WO2016206269A1 - 功率变换装置及其设置方法 - Google Patents

功率变换装置及其设置方法 Download PDF

Info

Publication number
WO2016206269A1
WO2016206269A1 PCT/CN2015/093447 CN2015093447W WO2016206269A1 WO 2016206269 A1 WO2016206269 A1 WO 2016206269A1 CN 2015093447 W CN2015093447 W CN 2015093447W WO 2016206269 A1 WO2016206269 A1 WO 2016206269A1
Authority
WO
WIPO (PCT)
Prior art keywords
transform
power conversion
subunit
unit
power
Prior art date
Application number
PCT/CN2015/093447
Other languages
English (en)
French (fr)
Inventor
范杰
周建平
林国仙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15896158.1A priority Critical patent/EP3316469A4/en
Priority to US15/739,442 priority patent/US10284093B2/en
Publication of WO2016206269A1 publication Critical patent/WO2016206269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to the field of power conversion, and in particular to a power conversion device and a method for setting the same.
  • a single power converter adopts a two-stage structure, and a Power Factor Correction (PFC) unit implements an alternating current-direct current (AC-DC) pre-regulation, and the DC-DC conversion unit will pre- The stable voltage is converted to the required output voltage.
  • PFC Power Factor Correction
  • AC-DC alternating current-direct current
  • DC-DC conversion unit will pre- The stable voltage is converted to the required output voltage.
  • the switching device has relatively high stress and the volume of the magnetic component is correspondingly large, and there is no advantage in efficiency and volume in medium and high power applications.
  • it is common practice to achieve multi-phase parallel connection in the PFC unit or DC-DC unit which can reduce the stress of the device, reduce the volume of the magnetic device, improve the efficiency and heat dissipation, and reduce the input and output current patterns by using the interleaving control. wave.
  • the main technical problem to be solved by the present invention is to provide a power conversion device and a setting method thereof, which solve the problems of large volume and stress and complicated control of the existing power converter.
  • the present invention provides a power conversion apparatus including a boosting unit, at least two power conversion units; an input end of the power conversion unit is a dual input terminal, and an output terminal is a dual output terminal; The input end of the voltage unit is connected to one end of the alternating current power source, and the output end is connected to one of the input ends of the first one of the plurality of power conversion units; the last one of the plurality of power conversion units One of the inputs of the unit is connected to the other end of the alternating current power source; the input end is connected in series with the plurality of power conversion units, and the output ends are connected in parallel.
  • the power conversion unit includes a first transform subunit having a dual input terminal and a dual output terminal, and a second transform subunit;
  • the dual output ends of the first transform subunits of the respective power transform units are respectively connected to the dual input terminals of the second transform subunit;
  • the two output ends of the second transform subunits of the respective power conversion units are respectively connected in parallel;
  • the input ends of the first transform subunits of the respective power transform units are connected in series; and one input end of the first transform subunit of the first power transform unit is connected to the output end of the boost unit; One power conversion unit One of the inputs of the first conversion subunit is connected to the other end of the alternating current power source.
  • the first transform subunit is a non-isolated AC-DC transform subunit or a non-isolated DC-DC transform subunit
  • the second transform subunit is an isolated DC-DC transform sub. unit.
  • the non-isolated AC-DC transform subunit when the first transform subunit is a non-isolated AC-DC transform subunit, is an H bridge circuit transform subunit or a bidirectional switch H bridge. Circuit conversion subunit
  • the non-isolated DC-DC transform subunit is a half bridge circuit transform subunit
  • the isolated DC-DC transform subunit is an LLC half bridge circuit transform subunit or an LLC full bridge circuit transform subunit.
  • the power conversion apparatus when the first transform subunit is a non-isolated DC-DC transform subunit, the power conversion apparatus further includes a rectifying unit configured to convert the alternating current into a direct current, the first The input end of the first transform subunit of the power conversion unit is connected to one end of the alternating current power source through the boosting unit and the rectifying unit; the input end of the first transform subunit of the last power transform unit passes The rectifying unit is connected to the other end of the alternating current power source.
  • the power conversion unit includes a third transform subunit, and two outputs between the third transform subunits of the power transform units are respectively connected in parallel;
  • the input ends of the third transform subunits of the respective power transform units are connected in series; and one input end of the third transform subunit of the first power transform unit is connected to the output end of the boost unit; One of the inputs of the third transform subunit of a power conversion unit is coupled to the other end of the AC power source.
  • the third transform subunit is an isolated AC-DC transform subunit.
  • the boosting unit comprises at least one inductance.
  • the present invention also provides a power conversion device setting method
  • the power conversion device includes a boosting unit and at least two power conversion units, and the input end of the power conversion unit is a dual input terminal, and an output terminal a dual output terminal;
  • the method includes: connecting an input end of the boosting unit to one end of an alternating current power source, and connecting the output end to one of the first power conversion unit of the plurality of power conversion units Connecting one of the input ends of the last power conversion unit of the plurality of power conversion units to the other end of the alternating current power source; and connecting the input terminal with the plurality of power conversion units in series, the output end in parallel.
  • the power conversion device and the setting method thereof provided by the invention comprise a boosting unit and at least two power conversion units; the input end of the power conversion unit has two; the input end of the boosting unit is connected with one end of the alternating current power source, and the output end is One of the plurality of power conversion units is connected to one of the input terminals; one of the plurality of power conversion units is connected to the other end of the AC power source; the plurality of power conversion units The input terminals are connected in series and the outputs are connected in parallel. This can make the voltage stress and current stress on the switching device 1/N times that of the existing power conversion device, thereby reducing the switching and conduction loss, and the input inductance of the PFC unit is greatly under the same ripple condition. The drop further reduces the volume of the inductor and increases the power density. At the same time, the structure also enables the power conversion device of the present invention to have an automatic current sharing function, and the control is also simpler and more reliable.
  • FIG. 1 is a schematic structural diagram 1 of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram 2 of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram 3 of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram 1 of a non-isolated AC-DC conversion subunit according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram 2 of a non-isolated AC-DC conversion subunit according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram 3 of a non-isolated AC-DC conversion subunit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 4 of a non-isolated AC-DC conversion subunit according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram 1 of a non-isolated DC-DC conversion subunit according to an embodiment of the present invention.
  • FIG. 9 is a second schematic structural diagram of a non-isolated DC-DC conversion subunit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 1 of an isolated DC-DC conversion subunit according to an embodiment of the present invention.
  • FIG. 11 is a second schematic structural diagram of an isolated DC-DC conversion subunit according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 3 of an isolated DC-DC conversion subunit according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram 4 of an isolated DC-DC transform subunit according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a power conversion device composed of the non-isolated AC-DC conversion subunit of FIG. 4 and the isolated DC-DC conversion subunit of FIG. 12;
  • FIG. 15 is a schematic diagram of waveforms of an AC-DC control sequence and an inductor current according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram 3 of a power conversion apparatus according to an embodiment of the present invention.
  • the invention reduces the switching voltage and current stress of the switching device by connecting the input ends of the plurality of power conversion units of the power conversion device in series, and the output terminals are connected in parallel, and the PFC unit is under the same ripple condition.
  • the input inductance is greatly reduced, the volume of the inductor is reduced, and the power density is increased.
  • the structure also has an automatic current sharing function, and the control is relatively simple.
  • the power conversion device shown in this embodiment is shown in FIG. 1 , and includes a boosting unit and at least two power conversion units; the power conversion unit has two input ends; and the input end of the boosting unit is connected to one end of the alternating current power source. , output and multiple One of the input ends of the first power conversion unit in the power conversion unit is connected; one of the inputs of the last one of the plurality of power conversion units is connected to the other end of the AC power source; between the plurality of power conversion units The input ends are connected in series, and the output ends are connected in parallel; that is, the embodiment is directed to the AC to DC stage, so that the voltage stress and current stress on the switching device can be 1/n times that of the existing power conversion device, thereby reducing the switch and The conduction loss, and the input inductance of the PFC unit is greatly reduced under the same ripple condition, thereby reducing the volume of the inductor, increasing the power density, and also having an automatic current sharing function, and the control is also simpler and more reliable.
  • the input end of the power conversion unit in this embodiment is a dual input terminal, and the output terminal is a dual output terminal.
  • the power conversion unit includes a first transform subunit having a dual input terminal and a dual output terminal, and a second transform subunit;
  • the dual output ends of the first transform subunits of the respective power transform units are respectively connected to the dual input terminals of the second transform subunit;
  • the input terminals between the first transform subunits of the respective power conversion units are connected in series; and one of the input terminals of the first transform subunit of the first and last power conversion units is respectively connected to both ends of the alternating current power source.
  • the input end of the first transform subunit of the first power conversion unit in the first example is connected to the alternating current power source through the boosting unit.
  • the boosting unit in this example can be specifically exemplified by various boosting devices or circuits. The following is an example of the inductor L.
  • the first transform subunit in the first example may be a non-isolated AC-DC transform sub-unit or a non-isolated DC-DC transform sub-unit, and the second transform sub-unit is an isolated DC-DC transform sub-unit.
  • the non-isolated AC-DC transform sub-unit may specifically be an H-bridge circuit transform sub-unit or a bi-directional switch H-bridge circuit transform sub-unit; the first transform sub-unit is When the non-isolated DC-DC transform subunit is not isolated, the non-isolated DC-DC transform subunit is a half bridge circuit transform subunit.
  • the isolated DC-DC transform subunit in the first example is an LLC half bridge circuit transform subunit or an LLC full bridge circuit transform subunit, wherein the LLC is a series-parallel resonant converter.
  • the power conversion apparatus when the first transform subunit is a non-isolated DC-DC transform subunit, the power conversion apparatus further includes a rectifying unit, and the input end of the first transform subunit of the first power transform unit passes the boosting unit and The rectifying unit is connected to one end of the alternating current power source; the input end of the first converting subunit of the last power converting unit is connected to the other end of the alternating current power source through a rectifying unit.
  • the power conversion apparatus shown in the figure includes N power conversion units, and each power conversion unit includes a first conversion subunit as a non-isolated AC-DC conversion subunit (ie, a pre-regulation unit).
  • the second transform subunit is an isolated DC-DC transform subunit
  • the boost unit is a boost inductor, and the specific connection manner is:
  • One end of the input AC power supply (Vin) is connected to one end of the boosting inductor L, and one end of the non-isolated AC-DC conversion sub-unit of the first power conversion unit is connected to the other end of the boosting inductor L, the first non-isolated AC-DC conversion subunit
  • the other input is coupled to one of the inputs of the second non-isolated AC-DC conversion sub-unit, ie, the first non-isolated AC-DC conversion sub-unit and the second non-isolated AC-DC conversion sub-unit
  • the input terminals are connected in series, and the other input of the second non-isolated AC-DC conversion subunit is connected to one of the third inputs, that is, the second non-isolated AC-DC conversion subunit and the third
  • the inputs of the non-isolated AC-DC conversion subunit are also connected in series, and so on, the inputs of the N-1th non-isolated AC-DC conversion subunit and the Nth non-isolated AC
  • the other input of the Nth non-isolated AC-DC conversion sub-unit (ie, the last non-isolated AC-DC conversion sub-unit) is connected to the other end of the input AC power source.
  • the output voltage signals of each of the non-isolated AC-DC converters are respectively input to each of the isolated DC-DC conversion sub-units; then the two outputs of the respective isolated DC-DC conversion sub-units are respectively connected in parallel.
  • the power conversion apparatus shown in the figure includes N power conversion units, each power conversion unit includes a first transform subunit as a non-isolated DC-DC transform subunit, and a second transform subunit is an isolated DC.
  • the boosting unit is a boosting inductor, and further includes an input rectifying unit, the specific connection manner is: different from FIG.
  • the non-isolated AC-DC conversion sub-unit in FIG. 2 may specifically be an H-bridge circuit conversion sub-unit or a bi-directional switch H-bridge circuit conversion sub-unit; the following is exemplarily described in conjunction with a specific circuit structure.
  • FIG. 4 is a circuit diagram of the H-bridge, the first bridge arm MOS tube S1
  • the source (S) is connected to the drain (D) of the MOS transistor S2, the anode of the diode D1 of the second bridge arm is connected to the cathode of the diode D2, and the midpoints of the first bridge arm and the second bridge arm are respectively used as AC-DC
  • the two inputs of the converter the drain (D) of the MOS transistor S1 is connected to the cathode of the D1 and the positive terminal of the output capacitor as the positive terminal of the output, the source (S) of the MOS transistor S2 and the anode of the diode D2
  • the negative terminal of the output capacitor C is connected as the negative terminal of the output.
  • FIG. 5 is also a circuit diagram of the H-bridge, and the circuit diagram shown in FIG. The difference is that the diodes D1 and D2 are replaced by the MOS tubes S3 and S4.
  • the non-isolated AC-DC conversion sub-unit is specifically a bidirectional switch H-bridge circuit conversion sub-unit
  • FIG. 6 The circuit diagram of the bi-directional switch H-bridge is shown in the figure, and the MOS tube S1 is Drain (D) as a loss In the input terminal, the drain (D) of the MOS transistor S1 is connected to the anode of the diode D1 of the first bridge arm of the rectifier bridge, the cathode of the diode D3, and the drain (D) of the MOS transistor S2 serves as the other input terminal, and the MOS transistor S2
  • the drain (D) is connected to the anode of the diode D2 of the second bridge of the rectifier bridge, the cathode of the diode D4, the source of the S1 of the MOS transistor is connected to the source of the MOS transistor S2; the cathode of the diode D1 and the cathode of the diode D2 Connected to the positive terminal
  • the non-isolated AC-DC conversion sub-unit is specifically a bidirectional switch H-bridge circuit conversion sub-unit, another example of the specific structure thereof is shown in FIG. 7, the drain (D) of the MOS transistor S1 and the drain (D) of the S2.
  • the source (S) of the MOS transistor S1 is connected to the source (S) of the MOS transistor S2, the drain (D) of S1 and the source (S) of the MOS transistor S3 and the MOS transistor S4 are The drain (S) is connected, and the drain (D) of the MOS transistor S2 is connected to the negative terminal of the capacitor C1 and the positive terminal of the capacitor C2, and the drain (D) of the MOS transistor S3 and the positive terminal of the capacitor C1 and the positive of the capacitor C The terminals are connected.
  • the source (S) of the MOS transistor S4 is connected to the negative terminal of the capacitor C2 and the negative terminal of the capacitor C as the negative terminal of the output.
  • the non-isolated DC-DC conversion sub-unit in FIG. 3 may specifically be a half-bridge circuit conversion sub-unit.
  • An example of a specific structure is shown in FIG. 8. It includes two MOS tubes S1 and S2, and an output filter capacitor C. .
  • the drain (D) of the MOS transistor S1 and the source (S) of the MOS transistor S2 serve as one input terminal, and the drain (D) of the MOS transistor S2 is connected to the positive terminal of the output filter capacitor C as the positive terminal of the output, MOS
  • the source (S) of the tube S1 is connected to the negative terminal of the output filter capacitor C as the negative terminal of the output.
  • the non-isolated DC-DC conversion sub-unit in FIG. 3 may specifically be a boost converter circuit conversion sub-unit.
  • FIG. 9 Another example of a specific structure is shown in FIG. 9 , which is different from FIG. 8 . That is, the MOS transistor S2 in FIG. 8 is replaced by the diode D1, the drain of the MOS transistor S1 is connected to the anode of the diode D1, and the cathode of the diode D1 is connected to the positive terminal of the output filter capacitor C as the positive terminal of the output, and other connection methods. Same as Figure 8.
  • the isolated DC-DC transform subunit in FIG. 3 may specifically be an LLC half bridge circuit transform subunit or an LLC full bridge circuit transform subunit; when an LLC half bridge circuit transform subunit is used, an example of a specific structure thereof is shown in the figure. 10:
  • the drain (D) of S1 of the MOS transistor is connected to one end of the capacitor C1 as one of the input terminals, and the source (S) of the S2 of the MOS transistor and one end of the capacitor C2 are connected as another input terminal, the MOS transistor
  • the source (S) of S1 is connected to the drain (S) of the MOS transistor S2 and one end of the inductor L, and the other end of the inductor L is connected to one end of the primary side of the transformer T, and the other end of the primary side of the transformer T and the other end of the inductor L Connected at one end.
  • One end of the secondary side of the transformer T is connected to the anode of the diode D3 and the cathode of the diode D5.
  • the diodes D3 and D5 are connected in series to form a rectifier bridge arm, and the other end of the secondary side of the transformer T is connected to the anode of the diode D4 and the cathode of the D6.
  • D4 and D6 are connected in series to form another rectifier bridge arm.
  • the cathode of diode D3 is connected to the cathode of diode D4 and the positive terminal of output filter capacitor C.
  • the anode of diode D5 is connected to the anode of diode D6 and the negative terminal of output filter capacitor C as a negative output voltage. end.
  • the isolated DC-DC conversion sub-unit in FIG. 3 may specifically be an LLC half-bridge circuit conversion sub-unit.
  • FIG. 11 Another example of the specific structure thereof is shown in FIG. 11 , which is basically the same as that shown in FIG. 10 .
  • the overvoltage protection is only performed by adding parallel clamp diodes D1 and D2 to capacitors C1 and C2, respectively.
  • the isolated DC-DC conversion sub-unit in FIG. 3 may specifically be an LLC half-bridge circuit conversion sub-unit.
  • FIG. 12 Another example of the specific structure thereof is shown in FIG. 12, and the difference between this circuit and FIG. 11 is that the transformer T pair
  • the four diodes D3, D4, D5 and D6 on the two rectifier arms connected to the side are replaced by MOS transistors S3, S4, S5 and S6.
  • the isolated DC-DC conversion sub-unit in FIG. 3 may specifically be an LLC full-bridge circuit conversion sub-unit.
  • the drain (D) is connected as a positive input terminal
  • the source of the MOS transistor S2 is connected to the source of the MOS transistor S4 as a negative input terminal
  • Connected to one end of the inductor L, S1 and S2 are connected in series to form a bridge arm.
  • the source (S) of the MOS transistor S3 is connected to the drain of the MOS transistor S4 and one end of the primary side of the transformer T, and S3 and S4 are connected in series to form a bridge arm.
  • the other end of the inductor L is connected to one end of the capacitor C1
  • the other end of the capacitor C1 is connected to the other end of the primary side of the transformer T, that is, the inductor L, the capacitor C1 and the primary side of the transformer T are connected in series.
  • One end of the secondary side of the transformer T is connected to the source (S) of the MOS transistor S5 and the drain (D) of the MOS transistor S7, and S5 and S7 are connected in series to form a bridge arm for output rectification, and the other end of the secondary side of the transformer T Connected to the source (S) of MOS transistor S6 and the drain (D) of MOS transistor S8, S6 and S8 are connected in series to form another bridge arm for output rectification, the drain of S5 and the drain of S6 and the output filter capacitor C The positive terminal is connected. As the positive terminal of the output voltage, the source of S7 is connected to the source of S8 and the negative terminal of the output filter capacitor C as the negative terminal of the output voltage.
  • FIG. 14 the figure shows that the non-isolated AC-DC conversion sub-unit shown in FIG. 5 and the isolated DC-DC conversion sub-unit shown in FIG. 13 are connected according to the connection manner shown in FIG. An example of a structure of the obtained power conversion device.
  • the AC-DC conversion sub-unit and the DC-DC conversion sub-unit shown in FIG. 4-13 can be combined and connected according to the connection mode shown in FIG. 2 or FIG. 3 to obtain a power conversion device.
  • the method is within the scope of the present invention; and it should be understood that the present invention is not limited to the implementation circuit of the AC-DC, DC-DC conversion subunit shown in the above FIG. 4-13; AC-DC and DC-DC conversion sub-units, AC-DC and DC-DC conversion sub-units of other circuit principles are also within the scope of the invention.
  • FIG. 15 shows an AC-DC conversion subunit control timing diagram and an inductor current waveform.
  • Scell1, Scell2, ..., ScellN in the figure are control waveforms of each AC-DC converter corresponding to FIG. 2, and iL is an inductor current waveform.
  • the power transform unit includes a third transform subunit, and the two output terminals of the third transform subunit of each power transform unit are respectively connected in parallel; between the third transform subunits of each power transform unit The input terminals are connected in series; and one of the input terminals of the third transform subunit of the first and last power conversion units is respectively connected to both ends of the AC power source.
  • the input end of the third transform subunit of the first power transform unit is connected to the AC power source through the boosting unit; specifically, the third transform subunit may be an isolated AC-DC transform subunit; As shown in FIG. 16, the power conversion apparatus shown in the figure is a single-pole isolated AC-DC conversion sub-unit composed of an input AC power supply, a boosting inductor L, and an isolated AC-DC converting subunit.
  • One end of the input current source is connected to one end of the boost inductor L, and the other end of the boost inductor L is connected to one input of the first monopole isolated AC-DC converter subunit, the first single pole isolated AC-DC
  • the other input of the transform subunit is connected to one input of the second monopole isolated AC-DC converter subunit, and so on, the other input of the N-1th monopole isolated AC-DC converter subunit Connected to one input of the Nth single-pole isolated AC-DC converter subunit, the other input of the Nth single-pole isolated AC-DC converter subunit is connected to the other end of the input AC power source, that is, N single pole isolation
  • the inputs of the AC-DC conversion subunit are connected in series, and then the outputs of the N converters are connected in parallel.
  • the boosting unit in the above example is described by taking only one boosting inductor as an example. It should be understood that in the present invention The boost inductor can also be split into two or divided into more series in the input loop.
  • a power conversion device and a method for setting the same have the following beneficial effects: the voltage stress and the current stress on the switching device can be made 1/n times that of the existing power conversion device, thereby reducing Switching and conduction loss, and the input inductance of the PFC unit is greatly reduced under the same corrugation condition, thereby reducing the volume of the inductor and increasing the power density.
  • the structure also enables the power conversion device of the present invention to have an automatic current sharing function, and the control It is also simpler and more reliable.

Abstract

本发明公开了一种功率变换装置及其设置方法,包括升压单元,至少两个功率变换单元;功率变换单元的输入端具有两个;升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联。这样可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升了功率密度。

Description

功率变换装置及其设置方法 技术领域
本发明涉及功率变换领域,具体涉及一种功率变换装置及其设置方法。
背景技术
随着功率变换器对功率密度和效率的要求不断提升,而变换器拓扑技术并未出现大的突破,现有的技术已经满足不了需求。
单个功率变换器采用两级结构,功率因数校正(Power Factor Correction,简称为PFC)单元实现交流-直流(Alternating Current-Direct Current,简称为AC-DC)预稳压,DC-DC变换单元将预稳电压转换为所需要的输出电压。这种方式开关器件应力相对较高,磁件体积也相应较大,在中大功率应用中效率和体积都没有优势。为此,通常做法是通过在PFC单元或者DC-DC单元实现多相并联,可以降低器件应力,磁性器件的体积也有所降低,改善了效率和散热,同时利用交错控制降低了输入和输出电流纹波。或采用交错PFC采用耦合电感,DC-DC隔离变压器采用矩阵变压器,以上这些现有技术都在一定程度上有助于效率和功率密度的提升,但并不能有效减小磁性器件的体积和开关器件的应力,而且不能实现自动均流,需要增加额外的均流控制,增加了系统的控制复杂度。
发明内容
本发明要解决的主要技术问题是,提供一种功率变换装置及其设置方法,解决现有功率变换器体积和应力大,控制复杂的问题。
为解决上述技术问题,本发明提供一种功率变换装置,包括升压单元,至少两个功率变换单元;所述功率变换单元的输入端为双输入端,输出端为双输出端;所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;所述与多个功率变换单元之间的输入端串联,输出端并联。
在本发明的一种实施例中,所述功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元;
所述各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
所述各功率变换单元的第二变换子单元之间的两输出端分别并联;
所述各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个功率变换单元的第一变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元 的第一变换子单元的其中一个输入端与所述交流电源的另一端连接。
在本发明的一种实施例中,所述第一变换子单元为非隔离AC-DC变换子单元或非隔离DC-DC变换子单元,所述第二变换子单元为隔离DC-DC变换子单元。
在本发明的一种实施例中,所述第一变换子单元为非隔离AC-DC变换子单元时,所述非隔离AC-DC变换子单元为H桥电路变换子单元或双向开关H桥电路变换子单元;
所述第一变换子单元为非隔离DC-DC变换子单元时,所述非隔离DC-DC变换子单元为半桥电路变换子单元;
所述隔离DC-DC变换子单元为LLC半桥电路变换子单元或LLC全桥电路变换子单元。
在本发明的一种实施例中,所述第一变换子单元为非隔离DC-DC变换子单元时,所述功率变换装置还包括设置为将交流转变为直流的整流单元,所述第一个功率变换单元的第一变换子单元的输入端通过所述升压单元和所述整流单元与所述交流电源的一端连接;所述最后一个功率变换单元的第一变换子单元的输入端通过所述整流单元与所述交流电源的另一端连接。
在本发明的一种实施例中,所述功率变换单元包括第三变换子单元,所述各功率变换单元的第三变换子单元之间的两输出端分别并联;
所述各功率变换单元的第三变换子单元之间的输入端依次串联;且第一个功率变换单元的第三变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第三变换子单元的其中一个输入端与所述交流电源的另一端连接。
在本发明的一种实施例中,所述第三变换子单元为隔离AC-DC变换子单元。
在本发明的一种实施例中,所述升压单元包括至少一个电感。
为了解决上述问题,本发明还提供了一种功率变换装置设置方法,所述功率变换装置包括升压单元和至少两个功率变换单元,所述功率变换单元的输入端为双输入端,输出端为双输出端;所述方法包括:将所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;将所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;并将所述与多个功率变换单元之间的输入端串联,输出端并联。
本发明的有益效果是:
本发明提供的功率变换装置及其设置方法,包括升压单元,至少两个功率变换单元;功率变换单元的输入端具有两个;升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联。这样可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下 降,进而降低了电感的体积,提升了功率密度,同时该结构还使得本发明的功率变换装置具备自动均流功能,控制也更为简单、可靠。
附图说明
图1为本发明实施例提供的功率变换装置结构示意图一;
图2为本发明实施例提供的功率变换装置结构示意图二;
图3为本发明实施例提供的功率变换装置结构示意图三;
图4为本发明实施例提供的非隔离AC-DC变换子单元结构示意图一;
图5为本发明实施例提供的非隔离AC-DC变换子单元结构示意图二;
图6为本发明实施例提供的非隔离AC-DC变换子单元结构示意图三;
图7为本发明实施例提供的非隔离AC-DC变换子单元结构示意图四;
图8为本发明实施例提供的非隔离DC-DC变换子单元结构示意图一;
图9为本发明实施例提供的非隔离DC-DC变换子单元结构示意图二;
图10为本发明实施例提供的隔离DC-DC变换子单元结构示意图一;
图11为本发明实施例提供的隔离DC-DC变换子单元结构示意图二;
图12为本发明实施例提供的隔离DC-DC变换子单元结构示意图三;
图13为本发明实施例提供的隔离DC-DC变换子单元结构示意图四;
图14为由图4中的非隔离AC-DC变换子单元和图12中的隔离DC-DC变换子单元组成的功率变换装置结构示意图;
图15为本发明实施例提供的AC-DC控制时序和电感电流波形示意图;
图16为本发明实施例提供的功率变换装置结构示意图三。
具体实施方式
本发明通过将功率变换装置的多个功率变换单元的输入端串联,输出端并联,可降低开关器件的电压和电流应力,从而降低其开关和导通损耗,而且在相同纹波条件下PFC单元输入电感量大幅下降,降低了电感的体积,提升了功率密度,同时这种结构还具备自动均流功能,控制也较为简单。下面通过具体实施方式结合附图对本发明作进一步详细说明。
本实施例所示的功率变换装置请参见图1所示,包括升压单元,至少两个功率变换单元;该功率变换单元具有两个输入端;升压单元的输入端与交流电源的一端连接,输出端与多个 功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联;也即本实施例针对交流转直流这一级,可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升功率密度,同时还具备自动均流功能,控制也更为简单、可靠。
优选的,本实施例中的功率变换单元的输入端为双输入端,输出端为双输出端。
在本实施例的示例一中,功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元;
各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
各功率变换单元的第二变换子单元之间的两输出端分别并联;
各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个和最后一个功率变换单元的第一变换子单元的其中一个输入端分别与交流电源的两端连接。
该示例一中第一个功率变换单元的第一变换子单元的输入端通过该升压单元与所述交流电源连接。本示例中的升压单元的具体可采用各种升压器件或电路,下面以电感L为例进行示例性说明。
本示例一中的第一变换子单元可为非隔离AC-DC变换子单元或非隔离DC-DC变换子单元,第二变换子单元为隔离DC-DC变换子单元。第一变换子单元为非隔离AC-DC变换子单元时,该非隔离AC-DC变换子单元具体可为H桥电路变换子单元或双向开关H桥电路变换子单元;第一变换子单元为非隔离DC-DC变换子单元时,该非隔离DC-DC变换子单元为半桥电路变换子单元。
本示例一中的隔离DC-DC变换子单元为LLC半桥电路变换子单元或LLC全桥电路变换子单元,其中,LLC是一种串并联谐振变换器。
在本示例一中,第一变换子单元为非隔离DC-DC变换子单元时,功率变换装置还包括整流单元,第一个功率变换单元的第一变换子单元的输入端通过升压单元和所述整流单元与交流电源的一端连接;最后一个功率变换单元的第一变换子单元的输入端通过整流单元与所述交流电源的另一端连接。
下面结合几种具体的结构对上述示例一中的几种情况进行进一步说明:
请参见图2所示,该图所示的功率变换装置包括N个功率变换单元,各功率变换单元包括第一变换子单元为非隔离AC-DC变换子单元(即前置预稳压单元),第二变换子单元为隔离DC-DC变换子单元,升压单元为升压电感,其具体连接方式为:
输入交流电源(Vin)的一端与升压电感L的一端连接起来,第一个功率变换单元的非隔离AC-DC变换子单元的一端输入接升压电感L的另一端,第一个非隔离AC-DC变换子单元 的另一个输入端与第二个非隔离AC-DC变换子单元的其中一个输入端连接起来,即第一个非隔离AC-DC变换子单元与第二个非隔离AC-DC变换子单元的输入端是串联连接的,第二个非隔离AC-DC变换子单元的另一个输入端与第三个其中一个输入端连接起来,即第二个非隔离AC-DC变换子单元与第三个非隔离AC-DC变换子单元的输入端也是串联连接的,以此类推,第N-1个非隔离AC-DC变换子单元和第N个非隔离AC-DC变换子单元的输入端也是串联连接起来的,第N个非隔离AC-DC变换子单元(也即最后一个非隔离AC-DC变换子单元)的另一个输入端与输入交流电源的另一端连接起来。每个非隔离AC-DC变换器的输出电压信号分别作为每个隔离DC-DC变换子单元的输入;然后将各隔离DC-DC变换子单元的两个输出端分别并联起来。
请参见图3所示,该图所示的功率变换装置包括N个功率变换单元,各功率变换单元包括第一变换子单元为非隔离DC-DC变换子单元,第二变换子单元为隔离DC-DC变换子单元,升压单元为升压电感,还包括输入整流单元,其具体连接方式为:与图2不一样的地方在于将输入交流电源的两个输入端分别连接到整流单元的两个整流桥臂的中点,然后整流单元的整流桥的一个输出端与升压电感L的一端相连,升压电感L与第一个非隔离DC-DC变换子单元的一输入端相连,将第一个非隔离DC-DC变换子单元的另一个输入端与第二个非隔离DC-DC变换子单元的其中一个输入端相连,第二个非隔离DC-DC变换子单元的另一个输入端与第三个非隔离DC-DC变换子单元其中一输入端相连,以此类推,第N-1个非隔离DC-DC变换子单元的一输入端与第N个非隔离DC-DC变换子单元的一输入端相连,第N个非隔离DC-DC变换子单元的另一个输入端与整流单元的整流桥的另一个输出端相连,即与图2所示的非隔离AC-DC变换器的输入端串联起来一样,第一个非隔离DC-DC变换子单元的输入端与第二个非隔离DC-DC变换子单元的输入串联起来,以此类推,然后将每个非隔离DC-DC变换子单元的输出信号送入滤波电容中;后面各隔离DC-DC变换子单元的连接方式与图2相同,此处不再赘述。
图2中的非隔离AC-DC变换子单元具体可为H桥电路变换子单元或双向开关H桥电路变换子单元;下面结合具体的电路结构分别进行示例性的说明。
非隔离AC-DC变换子单元具体为H桥电路变换子单元时,其具体结构一种示例请参见图4所示,图中所示的是H桥的电路图,第一桥臂MOS管S1的源极(S)与MOS管S2的漏极(D)相连,第二桥臂的二极管D1的阳极与二极管D2的阴极相连,第一桥臂和第二桥臂的中点分别作为AC-DC变换器的两个输入端;MOS管S1的漏极(D)与D1的阴极和输出电容的正端相连,作为输出的正端,MOS管S2的源极(S)与二极管D2的阳极和输出电容C的负端相连,作为输出的负端。
非隔离AC-DC变换子单元具体为H桥电路变换子单元时,其具体结构的另一种示例请参见图5所示,该图所示的也是H桥的电路图,与图4所示的区别在于是将二极管D1和D2替换成MOS管S3和S4。
非隔离AC-DC变换子单元具体为双向开关H桥电路变换子单元时,其具体结构一种示例请参见图6所示,图中所示的是双向开关H桥的电路图,MOS管S1的漏极(D)作为一个输 入端,MOS管S1的漏极(D)与整流桥的第一桥臂的二极管D1的阳极、二极管D3的阴极相连,MOS管S2的漏极(D)作为另一个输入端,MOS管S2的漏极(D)与整流桥的第二桥臂的二极管D2的阳极、二极管D4的阴极相连,MOS管的S1源极与MOS管S2的源极相连;二极管D1的阴极与二极管D2的阴极和电容C的正端相连,作为输出的正端,二极管D3的阳极和二极管D4的阴极和电容C的负端相连,作为输出的负端。
非隔离AC-DC变换子单元具体为双向开关H桥电路变换子单元时,其具体结构的另一种示例请参见图7,MOS管S1的漏极(D)和S2的漏极(D)分别作为两个输入端,MOS管S1的源极(S)与MOS管S2的源极(S)相连,S1的漏极(D)与MOS管S3的源极(S)和MOS管S4的漏极(S)相连,MOS管S2的漏极(D)与电容C1的负端和电容C2的正端相连,MOS管S3的漏极(D)与电容C1的正端和电容C的正端相连,作为输出的正端,MOS管S4的源极(S)与电容C2的负端和电容C的负端相连,作为输出的负端。
图3中的非隔离DC-DC变换子单元具体可为半桥电路变换子单元,其具体结构的一种示例请参见图8所示,它包括两个MOS管S1和S2,输出滤波电容C。MOS管S1的漏极(D)和MOS管S2的源极(S)作为一个输入端,MOS管S2的漏极(D)与输出滤波电容C的正端相连,作为输出的正端,MOS管S1的源极(S)和输出滤波电容C的负端相连,作为输出的负端。
图3中的非隔离DC-DC变换子单元具体可为半桥(the boost converter)电路变换子单元,其具体结构的另一种示例请参见图9所示,该图与图8不同的地方就是将图8中的MOS管S2换成二极管D1,MOS管S1的漏极和二极管D1的阳极相连,二极管D1的阴极与输出滤波电容C的正端相连,作为输出的正端,其他连接方式与图8一样。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元或LLC全桥电路变换子单元;为LLC半桥电路变换子单元时,其具体结构的一种示例请参见图10所示:MOS管的S1的漏极(D)和电容C1的一端相连作为其中一个输入端,MOS管的S2的源极(S)和电容C2的一端相连作为另一个输入端,MOS管S1的源极(S)与MOS管S2的漏极(S)和电感L的一端相连,电感L的另一端与变压器T原边的一端相连,变压器T原边的另一端与电感L的另一端相连。变压器T的副边的一端与二极管D3的阳极和二极管D5的阴极相连,二极管D3和D5串联构成一个整流桥臂,变压器T的副边的另一端与二极管D4的阳极和D6的阴极相连,二极管D4和D6串联起来构成另外一个整流桥臂。二极管D3的阴极与二极管D4的阴极和输出滤波电容C的正端相连,作为输出电压的正端,二极管D5的阳极与二极管D6的阳极和输出滤波电容C的负端相连,作为输出电压的负端。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元时,其具体结构的另一种示例请参见图11所示,该图与图10所示的基本相同,区别仅在于在电容C1和C2分别增加并联的钳位二极管D1和D2,进行过压保护。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元时,其具体结构的另一种示例请参见图12所示,该电路与图11的区别在于将变压器T副边所连接的两个整流桥臂上的四个二极管D3、D4、D5和D6替换成MOS管S3、S4、S5和S6。
图3中的隔离DC-DC变换子单元具体可为LLC全桥电路变换子单元时,其具体结构的一种示例请参见图13所示,MOS管S1的漏极(D)和MOS管S3的漏极(D)相连作为正输入端,MOS管S2的源极和MOS管S4的源极相连作为负输入端,MOS管S1的源极(S)与MOS管S2的漏极(D)和电感L的一端相连,S1和S2串联构成一个桥臂,MOS管S3的源极(S)与MOS管S4的漏极和变压器T原边的一端相连,S3和S4串联起来形成一起桥臂,电感L的另一端与电容C1的一端相连,电容C1的另一边与变压器T原边的另一端相连,即电感L、电容C1和变压器T的原边串联连接。变压器T的副边的一端与MOS管S5的源极(S)和MOS管S7的漏极(D)相连,S5和S7串联连接形成输出整流的一个桥臂,变压器T的副边的另一端与MOS管S6的源极(S)和MOS管S8的漏极(D)相连,S6和S8串联连接形成输出整流的另一个桥臂,S5的漏极与S6的漏极和输出滤波电容C的正端相连,作为输出电压的正端,S7的源极与S8的源极和输出滤波电容C的负端相连,作为输出电压的负端。
请参见图14所示,该图所示为采用图5所示的非隔离AC-DC变换子单元和图13所示的隔离DC-DC变换子单元按照图3所示的连接方式进行连接后得到的功率变换装置的一种结构示例图。应当理解的是,图4-13所示的AC-DC变换子单元和DC-DC变换子单元可以根据实际需要按照图2或图3所示的连接方式进行组合连接得到功率变换装置,这些组合方式都在本发明的范围之内;且应当理解的是,本发明并不仅局限于上述图4-13所示的AC-DC、DC-DC变换子单元的实现电路;除了上述几种电路原理的AC-DC和DC-DC变换子单元,其他电路原理的AC-DC和DC-DC变换子单元也都在本发明范围内。
请参见图15所示,该图所示为AC-DC变换子单元控制时序图和电感电流波形。图中的Scell1、Scell2、…ScellN为图2中所对应的每个AC-DC变换器的控制波形,iL为电感电流波形。
在本实施例的示例二中,功率变换单元包括第三变换子单元,各功率变换单元的第三变换子单元之间的两输出端分别并联;各功率变换单元的第三变换子单元之间的输入端依次串联;且第一个和最后一个功率变换单元的第三变换子单元的其中一个输入端分别与交流电源的两端连接。
在示例二中,第一个功率变换单元的第三变换子单元的输入端通过升压单元与交流电源连接;具体的,第三变换子单元可为隔离AC-DC变换子单元;具体请参见图16所示,该图所示的功率变换装置所示的是采用单极隔离AC-DC变换子单元,由输入交流电源、升压电感L和隔离AC-DC变换子单元组成。其中输入电流电源的一端与升压电感L的一端相连,升压电感L的另一端与第一个单极隔离AC-DC变换子单元的一个输入端相连,第一个单极隔离AC-DC变换子单元的另一个输入端与第二个单极隔离AC-DC变换子单元的一个输入端相连,以此类推,第N-1个单极隔离AC-DC变换子单元的另一个输入端与第N个单极隔离AC-DC变换子单元的一个输入端相连,第N个单极隔离AC-DC变换子单元另一个输入端与输入交流电源的另一端相连,即N个单极隔离AC-DC变换子单元的输入串联连接,然后N个变换器的输出并联连接。
上述示例中的升压单元都仅是以一个升压电感为例进行说明。应当理解的是,本发明中 的升压电感也可以一分为二或者分成更多串联在输入回路当中。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种功率变换装置及其设置方法具有以下有益效果:可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升了功率密度,同时该结构还使得本发明的功率变换装置具备自动均流功能,控制也更为简单、可靠。

Claims (9)

  1. 一种功率变换装置,包括升压单元,至少两个功率变换单元;所述功率变换单元的输入端为双输入端,输出端为双输出端;所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;所述多个功率变换单元之间的输入端串联,输出端并联。
  2. 如权利要求1所述的功率变换装置,其中,所述功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元;
    所述各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
    所述各功率变换单元的第二变换子单元之间的两输出端分别并联;
    所述各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个功率变换单元的第一变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第一变换子单元的其中一个输入端与所述交流电源的另一端连接。
  3. 如权利要求2所述的功率变换装置,其中,所述第一变换子单元为非隔离AC-DC变换子单元或非隔离DC-DC变换子单元,所述第二变换子单元为隔离DC-DC变换子单元。
  4. 如权利要求3所述的功率变换装置,其中,所述第一变换子单元为非隔离AC-DC变换子单元时,所述非隔离AC-DC变换子单元为H桥电路变换子单元或双向开关H桥电路变换子单元;
    所述第一变换子单元为非隔离DC-DC变换子单元时,所述非隔离DC-DC变换子单元为半桥电路变换子单元;
    所述隔离DC-DC变换子单元为LLC半桥电路变换子单元或LLC全桥电路变换子单元。
  5. 如权利要求3所述的功率变换装置,其中,所述第一变换子单元为非隔离DC-DC变换子单元时,所述功率变换装置还包括设置为将交流转变为直流的整流单元,所述第一个功率变换单元的第一变换子单元的输入端通过所述升压单元和所述整流单元与所述交流电源的一端连接;所述最后一个功率变换单元的第一变换子单元的输入端通过所述整流单元与所述交流电源的另一端连接。
  6. 如权利要求1-5任一项所述的功率变换装置,其中,所述功率变换单元包括第三变换子单元,所述各功率变换单元的第三变换子单元之间的两输出端分别并联;
    所述各功率变换单元的第三变换子单元之间的输入端依次串联;且第一个功率变换单元的第三变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第三变换子单元的其中一个输入端与所述交流电源的另一端连接。
  7. 如权利要求6所述的功率变换装置,其中,所述第三变换子单元为隔离AC-DC变换子单元。
  8. 如权利要求1-5任一项所述的功率变换装置,其中,所述升压单元包括至少一个电感。
  9. 一种功率变换装置设置方法,所述功率变换装置包括升压单元和至少两个功率变换单元,所述功率变换单元的输入端为双输入端,输出端为双输出端;所述方法包括:将所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;将所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;并将所述多个功率变换单元之间的输入端串联,输出端并联。
PCT/CN2015/093447 2015-06-24 2015-10-30 功率变换装置及其设置方法 WO2016206269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15896158.1A EP3316469A4 (en) 2015-06-24 2015-10-30 CURRENT CONVERSION DEVICE AND CONFIGURATION METHOD THEREFOR
US15/739,442 US10284093B2 (en) 2015-06-24 2015-10-30 Power conversion apparatus and method for configuring the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510355472.3 2015-06-24
CN201510355472.3A CN105720840B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法

Publications (1)

Publication Number Publication Date
WO2016206269A1 true WO2016206269A1 (zh) 2016-12-29

Family

ID=56144790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093447 WO2016206269A1 (zh) 2015-06-24 2015-10-30 功率变换装置及其设置方法

Country Status (4)

Country Link
US (1) US10284093B2 (zh)
EP (1) EP3316469A4 (zh)
CN (3) CN107231097B (zh)
WO (1) WO2016206269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570421A4 (en) * 2017-01-12 2020-11-11 ZTE Corporation POWER CONVERSION DEVICE AND CONTROL METHOD FOR THE POWER CONVERSION DEVICE

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072209A1 (zh) * 2016-10-21 2018-04-26 北京小米移动软件有限公司 充电方法及电子设备
CN108574420B (zh) 2017-03-08 2020-02-28 台达电子企业管理(上海)有限公司 电力电子变换单元及系统
DE102017117888A1 (de) * 2017-08-07 2019-02-07 Infineon Technologies Austria Ag Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement
CN109713917A (zh) * 2017-10-25 2019-05-03 中兴通讯股份有限公司 整流装置及整流控制方法
CN109980913B (zh) * 2017-12-27 2021-11-02 中兴通讯股份有限公司 开关电源,电压输出方法
JP7015914B2 (ja) * 2018-05-10 2022-02-03 株式会社東芝 直流変電システム
CN109039052A (zh) * 2018-10-17 2018-12-18 珠海泰通电气技术有限公司 基于pfc电路和谐振电路的单芯片控制电路
CN112615553B (zh) 2020-12-16 2023-09-08 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
CN112636613B (zh) 2020-12-16 2022-09-16 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
US11728721B2 (en) * 2021-02-18 2023-08-15 Infineon Technologies Austria Ag Hybrid power converter and power conversion
CN115347805A (zh) * 2021-05-12 2022-11-15 台达电子企业管理(上海)有限公司 供电装置及其控制方法、三相供电系统及其控制方法
EE202100018A (et) 2021-06-30 2023-02-15 Tallinna Tehnikaülikool Jõuelektroonikaseade sisendina kasutatava vahelduvvoolu muundamiseks alalisvooluks
CN115589139A (zh) * 2021-07-05 2023-01-10 台达电子企业管理(上海)有限公司 电源转换装置
CN113659843B (zh) * 2021-08-31 2023-08-11 湖北三江航天万峰科技发展有限公司 一种低开关损耗的dcdc变换器
CN117411307A (zh) * 2023-10-23 2024-01-16 哈尔滨工业大学 适用于宽中频交直流电源系统的单级无桥pfc变换器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289109A2 (en) * 2001-08-29 2003-03-05 Sanken Electric Co., Ltd. Soft-switching power supply
CN101527520A (zh) * 2009-01-20 2009-09-09 华南理工大学 基于llc串联谐振的单级单相ac-dc变换器
CN102055348A (zh) * 2010-12-24 2011-05-11 东南大学 一种用于配网的降压型电力电子变压器
CN102291019A (zh) * 2011-07-22 2011-12-21 上海交通大学 全桥整流-直流推挽逆变的ac-dc变换器
CN103269177A (zh) * 2013-04-27 2013-08-28 南京航空航天大学 一种分布式isop逆变器及其输入均压输出同幅值控制方法
CN103986344A (zh) * 2014-05-30 2014-08-13 山东大学 单位功率因数单级ac-dc变换器的控制系统及控制方法
CN104539187A (zh) * 2014-12-01 2015-04-22 东北电力大学 一种新型有源前端控制器拓扑结构

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750363A1 (en) * 2005-08-03 2007-02-07 Abb Research Ltd. Multilevel AC/DC converter for traction applications
TWI353709B (en) * 2008-06-24 2011-12-01 Elan Microelectronics Corp Embedded bridge rectifier integrated with configur
CN101917126B (zh) * 2010-07-30 2012-08-15 浙江大学 一种多模块级联固态变压器均压均功率控制方法
CN102751861A (zh) * 2011-04-21 2012-10-24 艾默生网络能源系统北美公司 一种无桥功率因数校正电路
US20130134935A1 (en) * 2011-05-26 2013-05-30 Electric Power Research Institute, Inc. Medium voltage stand alone dc fast charger
US20140153294A1 (en) * 2012-12-05 2014-06-05 Infineon Technologies Austria Ag AC/DC Power Converter Arrangement
CN103051219A (zh) * 2013-01-15 2013-04-17 中国矿业大学(北京) 基于单级功率变换模块的级联式变流器
EP2797217A1 (en) * 2013-04-23 2014-10-29 ABB Technology AG Distributed controllers for a power electronics converter
CN203327305U (zh) * 2013-05-30 2013-12-04 中国民用航空总局第二研究所 一种无桥pfc+t型三电平逆变的变频调光器
KR101399120B1 (ko) * 2014-03-13 2014-05-27 (주)티피에스 전력 변환 장치
CN104253548A (zh) * 2014-07-10 2014-12-31 西南交通大学 一种无工频变压器的三电平电力电子牵引变压器
EP3023291A1 (de) * 2014-11-20 2016-05-25 ABB Technology AG Umrichtersystem zum elektrischen antreiben eines fahrzeuges
CN204205997U (zh) * 2014-12-04 2015-03-11 艾默生网络能源有限公司 一种三相整流电路及不间断电源
US9758047B2 (en) * 2015-02-13 2017-09-12 Mcmaster University Dual voltage charging system with an integrated active filter auxiliary power module
CN104702114B (zh) * 2015-03-05 2017-07-18 清华大学 一种开关电容接入的高频链双向直流变压器及其控制方法
US9793793B2 (en) * 2015-06-26 2017-10-17 Sharp Kabushiki Kaisha Power factor correction circuit and power supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289109A2 (en) * 2001-08-29 2003-03-05 Sanken Electric Co., Ltd. Soft-switching power supply
CN101527520A (zh) * 2009-01-20 2009-09-09 华南理工大学 基于llc串联谐振的单级单相ac-dc变换器
CN102055348A (zh) * 2010-12-24 2011-05-11 东南大学 一种用于配网的降压型电力电子变压器
CN102291019A (zh) * 2011-07-22 2011-12-21 上海交通大学 全桥整流-直流推挽逆变的ac-dc变换器
CN103269177A (zh) * 2013-04-27 2013-08-28 南京航空航天大学 一种分布式isop逆变器及其输入均压输出同幅值控制方法
CN103986344A (zh) * 2014-05-30 2014-08-13 山东大学 单位功率因数单级ac-dc变换器的控制系统及控制方法
CN104539187A (zh) * 2014-12-01 2015-04-22 东北电力大学 一种新型有源前端控制器拓扑结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3316469A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570421A4 (en) * 2017-01-12 2020-11-11 ZTE Corporation POWER CONVERSION DEVICE AND CONTROL METHOD FOR THE POWER CONVERSION DEVICE

Also Published As

Publication number Publication date
CN107231097A (zh) 2017-10-03
CN105720840B (zh) 2019-06-18
EP3316469A4 (en) 2019-03-06
CN107231097B (zh) 2020-09-29
CN110061636A (zh) 2019-07-26
US20180183335A1 (en) 2018-06-28
US10284093B2 (en) 2019-05-07
EP3316469A1 (en) 2018-05-02
CN105720840A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016206269A1 (zh) 功率变换装置及其设置方法
Tang et al. Hybrid switched-inductor converters for high step-up conversion
US10644503B2 (en) Coupled split path power conversion architecture
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
US8432709B2 (en) DC-to-AC power inverting apparatus for photovoltaic modules
WO2019128071A1 (zh) 一种dc-dc变换器
US20140334189A1 (en) Bi-directional dc-dc converter
CN107453615B (zh) 模块化多电平变换器及电力电子变压器
US9071161B2 (en) Single stage PFC power supply
WO2009043257A1 (fr) Module d'alimentation à large tension d'entrée
CN106533178B (zh) 隔离型开关电源和隔离型开关电源控制方法
WO2018036315A1 (zh) 谐振变换器及电流处理方法
EP2975753B1 (en) A three-level converter
Shin et al. Analysis of LLC resonant converter with current-doubler rectification circuit
AU2012216637B1 (en) High efficient single stage PFC fly-back and forward power supply
US20140192562A1 (en) Single stage ac/dc converter
US8665610B2 (en) Modified zero voltage transition (ZVT) full bridge converter and photovoltaic (PV) array using the same
CN103647448A (zh) 集成降压-反激式高功率因数恒流电路及装置
CN109120156A (zh) 一种隔离buck-boost电路及其控制方法
TWI530074B (zh) 具功因修正之轉換器電路
CN103973129A (zh) 软开关电力电子变压器
TWI543513B (zh) 諧振轉換器
TWI545879B (zh) Parallel input / parallel output isolated DC / DC converters for wind power generation systems
TWI426690B (zh) 電源轉換切換電路
TWI581552B (zh) 升壓轉換裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE