信される信号の各リレーUE2での受信品質(e.g., RSRP、RSRQ、又はsignal-to-interference plus noise ratio(SINR));ネクストホップ・ノードと各リレーUE2の間のデータレート又はスループット;各リレーUE2とネクストホップ・ノードとの間の通信の遅延時間;及び、各リレーUE2とネクストホップ・ノードとの間の通信に適用される変調方式および符号化率(e.g., Modulation and Coding Scheme (MCS) index);のうち少なくとも1つを含んでもよい。
 ブロック302では、リモートUE1は、ブロック301で発見された1又は複数のリレーUE2の中から、適切な少なくとも1つの特定のリレーUE2を選択する。本実施形態に係るリレー選択基準(relay selection criterion)の詳細については後述する。
 ブロック303では、リモートUE1は、選択された少なくとも1つの特定のリレーUEのいずれかとone-to-one D2D通信(ダイレクト通信)のためのコネクションを確立する。例えば、リモートUE1は、ダイレクト通信要求(又はリレー要求)をリレーUE2に送信してもよい。リレーUE2は、ダイレクト通信要求(又はリレー要求)の受信に応答して、相互認証(mutual authentication)のための手順を開始してもよい。
 一方、図4は、集中リレー選択の一例(処理400)を示している。ブロック401では、ブロック301と同様に、リモートUE1及びリレーUE2は、リモートUE1がUE-to-Network Relay又はUE-to-UE RelayとしてのリレーUE2を発見するためのリレーディスカバリ手順を実行する。
 ブロック402では、リモートUE1は、測定報告を基地局3に送信する。測定報告は、ブロック401で発見された1又は複数のリレーUE2に関し、例えば、D2Dリンク品質(リモートUE1とリレーUE2の間)を含む。D2Dリンク品質は、例えば、受信電力、signal-to-interference plus noise ratio(SINR)、及びデータレート(又はスループット)のうち少なくとも1つを含んでもよい。さらに、測定報告は、既存の測定報告と同様に、リモートUE1と基地局3の間のセルラーリンク品質を含んでもよい。さらに、測定報告は、バックホールリンク品質(基地局3とリレーUE2の間)を含んでもよい。
 ブロック402では、基地局3は、報告されたリモートUE1とリレーUE2の間のD2Dリンク品質、報告されたリモートUE1と基地局3の間のリンク品質、及び基地局3とリレーUE2の間のバックホールリンク品質に基づいて、リモートUE1により発見された1又は複数のリレーUE2の中から、適切な少なくとも1つの特定のリレーUE2を選択する。基地局3とリレーUE2の間のバックホールリンク品質は、リモートUE1からの測定報告に含まれてもよい。あるいは、特にUE-to-Network Relayの場合に、バックホールリンク品質は、基地局3が各リレーUE2からアップリンク信号を測定することで取得してもよい。言い換えると、バックホールリンク品質は、各リレーUE2から送信されるアップリンク信号の基地局3での受信品質であってもよい。本実施形態に係るリレー選択基準(relay selection criterion)の詳細については後述する。
 ブロック404では、基地局3は、選択された特定のリレーUE2への接続をリモートUE1に指示する。ブロック405では、リモートUE1は、基地局3から指示に従って、特定のリレーUEとone-to-one D2D通信(ダイレクト通信)のためのコネクションを確立する。
 なお、図4の例において、リレー選択(ブロック403)は、基地局3とは異なる他のネットワーク要素、例えばD2Dコントローラ5により行われてもよい。
 続いて以下では、本実施形態に係るリレー選択基準の具体例について説明する。本実施形態に係るリレー選択基準では、D2Dリンク品質の時間変化が考慮される。すなわち、リレー選択エンティティは、1又は複数のリレーUE2の各々とリモートUE1の間のD2Dリンク品質の時間変化を表すパラメータを考慮する選択基準(selection criterion)に基づいて、これら1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUEを選択するよう構成されている。なお、上述の説明から理解されるように、本実施形態に係るリレー選択エンティティは、分散リレー選択アーキテクチャであればリモートUE1であってもよいし、集中リレー選択アーキテクチャであればネットワーク要素(e.g., 基地局3又はD2Dコントローラ5)であってもよい。
 D2Dリンク品質は、例えば、受信電力(e.g., RSRP又はRSRQ)、signal-to-interference plus noise ratio(SINR)、及びデータレートのうち少なくとも1つを含んでもよい。
 D2Dリンク品質の時間変化を表すパラメータは、例えば、D2Dリンク品質の時間変化の大きさ、D2Dリンク品質の時間変化の速さ、及びD2Dリンク品質の時間変化の傾向のうち少なくとも1つを示してもよい。いくつかの実装において、D2Dリンク品質の時間変化の大きさ、速さ、又は傾向を示すために、当該パラメータは、D2Dリンク品質の複数の計測値の差分(微分値(time derivative))から導かれてもよい。さらに又はこれに代えて、D2Dリンク品質の時間変化の大きさ又は傾向を示すために、当該パラメータは、D2Dリンク品質の統計的ばらつき(statistical variability、statistical dispersion)を表してもよい。統計的ばらつきを表すために、当該パラメータは、D2Dリンク品質の分散(variance)、標準偏差(standard deviation)、又は四分位範囲(interquartile range(IQR))を含んでもよい。
 いくつかの実装において、リレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化の大きさが小さいリレーUE2ほどリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化の大きさが小さいリレーUE2は、リモートUE1に安定したD2Dリンク品質を提供できると期待でき、したがってリレーUE2は安定した総体的な(overall)リレー品質を提供できると期待できる。
 一例として、リレー選択基準は、例えば、以下の式(1)によって定義されてもよい:
Figure JPOXMLDOC01-appb-M000001
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、fijは、D2Dリンク品質の時間変化の大きさ(絶対値)を表すパラメータである。なお、式(1)のarg min演算子(operator)は、fijがその最小値となるUE iの集合を参照する。言い換えると、式(1)は、D2Dリンク品質の変化の大きさを表すパラメータfijがその最小値となる少なくとも1つのリレーUE2(UE i)がリモートUE1(UE j)のために選択されることを示す。
 あるいは、いくつかの実装において、リレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化の速さが小さいリレーUE2ほどリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化の速さが小さいリレーUE2は、リモートUE1に安定したD2Dリンク品質を提供できると期待でき、したがってリレーUE2は安定した総体的な(overall)リレー品質を提供できると期待できる。言い換えると、リレー選択の際にD2Dリンク品質の時間変化の速さを考慮することで、リモートUE1と短時間ですれ違うだけのリレーUE2を選んでしまう可能性を低減できる。
 一例として、D2Dリンク品質の時間変化の速さを表すパラメータは、単位時間あたりのD2Dリンク品質の変化の大きさであってもよいし、D2Dリンク品質の時間微分値(time derivative)の絶対値であってもよい。
 あるいは、いくつかの実装において、リレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)が徐々に良くなっていく時間変化の傾向を持つリレーUE2が当該傾向を持たないリレーUE2よりもリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。D2Dリンク品質(リモートUE1とリレーUE2の間)が徐々に良くなっていくことは、リレーUE2とリモートUE1が互いに近づく傾向にあると判断でき、したがってリレーUE2は安定した総体的な(overall)リレー品質を提供できると期待できる。言い換えると、リレー選択の際にD2Dリンク品質の時間変化の傾向を考慮することで、リモートUE1から遠ざかる傾向にあるリレーUE2を選んでしまう可能性を低減できる。
