WO2016207960A1 - 応力発光材料およびそれを用いた応力発光体 - Google Patents

応力発光材料およびそれを用いた応力発光体 Download PDF

Info

Publication number
WO2016207960A1
WO2016207960A1 PCT/JP2015/067934 JP2015067934W WO2016207960A1 WO 2016207960 A1 WO2016207960 A1 WO 2016207960A1 JP 2015067934 W JP2015067934 W JP 2015067934W WO 2016207960 A1 WO2016207960 A1 WO 2016207960A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
sral
luminescent material
range
substituted
Prior art date
Application number
PCT/JP2015/067934
Other languages
English (en)
French (fr)
Inventor
雄二 諏訪
真 籔内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/067934 priority Critical patent/WO2016207960A1/ja
Publication of WO2016207960A1 publication Critical patent/WO2016207960A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a stress-stimulated luminescent material that emits light when a stress is applied from the outside, a luminescent material using the same, and the like.
  • Strontium aluminate (SrAl 2 O 4 ) has been conventionally known as a phosphorescent material, but as shown in Non-Patent Document 1, stress is applied to SrAl 2 O 4 : Eu doped with europium (Eu) from the outside. In 1999, it was discovered that light was emitted accordingly.
  • a monoclinic crystal called ⁇ -SrAl 2 O 4 in which Sr atoms are substituted with about 1% Eu atoms shows good stress emission characteristics.
  • 1% is a number calculated by the ratio of the number of atoms, and unless otherwise specified in this specification, the number of substitution rate means a ratio based on the number of atoms.
  • ⁇ Stress luminescence can be caused by a single crystal, but it can also be used as a stress luminescent paint by dispersing fine particles of crystals in an elastic binder resin.
  • Various methods of applying this material are conceivable, and one example is diagnosis of cracks in solids such as concrete.
  • a stress-stimulated luminescent paint is applied to the concrete surface and vibration is applied, if there is a crack, the amplitude at that part increases and a compression / extension force is applied, so that the crack part emits light particularly strongly. If this is performed in a large area and the light emission location is recorded, the location with a crack can be identified efficiently.
  • There is a great demand for efficient crack diagnosis because cracks in concrete used in a building will expand if left untreated, which will accelerate the deterioration of the building itself, and the fall of the concrete piece may lead to an accident.
  • the stress illuminator is easier to use as it emits light more strongly with a smaller force.
  • a larger range can be inspected with weaker vibrations, and when a light emitting part is recorded with a camera, it is possible to record more reliably when the light is emitted more intensely.
  • Non-Patent Documents 1 to 3 There are reports on Non-Patent Documents 1 to 3 regarding conventional stress luminescent materials.
  • Chao-Nan Xu, Tadahiko Watanabe, Morito Akiyama, and Xu-Guang Zheng Appl. Phys. Lett. 74, 2414 (1999).
  • Chao-Nan Xu, Hiroshi Yamada, Xusheng Wang, and Xu-Guang Zheng Appl. Phys. Lett. 84, 3040 (2004).
  • Non-Patent Document 1 Various studies have been made as to whether or not a stress-stimulated luminescent material similar to SrAl 2 O 4 : Eu shown in Non-Patent Document 1 has better performance, but has not been found so far.
  • the crystal in which Sr is replaced with Ca or Ba has the same basic crystal structure as SrAl 2 O 4 in that the AlO 4 tetrahedron shares apex oxygen to form a three-dimensional network.
  • SrAl 2 O 4 is P2 1
  • CaAl 2 O 4 is P2 1 / c
  • BaAl 2 O 4 is P6 3 . This is thought to be because the ionic radii of Sr, Ca, and Ba located in the gaps of the AlO 4 tetrahedral network are different. It is known that these CaAl 2 O 4 and BaAl 2 O 4 do not show stress luminescence characteristics even when doped with Eu atoms.
  • Non-Patent Document 2 the composition ratios of Sr, Al, and O are variously changed to produce crystals such as SrAl 12 O 19 , Sr 4 Al 14 O 25 , SrAl 4 O 7 , Sr 3 Al 2 O 6 , etc.
  • Two kinds of crystal structures, ⁇ -SrAl 2 O 4 and ⁇ -SrAl 2 O 4 were also prepared and tested for stress luminescence. Only ⁇ -SrAl 2 O 4 showed stress luminescence, and the others were It has been reported that it did not have stress luminescence properties.
  • Non-Patent Document 3 points out that SrAl 2 O 4 is a strong elastic body and has twins as a key. Such a material is different from usual, and the boundary between twins easily moves even with a weak force and the crystal is deformed. Therefore, the response to stress is different from other materials. Although this indication is worth considering as one of the possibilities of the stress-stimulated luminescence mechanism, the detailed mechanism is still unknown. At present, the stress emission mechanism of SrAl 2 O 4 : Eu has not been sufficiently analyzed, and it can be said that the mechanism has not been elucidated.
  • a stress-stimulated luminescent material When a stress-stimulated luminescent material is to be used in various ways, the usability becomes better as the sensitivity to stress is higher and the emission intensity is stronger. It is an object of the present invention to provide a material whose performance as such a stress luminescent material is higher than the currently known SrAl 2 O 4 : Eu.
  • One aspect of the present invention for solving the above problems is a material based on a crystal called ⁇ -SrAl 2 O 4 , wherein Sr is substituted with Eu in the range of 0.1% to 10%,
  • This is a stress-stimulated luminescent material in which O is substituted with at least one halogen element selected from F, Cl, Br, and I in the range of 0.1% to 1.5%.
  • Another aspect of the present invention is a material based on a crystal called ⁇ -SrAl 2 O 4 , wherein Sr is substituted with Eu in the range of 0.1% to 10%, and Al is 0.2%.
  • the stress-stimulated luminescent material substituted with at least one selected from C or Ge in the range of 3 to 3%.
  • Another aspect of the present invention is a material based on a crystal called ⁇ -SrAl 2 O 4 , wherein Sr is substituted with Eu in the range of 0.1% to 10%, and O is 0.1% At least one halogen element selected from F, Cl, Br, and I in the range of 1.5 to 1.5%, and Al in the range of 0.2% to 3% and at least one selected from C or Ge
  • Sr is substituted with Eu in the range of 0.1% to 10%
  • O is 0.1%
  • At least one halogen element selected from F, Cl, Br, and I in the range of 1.5 to 1.5%
  • Al in the range of 0.2% to 3% and at least one selected from C or Ge
  • a stress-stimulated luminescent material comprising a substrate on which the stress-stimulated luminescent material is dispersed and supported.
  • Various known materials can be used as the substrate. It is also possible to use a fluid substance as the substrate and use it as a paint.
  • Sr is substituted with Eu in the range of 0.1% to 1.5%.
  • Al is substituted with at least one selected from C or Ge in the range of 0.25% to 0.75%.
  • O is substituted with at least one selected from F, Cl, Br and I in the range of 0.2% to 0.3%.
  • existing SrAl 2 O 4 stress emission sensitivity to the light-emitting intensity or stress is improved than Eu, or can provide a stress luminescent material both is improved.
  • the crystal structure schematic diagram of SrAl 2 O 4 The crystal structure schematic diagram of SrAl 2 O 4 .
  • SrAl 2 O 4 Band diagram of Eu's up-spin band.
  • Band structure diagram of SrAl 2 O 4 Eu calculated by 4f orbital inner shell approximation.
  • Band structure diagram of SrAl 2 O 4 Eu when 4f orbital shelling approximation is applied in the state where Eu atom is excited to trivalent.
  • FIG. 1 shows the crystal structure of SrAl 2 O 4 not doped with Eu.
  • a parallelepiped (100) drawn with a solid line is a unit cell. Only the angle between the a-axis (substantially horizontal on the page) and the c-axis (substantially vertical on the page) deviates slightly from 90 degrees (93.4 degrees), and the distance between the a-b and b-c axes The crystal structure maintains 90 degrees.
  • the b axis is the depth direction of the page.
  • Four oxygens (102) coordinate around Al (101) to form a tetrahedron, and the tetrahedrons share a vertex to form a three-dimensional network to form a crystal skeleton.
  • Sr (103) is arranged in the gap of this skeleton.
  • FIG. 2 shows the band structure of SrAl 2 O 4 .
  • the middle dashed line (200) represents the Fermi level. Bands with small dispersion are concentrated in the valence band, and there is a band having free electron dispersion with the ⁇ point as the lowest point at the lower end of the conduction band.
  • the band (201) at the bottom of this conduction band mainly consists of oxygen 3s orbitals, and it is known from the analysis of the wave function that all 3s orbitals of oxygen are combined and spread throughout the crystal.
  • FIG. 3 shows the result of the structure optimization, and it can be confirmed that even if one of the eight Sr is replaced with Eu, the structure hardly changes from FIG.
  • Fig. 4 shows a band diagram calculated with the structure of Fig. 3. Seven flat bands (400) are drawn just below the Fermi level (200) drawn with a broken line, all of which are localized in the 4f orbit of the Eu atom.
  • the f orbital has seven states with different orbital magnetic quantum numbers, and degenerates when atoms are isolated. Even if Eu atoms are in a solid, the localization of the 4f orbital is strong, and almost no bond state is formed with the adjacent atomic orbitals, so the degeneracy of the seven states can hardly be solved.
  • FIG. 4 is drawn only for the up-spin band, and if the down-spin band is drawn separately, the seven degenerate flat bands do not appear at this position and are much higher (9 eV ). There are no major changes for other bands.
  • the dense valence band below 3 eV is packed with two electrons for one state, but the seven flat bands are packed with only one spin in the same direction.
  • the level of the down-spin flat band (Eu4f band) is very high because of strong Coulomb interaction between the localized orbitals.
  • the mechanism of stress emission mechanism of SrAl 2 O 4 is investigated.
  • Eu doped in SrAl 2 O 4 is usually stable in a divalent state (a state in which two electrons of 6s orbits are emitted), and when one electron is excited from the 4f orbit for some reason. It will be trivalent. From the energy difference of atomic orbitals, it is most reasonable to think that when electrons excited from this 4f orbit fall into 4f orbit via Eu's 5d orbit, they emit light corresponding to green. In order to compare the bivalent stable state and the trivalent excited state, an approximation was made to freeze Eu's 4f orbit in a form appropriate to the situation.
  • Eu is an element in which seven electrons are packed in seven 4f orbits, so the 4f orbits do not have a closed shell structure, and when calculating with the pseudopotential method, this 4f is clearly treated as one of the valence electron orbitals. This is the normal way.
  • the valence electrons of Eu atoms are 2 electrons of 6s orbital and 7 electrons of 4f orbital, which is 9 in total.
  • FIG. 4 is calculated in this manner.
  • the 4f orbital is highly localized and hardly forms a bonded state with adjacent atoms, so the approximation of freezing the 7f packed 4f orbit and treating it as the inner shell orbital also holds.
  • the valence electron of Eu atom is only two electrons of 6s orbital.
  • FIG. 5 shows a band diagram calculated by performing the structure optimization again based on the structure of FIG. 3 by such an approximation.
  • the change in the band other than the disappearance of the flat band of 4f from the figure is very small. Therefore, except when discussing Eu's 4f orbit itself, the electronic state when Eu is divalent can be discussed based on FIG.
  • Fig. 6 shows a band diagram of the excited state (light-storing state) calculated under such an approximation. Using the same crystal structure as when Fig. 5 was calculated, the band was calculated using the pseudopotential when Eu is trivalent.
  • the flat band derived from the 4f orbit is not drawn here either because of the approximation of freezing the 4f orbit and inner shelling. It can be considered that they actually exist at substantially the same position as the flat band (400) of FIG.
  • the horizontal broken line (600) indicates that the electrons are clogged so far, but it is better to call this position the pseudo-Fermi level.
  • the reason why it should not be called simply the Fermi level is that one of the seven Eu-4f bands not drawn is not filled with electrons and is different from the normal band diagram.
  • a plurality of flat bands (for example, a band 601 as a representative example) that did not exist in FIG. 4 and FIG. 5 appear. Analyzing the wave functions of these newly appearing flat bands, they can be considered to be mainly bands of Eu 5d orbitals. These bands were in a position where it was difficult to distinguish when Eu was divalent (Fig. 5) at or near the energy level of 9 eV or more, but because Eu became trivalent. It can be considered that the level was lowered due to the increased Coulomb attraction. Since the 5d band of Eu has a large amplitude in the vicinity of Eu, it is more affected by this Coulomb force than other bands.
  • Fig. 6 shows a band structure when 1 out of 8 Sr (12.5%) is replaced with Eu, so the amount replaced is much larger than 1% of the actual material.
  • the localized state around Eu plays an important role, and the electrons in the localized orbitals are strongly influenced by the Coulomb interaction between the electrons, so the valence number is as much as possible for a more accurate discussion. Should be closer to the actual situation. For this reason, the number of valence electrons in the unit cell was adjusted, and when Eu was trivalent, the band calculation was performed so that the number of excited electrons was equivalent to the actual 1% substitution.
  • FIG. 7 shows the result.
  • the quasi-Fermi level (600) is located slightly at the bottom of the free electronic dispersion part (701) consisting mainly of the oxygen 3s component in the lowest band of the conduction band, and mainly consists of the 5d component of Eu.
  • the position of the flat part (601) further decreased, and the difference from the pseudo-Fermi level (600) was about 0.3 eV. It can be considered that this is the electronic state of SrAl 2 O 4 : Eu, which is currently used as a stress luminescent material, when Eu is excited (the phosphorescent state).
  • the O-3s band and Eu-5d band are actually connected in the k-space to form one band at the lowest end of the conduction band, but the oxygen 3s orbital component is near the lowest point ⁇ . It is large, and the component of Eu's 5d orbit is large in other flat parts.
  • SrAl 2 O 4 is a strong elastic body, it is known that crystal deformation is likely to occur such that the boundary of twins moves due to external stress. It is considered that the electronic state is likely to change, and that light emission occurs due to the application of stress.
  • the height of the quasi-Fermi level is almost the same as the height of the lowest point of the conductor even if all Eu is excited trivalently.
  • the electrons can satisfy the level around the conduction band lowest point and increase the pseudo Fermi level. That is, by performing electron doping on SrAl 2 O 4 : Eu in advance, it is possible to obtain a stress-stimulated luminescent material with improved luminescence intensity and sensitivity to stress.
  • a stress-stimulated luminescent material with improved luminescence intensity or stress sensitivity, or both is provided by such a principle.
  • the manufacturing cost including the material cost is also taken into consideration.
  • the amount of substitution of Sr with Eu may be in the range of 0.1% to 10%, but the emission characteristics are good when about 1% is substituted. For example, it is preferable to replace Sr with Eu in the range of 0.1% to 1.5%.
  • the amount of substitution should be very small in principle, but if 0.25% of oxygen atoms (for example, 0.2 to 0.3%) are replaced with halogen, all 1% substituted Eu atoms are all trivalent.
  • the number of electrons supplied to the conduction band will be supplied to the conduction band, and the number of conduction electrons will be doubled, making the effect easier to understand.
  • the difference between the quasi-Fermi level and the Eu-5d orbital level may be made smaller than the optimum value on a normal basis. That is, the oxygen doping amount may be made larger so that the electron doping amount becomes larger than the optimum value based on the normal standard.
  • Halogen-substituted a-performed SrAl 2 O 4 creating a Eu normal SrAl 2 O 4: well by a method in accordance with the creation of Eu, for example, typically aluminum oxide, strontium carbonate, and sintering a mixture of europium oxide, etc.
  • strontium carbonate is replaced with a halide such as strontium fluoride or strontium chloride.
  • the amount of substitution can be adjusted by the ratio of the prepared strontium halide to the other strontium and the temperature setting and time during sintering.
  • FIG. 8 shows an example of the crystal structure of SrAl 2 O 4 : Eu subjected to fluorine substitution, as an example of SrAl 2 O 4 : Eu in which part of oxygen shown in this example is substituted with a halogen element.
  • the position where the fluorine atom (801) enters is not limited to this position, and may be any position as long as the position is oxygen (102), and may be arranged randomly.
  • FIG. 9 is an enlarged view of a part of the band diagram of FIG. 7, and schematically shows changes in the electronic state after substitution (doping) of a part of oxygen (102) with a halogen element (801) such as fluorine as shown in FIG. It is shown as an example.
  • a halogen element 801 such as fluorine
  • Halogen doping increases the quasi-Fermi level from pre-doping (600) to post-doping (900), and the flat bottom part of the conduction band (601) (localized state around Eu atoms) and quasi-Fermi level. It shows that the energy difference from the position (900) becomes smaller. As a result, it is considered that the transition of electrons becomes easy and the sensitivity to light emission intensity and stress is improved.
  • the amount of substitution should be very small in principle, but if about 0.5% of Al atoms (for example, 0.25% to 0.75%) are substituted, all 1% substituted Eu atoms are all trivalent. The number of electrons supplied to the conduction band will be supplied to the conduction band, and the number of conduction electrons will be doubled, making the effect easier to understand. If the amount of substitution is too large, the time during which phosphorescence can be maintained is shortened. Therefore, the range of substitution amount from about 0.2% to about 3% is appropriate.
  • the method of preparing SrAl 2 O 4 : Eu, in which a part of Al is substituted with a group IV element, may be the same as that of ordinary SrAl 2 O 4 : Eu.
  • germanium oxide is mixed in the material to be prepared first. Can be realized. The amount of substitution can be adjusted by the amount of germanium oxide to be prepared.
  • the structure of the stress-stimulated luminescent crystal produced by such a method is a structure in which a part of Al (101) is replaced with carbon or germanium in SrAl 2 O 4 : Eu shown in FIG.
  • the structure of the stress-stimulated luminescent crystal is a structure in which a part of Al (101) is replaced with carbon or germanium in the structure shown in FIG. As mentioned above, the crystal structure itself is not greatly affected by these substitutions.
  • the issuer can be formed by dispersing fine particles of the crystal in the substrate. Moreover, it is also possible to use it as a stress luminescent paint by using an elastic binder resin as a substrate and dispersing finely divided crystals in the binder resin.
  • the stress-stimulated luminescent material of Example 1 or 2 can be made into fine particles of, for example, about 0.1 to 1 ⁇ m and dispersed in a binder using various known resins to obtain a paint.
  • FIG. 10 shows an example in which the above-mentioned paint is applied to the measurement object 1001 and used for crack diagnosis and the like.
  • the stress-stimulated luminescent material of Example 1 or 2 is diffused as particles having a diameter of about 0.1 to 1 ⁇ m, for example.
  • the material used as the binder is not particularly limited, and can be selected from known materials depending on required durability and deposition performance because it can transmit light emitted from the stress-stimulated luminescent material.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Unit cell 101 Aluminum 102: Oxygen 103: Strontium 200: Fermi level 201: Band at the bottom of the conduction band 301: Europium 400: 7 flat bands 600: Pseudo Fermi level 601: Band part mainly composed of 5d component of Eu 701: Band part mainly composed of 3s component of oxygen 1001: Object to be measured 1002: Paint binder 1003: Stress luminescent fine particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

既存のSrAl2O4:Euよりも発光強度あるいは応力への感度が向上した応力発光体、またはその両方が向上した応力発光体を提供する。 α-SrAl2O4と呼ばれる結晶を母体とした材料であって、Srを0.1%から10%の範囲でEuに置換し、Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した応力発光材料が開示される。

Description

応力発光材料およびそれを用いた応力発光体
 本発明は外部から応力を印加すると発光する応力発光材料およびそれを用いた発光体等に関するものである。
 アルミン酸ストロンチウム(SrAl2O4)は蓄光材料として従来から知られていたが、非特許文献1に示す様に、特にユーロピウム(Eu)をドープしたSrAl2O4:Euに対して外部から応力を加えるとそれに応じて発光する事が1999年に発見された。単斜晶系のα-SrAl2O4と呼ばれる結晶のSr原子を1%程度Eu原子に置換したものが良い応力発光特性を示す。なお、ここで1%とは原子数の比で計算された数字であり、本明細書では断りのない限り置換率の数字は全て原子数による比率を意味する。
 結晶単体でも応力発光を起こさせる事はできるが、結晶の微粒子を弾性のあるバインダ樹脂中に分散させる事で応力発光塗料として使用する事も可能である。この材料の応用方法には様々なものが考えられるが、一つの例としてはコンクリート等の固体の亀裂診断が挙げられる。応力発光塗料をコンクリート表面に塗布して振動を与えると、もし亀裂があればその部分での振幅が大きくなって圧縮・伸張の力がかかるため、亀裂部分が特に強く発光する。大面積でこれを行なって発光箇所の記録を行なえば効率良く亀裂のある箇所を特定する事ができる。建造物に使用されるコンクリートの亀裂は放置すると拡大し、建造物自体の劣化を早めるし、コンクリート片の落下が事故につながる恐れもあるため、効率の良い亀裂診断の需要は大きい。
 この様な使用法では、応力発光体はより小さな力でより強く発光すればするほど使い勝手が良い。より弱い振動でより大きな範囲を検査できるし、発光箇所をカメラで記録する場合、より強く発光した方が確実に記録できる。応力発光体をその他の用途で利用する場合でも、より応力への感度が高く、より発光強度が強ければ、より利用し易くなる事は間違いない。
 従来の応力発光体に関しては、非特許文献1~3による報告がある。
Chao-Nan Xu,Tadahiko Watanabe,Morito Akiyama,and Xu-Guang Zheng,Appl. Phys.Lett.,74,2414 (1999). Chao-Nan Xu,Hiroshi Yamada,Xusheng Wang,and Xu-Guang Zheng,Appl.Phys. Lett.,84,3040 (2004). Hiroshi Yamada,Hajime Kusaba,and Chao-Nan Xu,Appl.Phys.Lett.,92,101909 (2008).
 非特許文献1に示すSrAl2O4:Euに類似の結晶で、これより性能の良い応力発光体が存在しないかどうか、様々に検討されているが、今のところ見つかっていない。
 SrをCaまたはBaに置換した結晶は、AlO4四面体が頂点酸素を共有して3次元的ネットワークを構成するという基本的な結晶構造はSrAl2O4と同じである。ただし、対称性ではSrAl2O4がP21であるのに対してCaAl2O4はP21/c、BaAl2O4はP63という様にそれぞれ異なる。これはAlO4四面体ネットワークの隙間に位置するSr,Ca,Baのイオン半径がそれぞれ異なる事が原因だと考えられる。これらのCaAl2O4やBaAl2O4はEu原子をドープしても応力発光特性を示さない事がわかっている。
 非特許文献2ではSr,Al,Oの組成比を様々に変え、SrAl12O19,Sr4Al14O25,SrAl4O7,Sr3Al2O6,などの結晶の作成し、またα-SrAl2O4とβ-SrAl2O4という2種類の結晶構造も作成して応力発光のテストが行なわれたが、α-SrAl2O4だけが応力発光を示し、その他のものは応力発光特性を持たなかった事が報告されている。
 SrAl2O4:Euの応力発光特性の強化、または同等以上の性能を持つ新材料の開発のためには、まず応力発光という現象自体がどの様なメカニズムで起きているのかを理解する事が重要である。
 非特許文献3では、SrAl2O4が強弾性体であって、双晶を持つ事が鍵ではないかと指摘している。この様な物質は通常とは異なり、弱い力でも双晶の境界が容易に移動して結晶が変形するので、応力への反応が他の物質と異なる。応力発光機構の可能性の一つとしてこの指摘は十分に検討に値するが、これだけではまだ詳細なメカニズムがわからない。現状ではSrAl2O4:Euの応力発光機構の解析は十分に行なわれておらず、メカニズムは解明されていないと言える。
 応力発光体を様々な方法で利用しようとする時に、応力への感度が高く発光強度が強いほど使い勝手が良い。そのような応力発光体としての性能が、現在知られているSrAl2O4:Euより高い材料を提供する事が本発明の課題である。
 上記課題を解決するための、本発明の一側面は、α-SrAl2O4と呼ばれる結晶を母体とした材料であって、Srを0.1%から10%の範囲でEuに置換し、Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した応力発光材料である。
 本発明の他の一側面は、α-SrAl2O4と呼ばれる結晶を母体とした材料であって、Srを0.1%から10%の範囲でEuに置換し、Alを0.2%から3%の範囲でCまたはGeから選ばれた少なくとも一つで置換した応力発光材料である。
 本発明の他の一側面は、α-SrAl2O4と呼ばれる結晶を母体とした材料であって、Srを0.1%から10%の範囲でEuに置換し、Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換し、Alを0.2%から3%の範囲でCまたはGeから選ばれた少なくとも一つで置換した応力発光材料である。
 また、本発明の他の一側面は、上記の応力発光材料を分散して担持した基体からなる応力発光体である。基体としては、公知の各種材料が使用できる。基体として流動性のある物質を用い、塗料として利用することもできる。
 本発明の好ましい具体例では、Srの置換においては、Srを0.1%から1.5%の範囲でEuに置換する。
 本発明の他の好ましい具体例では、Alの置換においては、Alを0.25%から0.75%の範囲でCまたはGeから選ばれた少なくとも一つで置換する。
 本発明の他の好ましい具体例では、Oの置換においては、Oを0.2%から0.3%の範囲でF, Cl, Br, Iから選ばれた少なくとも一つで置換する。
 本発明によれば、既存のSrAl2O4:Euよりも発光強度あるいは応力への感度が向上した応力発光体、またはその両方が向上した応力発光体を提供できる。
SrAl2O4の結晶構造模式図。 SrAl2O4のバンド構造図。 SrAl2O4:Euの結晶構造の一例の模式図。 SrAl2O4:Euのup-spinバンドのバンド図。 4f軌道内殻化近似により計算したSrAl2O4:Euのバンド構造図。 Eu原子が3価に励起した状態で4f軌道内殻化近似を適用した場合のSrAl2O4:Euのバンド構造図。 Eu原子が3価に励起した状態で4f軌道内殻化近似を適用し、価電子数がEuの置換率1%の時と同等になるようにした場合のSrAl2O4:Euのバンド構造図。 本発明による実施例1の応力発光材料の一例を説明する結晶構造模式図。 本発明による実施例1の応力発光材料のバンド構造の模式図。 本発明による実施例3の応力発光塗料の適用例を示す断面図。
 以下、実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
 本発明の実施例を理解するため、最初に、発明者らが検討したSrAl2O4:Euの応力発光機構のメカニズムについて説明する。高効率な応力発光体を得るためには、まずSrAl2O4:Euにおける応力発光機構を解明し、その理解に基づいて性能改善方法を考えるのが近道である。このため、まず電子状態と安定構造の第一原理計算を行なって応力発光機構を解析し、そこから性能改善の方法を導き出す手順をとった。
 この第一原理計算では、平面波基底の密度汎関数法に基づき、ウルトラソフト擬ポテンシャルを使用して、交換相関項には一般化密度勾配近似を採用した。エネルギーカットオフは20.25Ryにとっている。
 図1にまずEuをドープしていないSrAl2O4の結晶構造を示す。実線で描かれた平行四面体(100)がユニットセルである。a軸(紙面略横方向)とc軸(紙面略縦方向)の間の角度だけがわずかに90度からずれ(93.4度)、a軸-b軸間とb軸-c軸間は90度を保った結晶構造である。なお、b軸は紙面奥行方向である。Al(101)の周りには4個の酸素(102)が配位して4面体を作り、4面体同士が頂点を共有して3次元的ネットワークを作り、結晶の骨格を形成している。Sr(103)はこの骨格の隙間に配置している。
 図2にSrAl2O4のバンド構造を示す。中央の破線(200)はフェルミ準位を表す。価電子帯には分散の小さいバンドが密集しており、伝導帯下端にはΓ点を最低点として自由電子的な分散を持つバンドが存在している。この伝導帯下端のバンド(201)は主に酸素の3s軌道から成り、全ての酸素の3s軌道同士が結合して結晶全体に広がった状態である事が、波動関数の解析から分かっている。
 次にEuをドープした時のSrAl2O4の結晶構造とバンド構造について検討する。EuはドープされるとSrと置き換わるはずである。Srの価電子が5s軌道の2個のみであるのに対して、Euの価電子も4f軌道からの励起が無い限り6s軌道の2個のみなので、置換による電子状態の変化は非常に小さい。またSr原子とEu原子の共有結合半径は非常に近い値であるため、置換による構造変化も小さい。
 図3に示す様にユニットセル(100)をa軸方向(紙面略横方向)に2倍の大きさにとって、そこに含められる8個のSr原子(103)のうち1個をEu原子(301)に置換し、まず構造最適化の計算を行なった。
 実際の応力発光体ではSrの1%程度だけをEuに置換するが、その状況を正確に再現するためにSrが100個含まれる巨大なセルを計算するのは難しいので、ここではセルを2倍にするにとどめた。Euの比率は12.5%に相当する。図3は構造最適化の結果であり、8個のSrのうち1個がEuに置き換わっても構造は図1からほとんど変化しない事が確認できる。
 図4に図3の構造で計算したバンド図を示す。破線で描かれたフェルミ準位(200)のすぐ下に7本の平坦なバンド(400)が描かれているが、これらは全てEu原子の4f軌道に局在した状態である。f軌道は軌道磁気量子数の異なる7つの状態があり、原子が孤立している場合には縮退している。Eu原子が固体中にあっても4f軌道の局在性は強く、隣の原子軌道との結合状態をほとんど作らないため、7つの状態の縮退はほとんど解けない。
 なお、正確にはこの図4はup-spinバンドについてだけ描いたものであり、down-spinバンドをもし別に描くと、そこでは7つの縮退平坦バンドはこの位置には表れず、ずっと上(9eV以上)に位置することになる。その他のバンドについては大きな変化は無い。
 つまり、3eVより下の位置にある密集した価電子帯には一つの状態に対して電子が2つずつ詰まっているが、この7本の平坦バンドには同じ方向のスピンが1つずつしか詰まっていない。ちなみに、down-spinの平坦バンド(Eu4fバンド)の準位が非常に高くなるのは、局在軌道間の強いクーロン相互作用のためである。
 なお、図4では計算するユニットセルのサイズが2倍になり第一ブリルアン域が半分になったため、図2と比べるとバンドが折りたたまれて描かれているので、平坦バンド(400)以外のバンドの見た目が少し異なる。しかし、基本的に平坦バンド以外の部分は、SrをEuに置き換える前の図2のバンド構造と大きく違わない。
 SrAl2O4:Euの応力発光機構メカニズムについて検討する。SrAl2O4中にドープされたEuは、通常は2価の状態(6s軌道の2個の電子を放出した状態)が安定で、何らかの理由で4f軌道から電子が一つ励起された場合に3価になると考えられる。原子軌道のエネルギー差からすると、この4f軌道から励起された電子がEuの5d軌道を経由して4f 軌道に落ち込む時、緑色に相当するエネルギーを放出して光ると考えるのが最も妥当である。この2価の安定状態と3価の励起状態を比較するため、Euの4f軌道を状況に応じた形で凍結する近似を行なった。
 Euは7個の4f軌道に7個の電子が詰まった元素なので、4f軌道は閉殻構造とならず、擬ポテンシャル法で計算する時にはこの4fを価電子軌道の一つとして顕わに扱うのが通常のやり方である。この時Eu原子の価電子は6s軌道の電子2個と4f軌道の電子7個で、合計9個である。図4はこのやり方で計算したものである。しかし上述のように4f軌道は局在性が強く、隣接する原子とほとんど結合状態を作らないため、7個だけ詰まった4f軌道を凍結し、内殻軌道として扱うという近似も成立する。この時Eu原子の価電子は6s軌道の電子2個だけとなる。
 図5に、この様な近似で図3の構造を元に再度構造最適化を行ない、計算したバンド図を示す。計算の結果、構造の変化はほとんど無く、4fの平坦バンドが図から消えたこと以外のバンドの変化は非常に小さい。従ってこのEuの4f軌道そのものを議論する場合を除き、この図5に基づいてEuが2価の時の電子状態を議論する事ができる。
 更に、Euが3価となり励起状態となった時の計算法として、電子が1つ抜けて6個だけ電子が詰まった4f軌道を凍結し、それを内殻軌道として扱うという方法がある。この時Eu原子の価電子は6s軌道の電子2個と、4f軌道から励起して5d軌道に移った電子1個の合計3個である。この3価Euを表す擬ポテンシャルは2価のEuの擬ポテンシャルの作成条件と全く同じ条件で、4f軌道の電子1個を5dに移して作成した点だけが異なる。
 図6にこの様な近似の元で計算した励起状態(蓄光状態)のバンド図を示す。図5を計算した時と同じ結晶構造を使い、Euが3価の時の擬ポテンシャルを用いてバンド計算を行っている。4f軌道を凍結して内殻化するという近似のため、ここでも4f軌道由来の平坦バンドは描かれていない。それらは実際には図4の平坦バンド(400)とほぼ同じ位置に存在すると考えれば良い。
 なお、図2や図4と同様に、水平な破線(600)の位置はそこまで電子が詰まっている事を示しているが、この位置は擬フェルミ準位と呼んだ方が良い。単にフェルミ準位と呼ぶべきでないのは、描かれていない7本のEu-4fバンドのうち1本は電子が詰まっておらず、通常の基底状態のバンド図とは異なるためである。
 また、図6の伝導帯の中には図4にも図5にも存在しなかった平坦なバンドが複数(一つを代表して示せば、例えばバンド601)現れている。新たに出現したこれらの平坦なバンドの波動関数を解析すると、これらは主にEuの5d軌道からなるバンドだと考えることができる。これらのバンドは、Euが2価(図5)の時には9eV付近またはそれ以上のエネルギー準位にあってバンドが密集した中の見分けづらい位置にあったが、Euが3価になった事により増大したクーロン引力の影響で準位を下げたものだと考える事ができる。Euの5dバンドはEuの近傍での振幅が大きいので、このクーロン力の影響を他のバンドより強く受ける。
 図6はSr8個のうち1個(12.5%)をEuに置換した場合のバンド構造なので、置換した量が実際の材料の1%と比べてかなり多い。その結果1個のEuが2価から3価に励起した場合の計算を行なった時、実際の材料で起こりうるよりも大量の電子が励起した場合の計算をしている事になる。
 Euの周りに局在した状態が重要な役割を持っており、局在軌道の電子は電子間のクーロン相互作用の影響を強く受けるため、より正確な議論を行なうためには出来るだけ価電子数を実際の状況に近づけた方が良い。このため、ユニットセル内の価電子数を調節して、Euが3価の時、励起した電子の数が実際の1%置換の時と同等になるようにしてバンド計算を行なった。
 図7にその結果を示す。擬フェルミ準位(600)は伝導帯最下端のバンドのうち主に酸素の3s成分から成る自由電子的分散部分(701)の最下部にわずかにかかる位置となり、主にEuの5d成分から成る平坦部分(601)の位置は更に下がって擬フェルミ準位(600)との差が0.3eV程度となった。これが現在応力発光体として使用されるSrAl2O4:Euにおける、Euが励起した時(蓄光状態)の電子状態だと考える事ができる。
 O-3sバンドとEu-5dバンドは実際にはk空間の中で接続して伝導帯最下端の1つのバンドとなっているが、最低点であるΓ点付近では酸素の3s軌道の成分が大きく、その他の平坦な部分ではEuの5d軌道の成分が大きい。
 伝導帯の最低点にかなり近いところにEuの5d由来の平坦バンドが位置することは、発光のメカニズムを考える上で重要である。光を吸収するなどしてEuの4f軌道から5d軌道に励起した電子は、緩和して伝導帯の最低点(Γ点付近)に移動し、空間的には酸素の3s軌道を占める様になる可能性が高い。その状態では電子は結晶全体に広がり、且つEu原子上での振幅が小さく、しかもs軌道的な対称性なので、4fへの光学遷移は起こりにくい。このため、この最低点からEu-5d由来の平坦バンド部分までのエネルギー障壁を乗り超えなければ発光遷移が起こらない。しかしこの最低点から平坦部分へのエネルギー差は小さいので、応力の印加によってバンド構造がわずかに変化する事により、Eu-5dに電子が流れ込んでそこから発光するという事が起こりうる。
 SrAl2O4は強弾性体であることから、外部からの応力によって双晶の境界が移動するという様な結晶変形が生じ易い事がわかっているが、このためにこの物質では変形部分での電子状態の変化が起こり易く、応力の印加に伴う発光が生じるものと考えられる。
 応力発光体の発光機構に対する以上の理解から、発光強度及び応力への感度を高める一つの方法として、全てのEu原子が3価に励起した後に形成される擬フェルミ準位をより高くなる様にする、という方法が考えられる。O-3s軌道に溜まった電子がEu-5d軌道に遷移するために必要なエネルギーは、伝導体最低点(Γ点付近)と平坦部分とのエネルギー差というよりは、擬フェルミ準位の高さと平坦部分とのエネルギー差で決まる。
 すなわち、擬フェルミ準位と平坦部分とのエネルギー差を小さくすれば、電子の遷移が容易となり、発光強度や応力への感度の向上した応力発光体を得る事ができると考えられる。
 Srに対するEuの割合が1%程度の場合には、全てのEuが3価に励起したとしても、擬フェルミ準位の高さは伝導体最低点の高さとほぼ一致するが、材料に変更を加えてあらかじめ伝導電子の数が多くなるようにしておけば、電子が伝導帯最低点の周りの準位を満たして擬フェルミ準位を高くする事ができる。つまり、SrAl2O4:Euにあらかじめ電子ドープを行う事により、発光強度及び応力への感度が向上した応力発光体を得る事ができる。
 以下の実施例においては、このような原理により発光強度あるいは応力への感度が向上した応力発光体、またはその両方が向上した応力発光体を提供する。
 また、実施例においては、材料費も含めた製造コストについても考慮する。また、応力発光体としての性能の劣化が早くなる様なものは避けたい。性能向上に伴ってその他の部分で使い勝手が悪くなるという要素はできるだけ無くすことが望ましい。
 本実施例では、SrAl2O4:Euの酸素の一部をハロゲン元素のF,Cl,Br,Iのうちから選ばれる少なくとも一つに置換する事により、電子をドープした状態を実現する方法を示す。SrのEuへの置換量は、0.1%から10%の範囲でよいが、1%程度置換した場合の発光特性がよい。例えば0.1%から1.5%の範囲でSrをEuへ置換することが好適である。
 電子ドープをした結果、Eu原子が3価に励起した時の擬フェルミ準位がより高い準位となる。置換量は原理的にはごくわずかでも効果があるはずだが、酸素原子の0.25%程度(例えば0.2~0.3%)をハロゲンに置換すると1%置換のEu原子が全て3価に励起した時と同数の電子を伝導帯に供給する事になり、伝導電子数が2倍となって効果がわかりやすくなる。
 置換量を更に増やせば効果は大きくなるが、あまり増えて擬フェルミ準位がEu-5d軌道の準位に近づき過ぎると通常の蛍光体と同じく応力を与えなくても発光して蓄光状態を失ってしまう様になるので、増やしすぎても良くない。このため、ハロゲンへの置換量は0.1%から1.5%程度までの範囲が適当である。
 なお、応力発光体の使用用途によっては蓄光状態を保てる時間は短くて良いから応力印加時の発光強度を強めたい、という場合も有り得る。そのような用途向けの応力発光体を作成する場合には、擬フェルミ準位とEu-5d軌道の準位との差が通常の基準で最適な値よりも更に小さくなる様にすれば良い。すなわち、電子ドープ量が通常の基準での最適値より更に多くなるよう、酸素の置換量が多めになるように作成すれば良い。
 ハロゲン置換を行なったSrAl2O4:Euの作成方法は通常のSrAl2O4:Euの作成に準じた方法で良く、例えば通常酸化アルミニウム、炭酸ストロンチウム、酸化ユーロピウム等を混合して焼結するところで、炭酸ストロンチウムをフッ化ストロンチウムまたは塩化ストロンチウム等のハロゲン化物に替える。置換量は、用意するハロゲン化ストロンチウムとそれ以外のストロンチウムの比率や、焼結時の温度設定と時間により調節できる。
 図8に本実施例で示した酸素の一部をハロゲン元素で置換したSrAl2O4:Euの一例として、フッ素置換を行なったSrAl2O4:Euの結晶構造の例を示す。フッ素原子(801)が入る位置はこの位置に限らず酸素(102)の位置ならばどこでも良く、乱雑に配置していて良い。
 なお、ハロゲンで酸素原子を置換する割合は大きくないため、結晶格子の安定性を損なう可能性は小さく、結晶が壊れてしまう恐れは少ない。
 同じ電子ドープの効果を得る方法として、一部の酸素が欠損した結晶を作成する事によっても同様の電子状態は得られるが、欠損している事による結晶格子の不安定性は大きいため、結晶がもろくなりやすい。そのためもしうまく作成出来たとしても結晶格子が局所的に崩れ、機能の劣化が早く進行する恐れがある。その点、ハロゲン置換では欠損部分は無いので、格子へのダメージは小さく、酸素欠損を導入した結晶よりも劣化しにくいという利点もある。
 図9は図7のバンド図の一部を拡大し、図8のように一部の酸素(102)をフッ素等のハロゲン元素(801)で置換(ドープ)した後の電子状態の変化を模式的に示したものである。
 ハロゲンのドープにより擬フェルミ準位がドープ前(600)からドープ後(900)に上昇し、伝導帯最下端のバンドの平坦部分(601)(Eu原子の周りの局在状態)と擬フェルミ準位(900)とのエネルギー差が小さくなる事を示している。この結果、電子の遷移が容易となり、発光強度や応力への感度が向上すると考えられる。
 本実施例では、SrAl2O4:EuのAl原子の一部をIV族元素の炭素またはゲルマニウムから選択された少なくとも一つで置換する事により、電子をドープした状態を実現する方法を示す。
 置換量は原理的にはごくわずかでも効果があるはずだが、Al原子の0.5%程度(例えば、0.25%~0.75%)を置換すると1%置換のEu原子が全て3価に励起した時と同数の電子を伝導帯に供給する事になり、伝導電子数が2倍となって効果がわかりやすくなる。置換量が多すぎると蓄光を保てる時間が短くなる事から、置換量は0.2%から3%程度までの範囲が適当である。
 Alの一部をIV族元素で置換したSrAl2O4:Euの作成方法は通常のSrAl2O4:Euの作成に準じた方法で良く、最初に揃える材料の中に例えば酸化ゲルマニウムを混ぜることにより実現できる。置換量は、用意する酸化ゲルマニウムの量により調節できる。
 このような方法で作成された応力発光体結晶の構造は、図3に示すSrAl2O4:Euにおいて、Al(101)の一部が、炭素またはゲルマニウムに置き代わった構造になる。
 なお、実施例1の酸素をハロゲン元素で置換する方法と実施例2の方法は特にお互いを排除するものではないので、電子ドープ量が最適になる範囲で両者を同時に組み合わせて行なっても良い。この方式によると、応力発光体結晶の構造は、図8に示す構造において、Al(101)の一部が、炭素またはゲルマニウムに置き代わった構造になる。先に述べたように、これらの置換により、結晶構造自体は大きな影響を受けない。
 以上の実施例で説明したように、SrAl2O4:EuではEu原子の4f軌道から5d軌道に励起した電子が酸素の3s軌道から成るバンドに緩和して蓄光状態となり、応力による格子変形で電子状態が変化した際に再度5d軌道を経由して4f軌道に発光遷移すると考えられる。このため、酸素の一部をハロゲンで置換する等の方法で電子ドープを行なう事により、蓄光状態で酸素の3sバンドに居る電子がEuの5d軌道に励起し易くなり、少しの変形で発光が起こり易くなると同時に、発光強度も強くなると考えられる。
 上記の実施例による結晶単体でも応力発光を起こさせる事はできるが、結晶の微粒子を基体中に分散させて、発行体を形成することができる。また、基体として弾性のあるバインダ樹脂を用い、バインダ樹脂中に微粒子化した結晶を分散させる事で応力発光塗料として使用する事も可能である。
 実施例1または2の応力発光材料を、例えば、0.1~1μm程度に微粒子化し、公知の種々の樹脂を使用したバインダ中に分散し、塗料とすることができる。
 図10は上記の塗料を、測定対象物1001に塗布し、亀裂診断などに使用する例である。塗料のバインダ1002には、実施例1または2の応力発光材料が、例えば径0.1~1μm程度の粒子として拡散されている。バインダとして用いる材料には特に制限はなく、応力発光材料の発光を透過でき、必要な耐久性や被着性能により公知の材料から選択すればよい。
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
 種々の応力発光体に関する技術分野に利用可能である。
100:ユニットセル
101:アルミニウム
102:酸素
103:ストロンチウム
200:フェルミ準位
201:伝導帯下端のバンド
301:ユウロピウム
400:7本の平坦バンド
600:擬フェルミ準位
601:主にEuの5d成分から成るバンド部分
701:主に酸素の3s成分から成るバンド部分
1001: 測定対象物
1002: 塗料のバインダ
1003: 応力発光微粒子

Claims (15)

  1.  α-SrAl2O4と呼ばれる結晶を母体とした材料であって、
     Srを0.1%から10%の範囲でEuに置換し、Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した応力発光材料。
  2.  Oを0.2%から0.3%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した、
     請求項1記載の応力発光材料。
  3.  Srを0.1%から1.5%の範囲でEuに置換した、
     請求項1記載の応力発光材料。
  4.  さらに、Alを0.2%から3%の範囲でCまたはGeから選ばれた少なくとも一つで置換した、
     請求項1記載の応力発光材料。
  5.  Alを0.25%から0.75%の範囲でCまたはGeから選ばれた少なくとも一つで置換した、
     請求項4記載の応力発光材料。
  6.  α-SrAl2O4と呼ばれる結晶を母体とした材料であって、
     Srを0.1%から10%の範囲でEuに置換し、Alを0.2%から3%の範囲でCまたはGeから選ばれた少なくとも一つで置換した応力発光材料。
  7.  Alを0.25%から0.75%の範囲でCまたはGeから選ばれた少なくとも一つで置換した、
     請求項6記載の応力発光材料。
  8.  Srを0.1%から1.5%の範囲でEuに置換した、
     請求項6記載の応力発光材料。
  9.  さらに、Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つで置換した、
     請求項6記載の応力発光材料。
  10.  Oを0.2%から0.3%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した、
     請求項9記載の応力発光材料。
  11.  α-SrAl2O4と呼ばれる結晶を母体とし、Srを0.1%から10%の範囲でEuに置換し、さらに、(1)Oを0.1%から1.5%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換するか、または、(2)Alを0.2%から3%の範囲でCまたはGeから選ばれた少なくとも一つで置換するか、または、前記(1)および(2)の両方の置換をした応力発光材料を基体中に分散させて担持してなる応力発光体。
  12.  Oを0.2%から0.3%の範囲でF,Cl,Br,Iから選ばれた少なくとも一つのハロゲン元素で置換した、
     請求項11記載の応力発光体。
  13.  Alを0.25%から0.75%の範囲でCまたはGeから選ばれた少なくとも一つで置換した、
     請求項11記載の応力発光体。
  14.  Srを0.1%から1.5%の範囲でEuに置換した、
     請求項11記載の応力発光体。
  15.  前記基体は流動性を有し、前記基体中に前記応力発光材料を粒子として拡散し、塗料として構成した、
     請求項11記載の応力発光体。
PCT/JP2015/067934 2015-06-23 2015-06-23 応力発光材料およびそれを用いた応力発光体 WO2016207960A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067934 WO2016207960A1 (ja) 2015-06-23 2015-06-23 応力発光材料およびそれを用いた応力発光体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067934 WO2016207960A1 (ja) 2015-06-23 2015-06-23 応力発光材料およびそれを用いた応力発光体

Publications (1)

Publication Number Publication Date
WO2016207960A1 true WO2016207960A1 (ja) 2016-12-29

Family

ID=57585168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067934 WO2016207960A1 (ja) 2015-06-23 2015-06-23 応力発光材料およびそれを用いた応力発光体

Country Status (1)

Country Link
WO (1) WO2016207960A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269448A (ja) * 1995-03-30 1996-10-15 Nichia Chem Ind Ltd 残光性蛍光体
WO2005097946A1 (ja) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology 高輝度応力発光材料およびその製造方法、並びにその利用
WO2007023869A1 (ja) * 2005-08-25 2007-03-01 National Institute Of Advanced Industrial Science And Technology 応力発光構造物
JP2007063522A (ja) * 2005-08-30 2007-03-15 Ez Bright Corp 蓄光性蛍光体
JP2007145991A (ja) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology 高輝度発光粒子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269448A (ja) * 1995-03-30 1996-10-15 Nichia Chem Ind Ltd 残光性蛍光体
WO2005097946A1 (ja) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology 高輝度応力発光材料およびその製造方法、並びにその利用
WO2007023869A1 (ja) * 2005-08-25 2007-03-01 National Institute Of Advanced Industrial Science And Technology 応力発光構造物
JP2007063522A (ja) * 2005-08-30 2007-03-15 Ez Bright Corp 蓄光性蛍光体
JP2007145991A (ja) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology 高輝度発光粒子及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAO-NAN XU ET AL.: "Direct view of stress distribution in solid by mechanoluminescence", APPLIED PHYSICS LETTERS, vol. 4, 7 April 1999 (1999-04-07), pages 2414 - 2416, XP012022472 *
CHAO-NAN XU ET AL.: "Strong elasticoluminescence from monoclinic-structure SrA12O4", APPLIED PHYSICS LETTERS, vol. 4, 8 April 2004 (2004-04-08), pages 3040 - 3042, XP012061146 *
YUHUA WANG ET AL.: "Recent progress in multicolor long persistent phosphors", JOURNAL OF LUMINESCENCE, vol. 133, 17 December 2011 (2011-12-17), pages 25 - 29, XP028957769 *

Similar Documents

Publication Publication Date Title
JP4868500B2 (ja) 紫外線を発光する高強度応力発光材料とその製造方法、ならびに、その利用
KR101955643B1 (ko) 범용 백라이트 용도에서의 녹색 발광용 가넷계 인광체
JP4868499B2 (ja) 応力発光体とその製造方法およびそれを含む複合材料、並びに応力発光体の母体構造
KR101472989B1 (ko) 할로겐화된-알루미네이트에 기반한 황녹색 내지 황색-발광 인광체
TWI520923B (zh) A wavelength conversion member, a light emitting device, and a wavelength conversion member
JP6234950B2 (ja) 発光装置及び樹脂組成物
CN101536193A (zh) 纳米YAG:Ce磷光体组合物及其制备方法
JP5578739B2 (ja) アルカリ土類金属シリケート蛍光体及びその製造方法
JP2019521218A (ja) 蛍光粉末、製造方法及びその蛍光粉末を有する発光装置
WO2013159857A1 (de) Silicat-leuchtstoffe
DE102015015355A1 (de) Mn-aktivierte Leuchtstoffe
JP5574314B2 (ja) 応力発光体、その製造方法、それを用いた複合材料及びレベルセンサー
JPWO2018230207A1 (ja) ガーネット珪酸塩、ガーネット珪酸塩蛍光体、並びにガーネット珪酸塩蛍光体を用いた波長変換体及び発光装置
WO2016207960A1 (ja) 応力発光材料およびそれを用いた応力発光体
US10418530B2 (en) Optoelectronic semiconductor chip, method for producing an optoelectronic semiconductor chip, conversion element and phosphor for a conversion element
TWI394827B (zh) 螢光材料與白光發光裝置
JP4956732B2 (ja) 電子線励起用の蛍光体およびカラー表示装置
US11377593B2 (en) Phosphor
JP2009256449A (ja) 応力発光材料およびその製造方法
JP2014167086A (ja) 珪酸塩系蛍光体及びその製造方法
KR102481535B1 (ko) 인광체 및 이의 제조 방법
JP2019033260A (ja) 発光装置
JPWO2013137435A1 (ja) 蛍光体、蛍光体の製造方法および発光装置
JP2016196611A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
Komukai et al. Study on the particle size control of green-emitting phosphor (Ba, Sr) 2SiO4: Eu2+ via reduction firing using various flux agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP