WO2016206343A1 - 一种非对称船型的光顺方法 - Google Patents

一种非对称船型的光顺方法 Download PDF

Info

Publication number
WO2016206343A1
WO2016206343A1 PCT/CN2015/099883 CN2015099883W WO2016206343A1 WO 2016206343 A1 WO2016206343 A1 WO 2016206343A1 CN 2015099883 W CN2015099883 W CN 2015099883W WO 2016206343 A1 WO2016206343 A1 WO 2016206343A1
Authority
WO
WIPO (PCT)
Prior art keywords
stern
ship
line
asymmetric
smoothing
Prior art date
Application number
PCT/CN2015/099883
Other languages
English (en)
French (fr)
Inventor
许培才
刘天夫
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Priority to EP15896226.6A priority Critical patent/EP3316153A4/en
Publication of WO2016206343A1 publication Critical patent/WO2016206343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the invention relates to the technical field of ships, and in particular to a smoothing method of an asymmetric ship type.
  • the smoothing criterion has the following: second-order smooth continuity, no extra inflection point, uniform curvature change, no excess deflection point, and uniform change in torsion.
  • the smoothness of the hull line type is achieved by smoothing the mutually orthogonal hull curves of X (cross section line), Y (longitudinal line) and Z (water line).
  • the above method can solve the smoothing of a part of the hull line type, for the asymmetric ship type, for example, the stern line type is asymmetrical left and right, and the stern outline is not at the middle longitudinal plane, if the existing orthogonal planes are interpolated with each other
  • the smoothing method due to the special reason of the linear twisting transition in the stern outline area, Lines (one of the Tribon systems for smoothing modules) cannot be arranged in an inherently regular manner when interpolating the waterline and the longitudinal section. Data points, the order of the data of each type of line is disordered, and it is impossible to directly smooth.
  • the object of the present invention is to provide a smoothing method which can be applied to the smoothing of an asymmetric ship type.
  • the smoothing workload is reduced and the smoothing cycle is shortened.
  • Step one dividing the hull of the asymmetric ship into a plurality of regions
  • Step 2 the line type of the area near the stern contour line is smoothed by the Pline line, and the line type of the other area of the asymmetric ship adopts orthogonal interpolation smoothing;
  • Step 3 Combine the line types of each area after smoothing
  • Step four generating a whole ship patch of the asymmetric ship
  • step five the entire ship Surface of the asymmetric ship is derived.
  • the hull of the asymmetric ship is divided into a bow and a stern at the bow, the bow is divided into a first bow and a second bow, and the first bow and the second bow are
  • the middle longitudinal plane of the hull is symmetrical with respect to each other
  • the stern contour is asymmetrical with respect to the middle longitudinal plane of the hull
  • the stern is divided into a first stern and a second stern
  • the first stern and the second stern are divided
  • the interface includes a mid-longitudinal and stern outline.
  • the first stern and the second stern after smoothing are merged into a smooth stern, and the smoothed first bow and second bow are merged into smoothing.
  • the bow of the ship then merges the smoothed stern and the smoothed bow into a smooth line of the entire ship.
  • the smoothed first stern cross section line and the first stern water line are disposed at a position opposite to the second stern cross section line and The setting position of the second stern line is staggered to ensure that the merger is smooth and the data points are arranged in order.
  • the distance between the set position of the smoothed first stern cross section line and the first stern water line and the second stern cross section line and the second stern water line is offset by 500 mm.
  • the smoothing of the entire ship line type is smoothed after the smoothing.
  • the existing bow contour, the stern contour line, the flat edge line, the flat bottom line, the stern shaft exit line and the highest water line are called out.
  • Whole ship patch boundary the range of a single patch boundary cannot cross lines and arcs at the same time, the number of single patch boundaries is less than or equal to 4 but try to avoid 3; by gradually increasing the boundary line and repeating the adjustment Try to create a complete ship patch that meets design and production requirements.
  • step 5 before the entire ship surface of the asymmetric ship is derived, an output ship type project is established, and the whole ship patch generated in the step 4 is added to the output ship type project; Add the stern outline to the Surface and output it together. Release the Surface file ⁇ GLHULL> with the "Release" command and import the file into the server for subsequent modeling.
  • the smoothing method of the asymmetric ship type in the present invention is that the asymmetric ship line type is divided into several different areas for smoothing, wherein the area near the complicated stern contour line is smoothed by the Pline line, and other areas are used.
  • the smoothing is performed by orthogonal interpolation; then the different regions after smoothing are merged.