 一例として、D2Dリンク品質の時間変化の傾向を示すパラメータは、D2Dリンク品質の時間微分値の和(sum of time derivatives)であってもよい。D2Dリンク品質の時間微分値の和は、D2Dリンク品質が徐々に良くなる傾向が強いほど大きな正の値となり、D2Dリンク品質が徐々に悪くなる傾向が強いほど大きな負の値となる。一方、D2Dリンク品質に変動がない場合には、D2Dリンク品質の時間微分値の和はゼロに近づく。さらに、D2Dリンク品質が頻繁に増減する場合も、D2Dリンク品質の時間微分値の和はゼロに近づく。
 上述したD2Dリンク品質の時間変化を考慮するリレー選択基準の幾つかの例は、適宜組合せて使用されてもよい。
 図5は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理500)を示すフローチャートである。ブロック501では、リレー選択エンティティは、1又は複数のリレーUE2の各々とリモートUE1との間のD2Dリンク品質の測定結果を取得する。既に説明したように、当該測定結果は、リモートUE1によって取得され、リレー選択エンティティとしてのリモートUE1によって使用されてもよい。あるいは、当該測定結果は、リモートUE1又は各リレーUE2によって取得され、リレー選択エンティティとしての基地局3又はD2Dコントローラ5にリモートUE1又は各リレーUE2から報告されてもよい。
 ブロック502では、リレー選択エンティティは、D2Dリンク品質の時間変化を表すパラメータを考慮するリレー選択基準に基づいて、1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。
 なお、リレー選択がネットワークノード(e.g.,基地局3、又はD2Dコントローラ5)で行われる場合、リモートUE1は、D2Dリンク品質の時間変化(e.g., 時間変化の大きさ、速さ、又は傾向)を表すパラメータを含む測定報告をブロック501において送信してもよい。
 以上の説明から理解されるように、本実施形態では、リレー選択基準として、D2Dリンク品質の時間変化(例えば、時間変化の大きさ、速さ若しくは傾向又はこれらの任意の組合せ)が考慮される。これにより、例えば、D2Dリンク品質の変動が大きいリレーUE2を選択してしまう可能性を低減でき、リモートUE1と短時間ですれ違うだけのリレーUE2を選んでしまう可能性を低減でき、又はリモートUE1から遠ざかる傾向にあるリレーUE2を選択する可能性を低減することが期待できる。したがって、本実施形態に係るリレー選択基準及びリレー選択手順は、安定した総体的な(overall)リレー品質をもたらすためのリレー選択の改良に寄与できる。また、本実施形態に係るリレー選択基準及びリレー選択手順は、頻繁なリレー再選択を抑制できる。
<第2の実施形態>
 本実施形態では、第1の実施形態で説明されたリレー選択基準及びリレー選択手順の変形が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図4と同様である。
 本実施形態に係るリレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化に加えて、バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)の時間変化を考慮する。既に説明したように、ネクストホップ・ノードは、UE-to-Network Relayの場合では基地局3であり、UE-to-UE Relayの場合では着目するリモートUE1とは別の他のリモートUE1である。
 本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3又はD2Dコントローラ5)は、リレー選択の際に、各リレーUE2とネクストホップ・ノードとの間のバックホールリンク品質の時間変化の大きさ、時間変化の速さ、又は時間変化の傾向をさらに考慮するよう構成されている。バックホールリンク品質の時間変化を表すパラメータは、第1の実施形態で説明されたD2Dリンク品質の時間変化を表すパラメータと同様に定義されてもよい。すなわち、バックホールリンク品質の時間変化を表すパラメータは、バックホールリンク品質の複数の計測値の差分(微分値(time derivative))から導かれてもよい。さらに又はこれに代えて、バックホールリンク品質の時間変化の大きさ又は傾向を示すために、当該パラメータは、バックホールリンク品質の統計的ばらつき(statistical variability、statistical dispersion)を表してもよい。統計的ばらつきを表すために、当該パラメータは、バックホールリンク品質の分散(variance)、標準偏差(standard deviation)、又は四分位範囲(interquartile range(IQR))を含んでもよい。
 バックホールリンク品質の時間変化は、例えば、第1の実施形態で説明されたD2Dリンク品質の時間変化と同様にリレー選択において考慮されてもよい。すなわち、いくつかの実装において、リレー選択基準は、バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)の時間変化の大きさが小さいリレーUE2ほどリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)の時間変化の大きさが小さいリレーUE2は、リモートUE1に安定したバックホールリンク品質を提供できると期待でき、したがって安定した総体的な(overall)リレー品質を提供できると期待できる。
 一例として、リレー選択基準は、例えば、以下の式(2)~(4)によって定義されてもよい:
Figure JPOXMLDOC01-appb-M000002
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、RBQi(t)は、時刻tにおけるリレーUE2(UE i)とネクストホップ・ノードの間のバックホールリンク品質であり、重みw1は予め設定される0以上1以下の定数であり、fijは、D2Dリンク品質の時間変化の大きさ(絶対値)及びバックホールリンク品質の時間変化の大きさ(絶対値)の両方を考慮するパラメータである。
 あるいは、いくつかの実装において、リレー選択基準は、バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)の時間変化の速さが小さいリレーUE2ほどリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)の時間変化の速さが小さいリレーUE2は、リモートUE1に安定したバックホールリンク品質を提供できると期待でき、したがってリレーUE2は安定した総体的な(overall)リレー品質を提供できると期待できる。言い換えると、リレー選択の際にバックホールリンク品質の時間変化の速さを考慮することで、セルラーカバレッジ31(特に、セルラー電力の変化量が大きい領域)を高速で通過するリレーUE2を選んでしまう可能性を低減できる。
 一例として、バックホールリンク品質の時間変化の速さを表すパラメータは、単位時間あたりのバックホールリンク品質の変化の大きさであってもよいし、バックホールリンク品質の時間微分値(time derivative)の絶対値であってもよい。
 あるいは、いくつかの実装において、リレー選択基準は、バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)が徐々に良くなっていく時間変化の傾向を持つリレーUE2が当該傾向を持たないリレーUE2よりもリモートUE1のための特定のリレーUEとして選択されやすくなるように定義されてもよい。バックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)が徐々に良くなっていくことは、リレーUE2がカバレッジホール又はカバレッジ外から遠ざかりつつあると判断でき、したがってリレーUE2は継続して良好なセルラー通信環境に留まることが期待できる。言い換えると、リレー選択の際にバックホールリンク品質の時間変化の傾向を考慮することで、セル中央から遠ざかる傾向又はセル端に近づく傾向にあるリレーUE2を選んでしまう可能性を低減できる。
 一例として、バックホールリンク品質の時間変化の傾向を示すパラメータは、バックホールリンク品質の時間微分値の和(sum of time derivatives)であってもよい。
 上述したバックホールリンク品質の時間変化を考慮するリレー選択基準の幾つかの例は、適宜組合せて使用されてもよい。
 図6は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理600)を示すフローチャートである。ブロック601では、リレー選択エンティティは、1又は複数のリレーUE2の各々とリモートUE1との間のD2Dリンク品質の測定結果を取得する。既に説明したように、当該測定結果は、リモートUE1によって取得され、リレー選択エンティティとしてのリモートUE1によって使用されてもよい。あるいは、当該測定結果は、リモートUE1又は各リレーUE2によって取得され、リレー選択エンティティとしての基地局3又はD2Dコントローラ5にリモートUE1又は各リレーUE2から報告されてもよい。
 ブロック602では、リレー選択エンティティは、各リレーUE2のバックホールリンク品質の測定結果を取得する。既に説明したように、各リレーUE2は、バックホールリンク品質を測定するとともに、バックホールリンク品質の測定結果をリレーディスカバリの際にリモートUE1にディスカバリ信号又は応答メッセージを用いて知らせてもよい。リレー選択エンティティとしてのリモートUE1は、各リレーUE2から受信したバックホールリンク品質をリレー選択のために使用してもよい。これに代えて、リモートUE1は、リレー選択エンティティとしてのネットワークノード(e.g., 基地局3又はD2Dコントローラ5)に各リレーUE2から受信したバックホールリンク品質を報告してもよい。これに代えて、リレー選択エンティティとしてのネットワークノード(e.g., 基地局3又はD2Dコントローラ5)は、基地局3によって測定された各リレーUE2からのアップリンク受信号の受信品質をバックホールリンク品質として使用してもよい。
 ブロック603では、リレー選択エンティティは、D2Dリンク品質の時間変化及びバックホールリンク品質の時間変化の両方を考慮するリレー選択基準に基づいて、1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。
 なお、リレー選択がネットワークノード(e.g.,基地局3、又はD2Dコントローラ5)で行われる場合、リモートUE1は、D2Dリンク品質の時間変化(e.g., 時間変化の大きさ、速さ、又は傾向)を表すパラメータを含む測定報告をブロック601において送信してもよい。また、リモートUE1は、バックホールリンク品質の時間変化(e.g., 時間変化の大きさ、速さ、又は傾向)を表すパラメータを含む測定報告をブロック602において送信してもよい。
 以上の説明から理解されるように、本実施形態では、リレー選択基準として、バックホールリンク品質の時間変化(例えば、時間変化の大きさ、速さ若しくは傾向又はこれらの任意の組合せ)が考慮される。これにより、例えば、バックホールリンク品質の変動が大きいリレーUE2を選択してしまう可能性を低減でき、セルラーカバレッジ31(特に、セルラー電力の変化量が大きい領域)を高速で通過するリレーUE2を選んでしまう可能性を低減でき、又はセル中央から遠ざかる傾向(又はセル端に近づく傾向)にあるリレーUE2を選択する可能性を低減することが期待できる。したがって、本実施形態に係るリレー選択基準及びリレー選択手順は、安定した総体的な(overall)リレー品質をもたらすためのリレー選択の改良に寄与することができる。また、本実施形態に係るリレー選択基準及びリレー選択手順は、頻繁なリレー再選択を抑制できる。
<第3の実施形態>
 本実施形態では、第1及び第2の実施形態で説明されたリレー選択基準及びリレー選択手順の変形が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図4と同様である。
 本実施形態に係るリレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化に加えて、D2Dリンク品質それ自体(品質レベル)と、バックホールリンク品質それ自体(品質レベル)を考慮する。さらに、本実施形態に係るリレー選択基準は、第2の実施形態で説明されたように、バックホールリンク品質の時間変化を考慮してもよい。
 図7は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理700)を示すフローチャートである。ブロック701及び702での処理は、図6に示されたブロック601及び602での処理と同様である。ブロック703では、リレー選択エンティティは、D2Dリンク品質及びその時間変化並びにバックホールリンク品質を考慮するリレー選択基準に基づいて、1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。
 D2Dリンク品質及びバックホールリンク品質は、例えば、リレー選択のために以下のように考慮されてもよい。一例として、D2Dリンク品質それ自体(品質レベル)が十分に高い場合、仮にD2Dリンク品質の時間変化が大きくても、あるいはD2Dリンク品質が徐々に悪くなる時間変化の傾向が存在しても、そのリレーUE2は、安定したリレー品質を提供できる可能性が高い。したがって、D2Dリンク品質(リモートUE1とリレーUE2の間)が第1の所定値以上であるリレーUE2が存在する場合、リレー選択エンティティは、D2Dリンク品質の時間変化の状態に関わらず、当該リレーUE2をリモートUE1のために選択してもよい。一方、リモートUE1によって発見された全てのリレーUE2のD2Dリンク品質が第1の所定値以下である場合、リレー選択エンティティは、第2の所定値(ただし第2の所定値は第1の所定値より低い)より大きいD2Dリンク品質が得られた1又は複数のリレーUE2の中からさらにD2Dリンク品質の時間変化に基づく選択基準に従って、リモートUE1のための特定のリレーUE2を選択してもよい。
 同様に、バックホールリンク品質それ自体(品質レベル)が十分に高い場合、仮にバックホールリンク品質の時間変化が大きくても、あるいはバックホールリンク品質が徐々に悪くなる時間変化の傾向が存在しても、そのリレーUE2は、安定したリレー品質を提供できる可能性が高い。したがって、バックホールリンク品質が第1の所定値以上であるリレーUE2が存在する場合、リレー選択エンティティは、(リモートUE1とリレーUE2の間)リンク品質の時間変化の状態に関わらず、当該リレーUE2をリモートUE1のために選択してもよい。一方、リモートUE1によって発見された全てのリレーUE2のバックホールリンク品質が第1の所定値以下である場合、リレー選択エンティティは、第2の所定値(ただし第2の所定値は第1の所定値より低い)より大きいバックホールリンク品質を有する1又は複数のリレーUE2の中からさらにバックホールリンク品質の時間変化に基づく選択基準に従って、リモートUE1のための特定のリレーUE2を選択してもよい。
 あるいは、いくつかの実装において、D2Dリンク品質及びその時間変化を考慮するリレー選択基準は、以下の式(5)及び(6)によって定義されてもよい:
Figure JPOXMLDOC01-appb-M000003
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、重みw2は予め設定される定数であり、fijは、D2Dリンク品質及びその時間変化の大きさ(絶対値)を考慮するパラメータである。式(5)のarg max演算子(operator)は、fijがその最大値となるUE iの集合を参照する。言い換えると、式(5)は、D2Dリンク品質及びその時間変化の大きさ(絶対値)を考慮するパラメータfijがその最大値となる少なくとも1つのリレーUE2(UE i)がリモートUE1(UE j)のために選択されることを示す。
 あるいは、いくつかの実装において、D2Dリンク品質及びその時間変化並びにバックホールリンク品質を考慮するリレー選択基準は、以下の式(7)及び(8)によって定義されてもよい:
Figure JPOXMLDOC01-appb-M000004
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、RBQi(t)は、時刻tにおけるリレーUE2(UE i)とネクストホップ・ノードの間のバックホールリンク品質であり、重みw2及びw3は予め設定される定数であり、fijは、D2Dリンク品質及びその時間変化の大きさ(絶対値)並びにバックホールリンク品質を考慮するパラメータである。
 あるいは、いくつかの実装において、D2Dリンク品質及びその時間変化並びにバックホールリンク品質及びその時間変化を考慮するリレー選択基準は、以下の式(9)~(11)によって定義されてもよい:
Figure JPOXMLDOC01-appb-M000005
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、RBQi(t)は、時刻tにおけるリレーUE2(UE i)とネクストホップ・ノードの間のバックホールリンク品質であり、重みw1は予め設定される0以上1以下の定数であり、重みw2及びw3は予め設定される定数であり、fijは、D2Dリンク品質及びその時間変化の大きさ(絶対値)並びにバックホールリンク品質及びその時間変化の大きさを考慮するパラメータである。
 あるいは、いくつかの実装において、リレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)とバックホールリンク品質(ネクストホップ・ノードとリレーUE2の間)のうちの小さい方によって制限される総体的なリレー品質が良好なリレーUE2ほどリモートUE1のための特定のリレー端末に選択されやすくなるように定義されてもよい。なぜなら、D2Dリンクとバックホールリンクのうち品質の悪い一方がリレー品質を制限するボトルネックとなる可能性が高いためである。
 例えば、式(12)又は(13)により定義されるリレー選択基準が使用されてもよい:
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-I000001
ここで、DQij(t)は、時刻tにおけるリレーUE2(UE i)とリモートUE1(UE j)の間のD2Dリンク品質であり、RBQi(t)は、時刻tにおけるリレーUE2(UE i)とネクストホップ・ノードの間のバックホールリンク品質である。式(12)及び(13)では、パラメータfijは、各時刻におけるD2Dリンク品質とバックホールリンク品質のうちの小さい方によって制限され、したがって総体的なリレー品質を表す。
 式(12)及び(13)で表されるパラメータfijの意義は、図8に示された具体例によって理解することができる。図8は、ある時間範囲T1~T2でのD2Dリンク品質の複数の測定値とバックホールリンク品質の複数の測定値の例を示している。式(12)及び(13)で表されるパラメータfijは、D2Dリンク品質とバックホールリンク品質のうち小さい方を使用するため、図8の斜線ハッチングが施された領域をリレー選択のために考慮する。したがって、図8の具体例から理解されるように、式(12)及び(13)で表されるパラメータfijは、D2Dリンクとバックホールリンクのうち各時刻においてボトルネックとなる一方の品質をリレー選択の際に効果的に考慮することができる。
<第4の実施形態>
 本実施形態では、第1~第3の実施形態で説明されたリレー選択基準及びリレー選択手順の変形が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図4と同様である。
 本実施形態に係るリレー選択基準は、D2Dリンク品質(リモートUE1とリレーUE2の間)の時間変化に加えて、リレーUE2の負荷に関する他のパラメータを考慮する。リレーUE2の負荷に関するパラメータとして、例えば、各リレーUE2が既にリレーを務めているリモートUE1の数が考慮されてもよい。さらに又はこれに代えて、リレーUE2の負荷に関するパラメータとして、各リレーUE2それ自身の送信データ量(e.g., アップリンク送信データ量、又は送信されるべきアップリンクデータのバッファ量)が考慮されてもよい。これにより、各リレーUE2の負荷状況(又は通信状況)をリレー選択の際に考慮することで、特定のリレーUE2に負荷が集中することを回避でき、複数のリレーUE2の間で負荷を調整することができる。なお、本実施形態に係るリレー選択基準は、第2及び第3の実施形態と同様に、バックホールリンク品質の時間変化をさらに考慮してもよいし、D2Dリンク品質それ自体(品質レベル)及びバックホールリンク品質それ自体(品質レベル)をさらに考慮してもよい。
 図9は、本実施形態に係るリレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)によって行われるリレー選択手順の一例(処理900)を示すフローチャートである。ブロック901での処理は、図5のブロック501、図6のブロック601、又は図7のブロック701における処理と同様である。ブロック902では、リレー選択エンティティは、各リレーUE2の負荷(e.g., 接続済みのリモートUE数、又は送信データ量)を取得する。ブロック903では、リレー選択エンティティは、D2Dリンク品質の時間変化および各リレーUEの負荷を考慮するリレー選択基準に基づいて、1又は複数のリレーUE2の中からリモートUE1に適した少なくとも1つの特定のリレーUE2を選択する。
<第5の実施形態>
 本実施形態では、第1~第4の実施形態で説明されたリレー選択基準及びリレー選択手順の変形が説明される。本実施形態に係る無線通信ネットワークの構成例およびリレー開始手順例は、図1~図4と同様である。
 本実施形態では、リレー選択エンティティ(e.g., リモートUE1、基地局3、又はD2Dコントローラ5)は、リレー選択基準に基づいて、1つのリモートUE1のために2又はそれ以上のリレーUE2を選択する。リレー選択基準は、第1~第4の実施形態で説明された複数のリレー選択基準のいずれかであってもよい。これにより、リレー選択エンティティは、リモートUE1のために予備のリレーUE2を予め指定することができる。例えば、リモートUE1は、2又はそれ以上のリレーUE2のうち第1優先度のリレーUE2と通信を開始し、第1優先度のリレーUE2のリレー品質が低下した場合に第1優先度のリレーUE2から第2優先度のリレーUE2に切り替えればよい。これにより、リレー再選択に起因する通信断の継続時間を低減できる。
 なお、いくつかの実装において、リレー選択エンティティは、2又はそれ以上のリレーUE2を同一のリレー選択基準に従って選択してもよい。これにより、リレー選択エンティティは、第1優先度のリレーUE2と第2又はそれ以下の優先度のリレーUE(s)2を容易に決定できる。
 これに代えて、リレー選択エンティティは、2又はそれ以上のリレーUE2を異なるリレー選択基準に従って選択してもよい。これにより、リレー選択エンティティは、属性の異なる複数のリレーUE2を選択できる。例えば、リレー選択エンティティは、高いD2Dリンク品質及び高いバックホールリンク品質を持つリレーUE2が優先的に選択される第1のリレー選択基準と、D2Dリンク品質及びバックホールリンク品質の時間変化が小さいリレーUE2が優先的に選択される第2のリレー選択基準を使用してもよい。これにより、リレー選択エンティティは、短時間であっても高いリレー品質(スループット)が期待できる第1のリレーUE2と、それほど高いリレー品質ではないかもしれないが長期間に渡り安定したリレー品質が期待できる第2のリレーUE2をリモートUE1のために選択することができる。
 図10は、本実施形態に係るリモートUE1の動作の一例(処理1000)を示すフローチャートである。ブロック1001では、リモートUE1は、リレー選択基準に基づいて複数のリレーUE2を選択する。なお、既に説明したように、ブロック1001でのリレー選択は、リモートUE1の代わりにネットワークノード(e.g., 基地局3又はD2Dコントローラ5)により行われてもよい。
 ブロック1002では、リモートUE1は、第1優先度のリレーUE2とコネクションを確立する。ブロック1003では、リモートUE1は、第1優先度のリレーUE2によるリレー品質が不安定であるか否かを判定する。第1優先度のリレーUE2によるリレー品質が不安定である場合(ブロック1003でYES)、リモートUE1は、第1優先度のリレーUE2から第2優先度のリレーUE2への切り替えを判定し、ブロック1001において予め決定されている第2優先度のリレーUE2とコネクションを確立する。
 最後に、上述の複数の実施形態に係るリモートUE1、リレーUE2、基地局3、及びD2Dコントローラ5の構成例について説明する。図11は、リモートUE1の構成例を示すブロック図である。リレーUE2も、図11に示されているのと同様の構成を有してもよい。Radio Frequency(RF)トランシーバ1101は、基地局3と通信するためにアナログRF信号処理を行う。RFトランシーバ1101により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1101は、アンテナ1102及びベースバンドプロセッサ1103と結合される。すなわち、RFトランシーバ1101は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1103から受信し、送信RF信号を生成し、送信RF信号をアンテナ1102に供給する。また、RFトランシーバ1101は、アンテナ1102によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1103に供給する。
 ベースバンドプロセッサ1103は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、LTEおよびLTE-Advancedの場合、ベースバンドプロセッサ1103によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1103によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1103は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)、又はMicro Processing Unit(MPU))を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1104と共通化されてもよい。
 アプリケーションプロセッサ1104は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1104は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1104は、メモリ1106又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、リモートUE1の各種機能を実現する。
 いくつかの実装において、図11に破線(1105)で示されているように、ベースバンドプロセッサ1103及びアプリケーションプロセッサ1104は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1103及びアプリケーションプロセッサ1104は、1つのSystem on Chip(SoC)デバイス1105として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1106は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1106は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1106は、ベースバンドプロセッサ1103、アプリケーションプロセッサ1104、及びSoC1105からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1106は、ベースバンドプロセッサ1103内、アプリケーションプロセッサ1104内、又はSoC1105内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1106は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1106は、上述の複数の実施形態で説明されたリモートUE1による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、ベースバンドプロセッサ1103又はアプリケーションプロセッサ1104は、当該ソフトウェアモジュールをメモリ1106から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明されたリモートUE1の処理を行うよう構成されてもよい。
 図12は、上述の実施形態に係る基地局3の構成例を示すブロック図である。図12を参照すると、基地局3は、RFトランシーバ1201、ネットワークインターフェース1203、プロセッサ1204、及びメモリ1205を含む。RFトランシーバ1201は、リモートUE1及びリレーUE2と通信するためにアナログRF信号処理を行う。RFトランシーバ1201は、複数のトランシーバを含んでもよい。RFトランシーバ1201は、アンテナ1202及びプロセッサ1204と結合される。RFトランシーバ1201は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1204から受信し、送信RF信号を生成し、送信RF信号をアンテナ1202に供給する。また、RFトランシーバ1201は、アンテナ1202によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1204に供給する。
 ネットワークインターフェース1203は、ネットワークノード(e.g., Mobility Management Entity (MME)およびServing Gateway (S-GW))と通信するために使用される。ネットワークインターフェース1203は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1204は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1204によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、プロセッサ1204によるコントロールプレーン処理は、S1プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 プロセッサ1204は、複数のプロセッサを含んでもよい。例えば、プロセッサ1204は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。
 メモリ1205は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ1205は、プロセッサ1204から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1204は、ネットワークインターフェース1203又は図示されていないI/Oインタフェースを介してメモリ1205にアクセスしてもよい。
 メモリ1205は、上述の複数の実施形態で説明された基地局3による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1204は、当該ソフトウェアモジュールをメモリ1205から読み出して実行することで、上述の実施形態でシーケンス図及びフローチャートを用いて説明された基地局3の処理を行うよう構成されてもよい。
 図13は、上述の実施形態に係るD2Dコントローラ5の構成例を示すブロック図である。図13を参照すると、D2Dコントローラ5は、ネットワークインターフェース1301、プロセッサ1302、及びメモリ1303を含む。ネットワークインターフェース1301は、リモートUE1及びリレーUE2と通信するために使用される。ネットワークインターフェース1301は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ1302は、メモリ1303からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてシーケンス図及びフローチャートを用いて説明されたD2Dコントローラ5の処理を行う。プロセッサ1302は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ1302は、複数のプロセッサを含んでもよい。
 メモリ1303は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1303は、プロセッサ1302から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1302は、図示されていないI/Oインタフェースを介してメモリ1303にアクセスしてもよい。
 図13の例では、メモリ1303は、D2D通信のための制御モジュールを含むソフトウェアモジュール群を格納するために使用される。プロセッサ1302は、これらのソフトウェアモジュール群をメモリ1303から読み出して実行することで、上述の実施形態において説明されたD2Dコントローラ5の処理を行うことができる。
 図11~図13を用いて説明したように、上述の実施形態に係るリモートUE1、リレーUE2、基地局3、及びD2Dコントローラ5が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
 第2の実施形態で説明されたバックホールリンク品質の時間変化を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮するリレー選択基準とは独立に使用されてもよい。言い換えると、第2の実施形態で説明されたバックホールリンク品質の時間変化を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮しない場合にも使用することができる。バックホールリンク品質の時間変化を考慮するリレー選択基準は、例えば、バックホールリンク品質の変動が大きいリレーUE2を選択してしまう可能性を低減でき、セルラーカバレッジ31(特に、セルラー電力の変化量が大きい領域)を高速で通過するリレーUE2を選んでしまう可能性を低減でき、又はセル中央から遠ざかる傾向(又はセル端に近づく傾向)にあるリレーUE2を選択する可能性を低減することが期待できる。したがって、バックホールリンク品質の時間変化を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮しない場合であっても、安定した総体的な(overall)リレー品質をもたらすためのリレー選択の改良に寄与することができる。
 第4の実施形態で説明されたリレーUE2の負荷を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮するリレー選択基準とは独立に使用されてもよい。言い換えると、第4の実施形態で説明されたリレーUE2の負荷を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮しない場合にも使用することができる。リレーUE2の負荷を考慮するリレー選択基準は、D2Dリンク品質の時間変化を考慮しない場合であっても、特定のリレーUE2に負荷が集中することを回避でき、複数のリレーUE2の間で負荷を調整することができる。
 第5の実施形態で説明された、1つのリモートUE1のために複数のリレーUE2を予め選択する処理は、D2Dリンク品質の時間変化を考慮するリレー選択基準とは独立に使用されてもよい。言い換えると、第5の実施形態で説明された1つのリモートUE1のために複数のリレーUE2を予め選択する処理は、D2Dリンク品質の時間変化をリレー選択において考慮しない場合にも使用することができる。1つのリモートUE1のために複数のリレーUE2を予め選択する処理は、D2Dリンク品質の時間変化を考慮しない場合であっても、リレー再選択に起因する通信断の継続時間の低減に寄与できる。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 この出願は、2015年6月24日に出願された日本出願特願2015-126676を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 リモートUE
2 リレーUE
3 基地局
4 コアネットワーク
5 device-to-device(D2D)コントローラ
6 外部ネットワーク
7 ノード
1101 radio frequency(RF)トランシーバ
1103 ベースバンドプロセッサ
1104 アプリケーションプロセッサ
1106 メモリ
1204 プロセッサ
1205 メモリ
1302 プロセッサ
1303 メモリ

Claims (36)

  1.  メモリと、
     前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、1又は複数のリレー端末の各々とリモート端末の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準(selection criterion)に基づいて、前記1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択するよう構成されている、
    リレー選択装置。
  2.  前記選択基準は、前記D2Dリンク品質の時間変化の大きさ、前記D2Dリンク品質の時間変化の速さ、及び前記D2Dリンク品質の時間変化の傾向のうち少なくとも1つを示すパラメータを使用する、
    請求項1に記載のリレー選択装置。
  3.  前記選択基準は、前記D2Dリンク品質の時間変化の大きさが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項2に記載のリレー選択装置。
  4.  前記選択基準は、前記D2Dリンク品質の時間変化の速さが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項2又は3に記載のリレー選択装置。
  5.  前記選択基準は、前記D2Dリンク品質が徐々に良くなっていく時間変化の傾向を持つリレー端末が当該傾向を持たないリレー端末よりも前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項2~4のいずれか1項に記載のリレー選択装置。
  6.  前記選択基準は、前記D2Dリンク品質の複数の計測値の差分から導かれるパラメータを使用する、
    請求項1~5のいずれか1項に記載のリレー選択装置。
  7.  前記選択基準は、前記D2Dリンク品質の統計的ばらつき(statistical variability、statistical dispersion)を表すパラメータを使用する、
    請求項1~5のいずれか1項に記載のリレー選択装置。
  8.  前記パラメータは、前記D2Dリンク品質の分散(variance)、標準偏差(standard deviation)、又は四分位範囲(interquartile range(IQR))を含む、
    請求項7に記載のリレー選択装置。
  9.  前記選択基準は、前記1又は複数のリレー端末の各々とネクストホップ・ノードとの間のバックホールリンク品質の時間変化の大きさ、前記バックホールリンク品質の時間変化の速さ、又は前記バックホールリンク品質の時間変化の傾向をさらに考慮するよう定義されている、
    請求項1~8のいずれか1項に記載のリレー選択装置。
  10.  前記選択基準は、前記バックホールリンク品質の時間変化の大きさが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項9に記載のリレー選択装置。
  11.  前記選択基準は、前記バックホールリンク品質の時間変化の速さが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項9又は10に記載のリレー選択装置。
  12.  前記選択基準は、前記バックホールリンク品質が徐々に良くなっていく時間変化の傾向を持つリレー端末が当該傾向を持たないリレー端末よりも前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項9~11のいずれか1項に記載のリレー選択装置。
  13.  前記選択基準は、前記D2Dリンク品質をさらに考慮するよう定義されている、
    請求項1~11のいずれか1項に記載のリレー選択装置。
  14.  前記D2Dリンク品質は、受信電力、signal-to-interference plus noise ratio(SINR)、及びデータレートのうち少なくとも1つを含む、
    請求項1~13のいずれか1項に記載のリレー選択装置。
  15.  前記選択基準は、前記1又は複数のリレー端末の各々とネクストホップ・ノードとの間のバックホールリンク品質をさらに考慮する、
    請求項13又は14に記載のリレー選択装置。
  16.  前記選択基準は、前記D2Dリンク品質と前記バックホールリンク品質のうちの小さい方によって制限される総体的なリレー品質が良好なリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項15に記載のリレー選択装置。
  17.  前記バックホールリンク品質は、前記ネクストホップ・ノードから送信される信号の各リレー端末での受信品質;各リレー端末から送信される信号の前記ネクストホップ・ノードでの受信品質;前記ネクストホップ・ノードと各リレー端末の間のデータレート又はスループット;各リレー端末と前記ネクストホップ・ノードとの間の通信の遅延時間;及び、各リレー端末と前記ネクストホップ・ノードとの間の通信に適用される変調方式および符号化率;のうち少なくとも1つを含む、
    請求項9~12、15、及び16のいずれか1項に記載のリレー選択装置。
  18.  前記ネクストホップ・ノードは、無線インフラストラクチャ・ネットワーク内のノード、又は他のリレー端末である、
    請求項9~12、15、16、及び17のいずれか1項に記載のリレー選択装置。
  19.  前記選択基準は、前記1又は複数のリレー端末の各々が既にリレーを務めているリモート端末の数をさらに考慮するよう定義されている、
    請求項1~18のいずれか1項に記載のリレー選択装置。
  20.  前記選択基準は、前記1又は複数のリレー端末の各々それ自身の送信データ量をさらに考慮するよう定義されている、
    請求項1~19のいずれか1項に記載のリレー選択装置。
  21.  前記少なくとも1つのプロセッサは、2又はそれ以上のリレー端末を前記少なくとも1つの特定のリレー端末として選択するよう構成されている、
    請求項1~20のいずれか1項に記載のリレー選択装置。
  22.  前記少なくとも1つのプロセッサは、前記2又はそれ以上のリレー端末を異なる選択基準に従って選択するよう構成されている、
    請求項21に記載のリレー選択装置。
  23.  前記リレー選択装置は、前記リモート端末、又は無線インフラストラクチャ・ネットワーク内のノードに配置される、
    請求項22に記載のリレー選択装置。
  24.  1又は複数のリレー端末の各々とリモート端末の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準(selection criterion)に基づいて、前記1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択すること、
    を備えるリレー選択方法。
  25.  前記選択基準は、前記D2Dリンク品質の時間変化の大きさ、前記D2Dリンク品質の時間変化の速さ、及び前記D2Dリンク品質の時間変化の傾向のうち少なくとも1つを示すパラメータを使用する、
    請求項24に記載の方法。
  26.  前記選択基準は、前記D2Dリンク品質の時間変化の大きさが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項25に記載の方法。
  27.  前記選択基準は、前記D2Dリンク品質の時間変化の速さが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項25又は26に記載の方法。
  28.  前記選択基準は、前記D2Dリンク品質が徐々に良くなっていく時間変化の傾向を持つリレー端末が当該傾向を持たないリレー端末よりも前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項25~27のいずれか1項に記載の方法。
  29.  前記選択基準は、前記1又は複数のリレー端末の各々とネクストホップ・ノードとの間のバックホールリンク品質の時間変化の大きさ、前記バックホールリンク品質の時間変化の速さ、又は前記バックホールリンク品質の時間変化の傾向をさらに考慮するよう定義されている、
    請求項24~28のいずれか1項に記載の方法。
  30.  前記選択基準は、前記バックホールリンク品質の時間変化の大きさが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項29に記載の方法。
  31.  前記選択基準は、前記バックホールリンク品質の時間変化の速さが小さいリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項29又は30に記載の方法。
  32.  前記選択基準は、前記バックホールリンク品質が徐々に良くなっていく時間変化の傾向を持つリレー端末が当該傾向を持たないリレー端末よりも前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項29~31のいずれか1項に記載の方法。
  33.  前記選択基準は、前記D2Dリンク品質、及び前記1又は複数のリレー端末の各々とネクストホップ・ノードとの間のバックホールリンク品質をさらに考慮し、
     前記選択基準は、前記D2Dリンク品質と前記バックホールリンク品質のうちの小さい方によって制限される総体的なリレー品質が良好なリレー端末ほど前記少なくとも1つの特定のリレー端末に選択されやすくなるように定義されている、
    請求項24~32のいずれか1項に記載の方法。
  34.  前記選択基準は、前記1又は複数のリレー端末の各々が既にリレーを務めているリモート端末の数をさらに考慮するよう定義されている、
    請求項24~33のいずれか1項に記載の方法。
  35.  前記選択基準は、前記1又は複数のリレー端末の各々それ自身の送信データ量をさらに考慮するよう定義されている、
    請求項24~34のいずれか1項に記載の方法。
  36.  リレー選択方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     全リレー選択方法は、1又は複数のリレー端末の各々とリモート端末の間のデバイス・ツー・デバイス(D2D)リンク品質の時間変化を考慮する選択基準(selection criterion)に基づいて、前記1又は複数のリレー端末の中から前記リモート端末に適した少なくとも1つの特定のリレー端末を選択することを含む、
    非一時的なコンピュータ可読媒体。
PCT/JP2016/000432 2015-06-24 2016-01-28 リレー選択のための装置及び方法 WO2016208097A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524568A JP6673350B2 (ja) 2015-06-24 2016-01-28 リレー選択のための装置及び方法
US15/579,735 US20180184436A1 (en) 2015-06-24 2016-01-28 Apparatus and method for selecting relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-126676 2015-06-24
JP2015126676 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208097A1 true WO2016208097A1 (ja) 2016-12-29

Family

ID=57585296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000432 WO2016208097A1 (ja) 2015-06-24 2016-01-28 リレー選択のための装置及び方法

Country Status (3)

Country Link
US (1) US20180184436A1 (ja)
JP (1) JP6673350B2 (ja)
WO (1) WO2016208097A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046675A (zh) * 2017-05-05 2017-08-15 西安交通大学 D2d协作通信中基于社交阈值的最优中继选择方法
WO2018142862A1 (ja) * 2017-02-03 2018-08-09 日本電気株式会社 通信処理システム、通信処理方法、基地局およびその制御方法と制御プログラム
WO2018173506A1 (ja) * 2017-03-23 2018-09-27 ソニー株式会社 リモート通信装置、リレー通信装置、基地局、方法及び記録媒体
WO2018210295A1 (zh) * 2017-05-17 2018-11-22 华为技术有限公司 数据传输方法、接入网设备及终端
WO2022027656A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种侧行链路通信中链路切换的方法及装置
WO2023274072A1 (zh) * 2021-07-01 2023-01-05 维沃移动通信有限公司 小区评估方法、装置、终端、中继和存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770074B (zh) * 2014-12-22 2022-09-30 中兴通讯股份有限公司 实现设备直通中继选择的方法、网络控制节点和用户设备
CN106686674B (zh) * 2015-11-05 2019-12-13 索尼公司 无线通信系统中的电子设备和无线通信方法
KR102489728B1 (ko) * 2016-06-16 2023-01-18 삼성전자주식회사 통신 단말의 릴레이 통신 방법 및 그 통신 단말
WO2018105158A1 (ja) * 2016-12-08 2018-06-14 日本電気株式会社 リレー選択のための装置及び方法
US11096167B2 (en) * 2017-03-22 2021-08-17 Lg Electronics Inc. Method for transmitting a MAC CE in different TTI durations in wireless communication system and a device therefor
CN108632919A (zh) * 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子装置以及无线通信方法
US10491289B2 (en) * 2017-08-22 2019-11-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal using device-to-device communication and superposition coding in wireless communication system
CN109474937A (zh) * 2017-09-08 2019-03-15 索尼公司 无线通信方法和无线通信设备
US11134397B2 (en) * 2018-08-01 2021-09-28 Qualcomm Incorporated Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US11330401B2 (en) * 2019-02-06 2022-05-10 At&T Intellectual Property I, L.P. Centrally assisted associations with a local manager by peers in a peer to peer wireless network
JP2020136926A (ja) * 2019-02-20 2020-08-31 富士ゼロックス株式会社 中継装置交換システム、中継装置及び情報処理プログラム
KR20210157315A (ko) * 2020-06-18 2021-12-28 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 릴레이가 직접 통신 요청 메시지를 송신하기 위한 방법 및 장치
CN117377001A (zh) * 2022-06-30 2024-01-09 华为技术有限公司 无线中继通信方法和通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287468A (ja) * 2005-03-31 2006-10-19 Saxa Inc 無線端末装置及びセンタ装置
JP2007529135A (ja) * 2003-12-23 2007-10-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 予測的アドホック

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529135A (ja) * 2003-12-23 2007-10-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 予測的アドホック
JP2006287468A (ja) * 2005-03-31 2006-10-19 Saxa Inc 無線端末装置及びセンタ装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142862A1 (ja) * 2017-02-03 2018-08-09 日本電気株式会社 通信処理システム、通信処理方法、基地局およびその制御方法と制御プログラム
JPWO2018142862A1 (ja) * 2017-02-03 2019-11-21 日本電気株式会社 通信処理システム、通信処理方法、基地局およびその制御プログラム
US10985836B2 (en) 2017-02-03 2021-04-20 Nec Corporation Communication processing system, communication processing method, base station, and control method and control program thereof
JP7020691B2 (ja) 2017-02-03 2022-02-16 日本電気株式会社 通信処理システム、通信処理方法、基地局およびその制御プログラム
WO2018173506A1 (ja) * 2017-03-23 2018-09-27 ソニー株式会社 リモート通信装置、リレー通信装置、基地局、方法及び記録媒体
CN107046675A (zh) * 2017-05-05 2017-08-15 西安交通大学 D2d协作通信中基于社交阈值的最优中继选择方法
WO2018210295A1 (zh) * 2017-05-17 2018-11-22 华为技术有限公司 数据传输方法、接入网设备及终端
CN109246750A (zh) * 2017-05-17 2019-01-18 华为技术有限公司 数据传输方法、接入网设备及终端
CN109246750B (zh) * 2017-05-17 2022-01-14 华为技术有限公司 数据传输方法、接入网设备及终端
US11229077B2 (en) 2017-05-17 2022-01-18 Huawei Technologies Co., Ltd. Data transmission method, access network device, and terminal
WO2022027656A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种侧行链路通信中链路切换的方法及装置
WO2023274072A1 (zh) * 2021-07-01 2023-01-05 维沃移动通信有限公司 小区评估方法、装置、终端、中继和存储介质

Also Published As

Publication number Publication date
JPWO2016208097A1 (ja) 2018-04-12
JP6673350B2 (ja) 2020-03-25
US20180184436A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6673350B2 (ja) リレー選択のための装置及び方法
WO2017130593A1 (ja) リレー選択のための装置及び方法
JP6933225B2 (ja) リレー選択のための装置及び方法
KR102129828B1 (ko) Wlan 근접 서비스(wlan prose)를 가능하게 하기 위한 방법들
JP6610656B2 (ja) 近接サービス通信のための装置及び方法
JP6687024B2 (ja) D2d通信制御装置、無線端末、及び中継無線端末候補選択方法
JP6741024B2 (ja) 無線端末、無線局、及びこれらの方法
WO2016142974A1 (ja) 近接サービス通信のための装置及び方法
WO2016142973A1 (ja) 近接サービス通信のための装置及び方法
JP6601495B2 (ja) 無線端末装置、d2dコントローラ、及び方法
WO2017017931A1 (ja) 移動通信システム、mme、端末、及び通信方法
US20180192458A1 (en) Radio terminal, d2d communication control apparatus, base station, preliminary relay radio terminal selection method, non-transitory computer readable medium
WO2019153300A1 (en) Method and devices for communicating with a core network
JP2020096389A (ja) 通信方法、通信システム、及び移動管理装置
KR101920267B1 (ko) 제어 장치, 무선 통신 디바이스, 및 이들의 방법
JP6822558B2 (ja) 無線端末装置及びその方法
JP6696504B2 (ja) 無線端末装置、ネットワークノード、及び方法
JP6451366B2 (ja) 近接サービス通信のための装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579735

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017524568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813874

Country of ref document: EP

Kind code of ref document: A1