WO2016207947A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2016207947A1
WO2016207947A1 PCT/JP2015/067868 JP2015067868W WO2016207947A1 WO 2016207947 A1 WO2016207947 A1 WO 2016207947A1 JP 2015067868 W JP2015067868 W JP 2015067868W WO 2016207947 A1 WO2016207947 A1 WO 2016207947A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
unit
blower
Prior art date
Application number
PCT/JP2015/067868
Other languages
English (en)
French (fr)
Inventor
一輝 大河内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/067868 priority Critical patent/WO2016207947A1/ja
Priority to JP2017524289A priority patent/JP6370489B2/ja
Priority to GB1800124.8A priority patent/GB2555063B/en
Publication of WO2016207947A1 publication Critical patent/WO2016207947A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Definitions

  • the present invention relates to an air conditioner in which a plurality of outdoor units are connected to an indoor unit through one refrigerant system, and more particularly to an air conditioner that equalizes the refrigerant amount of each outdoor unit.
  • air conditioners equipped with a plurality of outdoor units have been developed.
  • an air conditioner including a plurality of outdoor units there may be a refrigerant bias between the outdoor units due to various factors. Therefore, conventionally, an air conditioner has been proposed that corrects (evens out) the refrigerant bias occurring between the outdoor units.
  • an air conditioner described in Patent Document 1 includes a plurality of outdoor units equipped with a compressor, a four-way switching valve, a heat exchanger, and an accumulator, and calculates the degree of superheat of the refrigerant flowing out of the heat exchanger.
  • the heat exchanger outlet superheat degree calculating means and the compressor discharge superheat degree calculating means for calculating the superheat degree of the refrigerant discharged from the compressor are provided.
  • the air conditioner determines an imbalance in the amount of liquid refrigerant in the accumulator based on the calculated values of the heat exchanger outlet superheat degree calculating means and the compressor discharge superheat degree calculating means, and executes liquid equalization control.
  • Liquid equalization control means is provided.
  • the air conditioner is provided with a blower for supplying air to the heat exchanger in the outdoor unit, and the liquid leveling control means includes a heat exchanger outlet superheat degree calculating means and a compressor discharge superheat degree calculating means.
  • the operation output of the blower is controlled based on the calculated value.
  • the liquid leveling control means of the air conditioner converges the superheat degree of the refrigerant flowing out of the heat exchanger and the superheat degree of the refrigerant discharged from the compressor to a preset reference value. Control is being executed.
  • liquid leveling control is performed using a blower for supplying air to the heat exchanger.
  • the liquid leveling control means of the air conditioner performs the liquid leveling control by decreasing the air volume of one blower of the air conditioners connected to two or more units and increasing the air volume of the other fan. Yes.
  • the liquid leveling control it is necessary to increase the air volume of one blower from the normal time depending on the load applied to the air conditioner.
  • the noise of the outdoor unit increases when the air volume of one blower is increased from the normal time, in order to avoid this, it is necessary to further reduce the air volume of the other blower.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain an air conditioner that suppresses an increase in the noise of a blower of an outdoor unit when equalizing the refrigerant amount of each outdoor unit. Objective.
  • An air conditioner according to the present invention is an air conditioner including a plurality of outdoor units equipped with a compressor, a heat source side heat exchanger, and a blower, and an indoor unit equipped with an indoor side heat exchanger.
  • the plurality of outdoor units are obtained from a first superheat degree of the refrigerant flowing out from the heat source side heat exchanger and a second superheat degree of the refrigerant discharged from the compressor.
  • the operation output of the outdoor unit blower with the larger refrigerant amount is increased, and the operation output of the outdoor unit blower with the smaller refrigerant amount is decreased.
  • a control unit that performs liquid leveling control, and the control unit operates the blower normally when the outdoor temperature is higher than a reference temperature and the operation capacity of the indoor unit is less than the reference capacity.
  • the operation output of the blower during normal operation is The liquid leveling control is executed by increasing the maximum value.
  • the control unit when the outdoor temperature is greater than a predetermined value and the operation capacity of the indoor unit is less than the predetermined value, the control unit sets the blower to an operation output during normal operation and performs liquid leveling control.
  • the outdoor temperature is lower than a predetermined value, or when the outdoor temperature is higher than a predetermined value and the operating capacity of the indoor unit is higher than a predetermined value, the fan is operated based on the operation output during normal operation. Increase the liquid leveling control.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. It is a refrigerant circuit figure at the time of the heating operation of the air conditioning apparatus which concerns on embodiment of this invention. It is a flowchart which concerns on control operation of the control part at the time of the heating operation of the air conditioning apparatus which concerns on embodiment of this invention.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air-conditioning apparatus according to an embodiment of the present invention. Based on FIG. 1, the structure of the refrigerant circuit of the air conditioning apparatus 500 is demonstrated.
  • the air conditioner 500 performs a cooling operation and a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
  • the air conditioner 500 includes an outdoor unit 51 and an outdoor unit 151 as heat source side units, and includes an indoor unit 53a and an indoor unit 53b as load side units.
  • the outdoor unit 51 and the outdoor unit 151 are connected to the flow dividing controller 52 by the low pressure pipe 201 and the high pressure pipe 202, and further connected in parallel to the indoor unit 53a and the indoor unit 53b from the flow dividing controller 52 to constitute a refrigeration cycle circuit. Yes.
  • the air conditioning apparatus 500 is provided with the control part 20 mentioned later. Note that the air conditioner 500 illustrated in FIG. 1 is merely an example, and may include three or more outdoor units, or one or three or more indoor units.
  • the outdoor unit 51 includes a compressor 1, a heat source side heat exchanger 2, a four-way valve 3, an accumulator 4, check valves 5a, 5b, 5c, and 5d and a blower 6.
  • the outdoor unit 51 includes a high pressure detection unit 31, a low pressure detection unit 32, a compressor discharge temperature detection unit 34, a heat exchanger outlet temperature detection unit 35, an outside air temperature detection unit 36, and a compressor discharge superheat degree calculation unit 37.
  • the heat exchanger outlet superheat degree calculating means 38 and the indoor unit operating capacity calculating means 41 are provided.
  • the compressor 1 sucks the refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • a four-way valve 3 is connected to the discharge side of the compressor 1.
  • the four-way valve 3 switches the flow path of the refrigerant discharged from the compressor 1 to a flow path that flows to the heat source side heat exchanger 2 or a flow path that flows to the indoor unit 53a and the indoor unit 53b.
  • the four-way valve 3 is also connected to the accumulator 4 so that the refrigerant flowing from the heat source side heat exchanger 2 or the indoor unit 53a and the indoor unit 53b is sent to the accumulator 4.
  • the four-way valve is exemplified as the flow path switching valve.
  • the present invention is not limited to this, and for example, a two-way valve or a three-way valve may be combined.
  • the blower 6 is composed of a fan or the like and has a function for blowing air to the heat source side heat exchanger 2.
  • the accumulator 4 stores excess refrigerant, and is a container that can store excess refrigerant.
  • the accumulator 4 does not need to be provided depending on the usage condition of the air conditioning apparatus 500.
  • the outdoor unit 151 includes a compressor 101, a heat source side heat exchanger 102, a four-way valve 103, an accumulator 104, check valves 105 a, 105 b, 105 c, and 105 d and a blower 106, similar to the compressor 1.
  • the outdoor unit 151 includes a high pressure detection unit 131, a low pressure detection unit 132, a compressor discharge temperature detection unit 134, a heat exchanger outlet temperature detection unit 135, an outside air temperature detection unit 136, and a compressor discharge superheat degree calculation unit 137.
  • the heat exchanger outlet superheat degree calculating means 138 and the indoor unit operating capacity calculating means 141 are provided.
  • the compressor 101 sucks the refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • a four-way valve 103 is connected to the discharge side of the compressor 101.
  • the four-way valve 103 switches the flow path of the refrigerant discharged from the compressor 101 to a flow path that flows to the heat source side heat exchanger 102, or a flow path that flows to the indoor unit 53a and the indoor unit 53b.
  • the four-way valve 103 is also connected to the accumulator 104 so that the refrigerant flowing from the heat source side heat exchanger 102 or the indoor unit 53a and the indoor unit 53b is sent to the accumulator 104.
  • the four-way valve is exemplified as the flow path switching valve.
  • the present invention is not limited to this, and for example, a two-way valve or a three-way valve may be combined.
  • the blower 106 is configured by a fan or the like, and has a function for blowing air to the heat source side heat exchanger 102.
  • the accumulator 104 stores excess refrigerant and is a container that can store excess refrigerant.
  • the accumulator 104 may not be provided depending on the use mode of the air conditioner 500.
  • the four-way valve 3 and the four-way valve 103 perform valve switching corresponding to the mode (mode) of the air conditioning operation so that the refrigerant path is switched.
  • mode mode
  • the cooling only operation referred to here as the operation when all the indoor units performing air conditioning are cooling
  • the cooling main operation of the simultaneous cooling and heating operation
  • the cooling load is Large operation
  • heating operation here, operation when all air-conditioned indoor units are heating
  • heating operation heating and cooling among simultaneous heating and cooling operations
  • the heat source side heat exchanger 2 and the heat source side heat exchanger 102 have heat transfer tubes that allow the refrigerant to pass therethrough and fins for increasing the heat transfer area between the refrigerant flowing through the heat transfer tubes and the outside air, Exchange heat with air (outside air).
  • it functions as an evaporator during the heating only operation or during the heating main operation, and evaporates the refrigerant, for example.
  • it functions as a condenser during the cooling only operation or during the cooling main operation, for example, condenses and liquefies the refrigerant.
  • adjustment is performed such as condensing to a state of two-phase mixing (gas-liquid two-phase state) of liquid and gas, instead of being completely gasified or liquefied, for example, at the time of cooling main operation. .
  • the air conditioner 500 includes an outdoor unit 51, an outdoor unit 151, an indoor unit 53a, an indoor unit 53b, and a shunt controller 52.
  • a shunt controller 52 is provided between the outdoor unit 51, the outdoor unit 151 and the indoor unit 53a, and the indoor unit 53b, and piping between these devices is made by various refrigerant pipes. Connecting. Further, the plurality of indoor units 53a and 53b are connected so as to be parallel to each other. For example, in the indoor unit 53a, the indoor unit 53b, and the like, when there is no need to particularly distinguish or specify, the a and b suffixes are omitted and referred to as the indoor unit 53.
  • the example which provided the shunt controller 52 in the air conditioning apparatus 500 in this Embodiment was shown, depending on the usage condition of the air conditioning apparatus 500, it is not necessary to provide the shunt controller 52.
  • the outdoor unit 51, the outdoor unit 151, and the shunt controller 52 are connected by a low pressure pipe 201 and a high pressure pipe 202.
  • a refrigerant branch point 19 is provided between the outdoor unit 51 and the outdoor unit 151 and the low pressure pipe 201 to branch the refrigerant from the low pressure pipe 201 and guide the refrigerant to the outdoor unit 51 and the outdoor unit 151.
  • a refrigerant junction 18 is provided between the outdoor unit 51 and the outdoor unit 151 and the high-pressure pipe 202 to join the refrigerant from the outdoor unit 51 and the outdoor unit 151 and guide the refrigerant to the high-pressure pipe 202.
  • high-pressure refrigerant flows from the outdoor unit 51 and outdoor unit 151 side to the shunt controller 52 side.
  • a refrigerant having a pressure lower than that flowing through the high-pressure pipe 202 flows from the shunt controller 52 side to the outdoor unit 51 and the outdoor unit 151.
  • the level of the pressure is not determined by the relationship with the reference pressure (numerical value), but the pressurization of the compressor 1 and the compressor 101 and the opening / closing of each throttle device (flow rate limiting device) ( It is assumed that it is expressed based on relative elevation (including the middle) in the refrigerant circuit by controlling the (opening) state.
  • the shunt controller 52 and the indoor unit 53a are connected by a liquid pipe 203a and a gas pipe 204a.
  • the indoor unit 53b is connected by a liquid pipe 203b and a gas pipe 204b.
  • the liquid pipe 203 when not distinguishing especially the liquid pipe 203a and the liquid pipe 203b, it will be called the liquid pipe 203.
  • the gas pipe 204 when not distinguishing especially the gas pipe 204a and the gas pipe 204b, it will be called the gas pipe 204.
  • the refrigerant circulates between the outdoor unit 51, the outdoor unit 151, the shunt controller 52, and the indoor unit 53, thereby forming a refrigerant circuit.
  • the check valves 5a, 5b, 5c, and 5d of the outdoor unit 51 prevent the refrigerant from flowing back, regulate the flow of the refrigerant, and make the refrigerant circulation path constant according to the operation mode.
  • the check valve 5 a is located on the pipe between the four-way valve 3 and the low-pressure pipe 201, and allows the refrigerant flow from the low-pressure pipe 201 toward the four-way valve 3.
  • the check valve 5 b is located on the pipe between the heat source side heat exchanger 2 and the low pressure pipe 201 and allows the refrigerant flow from the low pressure pipe 201 toward the heat source side heat exchanger 2.
  • the check valve 5 c is located on the pipe between the four-way valve 3 and the high-pressure pipe 202 and allows the refrigerant flow from the four-way valve 3 to the high-pressure pipe 202.
  • the check valve 5 d is located on the pipe between the heat source side heat exchanger 2 and the high pressure pipe 202 and allows the refrigerant flow from the heat source side heat exchanger 2 toward the high pressure pipe 202.
  • the check valves 105a, 105b, 105c, and 105d of the outdoor unit 151 prevent the refrigerant from flowing backward, regulate the flow of the refrigerant, and make the circulation path of the refrigerant consistent with the mode.
  • the check valve 105 a is located on the pipe between the four-way valve 103 and the low-pressure pipe 201, and allows the refrigerant flow from the low-pressure pipe 201 toward the four-way valve 103.
  • the check valve 105 b is located on the pipe between the heat source side heat exchanger 102 and the low pressure pipe 201 and allows the refrigerant flow from the low pressure pipe 201 toward the heat source side heat exchanger 102.
  • the check valve 105 c is located on the pipe between the four-way valve 103 and the high-pressure pipe 202 and allows the refrigerant flow from the four-way valve 103 to the high-pressure pipe 202.
  • the check valve 105 d is located on a pipe between the heat source side heat exchanger 102 and the high pressure pipe 202, and allows the refrigerant flow from the heat source side heat exchanger 102 to the high pressure pipe 202.
  • a high pressure detecting means 31 for detecting the pressure of the refrigerant is attached on the discharge side of the compressor 1, and on the suction side of the compressor 1, on the outlet side of the heat source side heat exchanger 2 during heating operation.
  • Low pressure detection means 32 for detecting the pressure of the refrigerant is attached.
  • the outdoor unit 51 is provided with a compressor discharge temperature detecting means 34 for detecting the temperature of the refrigerant on the high pressure side (discharge side) of the compressor 1.
  • the outdoor unit 51 is provided with heat exchanger outlet temperature detection means 35 for detecting the temperature of the refrigerant on the outlet side of the heat source side heat exchanger 2 during the heating operation.
  • the outdoor unit 51 is provided with an outside air temperature detecting means 36 that detects the outside air temperature around the outdoor unit 51.
  • the high pressure detection means 31 and the low pressure detection means 32 are constituted by a pressure sensor or the like.
  • the compressor discharge temperature detection means 34, the heat exchanger outlet temperature detection means 35, and the outside air temperature detection means 36 are constituted by temperature sensors such as a thermistor.
  • the outdoor unit 51 includes a compressor discharge superheat degree calculation means 37, a heat exchanger outlet superheat degree calculation means 38, and an indoor unit operation capacity calculation means 41, which are constituted by, for example, a microcomputer.
  • the compressor discharge superheat degree calculation means 37 calculates the superheat degree of the refrigerant discharged from the compressor 1.
  • the heat exchanger outlet superheat degree calculation means 38 calculates the superheat degree of the refrigerant flowing out from the heat source side heat exchanger 2.
  • the indoor unit operating capacity calculating means 41 calculates the operating capacity of the indoor unit 53.
  • the outdoor unit 51 is connected to the control unit 20 described later.
  • the control unit 20 is configured by a microcomputer, for example.
  • the outdoor unit 51 is provided with the compressor discharge superheat degree calculation means 37, the heat exchanger outlet superheat degree calculation means 38, and the indoor unit operating capacity calculation means 41.
  • the invention is not limited to this, and a computing unit in which the above computing units are combined into one may be provided, or a computing unit may be provided separately.
  • a high pressure detecting means 131 for detecting the pressure of the refrigerant is mounted on the discharge side pipe of the compressor 101, and on the suction side pipe of the compressor 101, on the outlet side of the heat source side heat exchanger 102 during heating operation.
  • Low pressure detection means 132 for detecting the pressure of the refrigerant is attached.
  • the outdoor unit 151 is provided with a compressor discharge temperature detecting means 134 for detecting the temperature of the refrigerant on the high pressure side (discharge side) of the compressor 101.
  • the outdoor unit 151 is provided with heat exchanger outlet temperature detection means 135 for detecting the temperature of the refrigerant on the outlet side of the heat source side heat exchanger 102 during the heating operation.
  • the outdoor unit 151 is provided with an outside air temperature detection unit 136 that detects the outside air temperature around the outdoor unit 151.
  • the high pressure detection means 131 and the low pressure detection means 132 are constituted by pressure sensors or the like.
  • the compressor discharge temperature detection means 134, the heat exchanger outlet temperature detection means 135, and the outside air temperature detection means 136 are constituted by temperature sensors such as a thermistor.
  • the outdoor unit 151 includes a compressor discharge superheat degree calculation means 137, a heat exchanger outlet superheat degree calculation means 138, and an indoor unit operation capacity calculation means 141, which are constituted by a microcomputer, for example.
  • the compressor discharge superheat degree calculation means 137 calculates the superheat degree of the refrigerant discharged from the compressor 101.
  • the heat exchanger outlet superheat degree calculation means 138 calculates the superheat degree of the refrigerant flowing out from the heat source side heat exchanger 102.
  • the indoor unit operating capacity calculating means 141 calculates the operating capacity of the indoor unit 53.
  • the outdoor unit 151 is connected to a control unit 20 described later.
  • the outdoor unit 151 is provided with the compressor discharge superheat degree calculation means 137, the heat exchanger outlet superheat degree calculation means 138, and the indoor unit operating capacity calculation means 141.
  • the invention is not limited to this, and a computing unit in which the above computing units are combined into one may be provided, or a computing unit may be provided separately.
  • the gas-liquid separator 11 included in the shunt controller 52 separates the refrigerant flowing from the high pressure pipe 202 into a gas refrigerant and a liquid refrigerant.
  • a gas phase portion (not shown) through which the gas refrigerant flows is connected to the electromagnetic valve 12a and the electromagnetic valve 12b.
  • the liquid phase part (not shown) from which the liquid refrigerant flows is connected to the inter-refrigerant heat exchanger 16.
  • the solenoid valve 12a, solenoid valve 12b, solenoid valve 13a, and solenoid valve 13b in the shunt controller open and close based on the operation mode.
  • One end of the electromagnetic valve 12a is connected to the gas-liquid separator 11, and the other end is connected to the gas pipe 204a.
  • One end of the electromagnetic valve 12b is connected to the gas-liquid separator 11, and the other end is connected to 204b.
  • one end of the electromagnetic valve 13a is connected to the gas pipe 204a, and the other end is connected to the low pressure pipe 201.
  • One end of the electromagnetic valve 13b is connected to 204b, and the other end is connected to the low pressure pipe 201.
  • the refrigerant flows from the indoor unit 53 side to the low pressure pipe 201 side based on the operation mode, or the gas-liquid separator 11 side
  • the valve is switched so that the refrigerant flows from to the indoor unit 53 side.
  • the flow of the refrigerant is switched by the electromagnetic valve 12a, the electromagnetic valve 12b, the electromagnetic valve 13a, and the electromagnetic valve 13b.
  • a three-way valve or the like may be used.
  • the expansion device 14 is provided between the inter-refrigerant heat exchanger 16 and the inter-refrigerant heat exchanger 17, controls the opening degree based on the operation mode of the cooling operation and the heating operation, and flows from the gas-liquid separator 11. Adjust the flow rate and refrigerant pressure. On the other hand, the expansion device 15 controls the opening and adjusts the refrigerant flow rate and the refrigerant pressure. As will be described later, the refrigerant that has passed through the expansion device 15 supercools the refrigerant flowing through the refrigerant heat exchanger 17 and the refrigerant heat exchanger 16 in the refrigerant heat exchanger 17 and the refrigerant heat exchanger 16, It flows to the low pressure pipe 201. It is assumed that the expansion device 14 and the expansion device 15 are composed of, for example, an electronic expansion valve that can change the opening degree.
  • the inter-refrigerant heat exchanger 17 performs heat exchange between the refrigerant in the downstream portion of the expansion device 15 (the refrigerant that has passed through the expansion device 15) and the refrigerant that flows from the expansion device 14.
  • the inter-refrigerant heat exchanger 16 exchanges heat between the refrigerant that has passed through the inter-refrigerant heat exchanger 17 and the liquid refrigerant that flows from the gas-liquid separator 11 toward the expansion device 14.
  • the indoor unit 53a includes an indoor side heat exchanger 22a and an indoor side expansion device 23a connected in series in proximity to the indoor side heat exchanger 22a.
  • the indoor side heat exchanger 22a serves as an evaporator during the cooling operation and serves as a condenser during the heating operation, and between the air and the refrigerant in the air-conditioning target space. Perform heat exchange.
  • a blower for efficiently performing heat exchange between the refrigerant and the air may be provided in the vicinity of each indoor heat exchanger 22a.
  • the indoor unit 53b includes an indoor side heat exchanger 22b and an indoor side expansion device 23b connected in series in proximity to the indoor side heat exchanger 22b.
  • the indoor side heat exchanger 22b serves as an evaporator during the cooling operation and serves as a condenser during the heating operation, and between the air and the refrigerant in the air-conditioning target space. Perform heat exchange.
  • a blower for efficiently performing heat exchange between the refrigerant and the air may be provided in the vicinity of each indoor heat exchanger 22b.
  • the indoor side heat exchanger 22a and the indoor side heat exchanger 22b are not particularly distinguished, they are referred to as the indoor side heat exchanger 22, and similarly, the indoor side expansion device 23a and the indoor side expansion device 23b are not particularly distinguished. In this case, it is referred to as an indoor expansion device 23.
  • the indoor expansion device 23 functions as a pressure reducing valve or an expansion valve, and adjusts the pressure of the refrigerant passing through the indoor heat exchanger 22.
  • the indoor side expansion device 23 is composed of, for example, an electronic expansion valve that can change the opening degree.
  • the opening degree of the indoor expansion device 23 is determined based on the degree of superheat on the refrigerant outlet side (here, the gas pipe 204 side) of the indoor heat exchanger 22 during the cooling operation. Further, it is determined based on the degree of supercooling on the refrigerant outlet side (here, on the liquid pipe 203 side) during the heating operation.
  • the air-conditioning apparatus 500 of the present embodiment configured as described above performs the operation in any one of the four modes (modes) of the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation. It can be carried out.
  • FIG. 2 is a refrigerant circuit diagram during heating operation of the air-conditioning apparatus according to the embodiment of the present invention.
  • the flow of the refrigerant during the all heating operation is indicated by solid arrows in FIG.
  • the compressor 1 compresses the sucked refrigerant and discharges a high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 1 flows through the four-way valve 3 and the check valve 5c (does not flow toward the check valve 5a and the check valve 5d), passes through the refrigerant confluence 18 and passes through the high-pressure pipe 202. Flow into the diversion controller 52.
  • the compressor 101 compresses the sucked refrigerant and discharges the high-pressure gas refrigerant.
  • the refrigerant discharged from the compressor 101 flows through the four-way valve 103 and the check valve 105c (does not flow toward the check valve 105a and the check valve 105d). Then, the refrigerant merges with the refrigerant that has flowed out of the outdoor unit 51 at the refrigerant merge point 18, and flows into the diversion controller 52 through the high-pressure pipe 202.
  • the solenoid valve 12a and the solenoid valve 12b are opened, and the solenoid valve 13a and the solenoid valve 13b are closed.
  • Part of the gas refrigerant that has flowed into the shunt controller 52 passes through the gas-liquid separator 11, the electromagnetic valve 12a, and the gas pipe 204a, and flows into the indoor unit 53a.
  • the remaining gas refrigerant that has flowed into the flow dividing controller 52 passes through the gas-liquid separator 11, the electromagnetic valve 12b, and the gas pipe 204b, and flows into the indoor unit 53b.
  • the flow rate of the refrigerant flowing in the indoor heat exchanger 22 is adjusted by adjusting the opening of the indoor expansion device 23.
  • the high-pressure gas refrigerant is condensed by heat exchange while passing through the indoor heat exchanger 22, and becomes a liquid refrigerant, and passes through the indoor expansion device 23.
  • the indoor air is heated by heat exchange to heat the air-conditioning target space (indoor).
  • the refrigerant that has passed through the indoor expansion device 23 becomes, for example, an intermediate-pressure liquid refrigerant or a gas-liquid two-phase refrigerant, passes through the liquid pipe 203, flows into the inter-refrigerant heat exchanger 17, and further passes through the expansion device 15.
  • the refrigerant that has been reduced in pressure after passing through the expansion device 15 flows into the low-pressure pipe 201, is distributed to the outdoor unit 51 side and the outdoor unit 151 side at the refrigerant branch point 19, and flows into the outdoor unit 51 and the outdoor unit 151, respectively.
  • the refrigerant flowing into the outdoor unit 51 passes through the check valve 5b of the outdoor unit 51 and flows into the heat source side heat exchanger 2. Note that the refrigerant does not flow to the check valve 5a and check valve 5d side due to the pressure of the refrigerant.
  • the refrigerant evaporates by heat exchange with air while passing through the heat source side heat exchanger 2, and becomes a gas refrigerant. Then, the refrigerant passes through the four-way valve 3 and the accumulator 4 and returns to the compressor 1 to be discharged again. This is the refrigerant circulation path during the all-heating operation.
  • the refrigerant that has flowed into the outdoor unit 151 passes through the check valve 105b of the outdoor unit 151 and flows into the heat source side heat exchanger 102. Note that the refrigerant does not flow to the check valve 105a and the check valve 105d side due to the pressure of the refrigerant. The refrigerant evaporates by heat exchange with air while passing through the heat source side heat exchanger 102 and becomes a gas refrigerant. Then, the refrigerant passes through the four-way valve 103 and the accumulator 104 and returns to the compressor 101 to be discharged again. This is the refrigerant circulation path during the all-heating operation.
  • the air conditioner 500 having a plurality of outdoor units such as the air conditioner 500 according to the present embodiment, has a refrigerant bias between the outdoor units due to various factors, particularly during heating operation or heating main operation. There is. There is a correlation between the refrigerant bias and the degree of superheat (compressor suction superheat) at the outlet of the heat source side heat exchanger and the discharge superheat degree of the compressor. That is, when the amount of refrigerant in the outdoor unit decreases, the degree of superheat at the outlet of the heat source side heat exchanger and the degree of discharge superheat of the compressor increase. In other words, when the amount of refrigerant in the outdoor unit increases, the degree of superheat at the outlet of the heat source side heat exchanger and the degree of discharge superheat of the compressor decrease.
  • FIG. 3 is a flowchart relating to the control operation of the control unit during the heating operation of the air-conditioning apparatus according to the embodiment of the present invention.
  • the liquid equalization control during the heating operation of the air-conditioning apparatus according to the embodiment of the present invention will be described based on the steps in FIG.
  • Step S30a As shown in the following equation (1), the heat exchanger outlet superheat degree calculation means 38 calculates the saturation temperature Te1 from the suction pressure (low pressure) detected by the low pressure detection means 32, and detects the heat exchanger outlet temperature. By subtracting the saturation temperature Te1 from the temperature Thex1 detected by the means 35, the heat exchanger outlet superheat degree HEXSH1 is obtained.
  • HEXSH1 Thex1-Te1 (1)
  • the heat exchanger outlet superheat degree calculating means 138 calculates the saturation temperature Te2 from the discharge pressure (low pressure) detected by the low pressure detecting means 132, and the heat exchanger outlet By subtracting this saturation temperature Te2 from the temperature Thex2 detected by the temperature detection means 135, the heat exchanger outlet superheat degree HEXSH2 is obtained.
  • HEXSH2 Thex2-Te2 (2)
  • the control unit 20 proceeds to (Step S30b).
  • the heat exchanger outlet superheat degree calculation means 38 and 138 are used to determine the heat exchanger outlet superheat degrees HEXSH1 and HEXSH2.
  • the present invention is not limited to this, and the controller 20 obtains the heat exchanger outlet superheat degrees. May be.
  • the heat exchanger outlet superheat degrees HEXSH1 and HEXSH2 correspond to the “first superheat degree” in the present invention.
  • the compressor discharge superheat degree calculation means 137 calculates the saturation temperature Tc2 from the discharge pressure (high pressure) detected by the high pressure detection means 131, and detects the compressor discharge temperature.
  • the discharge superheat degree TdSH2 of the compressor 101 is obtained by subtracting the saturation temperature Tc2 from the discharge temperature Td2 detected by the means 134.
  • TdSH2 Td2-Tc2 (4)
  • the control unit 20 proceeds to (Step S31).
  • the compressor discharge superheat degrees TdSH1 and TdSH2 are obtained by the compressor discharge superheat degree calculation means 37 and 137, but the present invention is not limited to this, and is obtained by the control unit 20. Also good.
  • the discharge superheat degrees TdSH1 and TdSH2 of the compressor correspond to the “second superheat degree” in the present invention.
  • Step S31 The control unit 20 determines whether or not the heat exchanger outlet superheat degree HEXSH1 and the heat exchanger outlet superheat degree HEXSH2 are both greater than a preset reference value A.
  • the control unit 20 proceeds to (Step S32). In this case, the process proceeds to (Step S33).
  • Step S32 The control unit 20 determines whether or not the discharge superheat degree TdSH1 of the compressor 1 and the discharge superheat degree TdSH2 of the compressor 101 are both larger than a preset reference value B.
  • the control unit 20 performs normal operation of the blower 6 and the blower 106. While performing, the process proceeds to (Step S31). In other cases, the process proceeds to (Step S33) to perform liquid leveling control.
  • Step S33 The control unit 20 acquires the temperature of the outside air sucked by the outdoor unit 51 and the outdoor unit 151 from the outside air temperature detection unit 36 and the outside air temperature detection unit 136, and determines whether or not the temperature of the outside air is higher than the reference temperature C. If the outside air temperature is higher than the reference temperature C, the control unit 20 proceeds to (Step S34), and otherwise, proceeds to (Step S36).
  • Step S34 The control unit 20 acquires information on the operating capacity of the indoor unit 53 from the indoor unit operating capacity calculating unit 41 and the indoor unit operating capacity calculating unit 141, and determines whether or not the operating capacity of the indoor unit 53 is smaller than the reference capacity D. To do. When the operation capacity of the indoor unit 53 is smaller than the reference capacity D, the control unit 20 proceeds to (Step S35), and otherwise, proceeds to (Step S36).
  • Step S35 The control unit 20 sets the maximum value of the operation output of the blower 6 and the blower 106 to E, which is the same value as the output of the blower during normal operation. Thereafter, the control unit 20 proceeds to (Step S39).
  • the time of normal operation means the time of heating operation when liquid leveling control is not performed, and the maximum output of the blower in that case is the maximum value E of the operation output of the blower.
  • Step S36 The control unit 20 determines the blower operation output doubling coefficient H according to the temperature of the outside air and the operation capacity of the indoor unit 53. However, the blower operation output doubling coefficient H is set to a value larger than 1. Thereafter, the control unit 20 proceeds to (Step S37).
  • Step S37 The control unit 20 determines that the heating load is high and increases the operation output from the normal operation of the blower. Therefore, the controller 20 multiplies E, which is the operation output of the blower during the normal operation, by a fan operation output doubling factor H, The value is determined as the blower air volume maximum value F. Thereafter, the control unit 20 proceeds to (Step S38).
  • Step S38 The control unit 20 sets the operation output that exceeds the operation output of the blower during normal operation, with the maximum value of the operation output of the blower as the blower airflow maximum value F. Thereafter, the control unit 20 proceeds to (Step S39).
  • Step S39 The control unit 20 determines whether or not TdSH1> TdSH2. If TdSH1> TdSH2, the control unit 20 proceeds to (Step S40), and otherwise proceeds to (Step S41).
  • Step S40 The control unit 20 decreases the operation output of the blower 6 and increases the operation output of the blower 106. Thereafter, the control unit 20 proceeds to (Step S31).
  • Step S41 The control unit 20 increases the operation output of the blower 6 and decreases the operation output of the blower 106. Thereafter, the control unit 20 proceeds to (Step S31).
  • the case where the liquid leveling means by the blower has a small heat exchanger capacity on the outdoor unit 51 side with respect to the refrigerant circulation amount and the liquid refrigerant is unevenly distributed on the outdoor unit 51 side will be described as an example.
  • the heat source side heat from the refrigerant branch point 19 with respect to the refrigerant circulation amount of the compressor 1 and the compressor 101 The degree of superheat to the outlet of the exchanger 2 is made equal to the degree of superheat from the refrigerant branch point 19 to the outlet of the heat source side heat exchanger 102.
  • what is necessary is just to make discharge superheat degree of the compressor 1 and the compressor 101 more than a reference value or equivalent.
  • TdSH1> TdSH2 is determined, and the heat exchanger outlet superheat degree HEXSH1 of the heat source side heat exchanger 2 and the heat exchanger outlet superheat degree HEXSH2 of the heat source side heat exchanger 102 are the reference values.
  • each superheat degree is made to become a reference value. For this purpose, at least the operating output of the blower 6 is increased and the evaporator heat exchange capacity on the outdoor unit 51 side is increased, thereby increasing the degree of superheat at the outlet of the heat source side heat exchanger 2, that is, the degree of dryness. Increase the degree of discharge superheat.
  • the outlet superheat degree of the heat source side heat exchanger 102 that is, the dryness is lowered, and the compressor 101 Reduce discharge superheat.
  • the superheat degree of the heat source side heat exchanger 2 that is, the dry degree
  • the superheat degree of the outlet of the heat source side heat exchanger 102 that is, the dry degree
  • the liquid refrigerant is unevenly distributed on the outdoor unit 51 side. That is solved. That is, by increasing the operation output of the blower 6 or decreasing the operation output of the blower 106, the value of TdSH1 and the value of TdSH2 can be brought close to each other, the refrigerant flow rate flowing to the outdoor unit 51 side, and the outdoor unit 151 side The flowing refrigerant flow rate can be adjusted.
  • liquid leveling control for selecting the maximum output of the blower of the outdoor unit is performed by determining the air conditioning load according to the outdoor temperature and the indoor unit operating capacity. As a result, it is possible to ensure the required heating capacity and perform liquid leveling control to prevent an increase in the noise of the blower of the outdoor unit when the air conditioning load is small.
  • the refrigerant employed in the refrigeration cycle apparatus is not particularly limited.
  • carbon dioxide a natural refrigerant such as hydrocarbon or helium
  • a refrigerant such as R410A, R32, R407C, R404A, HFO1234yf, or the like.
  • R410A, R32, R407C, R404A, HFO1234yf or the like.
  • an air conditioner including a plurality of outdoor units equipped with a compressor, a heat source side heat exchanger, and a blower, and an indoor unit equipped with an indoor side heat exchanger.
  • An unbalance in the amount of refrigerant in the plurality of outdoor units from the first superheat degree of the refrigerant flowing out from the heat source side heat exchanger and the second superheat degree of the refrigerant discharged from the compressor A control unit that executes liquid leveling control by controlling the operation output of the blower when the air temperature is generated, the control unit has an outdoor temperature greater than a predetermined value, and the indoor unit When the operating capacity is less than a predetermined value, the maximum value of the operating output of the blower is maintained, and when the outdoor temperature is lower than a predetermined value, or when the outdoor temperature is higher than a predetermined value, the indoor unit When the operating capacity is equal to or greater than a predetermined value, the blower The maximum value of the driving output so as to increase.
  • adjusting the output of the blower in the outdoor unit and adjusting the output of the compressor frequency, the state of the refrigerant flowing into the heat source side heat exchanger (refrigerant dryness) and the flow rate that is, the outdoor unit It is possible to perform liquid leveling control of each indoor unit while controlling both of the flow rate of the circulating refrigerant) and preventing a decrease in the refrigerant circulation rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

室外機の送風機の騒音増加の発生頻度を抑制する空気調和装置を得ることを目的とする。制御部は、室外温度が基準温度より大きく、かつ、室内機の運転容量が基準容量未満である場合には、送風機を通常運転時の運転出力の最大値の範囲内で均液制御を実行し、室外温度が基準温度以下の場合、又は、室外温度が基準温度以上より大きく室内機の運転容量が基準容量以上である場合には、送風機を通常運転時の運転出力の最大値より増加させて均液制御を実行するものである。

Description

空気調和装置
 本発明は、複数の室外機を1つの冷媒系統で室内機と接続した空気調和装置に関し、特に各室外機の冷媒量の均等化を図る空気調和装置に関するものである。
 空気調和装置の大容量化に応じるため、複数の室外機を備えた空気調和装置が開発されている。このような複数の室外機を備えた空気調和装置は、種々の要因によって各室外機間に冷媒の偏りが生じる場合がある。そこで、従来から、各室外機間に生じる冷媒の偏りの是正(均液)を図った空気調和装置が提案されている。
 例えば、特許文献1に記載された空気調和装置は、圧縮機、四方切換弁、熱交換器及びアキュムレータを搭載した室外機を複数台搭載し、熱交換器から流出する冷媒の過熱度を演算する熱交換器出口過熱度演算手段と、圧縮機から吐出する冷媒の過熱度を演算する圧縮機吐出過熱度演算手段とを備えている。また、当該空気調和装置は、熱交換器出口過熱度演算手段、及び、圧縮機吐出過熱度演算手段の演算値によって、前記アキュムレータの液冷媒量の不均衡を判断し、均液制御を実行する均液制御手段を備えている。
 そして、当該空気調和装置は、室外機に熱交換器に空気を供給するための送風機を設け、均液制御手段は、熱交換器出口過熱度演算手段、及び、圧縮機吐出過熱度演算手段の演算値に基づき送風機の運転出力を制御する。さらに、空気調和装置の均液制御手段は、熱交換器から流出する冷媒の過熱度、及び、圧縮機から吐出される冷媒の過熱度を予め設定してある基準値に収束させることで均液制御を実行している。
特開2008-249259号公報
 特許文献1に記載の冷媒の均液制御では、熱交換器に空気を供給するための送風機を用いて均液制御を行う。具体的には、空気調和装置の均液制御手段は、2台以上接続された空気調和装置の一方の送風機の風量を低下させ、他方の送風機の風量を増加させることで均液制御を行っている。ところで、この均液制御を行う際に、空気調和装置に掛かる負荷によっては、一方の送風機の風量を通常時より増加させる必要がある。しかし、一方の送風機の風量を通常時より増加させると室外機の騒音が大きくなるため、これを避けるには、他方の送風機の風量をより減少させる必要がある。しかし、他方の送風機の風量をより減少させると、空気調和装置の運転能力が低下してしまう。そこで、この空気調和装置の運転能力の低下を避けるため、送風機の風量を増加させて均液制御を行わなければならないが、送風機の風量を通常時より常に増加させる均液制御が行われた場合、室外機の騒音が大きくなるという問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、各室外機の冷媒量の均等化を図る際の室外機の送風機の騒音増加を抑制する空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、及び送風機を搭載した複数の室外機と、室内側熱交換器を搭載した室内機と、を備えた空気調和装置であって、暖房運転時又は暖房主体運転時において、前記熱源側熱交換器から流出する冷媒の第一の過熱度と、前記圧縮機から吐出する冷媒の第二の過熱度とから、前記複数の室外機において冷媒量の不均衡が発生していると判断したとき、前記冷媒量が多い方の室外機の送風機の運転出力を増加させ、前記冷媒量の少ない方の室外機の送風機の運転出力を低下させることで均液制御を実行する制御部を備え、前記制御部は、室外温度が基準温度より大きく、かつ、前記室内機の運転容量が基準容量未満である場合には、前記送風機を通常運転時の運転出力の最大値の範囲内で均液制御を実行し、室外温度が基準温度以下の場合、又は、室外温度が基準温度以上より大きく前記室内機の運転容量が基準容量以上である場合には、前記送風機を通常運転時の運転出力の最大値より増加させて均液制御を実行するものである。
 本発明によれば、制御部は、室外温度が所定の値より大きく、かつ、室内機の運転容量が所定の値未満である場合には、送風機を通常運転時の運転出力にして均液制御を実行し、室外温度が所定の値以下の場合、又は、室外温度が所定の値以上より大きく室内機の運転容量が所定の値以上である場合には、送風機を通常運転時の運転出力より増加させて均液制御を実行する。このようにすることで、送風機の運転出力の最大値を常に増加させることがなくなるので、室外機の送風機の騒音増加を抑制することが可能な空気調和装置を得ることができる。
本発明の実施の形態に係る空気調和装置の概略冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房運転時の冷媒回路図である。 本発明の実施形態に係る空気調和装置の暖房運転時の制御部の制御動作に係るフローチャートである。
 以下、本発明の空気調和装置の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態.
[空気調和装置の冷媒回路の説明]
 図1は、本発明の実施の形態に係る空気調和装置の概略冷媒回路図である。図1に基づいて、空気調和装置500の冷媒回路の構成について説明する。空気調和装置500は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷房運転及び暖房運転を行うものである。図1に示されるように、空気調和装置500は、熱源側ユニットとして室外機51及び室外機151を備え、負荷側ユニットとして室内機53a、室内機53bを備えている。そして、室外機51及び室外機151が、低圧管201及び高圧管202によって分流コントローラ52に接続され、さらに分流コントローラ52から室内機53a及び室内機53bに並列接続され、冷凍サイクル回路が構成されている。また、空気調和装置500は、後述する制御部20を備えている。なお、図1に示す空気調和装置500はあくまでも一例であり、室外機を3つ以上備えてもよいし、室内機を1つ又は3つ以上にしてもよい。
 室外機51は、圧縮機1、熱源側熱交換器2、四方弁3、アキュムレータ4、逆止弁5a、5b、5c、5d及び送風機6を備える。また、室外機51は、高圧圧力検知手段31、低圧圧力検知手段32、圧縮機吐出温度検知手段34、熱交換器出口温度検知手段35、外気温度検知手段36、圧縮機吐出過熱度演算手段37、熱交換器出口過熱度演算手段38及び室内機運転容量演算手段41を備えている。
 圧縮機1は、冷媒を吸引し、その冷媒を圧縮して高温、高圧の状態にするものである。圧縮機1の吐出側には、四方弁3が接続されている。四方弁3は、圧縮機1から吐出された冷媒の流路を熱源側熱交換器2へ流れる流路、又は室内機53a及び室内機53bへ流れる流路へ切り替えるものである。また、四方弁3は、アキュムレータ4とも接続されており、熱源側熱交換器2又は室内機53a及び室内機53bから流入した冷媒をアキュムレータ4へ送るようになっている。
 なお、本実施の形態において流路切替弁として四方弁を例に挙げたが、本発明はこれに限定されず、例えば二方弁又は三方弁等を組み合わせて構成してもよい。
 送風機6は、ファン等で構成されており、熱源側熱交換器2に空気を送風するための機能を有している。アキュムレータ4は、過剰な冷媒を貯留するものであり、過剰な冷媒を貯留できる容器である。なお、本実施の形態において空気調和装置500にアキュムレータ4を設けた例を示したが、空気調和装置500の使用態様によってはアキュムレータ4を設けなくてもよい。
 室外機151は、圧縮機1と同様に、圧縮機101、熱源側熱交換器102、四方弁103、アキュムレータ104、逆止弁105a、105b、105c、105d及び送風機106を備える。また、室外機151は、高圧圧力検知手段131、低圧圧力検知手段132、圧縮機吐出温度検知手段134、熱交換器出口温度検知手段135、外気温度検知手段136、圧縮機吐出過熱度演算手段137、熱交換器出口過熱度演算手段138及び室内機運転容量演算手段141を備えている。
 圧縮機101は、冷媒を吸引し、その冷媒を圧縮して高温、高圧の状態にするものである。圧縮機101の吐出側には、四方弁103が接続されている。四方弁103は、圧縮機101から吐出された冷媒の流路を熱源側熱交換器102へ流れる流路、又は室内機53a及び室内機53bへ流れる流路へ切り替えるものである。また、四方弁103は、アキュムレータ104とも接続されており、熱源側熱交換器102又は室内機53a及び室内機53bから流入した冷媒をアキュムレータ104へ送るようになっている。
 なお、本実施の形態において流路切替弁として四方弁を例に挙げたが、本発明はこれに限定されず、例えば二方弁又は三方弁等を組み合わせて構成してもよい。
 送風機106は、ファン等で構成されており、熱源側熱交換器102に空気を送風するための機能を有している。アキュムレータ104は、過剰な冷媒を貯留するものであり、過剰な冷媒を貯留できる容器である。なお、本実施の形態において空気調和装置500にアキュムレータ4を設けた例を示したが、空気調和装置500の使用態様によってはアキュムレータ104を設けなくてもよい。
 四方弁3、及び四方弁103は、冷暖房運転の形態(モード)に対応した弁の切替を行い、冷媒の経路が切り替わるようにする。本実施の形態では、全冷房運転時(ここでは、空調を行っているすべての室内機が冷房をしているときの運転をいう)、冷房主体運転時(冷暖房同時運転のうち、冷房負荷が大きい運転をいう)と、全暖房運転時(ここでは、空調を行っているすべての室内機が暖房をしているときの運転をいう)、暖房主体運転時(冷暖房同時運転のうち、暖房負荷が大きい運転をいう)によって経路が切り替わるようにする。
 熱源側熱交換器2、及び熱源側熱交換器102は、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィンを有し、冷媒と空気(外気)との熱交換を行う。例えば、全暖房運転時、暖房主体運転時においては蒸発器として機能し、例えば冷媒を蒸発させて気化させる。一方、全冷房運転時、冷房主体運転時においては凝縮器として機能し、例えば冷媒を凝縮して液化させる。場合によっては、例えば冷房主体運転時のように、完全にガス化、液化するのではなく、液体とガスとの二相混合(気液二相状態)の状態まで凝縮する等の調整が行われる。
 本実施の形態の空気調和装置500は、室外機51、室外機151、及び室内機53a、室内機53b、並びに分流コントローラ52で構成する。本実施の形態では、冷媒の流れを制御するために室外機51、室外機151と室内機53a、室内機53bとの間に分流コントローラ52を設け、これらの機器の間を各種冷媒配管により配管接続する。また、複数台の室内機53a及び53bについては、互いに並列となるように接続する。なお、例えば室内機53a、室内機53b等において、特に区別したり、特定したりする必要がない場合には、以下、a、bの添え字を省略して室内機53と称する。また、本実施の形態において空気調和装置500に分流コントローラ52を設けた例を示したが、空気調和装置500の使用態様によっては分流コントローラ52を設けなくてもよい。
 配管接続については、室外機51、室外機151と分流コントローラ52との間は、低圧管201と高圧管202とにより接続する。ここで、室外機51及び室外機151と、低圧管201との間には、低圧管201からの冷媒を分岐させて、室外機51及び室外機151に冷媒を導く冷媒分岐点19が設けられている。一方、室外機51及び室外機151と、高圧管202との間には、室外機51及び室外機151からの冷媒を合流させて高圧管202に導く冷媒合流点18が設けられている。高圧管202には室外機51及び室外機151側から分流コントローラ52側に高圧の冷媒が流れる。また、低圧管201には、高圧管202を流れる冷媒に比べて低圧の冷媒が分流コントローラ52側から室外機51、室外機151に流れる。ここで、圧力の高低については、基準となる圧力(数値)との関係により定められているものではなく、圧縮機1及び圧縮機101の加圧、各絞り装置(流量制限装置)の開閉(開度)状態の制御等により、冷媒回路内において、相対的な高低(中間を含む)に基づいて表すものであるとする。
 一方、分流コントローラ52と室内機53aとは、液管203aとガス管204aとにより接続される。同様に、室内機53bとは、液管203bとガス管204bとにより接続される。なお、液管203a及び液管203bとを特に区別しない場合は、液管203と称し、同様にガス管204a及びガス管204bとを特に区別しない場合は、ガス管204と称する。低圧管201、高圧管202、液管203、ガス管204による配管接続により、室外機51、室外機151、分流コントローラ52及び室内機53の間を冷媒が循環し、冷媒回路が構成される。
 室外機51の逆止弁5a、5b、5c、5dは冷媒が逆流することを防止して冷媒の流れを整え、冷媒の循環経路を運転モードに合わせ一定にするものである。逆止弁5aは四方弁3と低圧管201との間の配管上に位置し、低圧管201から四方弁3の方向への冷媒流れを許容する。逆止弁5bは熱源側熱交換器2と低圧管201との間の配管上に位置し、低圧管201から熱源側熱交換器2の方向への冷媒流れを許容する。逆止弁5cは、四方弁3と高圧管202との間の配管上に位置し、四方弁3から高圧管202への冷媒流れを許容する。逆止弁5dは、熱源側熱交換器2と高圧管202との間の配管上に位置し、熱源側熱交換器2から高圧管202の方向への冷媒流れを許容する。
 同様に、室外機151の逆止弁105a、105b、105c、105dは冷媒が逆流することを防止して冷媒の流れを整え、冷媒の循環経路をモードに合わせ一定にするものである。逆止弁105aは四方弁103と低圧管201との間の配管上に位置し、低圧管201から四方弁103の方向への冷媒流れを許容する。逆止弁105bは熱源側熱交換器102と低圧管201との間の配管上に位置し、低圧管201から熱源側熱交換器102の方向への冷媒流れを許容する。逆止弁105cは、四方弁103と高圧管202との間の配管上に位置し、四方弁103から高圧管202への冷媒流れを許容する。逆止弁105dは、熱源側熱交換器102と高圧管202との間の配管上に位置し、熱源側熱交換器102から高圧管202の方向への冷媒流れを許容する。
 圧縮機1の吐出側における配管上に冷媒の圧力を検知する高圧圧力検知手段31を取り付け、圧縮機1の吸入側の配管上には、暖房運転時における熱源側熱交換器2の出口側に係る冷媒の圧力を検知するための低圧圧力検知手段32を取り付けている。また、室外機51には、圧縮機1の高圧側(吐出側)に係る冷媒の温度を検出するための圧縮機吐出温度検知手段34が取り付けられている。また、室外機51には、暖房運転時における熱源側熱交換器2の出口側の冷媒の温度を検出するための熱交換器出口温度検知手段35が取り付けられている。また、室外機51には、室外機51の周囲の外気温度を検知する外気温度検知手段36が取り付けられている。なお、高圧圧力検知手段31及び低圧圧力検知手段32は、圧力センサ等によって構成されている。また、圧縮機吐出温度検知手段34、熱交換器出口温度検知手段35及び外気温度検知手段36はサーミスタ等の温度センサにより構成されている。
 さらに、室外機51は、圧縮機吐出過熱度演算手段37、熱交換器出口過熱度演算手段38、及び室内機運転容量演算手段41を備え、これらは例えばマイクロコンピュータにより構成されている。圧縮機吐出過熱度演算手段37は、圧縮機1から吐出する冷媒の過熱度を演算する。熱交換器出口過熱度演算手段38は、熱源側熱交換器2から流出する冷媒の過熱度を演算する。また、室内機運転容量演算手段41は、室内機53についての運転容量を演算する。加えて、室外機51は、後述する制御部20と接続されている。制御部20は例えばマイクロコンピュータにより構成されている。なお、本実施の形態において、室外機51に圧縮機吐出過熱度演算手段37、熱交換器出口過熱度演算手段38、及び室内機運転容量演算手段41をそれぞれ設けた例を示したが、本発明はこれに限定されず、上記の各演算手段を1つに集約した演算手段を設けてもよいし、別々に演算手段を設けてもよい。
 圧縮機101の吐出側における配管上に冷媒の圧力を検知する高圧圧力検知手段131を取り付け、圧縮機101の吸入側の配管上には、暖房運転時における熱源側熱交換器102の出口側に係る冷媒の圧力を検知するための低圧圧力検知手段132を取り付けている。また、室外機151には、圧縮機101の高圧側(吐出側)に係る冷媒の温度を検出するための圧縮機吐出温度検知手段134が取り付けられている。また、室外機151には、暖房運転時における熱源側熱交換器102の出口側の冷媒の温度を検出するための熱交換器出口温度検知手段135が取り付けられている。また、室外機151には、室外機151の周囲の外気温度を検知する外気温度検知手段136が取り付けられている。なお、高圧圧力検知手段131及び低圧圧力検知手段132は、圧力センサ等によって構成されている。また、圧縮機吐出温度検知手段134、熱交換器出口温度検知手段135及び外気温度検知手段136はサーミスタ等の温度センサにより構成されている。
 さらに、室外機151は、圧縮機吐出過熱度演算手段137、熱交換器出口過熱度演算手段138、及び室内機運転容量演算手段141を備え、これらは例えばマイクロコンピュータにより構成されている。圧縮機吐出過熱度演算手段137は、圧縮機101から吐出する冷媒の過熱度を演算する。熱交換器出口過熱度演算手段138は、熱源側熱交換器102から流出する冷媒の過熱度を演算する。また、室内機運転容量演算手段141は、室内機53についての運転容量を演算する。加えて、室外機151は、後述する制御部20と接続されている。なお、本実施の形態において、室外機151に圧縮機吐出過熱度演算手段137、熱交換器出口過熱度演算手段138、及び室内機運転容量演算手段141をそれぞれ設けた例を示したが、本発明はこれに限定されず、上記の各演算手段を1つに集約した演算手段を設けてもよいし、別々に演算手段を設けてもよい。
 次に、分流コントローラ52について説明する。分流コントローラ52が有する気液分離器11は、高圧管202から流れる冷媒をガス冷媒と液冷媒とに分離する。ガス冷媒が流れ出る気相部(図示せず)は、電磁弁12a及び電磁弁12bと接続する。一方、液冷媒が流れ出る液相部(図示せず)は、冷媒間熱交換器16と接続する。
 分流コントローラ内の電磁弁12a、電磁弁12b及び電磁弁13a、電磁弁13bは、運転モードに基づいて開閉する。電磁弁12aの一端は気液分離器11と接続し、他端はガス管204aと接続する。電磁弁12bの一端は気液分離器11と接続し、他端は204bと接続する。また、電磁弁13a一端はガス管204aと接続し、他端は低圧管201と接続する。電磁弁13bの一端は204bと接続し、他端は低圧管201と接続する。電磁弁12a、電磁弁12b及び電磁弁13a、電磁弁13bを組み合わせることにより、運転モードに基づいて室内機53側から低圧管201側に冷媒が流れるようにするか、又は気液分離器11側から室内機53側に冷媒が流れるように弁を切り替える。ここでは電磁弁12a、電磁弁12b及び電磁弁13a、電磁弁13bにより冷媒の流れを切り替えているが、例えば三方弁等を用いてもよい。
 絞り装置14は、冷媒間熱交換器16と冷媒間熱交換器17との間に設けられ、冷房運転、暖房運転の運転モードに基づいて開度を制御し、気液分離器11から流れる冷媒流量及び冷媒の圧力を調整する。一方、絞り装置15は、開度を制御し、冷媒流量及び冷媒の圧力を調整する。絞り装置15を通過した冷媒は、後述するように、冷媒間熱交換器17及び冷媒間熱交換器16において、冷媒間熱交換器17及び冷媒間熱交換器16を流れる冷媒を過冷却し、低圧管201に流れることになる。なお、絞り装置14及び絞り装置15は、例えば開度を変化させることができる電子式膨張弁等で構成しているものとする。
 冷媒間熱交換器17は、絞り装置15の下流部分の冷媒(絞り装置15を通過した冷媒)と、絞り装置14から流れてくる冷媒との間で熱交換を行う。また、冷媒間熱交換器16は、冷媒間熱交換器17を通過した冷媒と、気液分離器11から絞り装置14の方向に流れる液冷媒との間で熱交換を行う。
 次に、室内機53aの構成について説明する。室内機53aは、室内側熱交換器22a及び室内側熱交換器22aに近接して直列接続した室内側絞り装置23aを有している。室内側熱交換器22aは、上述した熱源側熱交換器2と同様に、冷房運転の際は蒸発器となり、暖房運転の際は凝縮器となって、空調対象空間の空気と冷媒の間で熱交換を行う。ここで、各室内側熱交換器22aの近辺に、冷媒と空気との熱交換を効率よく行うための送風機を設けてもよい。
 同様に、室内機53bは、室内側熱交換器22b及び室内側熱交換器22bに近接して直列接続した室内側絞り装置23bを有している。室内側熱交換器22bは、上述した熱源側熱交換器2と同様に、冷房運転の際は蒸発器となり、暖房運転の際は凝縮器となって、空調対象空間の空気と冷媒の間で熱交換を行う。ここで、各室内側熱交換器22bの近辺に、冷媒と空気との熱交換を効率よく行うための送風機を設けてもよい。
 ここで、室内側熱交換器22a及び室内側熱交換器22bを特に区別しない場合は、室内側熱交換器22と称し、同様に、室内側絞り装置23a及び室内側絞り装置23bを特に区別しない場合は、室内側絞り装置23と称する。
 室内側絞り装置23は、減圧弁又は膨張弁として機能し、室内側熱交換器22を通過する冷媒の圧力を調整する。ここで、室内側絞り装置23は、例えば開度を変化させることができる電子式膨張弁等で構成しているものとする。そして、室内側絞り装置23の開度については、冷房運転時には室内側熱交換器22の冷媒出口側(ここではガス管204側となる)の過熱度に基づいて決定する。また、暖房運転時には冷媒出口側(ここでは液管203側となる)の過冷却度に基づいて決定する。
 以上のように構成した本実施の形態の空気調和装置500は、上述したように、全冷房運転、全暖房運転、冷房主体運転及び暖房主体運転の4つの形態(モード)のいずれかによる運転を行うことができる。
[暖房運転時の説明]
 次に全暖房運転における各機器の動作及び冷媒の流れについて説明する。ここでは、すべての室内機53が停止することなく暖房を行っている場合について説明する。図2は本発明の実施の形態に係る空気調和装置の暖房運転時の冷媒回路図である。全暖房運転時の冷媒の流れは図2に実線矢印で示している。図2に示されるように、室外機51において、圧縮機1は、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。圧縮機1が吐出した冷媒は、四方弁3、逆止弁5cを流れ(逆止弁5a、逆止弁5d側には流れない)、さらに冷媒合流点18を経由し、高圧管202を通って分流コントローラ52に流入する。
 室外機151についても同様に、圧縮機101は、吸入した冷媒を圧縮し、高圧のガス冷媒を吐出する。圧縮機101が吐出した冷媒は、四方弁103、逆止弁105cを流れる(逆止弁105a、逆止弁105d側には流れない)。そして、冷媒合流点18で室外機51から流出した冷媒と合流し、高圧管202を通って分流コントローラ52に流入する。
 一方、分流コントローラ52では、電磁弁12a及び電磁弁12bを開放させ、電磁弁13a及び電磁弁13bを閉止させておく。分流コントローラ52へ流入したガス冷媒の一部は気液分離器11、電磁弁12a及びガス管204aを通過し、室内機53aに流入する。同様に、分流コントローラ52へ流入した残りのガス冷媒は気液分離器11、電磁弁12b及びガス管204bを通過し、室内機53bに流入する。
 室内機53においては、室内側絞り装置23の開度調整により、室内側熱交換器22内を流れる冷媒の流量を調整する。そして、高圧のガス冷媒は、室内側熱交換器22内を通過する間に熱交換により凝縮して液冷媒となり、室内側絞り装置23を通過する。このとき、熱交換により室内空気を加熱して空調対象空間(室内)の暖房を行う。
 室内側絞り装置23を通過した冷媒は、例えば中間圧の液冷媒又は気液二相冷媒となり、液管203を通過して、冷媒間熱交換器17に流れ、さらに絞り装置15を通過する。絞り装置15を通過して減圧した冷媒は、低圧管201に流れ、冷媒分岐点19で室外機51側及び室外機151側に分配されて、室外機51及び室外機151にそれぞれ流入する。
 室外機51に流入した冷媒は、室外機51の逆止弁5bを通過し、熱源側熱交換器2に流入する。なお、冷媒は、冷媒の圧力の関係で逆止弁5a及び逆止弁5d側には流れない。冷媒は、熱源側熱交換器2を通過する間に空気との熱交換により蒸発してガス冷媒となる。そして、冷媒は、四方弁3、アキュムレータ4を経て、再び圧縮機1に戻って吐出される。これが全暖房運転時の冷媒の循環経路となる。
 同様に、室外機151に流入した冷媒は、室外機151の逆止弁105bを通過し、熱源側熱交換器102に流入する。なお、冷媒は、冷媒の圧力の関係で逆止弁105a及び逆止弁105d側には流れない。冷媒は、熱源側熱交換器102を通過する間に空気との熱交換により蒸発してガス冷媒となる。そして、冷媒は、四方弁103、アキュムレータ104を経て、再び圧縮機101に戻って吐出される。これが全暖房運転時の冷媒の循環経路となる。
[均液制御の説明]
 次に均液制御について説明する。本実施の形態に係る空気調和装置500のように複数の室外機を備えた空気調和装置500は、特に暖房運転時又は暖房主体運転時に種々の要因によって各室外機間に冷媒の偏りが生じる場合がある。そして、この冷媒の偏りと熱源側熱交換器の出口における過熱度(圧縮機の吸入過熱度)及び圧縮機の吐出過熱度との間には、相関関係がある。つまり、室外機内の冷媒量が少なくなると、熱源側熱交換器の出口における過熱度及び圧縮機の吐出過熱度が大きくなる。換言すると、室外機内の冷媒量が多くなると、熱源側熱交換器の出口における過熱度及び圧縮機の吐出過熱度が小さくなる。
 図3は、本発明の実施の形態に係る空気調和装置の暖房運転時の制御部の制御動作に係るフローチャートである。図1を参照しながら、図3の各ステップに基づいて、本発明の実施の形態に係る空気調和装置の暖房運転時の均液制御について説明する。
(ステップS30a)
 次式(1)に示すように、熱交換器出口過熱度演算手段38は、低圧圧力検知手段32で検知された吸入圧力(低圧圧力)から飽和温度Te1を計算し、熱交換器出口温度検知手段35によって検知される温度Thex1からこの飽和温度Te1を減算することにより、熱交換器出口過熱度HEXSH1を求める。
 HEXSH1=Thex1-Te1…(1)
 また、次式(2)に示すように、熱交換器出口過熱度演算手段138は、低圧圧力検知手段132で検知された吐出圧力(低圧圧力)から飽和温度Te2を計算し、熱交換器出口温度検知手段135によって検知される温度Thex2からこの飽和温度Te2を減算することにより、熱交換器出口過熱度HEXSH2を求める。
 HEXSH2=Thex2-Te2…(2)
 その後、制御部20は、(ステップS30b)へ移行する。
 なお、本実施の形態において熱交換器出口過熱度演算手段38、138により熱交換器出口過熱度HEXSH1、HEXSH2を求める例を示したが、本発明はこれに限定されず、制御部20により求めてもよい。また、熱交換器出口過熱度HEXSH1、HEXSH2は、本発明における「第一の過熱度」に相当する。
(ステップS30b)
 次式(3)に示すように、圧縮機吐出過熱度演算手段37は、高圧圧力検知手段31で検知された吐出圧力(高圧圧力)から飽和温度Tc1を計算し、圧縮機吐出温度検知手段34によって検知される吐出温度Td1から、この飽和温度Tc1を減算することにより、圧縮機1の吐出過熱度TdSH1を求める。
 TdSH1=Td1-Tc1…(3)
 また、次式(4)に示すように、圧縮機吐出過熱度演算手段137は、高圧圧力検知手段131で検知された吐出圧力(高圧圧力)から飽和温度Tc2を計算し、圧縮機吐出温度検知手段134によって検知される吐出温度Td2から、この飽和温度Tc2を減算することにより、圧縮機101の吐出過熱度TdSH2を求める。
 TdSH2=Td2-Tc2…(4)
 その後、制御部20は、(ステップS31)へ移行する。
 なお、本実施の形態において圧縮機吐出過熱度演算手段37、137により圧縮機の吐出過熱度TdSH1、TdSH2を求める例を示したが、本発明はこれに限定されず、制御部20により求めてもよい。また、圧縮機の吐出過熱度TdSH1、TdSH2は、本発明における「第二の過熱度」に相当する。
 室外機51と室外機151とに均等に冷媒が分配されている場合、理想的にはTdSH1=TdSH2の関係が成り立つ。一方、室外機51内の冷媒保持量と室外機151内の冷媒保持量との間に差が生じた場合、室外機内の冷媒保持量に応じて、圧縮機1の吐出過熱度TdSH1と圧縮機101の吐出過熱度TdSH2との間に差が生じる。例えば、室外機51内の冷媒保持量よりも室外機151内の冷媒保持量の方が少なくなった場合、TdSH1<TdSH2となる。
(ステップS31)
 制御部20は、熱交換器出口過熱度HEXSH1と、熱交換器出口過熱度HEXSH2とが、共に予め設定してある基準値Aよりも大きいかどうかを判断する。制御部20は、熱交換器出口過熱度HEXSH1と、熱交換器出口過熱度HEXSH2とが、共に予め設定してある基準値Aよりも大きい場合は、(ステップS32)へ移行し、それ以外の場合は、(ステップS33)へ移行する。
(ステップS32)
 制御部20は、圧縮機1の吐出過熱度TdSH1と、圧縮機101の吐出過熱度TdSH2とが、共に予め設定してある基準値Bよりも大きいかどうかを判断する。制御部20は、圧縮機1の吐出過熱度TdSH1と、圧縮機101の吐出過熱度TdSH2とが、共に予め設定してある基準値Bよりも大きい場合は、送風機6及び送風機106の通常運転を行いながら(ステップS31)へ移行し、それ以外の場合は、(ステップS33)へ移行して均液制御を行う。
(ステップS33)
 制御部20は、外気温度検知手段36及び外気温度検知手段136から、室外機51及び室外機151が吸い込む外気の温度を取得し、外気の温度が基準温度Cより大きいか否かを判断する。外気の温度が基準温度Cより大きい場合は、制御部20は、(ステップS34)へ移行し、それ以外の場合は、(ステップS36)へ移行する。
(ステップS34)
 制御部20は、室内機運転容量演算手段41及び室内機運転容量演算手段141から室内機53の運転容量の情報を取得し、室内機53の運転容量が基準容量Dより小さいか否かを判断する。室内機53の運転容量が基準容量Dより小さい場合は、制御部20は、(ステップS35)へ移行し、それ以外の場合は、(ステップS36)へ移行する。
(ステップS35)
 制御部20は、送風機6及び送風機106の運転出力の最大値を、通常運転時の送風機の出力と同じ値であるEに設定する。その後、制御部20は、(ステップS39)へ移行する。なお、通常運転時とは、均液制御を行わない場合の暖房運転時のことを意味し、その場合の送風機の最大出力を送風機の運転出力の最大値Eとする。
(ステップS36)
 制御部20は、外気の温度及び室内機53の運転容量に応じて送風機運転出力倍増係数Hを決定する。ただし、送風機運転出力倍増係数Hは1より大きい値とする。その後、制御部20は、(ステップS37)へ移行する。
(ステップS37)
 制御部20は、暖房負荷が高いと判断し、送風機の通常運転時より運転出力を増加させるため、通常運転時の送風機の運転出力であるEに、送風機運転出力倍増係数Hを乗じて、その値を送風機風量最大値Fとして決定する。その後、制御部20は、(ステップS38)へ移行する。
(ステップS38)
 制御部20は、送風機の運転出力の最大値を送風機風量最大値Fとして、通常運転時の送風機の運転出力を超えた運転出力を設定する。その後、制御部20は、(ステップS39)へ移行する。
(ステップS39)
 制御部20は、TdSH1>TdSH2であるか否かを判断する。TdSH1>TdSH2の場合は、制御部20は、(ステップS40)へ移行し、それ以外の場合は、(ステップS41)へ移行する。
(ステップS40)
 制御部20は、送風機6の運転出力を低下させると共に、送風機106の運転出力を増加させる。その後、制御部20は、(ステップS31)へ移行する。
(ステップS41)
 制御部20は、送風機6の運転出力を増加させると共に、送風機106の運転出力を低下させる。その後、制御部20は、(ステップS31)へ移行する。
 ここで、例えば、送風機による均液手段を冷媒循環量に対して室外機51側の熱交換器能力が小さく、室外機51側に液冷媒が偏在する場合を例として説明する。圧縮機1と圧縮機101の冷媒吐出量が、望ましい割合で冷媒が分流する状態にするためには、圧縮機1と圧縮機101の冷媒循環量に対して、冷媒分岐点19から熱源側熱交換器2の出口までの過熱度と、冷媒分岐点19から熱源側熱交換器102の出口までの過熱度とを同等とする。さらに、圧縮機1及び圧縮機101の吐出過熱度を基準値以上あるいは同等とすればよい。
 このことから、(ステップS39)において、TdSH1>TdSH2を判定し、熱源側熱交換器2の熱交換器出口過熱度HEXSH1と熱源側熱交換器102の熱交換器出口過熱度HEXSH2が基準値となるようにする。かつ、圧縮機1の吐出過熱度TdSH1と圧縮機101の吐出過熱度TdSH2をもとに、それぞれの過熱度が基準値となるようにする。そのためには、少なくとも送風機6の運転出力を増加させ、室外機51側の蒸発器熱交換容量を増加させることで熱源側熱交換器2の出口過熱度、すなわち乾き度を増加させると共に圧縮機1の吐出過熱度を増加させる。
 また、送風機106の運転出力を減少させ、室外機151側の蒸発器熱交換容量を低下させることで、熱源側熱交換器102の出口過熱度、すなわち乾き度を低下させると共に、圧縮機101の吐出過熱度を低下させる。
 このため、熱源側熱交換器2の過熱度、すなわち乾き度、及び熱源側熱交換器102出口の過熱度、すなわち乾き度を同等とすることができ、室外機51側に液冷媒が偏在することが解消される。つまり、送風機6の運転出力の増加、又は、送風機106の運転出力の減少によって、TdSH1の値とTdSH2の値とを近づけることができ、室外機51側に流れる冷媒流量と、室外機151側に流れる冷媒流量とを調整することができる。
 このように、室外温度、及び室内機運転容量に応じて空調負荷を判断することで、室外機の送風機の最大出力を選択する均液制御を行う。これにより、必要な暖房能力の確保、及び空調負荷が小さい場合には室外機の送風機の騒音の増大を防止する均液制御が可能となる。
 この均液制御は、冷凍サイクル装置に採用する冷媒は特に限定されることはなく、例えば二酸化炭素、又は炭化水素、ヘリウムのような自然冷媒から、R410A、R32、R407C、R404A、HFO1234yfなどの冷媒を使用することが可能である。
 以上のことから、本実施の形態によれば、圧縮機、熱源側熱交換器、及び送風機を搭載した複数の室外機と、室内側熱交換器を搭載した室内機と、を備えた空気調和装置であって、前記熱源側熱交換器から流出する冷媒の第一の過熱度と、前記圧縮機から吐出する冷媒の第二の過熱度とから、前記複数の室外機において冷媒量の不均衡が発生していると判断したとき、前記送風機の運転出力を制御することで均液制御を実行する制御部を備え、前記制御部は、室外温度が所定の値より大きく、かつ、前記室内機の運転容量が所定の値未満である場合には、前記送風機の運転出力の最大値を維持し、室外温度が所定の値以下の場合、又は、室外温度が所定の値以上より大きく前記室内機の運転容量が所定の値以上である場合には、前記送風機の運転出力の最大値を増加させるようにする。このようにすることで、室外機の送風機の騒音増加を抑制することが可能な空気調和装置を得ることができる。
 また、暖房運転時において、室外機内の送風機の出力の調整と圧縮機周波数の出力の調整をして熱源側熱交換器に流入する冷媒の状態(冷媒乾き度)と流量(つまり、室外機を循環する冷媒の流量)の両者を制御し、冷媒循環量の低下を防ぎながら各室内機の均液制御を行うことができる。
 1 圧縮機、2 熱源側熱交換器、3 四方弁、4 アキュムレータ、5a 逆止弁、5b 逆止弁、5c 逆止弁、5d 逆止弁、6 送風機、11 気液分離器、12a 電磁弁、12b 電磁弁、13a 電磁弁、13b 電磁弁、14 絞り装置、15 絞り装置、16 冷媒間熱交換器、17 冷媒間熱交換器、18 冷媒合流点、19 冷媒分岐点、20 制御部、22 室内側熱交換器、22a 室内側熱交換器、22b 室内側熱交換器、23 室内側絞り装置、23a 室内側絞り装置、23b 室内側絞り装置、31 高圧圧力検知手段、32 低圧圧力検知手段、34 圧縮機吐出温度検知手段、35 熱交換器出口温度検知手段、36 外気温度検知手段、37 圧縮機吐出過熱度演算手段、38 熱交換器出口過熱度演算手段、41 室内機運転容量演算手段、51 室外機、52 分流コントローラ、53 室内機、53a 室内機、53b 室内機、101 圧縮機、102 熱源側熱交換器、103 四方弁、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 送風機、131 高圧圧力検知手段、132 低圧圧力検知手段、134 圧縮機吐出温度検知手段、135 熱交換器出口温度検知手段、136 外気温度検知手段、137 圧縮機吐出加熱度演算手段、138 熱交換器出口過熱度演算手段、141 室内機運転容量演算手段、151 室外機、201 低圧管、202 高圧管、203 液管、203a 液管、203b 液管、204 ガス管、204a ガス管、204b ガス管、500 空気調和装置。

Claims (3)

  1.  圧縮機、熱源側熱交換器、及び送風機を搭載した複数の室外機と、室内側熱交換器を搭載した室内機と、を備えた空気調和装置であって、
     暖房運転時又は暖房主体運転時において、前記熱源側熱交換器から流出する冷媒の第一の過熱度と、前記圧縮機から吐出する冷媒の第二の過熱度とから、前記複数の室外機において冷媒量の不均衡が発生していると判断したとき、前記冷媒量が多い方の室外機の送風機の運転出力を増加させ、前記冷媒量の少ない方の室外機の送風機の運転出力を低下させることで均液制御を実行する制御部を備え、
     前記制御部は、
     室外温度が基準温度より大きく、かつ、前記室内機の運転容量が基準容量未満である場合には、前記送風機を通常運転時の運転出力の最大値の範囲内で均液制御を実行し、
     室外温度が基準温度以下の場合、又は、室外温度が基準温度以上より大きく前記室内機の運転容量が基準容量以上である場合には、前記送風機を通常運転時の運転出力の最大値より増加させて均液制御を実行する
     空気調和装置。
  2.  前記制御部は、
     前記圧縮機の吸入側の冷媒の低圧圧力、及び、前記熱源側熱交換器の出口側の冷媒の温度により、前記第一の過熱度を演算し、
     前記圧縮機の吐出側の冷媒の高圧圧力、及び、前記圧縮機の吐出側の冷媒の温度により、前記第二の過熱度を演算する
     請求項1に記載の空気調和装置。
  3.  前記制御部は、前記第一の過熱度のそれぞれ、及び、前記第二の過熱度のそれぞれを基準値に収束するように前記送風機を運転制御する
     請求項2に記載の空気調和装置。
PCT/JP2015/067868 2015-06-22 2015-06-22 空気調和装置 WO2016207947A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/067868 WO2016207947A1 (ja) 2015-06-22 2015-06-22 空気調和装置
JP2017524289A JP6370489B2 (ja) 2015-06-22 2015-06-22 空気調和装置
GB1800124.8A GB2555063B (en) 2015-06-22 2015-06-22 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067868 WO2016207947A1 (ja) 2015-06-22 2015-06-22 空気調和装置

Publications (1)

Publication Number Publication Date
WO2016207947A1 true WO2016207947A1 (ja) 2016-12-29

Family

ID=57585188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067868 WO2016207947A1 (ja) 2015-06-22 2015-06-22 空気調和装置

Country Status (3)

Country Link
JP (1) JP6370489B2 (ja)
GB (1) GB2555063B (ja)
WO (1) WO2016207947A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361834A (zh) * 2018-02-06 2018-08-03 青岛海尔空调器有限总公司 一拖多空调的控制方法、装置及空调器
CN109612018A (zh) * 2018-11-26 2019-04-12 宁波奥克斯电气股份有限公司 一种调节空调器排气过热度的控制方法及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258129B2 (ja) * 2019-05-21 2023-04-14 三菱電機株式会社 空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142010A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
JP2008249259A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍空気調和装置
JP2010261715A (ja) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp 空気調和装置
JP2011085390A (ja) * 2005-10-25 2011-04-28 Mitsubishi Electric Corp 空気調和装置
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機
WO2014054154A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142010A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 冷凍空気調和装置
JP2011085390A (ja) * 2005-10-25 2011-04-28 Mitsubishi Electric Corp 空気調和装置
JP2008249259A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍空気調和装置
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機
JP2010261715A (ja) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp 空気調和装置
WO2014054154A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361834A (zh) * 2018-02-06 2018-08-03 青岛海尔空调器有限总公司 一拖多空调的控制方法、装置及空调器
CN109612018A (zh) * 2018-11-26 2019-04-12 宁波奥克斯电气股份有限公司 一种调节空调器排气过热度的控制方法及空调器

Also Published As

Publication number Publication date
JPWO2016207947A1 (ja) 2018-01-25
GB2555063A (en) 2018-04-18
GB2555063B (en) 2020-08-19
GB201800124D0 (en) 2018-02-21
JP6370489B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
CN108027179B (zh) 空气调节机
EP3467406A1 (en) Air conditioner
JP6479162B2 (ja) 空気調和装置
JP6067025B2 (ja) 空気調和装置
WO2013145006A1 (ja) 空気調和装置
JP6223469B2 (ja) 空気調和装置
US10415846B2 (en) Air-conditioning apparatus
CN109791003B (zh) 空调装置
CN109791007B (zh) 空调装置
JP6644131B2 (ja) 空気調和装置
WO1998009118A1 (fr) Conditionneur d'air
WO2017138108A1 (ja) 空気調和装置
US20190249912A1 (en) Air conditioner
JPWO2019053876A1 (ja) 空気調和装置
JPWO2019058506A1 (ja) 空気調和装置
JP6370489B2 (ja) 空気調和装置
JP6246394B2 (ja) 空気調和装置
WO2016170575A1 (ja) 冷凍サイクル装置
JP6949126B2 (ja) 空気調和装置
JP2012137241A (ja) 空気調和装置
GB2555258A (en) Air conditioning device
WO2014054154A1 (ja) 空気調和装置
JP2011058749A (ja) 空気調和装置
JP6198945B2 (ja) 空気調和装置
JP6704520B2 (ja) 中継機および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201800124

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150622

122 Ep: pct application non-entry in european phase

Ref document number: 15896270

Country of ref document: EP

Kind code of ref document: A1