  • the smoothing method combining Pline line and orthogonal interpolation the problem that the orthogonal interpolation smoothing can not solve the disordered arrangement of the horizontal line and the waterline data point is solved, and the smoothing problem of the asymmetric ship type line type is solved; By segmenting the reasonable area of the whole ship, the region of curvature change is decomposed into small relatively flat areas, which simplifies the complex line type, reduces the smoothing difficulty, and shortens the smoothing period.
  • Figure 1 is a line drawing of an asymmetric ship type provided by an embodiment of the present invention.
  • the stern contour line 2. The first stern cross-section line; 3. The first stern waterline; 4. The second stern cross-section line; 5. The second stern waterline; 6. The highest waterline; 7. The stern axis Export line.
  • Figure 1 is a line drawing of an asymmetric ship type provided by an embodiment of the present invention.
  • the Pline line is a three-dimensional curve for smoothing of the hull line type (for example, the Pline line for the linear smoothing of the hull in the Lines module of the Tribon system); the whole ship patch is the grid unit constituting the hull surface.
  • Surface refers to a digitized hull surface data packet.
  • a smoothing method for an asymmetric ship type the asymmetric ship has an asymmetrical stern, the line of the stern outline Type distortion, the steps are as follows:
  • the hull of the asymmetric ship is divided into a plurality of regions.
  • the hull of the asymmetric ship is divided into a bow and a stern at the bow, the bow is divided into a first bow and a second bow, and the first bow and the second bow are symmetrical with each other in a symmetrical plane of the hull, the stern
  • the contour 1 is asymmetrical with respect to the mid-longitudinal surface of the hull, the stern being divided into a first stern and a second stern, and the interface between the first stern and the second stern includes a mid-longitudinal and stern contour 1.
  • the line shape of the area near the stern contour line 1 is smoothed by the Pline line, and the line types of other areas of the asymmetric ship are orthogonally interpolated.
  • the range of the area around the stern contour 1 which is smoothed by the Pline line mentioned in the present invention can be selected according to the size of the hull.
  • the range of the region near the stern contour 1 which is smoothed by the Pline line mentioned in the present invention may be selected according to the curvature variation characteristics of the hull line shape.
  • an asymmetric ship with a displacement of 115,000 tons is taken as an example.
  • the vicinity is: in the lateral direction of the hull, from the stern contour 1 to the port 2.25 m, from the stern contour 1 to the starboard side at 0.01 m; In the longitudinal direction, the length direction of the port side is -4.6 to 34 m, and the length direction of the starboard is -4.6 to 25.6 m.
  • Step 3 Combine the line types of each area after smoothing, merge the smoothed first stern and the second stern into a smooth stern, and merge the smoothed first bow and second bow into smoothing.
  • the bow of the ship then merges the smoothed stern and the smoothed bow into a smooth line of the entire ship.
  • step four a complete ship patch of the asymmetric ship is generated.
  • step five the entire ship Surface of the asymmetric ship is derived.
  • the first stern cross section 2 and the first stern line 3 are arranged after the smoothing and the second stern cross section 4 and the
  • the setting position of the two stern water lines 5 is staggered to ensure smooth integration and data points in order.
  • the distance between the set position of the smoothed first stern cross section 2 and the first stern line 3 and the set position of the second stern cross section 4 and the second stern line 5 is 500 mm, and the stagger distance
  • the size may be determined on a case-by-case basis and is not limited to 500 mm.
  • the splicing of the whole ship line type is partially smoothed, and the joints of the combined ship type line type should be mainly checked and corrected, and the area with irregular curvature is partially corrected.
  • the highest waterline 6 of the entire ship type needs to be processed to make a whole ship waterline for the convenience of subsequent life. Into a patch.
  • step 4 before the new patch boundary line is generated, the existing bow contour line, the stern contour line 1, the flat side line, the flat bottom line, the stern shaft exit line 7 and the highest water line 6 need to be called out as a whole ship patch. Boundary; the range of a single patch boundary cannot cross straight lines and arcs at the same time. The number of single patch boundaries is less than or equal to 4, but try to avoid 3, to eliminate the resulting patched corner points. By gradually increasing the boundary line Repeated commissioning to create a complete ship patch that meets design and production requirements. Since the number of patches having a boundary number of 3 is as small as possible, the number of patches having a boundary number of 3 can be reduced. For example, the number of patches with a boundary number of 3 is minimized.
  • step 5 before exporting the entire ship's Surface, the output ship type project needs to be established, and the whole ship patch generated in step 4 is added to the output ship type project; at the same time, the complex space curve is added to the Surface and output together. , release the Surface file ⁇ GLHULL> through the "Release" command, and import the file into the server for subsequent modeling use.

Abstract

一种非对称船型的光顺方法,涉及船舶技术领域,非对称船具有非对称船尾,船尾轮廓线的线型扭曲,所述方法包括以下步骤:步骤一,将所述非对称船的船体分为多个区域;步骤二,所述船尾轮廓线附近区域的线型采用Pline线进行光顺,非对称船的其他区域的线型采用正交插值光顺;步骤三,合并光顺后各区域的线型;步骤四,生成所述非对称船的整船Patch;步骤五,导出所述非对称船的整船Surface。所述方法能够克服以往光顺方法不能用于非对称船型的缺点,减少光顺工作量,缩短光顺周期。

Description

一种非对称船型的光顺方法
本专利申请要求于2015年06月23日提交的,申请号为201510351739.1,申请人为广船国际有限公司,发明名称为“一种非对称船型的光顺方法”的中国专利申请的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本发明涉及船舶技术领域,尤其涉及一种非对称船型的光顺方法。
背景技术
光顺是CAD/CAM(Computer Aided Design/Computer Aided Manufacturing)中非常重要的问题,在飞机、船舶、汽车及模具等外形设计中有重要应用。对于曲线而言,光顺准则有如下几种:二阶光滑连续性,没有多余的拐点,曲率变化均匀,没有多余变挠点,挠率变化均匀。目前船体线型的光顺,是通过对X(横剖线)、Y(纵剖线)和Z(水线)三组相互正交的船体曲线进行光顺来实现的。首先对横剖线进行光顺,然后对纵剖线重新插值并进行光顺,最后对水线进行插值并光顺;待纵剖线和水线均光顺完毕后,更新横剖线并继续光顺,如此循环,直到符合设计和生产要求的光顺程度为止。虽然以上方法能解决一部分船体线型的光顺,但是对于非对称船型,例如船尾部线型左右不对称,且船尾轮廓线不在中纵面处的情况,如果用现有的正交面相互插值的光顺方法,由于船尾轮廓线区域的线型扭曲过渡的特殊原因,插值水线和纵剖线时,Lines(Tribon系统其中一个用于光顺线型的模块)无法按固有规律排列每个数据点,每条型线的数据排列顺序产生紊乱,根本无法直接进行光顺。况且,由于线型不对称,无法像对称船型那样只光顺左舷线型,船体左右舷线型都必须分别进行光顺,工作量将比对称船型多出不止两倍。
发明内容
本发明的目的在于提出一种光顺方法,能够适用于非对称船型的光顺,使 得光顺工作量减少,缩短光顺周期。
为达此目的,本发明采用以下技术方案:
一种非对称船型的光顺方法,所述非对称船具有非对称船尾,船尾轮廓线的线型扭曲,所述光顺方法包括以下步骤:
步骤一,将所述非对称船的船体分为多个区域;
步骤二,所述船尾轮廓线附近区域的线型采用Pline线进行光顺,非对称船的其他区域的线型采用正交插值光顺;
步骤三,合并光顺后各区域的线型;
步骤四,生成所述非对称船的整船Patch;
步骤五,导出所述非对称船的整船Surface。
进一步的技术方案,所述步骤一中,所述非对称船的船体在船舯处分为船首和船尾,所述船首分为第一船首和第二船首,所述第一船首和第二船首以船体的中纵面为对称面而相互对称,所述船尾轮廓线相对船体的中纵面不对称,所述船尾分为第一船尾和第二船尾,所述第一船尾和第二船尾的分界面包括中纵面和船尾轮廓线。
进一步的技术方案,所述步骤三中,将光顺后的所述第一船尾、第二船尾合并为光顺后的船尾,将光顺后的第一船首、第二船首合并为光顺后的船首,然后将所述光顺后的船尾和光顺后的船首合并为光顺后的整船线型。
进一步的技术方案,所述光顺后的第一船尾和第二船尾合并时,所述光顺后的第一船尾横剖线和第一船尾水线的设置位置与第二船尾横剖线和第二船尾水线的设置位置错开,用于保证合并顺利、数据点按顺序排列。
进一步的技术方案,所述光顺后的第一船尾横剖线和第一船尾水线的设置位置与第二船尾横剖线和第二船尾水线的设置位置错开的距离为500mm。
进一步的技术方案,所述光顺后整船线型的合缝处进行局部光顺。
进一步的技术方案,所述步骤四中,在生成新的Patch边界线前,将已存在的船首轮廓线、船尾轮廓线、平边线、平底线、船尾轴出口线及最高水线调出用作整船Patch边界;单个Patch边界的范围不能同时跨越直线和弧线,单个Patch边界的个数小于等于4但尽量避免为3;通过逐步增加边界线并反复调 试,创建满足设计和生产要求的整船Patch。
进一步的技术方案,所述步骤五中,导出所述非对称船的整船Surface前,建立输出船型项目,并将所述步骤四中生成的整船Patch添加到所述输出船型项目中;同时,将船尾轮廓线添加到Surface中一同输出,通过“Release”指令释放出Surface文件<GLHULL>,并将该文件导入到服务器中以供后续建模使用。
本发明的有益效果:
本发明中的非对称船型的光顺方法,是将该非对称船线型分为几个不同区域分别进行光顺,其中比较复杂的船尾轮廓线处附近区域利用Pline线进行光顺,其他区域通过正交插值光顺;然后再将分别光顺后的不同区域合并。通过Pline线与正交插值相结合的光顺方法,解决了正交插值光顺无法解决的横剖线与水线数据点排列顺序紊乱的问题,解决了非对称船型线型的光顺问题;通过对整船合理的区域分割,将曲率剧变区域分解成小的相对平缓区域,使复杂的线型简单化,降低了光顺难度,缩短了光顺周期。
附图说明
图1是本发明具体实施方式提供的非对称船型的型线图。
1、船尾轮廓线;2、第一船尾横剖线;3、第一船尾水线;4、第二船尾横剖线;5、第二船尾水线;6、最高水线;7、船尾轴出口线。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图1是本发明具体实施方式提供的非对称船型的型线图。
本发明中,Pline线是用于船体线型光顺的三维曲线(如,Tribon系统的Lines模块中用于船体线形光顺的Pline线);整船Patch,即为组成船体曲面的网格单元;Surface是指数字化的船体曲面数据包。
一种非对称船型的光顺方法,非对称船具有非对称船尾,船尾轮廓线的线 型扭曲,步骤如下:
步骤一,将非对称船的船体分为多个区域。优选地,将非对称船的船体在船舯处分为船首和船尾,船首分为第一船首和第二船首,第一船首和第二船首以船体的中纵面为对称面而相互对称,船尾轮廓线1相对船体的中纵面不对称,船尾分为第一船尾和第二船尾,第一船尾和第二船尾的分界面包括中纵面和船尾轮廓线1。
步骤二,船尾轮廓线1附近区域的线型采用Pline线进行光顺,非对称船的其他区域的线型采用正交插值光顺。本发明中提到的采用Pline线进行光顺的船尾轮廓线1附近区域的范围可根据船体的大小不同选择不同的尺寸。或者,本发明中提到的采用Pline线进行光顺的船尾轮廓线1附近区域的范围可根据船体线形的曲率变化特征选择不同的尺寸。本发明中以11.5万吨排水量的非对称船为例,该附近区域为:在船体横向方向上,由船尾轮廓线1至左舷2.25m处,由船尾轮廓线1至右舷0.01m处;在船体长度方向上,左舷的长度方向范围为-4.6~34m,右舷的长度方向范围-4.6~25.6m。
步骤三,合并光顺后各区域的线型,将光顺后的第一船尾、第二船尾合并为光顺后的船尾,将光顺后的第一船首、第二船首合并为光顺后的船首,然后将光顺后的船尾和光顺后的船首合并为光顺后的整船线型。
步骤四,生成非对称船的整船Patch。
步骤五,导出非对称船的整船Surface。
步骤三中,光顺后的第一船尾和第二船尾合并时,光顺后的第一船尾横剖线2和第一船尾水线3的设置位置与第二船尾的横剖线4和第二船尾水线5的设置位置错开,用于保证合并顺利、数据点按顺序排列。具体地,光顺后的第一船尾横剖线2和第一船尾水线3的设置位置与第二船尾横剖线4和第二船尾水线5的设置位置错开的距离为500mm,错开距离大小可根据具体情况而定,不限定为500mm。
合并后,对整船线型的合缝处进行局部光顺,对合并后的整船线型的合缝处左右应进行重点检查,对曲率不顺的区域进行局部修正。
该整船线型的最高水线6需进行处理,做成一条整船水线,以方便后续生 成Patch。
步骤四中,在生成新的Patch边界线前,需将已存在的船首轮廓线、船尾轮廓线1、平边线、平底线、船尾轴出口线7及最高水线6调出用作整船Patch边界;单个Patch边界的范围不能同时跨越直线和弧线,单个Patch边界的个数小于等于4,但尽量避免为3,用于消除由此而出现的退化的Patch角点;通过逐步增加边界线并反复调试,创建满足设计和生产要求的整船Patch。由于边界个数为3的Patch的个数越少越好,因此,可以缩减边界个数为3的Patch的数量。例如,将边界个数为3的Patch的数量最小化。
步骤五中,导出非对称船的整船Surface前,需建立输出船型项目,并将步骤四中生成的整船Patch添加到输出船型项目中;同时,将复杂的空间曲线添加到Surface中一同输出,通过“Release”指令释放出Surface文件<GLHULL>,并将该文件导入到服务器中以供后续建模使用。
显然,本发明的上述实施例仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

  1. 一种非对称船型的光顺方法,所述非对称船具有非对称船尾,船尾轮廓线的线型扭曲,其特征在于,所述方法包括以下步骤,
    步骤一,将所述非对称船的船体分为多个区域;
    步骤二,所述船尾轮廓线(1)附近区域的线型采用Pline线进行光顺,非对称船的其他区域的线型采用正交插值光顺;
    步骤三,合并光顺后各区域的线型;
    步骤四,生成所述非对称船的整船Patch;
    步骤五,导出所述非对称船的整船Surface。
  2. 根据权利要求1所述的非对称船型的光顺方法,其特征在于,所述步骤一中,所述非对称船的船体在船舯处分为船首和船尾,所述船首分为第一船首和第二船首,所述第一船首和第二船首以船体的中纵面为对称面而相互对称,所述船尾轮廓线(1)相对船体的中纵面不对称,所述船尾分为第一船尾和第二船尾,所述第一船尾和第二船尾的分界面包括中纵面和船尾轮廓线(1)。
  3. 根据权利要求1所述的非对称船型的光顺方法,其特征在于,所述步骤三中,将光顺后的所述第一船尾、第二船尾合并为光顺后的船尾,将光顺后的第一船首、第二船首合并为光顺后的船首,然后将所述光顺后的船尾和光顺后的船首合并为光顺后的整船线型。
  4. 根据权利要求3所述的非对称船型的光顺方法,其特征在于,所述光顺后的第一船尾和第二船尾合并时,所述光顺后的第一船尾横剖线(2)和第一船尾水线(3)的设置位置与第二船尾横剖线(4)和第二船尾水线(5)的设置位置错开,用于保证合并顺利、数据点按顺序排列。
  5. 根据权利要求4所述的非对称船型的光顺方法,其特征在于,所述光顺后的第一船尾横剖线(2)和第一船尾水线(3)的设置位置与第二船尾横剖线(4)和第二船尾水线(5)的设置位置错开的距离为500mm。
  6. 根据权利要求3所述的非对称船型的光顺方法,其特征在于,所述光顺后整船线型的合缝处进行局部光顺。
  7. 根据权利要求1所述的非对称船型的光顺方法,其特征在于,所述步骤四中,在生成新的Patch边界线前,将已存在的船首轮廓线、船尾轮廓线(1)、 平边线、平底线、船尾轴出口线(7)及最高水线(6)调出用作整船Patch边界;单个Patch边界的范围不同时跨越直线和弧线,单个Patch边界的个数小于等于4,且缩减边界个数为3的Patch的数量;通过逐步增加边界线并反复调试,创建满足设计和生产要求的整船Patch。
  8. 根据权利要求1所述的非对称船型的光顺方法,其特征在于,所述步骤五中,导出所述非对称船的整船Surface前,建立输出船型项目,并将所述步骤四中生成的整船Patch添加到所述输出船型项目中;同时,将复杂的空间曲线添加到Surface中一同输出,通过“Release”指令释放出Surface文件<GLHULL>,并将该文件导入到服务器中以供后续建模使用。
PCT/CN2015/099883 2015-06-23 2015-12-30 一种非对称船型的光顺方法 WO2016206343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15896226.6A EP3316153A4 (en) 2015-06-23 2015-12-30 PROFILING METHOD FOR AN ASYMMETRIC VESSEL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510351739.1A CN104915511B (zh) 2015-06-23 2015-06-23 一种非对称船型的光顺方法
CN201510351739.1 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016206343A1 true WO2016206343A1 (zh) 2016-12-29

Family

ID=54084574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099883 WO2016206343A1 (zh) 2015-06-23 2015-12-30 一种非对称船型的光顺方法

Country Status (3)

Country Link
EP (1) EP3316153A4 (zh)
CN (1) CN104915511B (zh)
WO (1) WO2016206343A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284577A (zh) * 2018-10-29 2019-01-29 中船黄埔文冲船舶有限公司 一种船体型线实尺放样转数学放样方法
CN110990951A (zh) * 2019-12-04 2020-04-10 中国直升机设计研究所 一种直升机外形设计方法
CN114519226A (zh) * 2022-02-14 2022-05-20 上海龙宫科技有限公司 一种适用于建筑cad设计软件的管状物光顺抗畸形绘制算法
CN114620200A (zh) * 2022-03-25 2022-06-14 中国舰船研究设计中心 一种基于catia的水面船舶型线精光顺方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915511B (zh) * 2015-06-23 2018-04-03 广船国际有限公司 一种非对称船型的光顺方法
CN107235119B (zh) * 2017-06-14 2019-07-19 中船黄埔文冲船舶有限公司 一种上建型线的光顺方法
CN107323607B (zh) * 2017-06-16 2019-12-03 中船黄埔文冲船舶有限公司 一种带尾滚筒的尾部舷墙型线的光顺方法
CN109263798B (zh) * 2018-10-25 2020-07-03 中船黄埔文冲船舶有限公司 一种艉柱不对称船舶船体型线放样方法
CN109263799B (zh) * 2018-10-25 2021-01-08 中船黄埔文冲船舶有限公司 一种船体型线光顺方法
CN114004014A (zh) * 2021-10-19 2022-02-01 中船重工奥蓝托无锡软件技术有限公司 基于nurbs的船体曲面自动建模系统
CN115042934B (zh) * 2022-06-21 2024-03-26 中船黄埔文冲船舶有限公司 一种复杂上建型线光顺方法
CN117371222B (zh) * 2023-10-23 2024-04-26 内蒙古工业大学 一种基于离散曲率及多级优化点的曲线光顺优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407246A (zh) * 2008-11-14 2009-04-15 大连船舶重工集团有限公司 船舶锚台锚链筒线型光顺与安装方法
CN104915511A (zh) * 2015-06-23 2015-09-16 广船国际有限公司 一种非对称船型的光顺方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029839A2 (en) * 2002-09-25 2004-04-08 Indian Institute Of Technology A method for modularization of ship hull
KR101365878B1 (ko) * 2011-08-22 2014-02-24 현대중공업 주식회사 비대칭 비틀림 유동제어 핀이 부착된 선박의 선미 구조부 형성 방법
CN103612707B (zh) * 2013-11-21 2016-01-06 江苏科技大学 直壁定湿长滑道式圆舭快艇艇型

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407246A (zh) * 2008-11-14 2009-04-15 大连船舶重工集团有限公司 船舶锚台锚链筒线型光顺与安装方法
CN104915511A (zh) * 2015-06-23 2015-09-16 广船国际有限公司 一种非对称船型的光顺方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, JIAYUAN ET AL.: "Hull Surface Combination and Hull Lines Fairing", GSI SHIPBUILDING TECHNOLOGY, 30 June 2003 (2003-06-30), pages 1 - 4, XP009504682 *
CHEN, MIAO ET AL.: "Research on hull configuration method of curve and surface based on NURBS", PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 6 August 2014 (2014-08-06), pages 862 - 867, XP032633692 *
LIU, FANGJIE ET AL.: "Application of Lines and Surface Modules of TRIBON system in Hull Lines Fairing", GSI SHIPBUILDING TECHNOLOGY, 30 June 2009 (2009-06-30), pages 24 - 27, XP009504663 *
See also references of EP3316153A4 *
SUN, GUOJIN ET AL.: "To Create Tribon Hull Surface from ''Body Plan'' in AutoCAD", GSI SHIPBUILDING TECHNOLOGY, 30 June 2007 (2007-06-30), pages 24 - 27 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109284577A (zh) * 2018-10-29 2019-01-29 中船黄埔文冲船舶有限公司 一种船体型线实尺放样转数学放样方法
CN109284577B (zh) * 2018-10-29 2022-12-30 中船黄埔文冲船舶有限公司 一种船体型线实尺放样转数学放样方法
CN110990951A (zh) * 2019-12-04 2020-04-10 中国直升机设计研究所 一种直升机外形设计方法
CN114519226A (zh) * 2022-02-14 2022-05-20 上海龙宫科技有限公司 一种适用于建筑cad设计软件的管状物光顺抗畸形绘制算法
CN114620200A (zh) * 2022-03-25 2022-06-14 中国舰船研究设计中心 一种基于catia的水面船舶型线精光顺方法
CN114620200B (zh) * 2022-03-25 2023-10-24 中国舰船研究设计中心 一种基于catia的水面船舶型线精光顺方法

Also Published As

Publication number Publication date
EP3316153A4 (en) 2019-03-13
CN104915511A (zh) 2015-09-16
CN104915511B (zh) 2018-04-03
EP3316153A1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2016206343A1 (zh) 一种非对称船型的光顺方法
CN107235119B (zh) 一种上建型线的光顺方法
CN108062073B (zh) 一种用于高质量加工的圆弧平滑压缩插补方法
CN111859556B (zh) 基于双四次Bezier曲面的离心叶轮设计方法及系统
CN108073138B (zh) 适用于高速高精加工的椭圆弧平滑压缩插补算法
CN109976262B (zh) 一种针对微线段加工的全局曲率连续光顺方法
CN109263798B (zh) 一种艉柱不对称船舶船体型线放样方法
CN109263799B (zh) 一种船体型线光顺方法
CN103761389B (zh) 一种复杂曲面的分层光顺方法
CN113505443A (zh) 一种任意外形的三维绕流问题自适应笛卡尔网格生成方法
US20130041635A1 (en) Methods and Systems for Designing Addendum Section of A Die in Sheet Metal Forming
US20160154400A1 (en) Tool path curve generation method and tool path curve generation apparatus
CN114662184A (zh) 一种t/k/y相贯结构的坡口建模方法
CN111259496A (zh) 一种基于离散点的曲线重构方法
CN107527385B (zh) 一种网格自动投影方法
CN114620200B (zh) 一种基于catia的水面船舶型线精光顺方法
CN113071628B (zh) 一种含轴包板的艉部型线的放样方法
CN103902786B (zh) 一种涡轮气冷动叶片伸根段外形参数化设计方法
CN109094721B (zh) 一种船体面板过渡型线设计方法
Chekalin et al. Design of engineering surfaces using quartic parabolas
JP2015001789A (ja) 曲面生成装置、曲面生成プログラム及び曲面生成方法
CN109783965B (zh) 一种结构网格自动分块加密方法
Jiang et al. Reparameterization of B-spline surface and its application in ship hull modeling
CN112231846A (zh) 飞机挂架网格生成及投影方法、装置、设备和存储介质
CN113742835B (zh) 一种双曲面幕墙的新型优化设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896226

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015896226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE