CN105720840B - 功率变换装置及其设置方法 - Google Patents

功率变换装置及其设置方法 Download PDF

Info

Publication number
CN105720840B
CN105720840B CN201510355472.3A CN201510355472A CN105720840B CN 105720840 B CN105720840 B CN 105720840B CN 201510355472 A CN201510355472 A CN 201510355472A CN 105720840 B CN105720840 B CN 105720840B
Authority
CN
China
Prior art keywords
power conversion
subelement
conversion unit
oxide
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510355472.3A
Other languages
English (en)
Other versions
CN105720840A (zh
Inventor
范杰
周建平
林国仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN201510355472.3A priority Critical patent/CN105720840B/zh
Priority to CN201710522927.5A priority patent/CN107231097B/zh
Priority to CN201910257786.8A priority patent/CN110061636A/zh
Priority to US15/739,442 priority patent/US10284093B2/en
Priority to PCT/CN2015/093447 priority patent/WO2016206269A1/zh
Priority to EP15896158.1A priority patent/EP3316469A4/en
Publication of CN105720840A publication Critical patent/CN105720840A/zh
Application granted granted Critical
Publication of CN105720840B publication Critical patent/CN105720840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

本发明公开了一种功率变换装置及其设置方法,包括升压单元,至少两个功率变换单元;功率变换单元的输入端具有两个;升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联。这样可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升了功率密度。

Description

功率变换装置及其设置方法
技术领域
本发明涉及功率变换领域,具体涉及一种功率变换装置及其设置方法。
背景技术
随着功率变换器对功率密度和效率的要求不断提升,而变换器拓扑技术并未出现大的突破,现有的技术已经满足不了需求。
单个功率变换器采用两级结构,功率因数校正(PFC:Power Factor Correction)单元实现AC-DC预稳压,DC-DC变换单元将预稳电压转换为所需要的输出电压。这种方式开关器件应力相对较高,磁件体积也相应较大,在中大功率应用中效率和体积都没有优势。为此,通常做法是通过在PFC单元或者DC-DC单元实现多相并联,可以降低器件应力,磁性器件的体积也有所降低,改善了效率和散热,同时利用交错控制降低了输入和输出电流纹波。或采用交错PFC采用耦合电感,DC-DC隔离变压器采用矩阵变压器,以上这些现有技术都在一定程度上有助于效率和功率密度的提升,但并不能有效减小磁性器件的体积和开关器件的应力,而且不能实现自动均流,需要增加额外的均流控制,增加了系统的控制复杂度。
发明内容
本发明要解决的主要技术问题是,提供一种功率变换装置及其设置方法,解决现有功率变换器体积和应力大,控制复杂的问题。
为解决上述技术问题,本发明提供一种功率变换装置,包括升压单元,至少两个功率变换单元;所述功率变换单元的输入端为双输入端,输出端为双输出端;所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;所述与多个功率变换单元之间的输入端串联,输出端并联。
在本发明的一种实施例中,所述功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元;
所述各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
所述各功率变换单元的第二变换子单元之间的两输出端分别并联;
所述各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个功率变换单元的第一变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第一变换子单元的其中一个输入端与所述交流电源的另一端连接。
在本发明的一种实施例中,所述第一变换子单元为非隔离AC-DC变换子单元或非隔离DC-DC变换子单元,所述第二变换子单元为隔离DC-DC变换子单元。
在本发明的一种实施例中,所述第一变换子单元为非隔离AC-DC变换子单元时,所述非隔离AC-DC变换子单元为H桥电路变换子单元或双向开关H桥电路变换子单元;
所述第一变换子单元为非隔离DC-DC变换子单元时,所述非隔离DC-DC变换子单元为半桥电路变换子单元;
所述隔离DC-DC变换子单元为LLC半桥电路变换子单元或LLC全桥电路变换子单元。
在本发明的一种实施例中,所述第一变换子单元为非隔离DC-DC变换子单元时,所述功率变换装置还包括用于将交流转变为直流的整流单元,所述第一个功率变换单元的第一变换子单元的输入端通过所述升压单元和所述整流单元与所述交流电源的一端连接;所述最后一个功率变换单元的第一变换子单元的输入端通过所述整流单元与所述交流电源的另一端连接。
在本发明的一种实施例中,所述功率变换单元包括第三变换子单元,所述各功率变换单元的第三变换子单元之间的两输出端分别并联;
所述各功率变换单元的第三变换子单元之间的输入端依次串联;且第一个功率变换单元的第三变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第三变换子单元的其中一个输入端与所述交流电源的另一端连接。
在本发明的一种实施例中,所述第三变换子单元为隔离AC-DC变换子单元。
在本发明的一种实施例中,所述升压单元包括至少一个电感。
为了解决上述问题,本发明还提供了一种功率变换装置设置方法,所述功率变换装置包括升压单元和至少两个功率变换单元,所述功率变换单元的输入端为双输入端,输出端为双输出端;所述方法包括:将所述升压单元的输入端与交流电源的一端连接,输出端与所述多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;将所述多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;并将所述与多个功率变换单元之间的输入端串联,输出端并联。
本发明的有益效果是:
本发明提供的功率变换装置及其设置方法,包括升压单元,至少两个功率变换单元;功率变换单元的输入端具有两个;升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联。这样可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升了功率密度,同时该结构还使得本发明的功率变换装置具备自动均流功能,控制也更为简单、可靠。
附图说明
图1为本发明实施例提供的功率变换装置结构示意图一;
图2为本发明实施例提供的功率变换装置结构示意图二;
图3为本发明实施例提供的功率变换装置结构示意图三;
图4为本发明实施例提供的非隔离AC-DC变换子单元结构示意图一;
图5为本发明实施例提供的非隔离AC-DC变换子单元结构示意图二;
图6为本发明实施例提供的非隔离AC-DC变换子单元结构示意图三;
图7为本发明实施例提供的非隔离AC-DC变换子单元结构示意图四;
图8为本发明实施例提供的非隔离DC-DC变换子单元结构示意图一;
图9为本发明实施例提供的非隔离DC-DC变换子单元结构示意图二;
图10为本发明实施例提供的隔离DC-DC变换子单元结构示意图一;
图11为本发明实施例提供的隔离DC-DC变换子单元结构示意图二;
图12为本发明实施例提供的隔离DC-DC变换子单元结构示意图三;
图13为本发明实施例提供的隔离DC-DC变换子单元结构示意图四;
图14为由图4中的非隔离AC-DC变换子单元和图12中的隔离DC-DC变换子单元组成的功率变换装置结构示意图;
图15为本发明实施例提供的AC-DC控制时序和电感电流波形示意图;
图16为本发明实施例提供的功率变换装置结构示意图三。
具体实施方式
本发明通过将功率变换装置的多个功率变换单元的输入端串联,输出端并联,可降低开关器件的电压和电流应力,从而降低其开关和导通损耗,而且在相同纹波条件下PFC单元输入电感量大幅下降,降低了电感的体积,提升了功率密度,同时这种结构还具备自动均流功能,控制也较为简单。下面通过具体实施方式结合附图对本发明作进一步详细说明。
本实施例所示的功率变换装置请参见图1所示,包括升压单元,至少两个功率变换单元;该功率变换单元具有两个输入端;升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联;也即本实施例针对交流转直流这一级,可以使得开关器件上的电压应力和电流应力为现有功率变换装置的1/n倍,从而可降低开关和导通损耗,而且在相同波纹条件下PFC单元输入电感量大幅下降,进而降低了电感的体积,提升功率密度,同时还具备自动均流功能,控制也更为简单、可靠。
优选的,本实施例中的功率变换单元的输入端为双输入端,输出端为双输出端。
在本实施例的示例一中,功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元;
各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
各功率变换单元的第二变换子单元之间的两输出端分别并联;
各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个和最后一个功率变换单元的第一变换子单元的其中一个输入端分别与交流电源的两端连接。
该示例一中第一个功率变换单元的第一变换子单元的输入端通过该升压单元与所述交流电源连接。本示例中的升压单元的具体可采用各种升压器件或电路,下面以电感L为例进行示例性说明。
本示例一中的第一变换子单元可为非隔离AC-DC变换子单元或非隔离DC-DC变换子单元,第二变换子单元为隔离DC-DC变换子单元。第一变换子单元为非隔离AC-DC变换子单元时,该非隔离AC-DC变换子单元具体可为H桥电路变换子单元或双向开关H桥电路变换子单元;第一变换子单元为非隔离DC-DC变换子单元时,该非隔离DC-DC变换子单元为半桥电路变换子单元。
本示例一中的隔离DC-DC变换子单元为LLC(Logical Link Control:逻辑链路控制)半桥电路变换子单元或LLC全桥电路变换子单元。
在本示例一中,第一变换子单元为非隔离DC-DC变换子单元时,功率变换装置还包括整流单元,第一个功率变换单元的第一变换子单元的输入端通过升压单元和所述整流单元与交流电源的一端连接;最后一个功率变换单元的第一变换子单元的输入端通过整流单元与所述交流电源的另一端连接。
下面结合几种具体的结构对上述示例一中的几种情况进行进一步说明:
请参见图2所示,该图所示的功率变换装置包括N个功率变换单元,各功率变换单元包括第一变换子单元为非隔离AC-DC变换子单元(即前置预稳压单元),第二变换子单元为隔离DC-DC变换子单元,升压单元为升压电感,其具体连接方式为:
输入交流电源(Vin)的一端与升压电感L的一端连接起来,第一个功率变换单元的非隔离AC-DC变换子单元的一端输入接升压电感L的另一端,第一个非隔离AC-DC变换子单元的另一个输入端与第二个非隔离AC-DC变换子单元的其中一个输入端连接起来,即第一个非隔离AC-DC变换子单元与第二个非隔离AC-DC变换子单元的输入端是串联连接的,第二个非隔离AC-DC变换子单元的另一个输入端与第三个其中一个输入端连接起来,即第二个非隔离AC-DC变换子单元与第三个非隔离AC-DC变换子单元的输入端也是串联连接的,以此类推,第N-1个非隔离AC-DC变换子单元和第N个非隔离AC-DC变换子单元的输入端也是串联连接起来的,第N个非隔离AC-DC变换子单元(也即最后一个非隔离AC-DC变换子单元)的另一个输入端与输入交流电源的另一端连接起来。每个非隔离AC-DC变换器的输出电压信号分别作为每个隔离DC-DC变换子单元的输入;然后将各隔离DC-DC变换子单元的两个输出端分别并联起来。
请参见图3所示,该图所示的功率变换装置包括N个功率变换单元,各功率变换单元包括第一变换子单元为非隔离DC-DC变换子单元,第二变换子单元为隔离DC-DC变换子单元,升压单元为升压电感,还包括输入整流单元,其具体连接方式为:与图2不一样的地方在于将输入交流电源的两个输入端分别连接到整流单元的两个整流桥臂的中点,然后整流单元的整流桥的一个输出端与升压电感L的一端相连,升压电感L与第一个非隔离DC-DC变换子单元的一输入端相连,将第一个非隔离DC-DC变换子单元的另一个输入端与第二个非隔离DC-DC变换子单元的其中一个输入端相连,第二个非隔离DC-DC变换子单元的另一个输入端与第三个非隔离DC-DC变换子单元其中一输入端相连,以此类推,第N-1个非隔离DC-DC变换子单元的一输入端与第N个非隔离DC-DC变换子单元的一输入端相连,第N个非隔离DC-DC变换子单元的另一个输入端与整流单元的整流桥的另一个输出端相连,即与图2所示的非隔离AC-DC变换器的输入端串联起来一样,第一个非隔离DC-DC变换子单元的输入端与第二个非隔离DC-DC变换子单元的输入串联起来,以此类推,然后将每个非隔离DC-DC变换子单元的输出信号送入滤波电容中;后面各隔离DC-DC变换子单元的连接方式与图2相同,此处不再赘述。
图2中的非隔离AC-DC变换子单元具体可为H桥电路变换子单元或双向开关H桥电路变换子单元;下面结合具体的电路结构分别进行示例性的说明。
非隔离AC-DC变换子单元具体为H桥电路变换子单元时,其具体结构一种示例请参见图4所示,图中所示的是H桥的电路图,第一桥臂MOS管S1的源极(S)与MOS管S2的漏极(D)相连,第二桥臂的二极管D1的阳极与二极管D2的阴极相连,第一桥臂和第二桥臂的中点分别作为AC-DC变换器的两个输入端;MOS管S1的漏极(D)与D1的阴极和输出电容的正端相连,作为输出的正端,MOS管S2的源极(S)与二极管D2的阳极和输出电容C的负端相连,作为输出的负端。
非隔离AC-DC变换子单元具体为H桥电路变换子单元时,其具体结构的另一种示例请参见图5所示,该图所示的也是H桥的电路图,与图4所示的区别在于是将二极管D1和D2替换成MOS管S3和S4。
非隔离AC-DC变换子单元具体为双向开关H桥电路变换子单元时,其具体结构一种示例请参见图6所示,图中所示的是双向开关H桥的电路图,MOS管S1的漏极(D)作为一个输入端,MOS管S1的漏极(D)与整流桥的第一桥臂的二极管D1的阳极、二极管D3的阴极相连,MOS管S2的漏极(D)作为另一个输入端,MOS管S2的漏极(D)与整流桥的第二桥臂的二极管D2的阳极、二极管D4的阴极相连,MOS管的S1源极与MOS管S2的源极相连;二极管D1的阴极与二极管D2的阴极和电容C的正端相连,作为输出的正端,二极管D3的阳极和二极管D4的阴极和电容C的负端相连,作为输出的负端。
非隔离AC-DC变换子单元具体为双向开关H桥电路变换子单元时,其具体结构的另一种示例请参见图7,MOS管S1的漏极(D)和S2的漏极(D)分别作为两个输入端,MOS管S1的源极(S)与MOS管S2的源极(S)相连,S1的漏极(D)与MOS管S3的源极(S)和MOS管S4的漏极(S)相连,MOS管S2的漏极(D)与电容C1的负端和电容C2的正端相连,MOS管S3的漏极(D)与电容C1的正端和电容C的正端相连,作为输出的正端,MOS管S4的源极(S)与电容C2的负端和电容C的负端相连,作为输出的负端。
图3中的非隔离DC-DC变换子单元具体可为半桥电路变换子单元,其具体结构的一种示例请参见图8所示,它包括两个MOS管S1和S2,输出滤波电容C。MOS管S1的漏极(D)和MOS管S2的源极(S)作为一个输入端,MOS管S2的漏极(D)与输出滤波电容C的正端相连,作为输出的正端,MOS管S1的源极(S)和输出滤波电容C的负端相连,作为输出的负端。
图3中的非隔离DC-DC变换子单元具体可为半桥(the boost converter)电路变换子单元,其具体结构的另一种示例请参见图9所示,该图与图8不同的地方就是将图8中的MOS管S2换成二极管D1,MOS管S1的漏极和二极管D1的阳极相连,二极管D1的阴极与输出滤波电容C的正端相连,作为输出的正端,其他连接方式与图8一样。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元或LLC全桥电路变换子单元;为LLC半桥电路变换子单元时,其具体结构的一种示例请参见图10所示:MOS管的S1的漏极(D)和电容C1的一端相连作为其中一个输入端,MOS管的S2的源极(S)和电容C2的一端相连作为另一个输入端,MOS管S1的源极(S)与MOS管S2的漏极(S)和电感L的一端相连,电感L的另一端与变压器T原边的一端相连,变压器T原边的另一端与电感L的另一端相连。变压器T的副边的一端与二极管D3的阳极和二极管D5的阴极相连,二极管D3和D5串联构成一个整流桥臂,变压器T的副边的另一端与二极管D4的阳极和D6的阴极相连,二极管D4和D6串联起来构成另外一个整流桥臂。二极管D3的阴极与二极管D4的阴极和输出滤波电容C的正端相连,作为输出电压的正端,二极管D5的阳极与二极管D6的阳极和输出滤波电容C的负端相连,作为输出电压的负端。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元时,其具体结构的另一种示例请参见图11所示,该图与图10所示的基本相同,区别仅在于在电容C1和C2分别增加并联的钳位二极管D1和D2,进行过压保护。
图3中的隔离DC-DC变换子单元具体可为LLC半桥电路变换子单元时,其具体结构的另一种示例请参见图12所示,该电路与图11的区别在于将变压器T副边所连接的两个整流桥臂上的四个二极管D3、D4、D5和D6替换成MOS管S3、S4、S5和S6。
图3中的隔离DC-DC变换子单元具体可为LLC全桥电路变换子单元时,其具体结构的一种示例请参见图13所示,MOS管S1的漏极(D)和MOS管S3的漏极(D)相连作为正输入端,MOS管S2的源极和MOS管S4的源极相连作为负输入端,MOS管S1的源极(S)与MOS管S2的漏极(D)和电感L的一端相连,S1和S2串联构成一个桥臂,MOS管S3的源极(S)与MOS管S4的漏极和变压器T原边的一端相连,S3和S4串联起来形成一起桥臂,电感L的另一端与电容C1的一端相连,电容C1的另一边与变压器T原边的另一端相连,即电感L、电容C1和变压器T的原边串联连接。变压器T的副边的一端与MOS管S5的源极(S)和MOS管S7的漏极(D)相连,S5和S7串联连接形成输出整流的一个桥臂,变压器T的副边的另一端与MOS管S6的源极(S)和MOS管S8的漏极(D)相连,S6和S8串联连接形成输出整流的另一个桥臂,S5的漏极与S6的漏极和输出滤波电容C的正端相连,作为输出电压的正端,S7的源极与S8的源极和输出滤波电容C的负端相连,作为输出电压的负端。
请参见图14所示,该图所示为采用图5所示的非隔离AC-DC变换子单元和图13所示的隔离DC-DC变换子单元按照图3所示的连接方式进行连接后得到的功率变换装置的一种结构示例图。应当理解的是,图4-13所示的AC-DC变换子单元和DC-DC变换子单元可以根据实际需要按照图2或图3所示的连接方式进行组合连接得到功率变换装置,这些组合方式都在本发明的范围之内;且应当理解的是,本发明并不仅局限于上述图4-13所示的AC-DC、DC-DC变换子单元的实现电路;除了上述几种电路原理的AC-DC和DC-DC变换子单元,其他电路原理的AC-DC和DC-DC变换子单元也都在本发明范围内。
请参见图15所示,该图所示为AC-DC变换子单元控制时序图和电感电流波形。图中的Scell1、Scell2、…ScellN为图2中所对应的每个AC-DC变换器的控制波形,iL为电感电流波形。
在本实施例的示例二中,功率变换单元包括第三变换子单元,各功率变换单元的第三变换子单元之间的两输出端分别并联;各功率变换单元的第三变换子单元之间的输入端依次串联;且第一个和最后一个功率变换单元的第三变换子单元的其中一个输入端分别与交流电源的两端连接。
在示例二中,第一个功率变换单元的第三变换子单元的输入端通过升压单元与交流电源连接;具体的,第三变换子单元可为隔离AC-DC变换子单元;具体请参见图16所示,该图所示的功率变换装置所示的是采用单极隔离AC-DC变换子单元,由输入交流电源、升压电感L和隔离AC-DC变换子单元组成。其中输入电流电源的一端与升压电感L的一端相连,升压电感L的另一端与第一个单极隔离AC-DC变换子单元的一个输入端相连,第一个单极隔离AC-DC变换子单元的另一个输入端与第二个单极隔离AC-DC变换子单元的一个输入端相连,以此类推,第N-1个单极隔离AC-DC变换子单元的另一个输入端与第N个单极隔离AC-DC变换子单元的一个输入端相连,第N个单极隔离AC-DC变换子单元另一个输入端与输入交流电源的另一端相连,即N个单极隔离AC-DC变换子单元的输入串联连接,然后N个变换器的输出并联连接。
上述示例中的升压单元都仅是以一个升压电感为例进行说明。应当理解的是,本发明中的升压电感也可以一分为二或者分成更多串联在输入回路当中。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (5)

1.一种功率变换装置,其特征在于,包括升压单元,至少两个功率变换单元;所述功率变换单元的输入端为双输入端,输出端为双输出端;所述升压单元的输入端与交流电源的一端连接,输出端与多个功率变换单元中的第一个功率变换单元的其中一个输入端连接;多个功率变换单元中的最后一个功率变换单元的其中一个输入端与所述交流电源的另一端连接;多个功率变换单元之间的输入端串联,输出端并联;
所述功率变换单元包括具有双输入端和双输出端的第一变换子单元以及第二变换子单元,所述第一变换子单元为非隔离AC-DC变换子单元,采用交错移相控制;
所述非隔离AC-DC变换子单元为双向开关H桥电路变换子单元,包括:第一MOS管、第二MOS管、第三MOS管、第四MOS管、第一电容、第二电容和输出电容,其中,
第一MOS管的漏极和第二MOS管的漏极分别作为两个输入端;
第一MOS管的源极与第二MOS管的源极相连,第一MOS管的漏极与第三MOS管的源极和第四MOS管的漏极相连;
第二MOS管的漏极与第一电容的负端和第二电容的正端相连;
第三MOS管的漏极与第一电容的正端和输出电容的正端相连,作为输出的正端;
第四MOS管的源极与第二电容的负端和输出电容的负端相连,作为输出的负端。
2.如权利要求1所述的功率变换装置,其特征在于,
各功率变换单元的第一变换子单元的双输出端分别与第二变换子单元的双输入端连接;
各功率变换单元的第二变换子单元之间的两输出端分别并联;
各功率变换单元的第一变换子单元之间的输入端依次串联;且第一个功率变换单元的第一变换子单元的其中一个输入端与所述升压单元的输出端连接;最后一个功率变换单元的第一变换子单元的其中一个输入端与所述交流电源的另一端连接。
3.如权利要求2所述的功率变换装置,其特征在于,所述第二变换子单元为隔离DC-DC变换子单元。
4.如权利要求3所述的功率变换装置,其特征在于,
所述隔离DC-DC变换子单元为LLC半桥电路变换子单元或LLC全桥电路变换子单元。
5.如权利要求1-4任一项所述的功率变换装置,其特征在于,所述升压单元包括至少一个电感。
CN201510355472.3A 2015-06-24 2015-06-24 功率变换装置及其设置方法 Active CN105720840B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510355472.3A CN105720840B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法
CN201710522927.5A CN107231097B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法
CN201910257786.8A CN110061636A (zh) 2015-06-24 2015-06-24 功率变换装置
US15/739,442 US10284093B2 (en) 2015-06-24 2015-10-30 Power conversion apparatus and method for configuring the same
PCT/CN2015/093447 WO2016206269A1 (zh) 2015-06-24 2015-10-30 功率变换装置及其设置方法
EP15896158.1A EP3316469A4 (en) 2015-06-24 2015-10-30 CURRENT CONVERSION DEVICE AND CONFIGURATION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510355472.3A CN105720840B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201910257786.8A Division CN110061636A (zh) 2015-06-24 2015-06-24 功率变换装置
CN201710522927.5A Division CN107231097B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法

Publications (2)

Publication Number Publication Date
CN105720840A CN105720840A (zh) 2016-06-29
CN105720840B true CN105720840B (zh) 2019-06-18

Family

ID=56144790

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710522927.5A Active CN107231097B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法
CN201510355472.3A Active CN105720840B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法
CN201910257786.8A Pending CN110061636A (zh) 2015-06-24 2015-06-24 功率变换装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710522927.5A Active CN107231097B (zh) 2015-06-24 2015-06-24 功率变换装置及其设置方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910257786.8A Pending CN110061636A (zh) 2015-06-24 2015-06-24 功率变换装置

Country Status (4)

Country Link
US (1) US10284093B2 (zh)
EP (1) EP3316469A4 (zh)
CN (3) CN107231097B (zh)
WO (1) WO2016206269A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072209A1 (zh) * 2016-10-21 2018-04-26 北京小米移动软件有限公司 充电方法及电子设备
CN108306484B (zh) * 2017-01-12 2021-08-31 中兴通讯股份有限公司 一种功率变换装置及功率变换装置的控制方法
CN108574420B (zh) 2017-03-08 2020-02-28 台达电子企业管理(上海)有限公司 电力电子变换单元及系统
DE102017117888A1 (de) * 2017-08-07 2019-02-07 Infineon Technologies Austria Ag Elektronische Schaltung mit einer Halbbrückenschaltung und einem Spannungsklemmelement
CN109713917A (zh) * 2017-10-25 2019-05-03 中兴通讯股份有限公司 整流装置及整流控制方法
CN109980913B (zh) * 2017-12-27 2021-11-02 中兴通讯股份有限公司 开关电源,电压输出方法
JP7015914B2 (ja) * 2018-05-10 2022-02-03 株式会社東芝 直流変電システム
CN109039052A (zh) * 2018-10-17 2018-12-18 珠海泰通电气技术有限公司 基于pfc电路和谐振电路的单芯片控制电路
CN112636613B (zh) 2020-12-16 2022-09-16 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
CN112615553B (zh) * 2020-12-16 2023-09-08 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
US11728721B2 (en) * 2021-02-18 2023-08-15 Infineon Technologies Austria Ag Hybrid power converter and power conversion
CN115347805A (zh) * 2021-05-12 2022-11-15 台达电子企业管理(上海)有限公司 供电装置及其控制方法、三相供电系统及其控制方法
EE202100018A (et) 2021-06-30 2023-02-15 Tallinna Tehnikaülikool Jõuelektroonikaseade sisendina kasutatava vahelduvvoolu muundamiseks alalisvooluks
CN115589139A (zh) * 2021-07-05 2023-01-10 台达电子企业管理(上海)有限公司 电源转换装置
CN113659843B (zh) * 2021-08-31 2023-08-11 湖北三江航天万峰科技发展有限公司 一种低开关损耗的dcdc变换器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528921B2 (ja) 2001-08-29 2004-05-24 サンケン電気株式会社 スイッチング電源装置
EP1750363A1 (en) * 2005-08-03 2007-02-07 Abb Research Ltd. Multilevel AC/DC converter for traction applications
TWI353709B (en) * 2008-06-24 2011-12-01 Elan Microelectronics Corp Embedded bridge rectifier integrated with configur
CN101527520B (zh) 2009-01-20 2011-06-15 华南理工大学 基于llc串联谐振的单级单相ac-dc变换器
CN101917126B (zh) * 2010-07-30 2012-08-15 浙江大学 一种多模块级联固态变压器均压均功率控制方法
CN102055348A (zh) * 2010-12-24 2011-05-11 东南大学 一种用于配网的降压型电力电子变压器
CN102751861A (zh) * 2011-04-21 2012-10-24 艾默生网络能源系统北美公司 一种无桥功率因数校正电路
US20130134935A1 (en) * 2011-05-26 2013-05-30 Electric Power Research Institute, Inc. Medium voltage stand alone dc fast charger
CN102291019A (zh) * 2011-07-22 2011-12-21 上海交通大学 全桥整流-直流推挽逆变的ac-dc变换器
US20140153294A1 (en) * 2012-12-05 2014-06-05 Infineon Technologies Austria Ag AC/DC Power Converter Arrangement
CN103051219A (zh) * 2013-01-15 2013-04-17 中国矿业大学(北京) 基于单级功率变换模块的级联式变流器
EP2797217A1 (en) * 2013-04-23 2014-10-29 ABB Technology AG Distributed controllers for a power electronics converter
CN103269177B (zh) * 2013-04-27 2015-06-10 南京航空航天大学 一种分布式isop逆变器及其输入均压输出同幅值控制方法
CN203327305U (zh) * 2013-05-30 2013-12-04 中国民用航空总局第二研究所 一种无桥pfc+t型三电平逆变的变频调光器
KR101399120B1 (ko) * 2014-03-13 2014-05-27 (주)티피에스 전력 변환 장치
CN103986344B (zh) 2014-05-30 2017-03-08 山东大学 单位功率因数单级ac‑dc隔离变换器的控制系统及控制方法
CN104253548A (zh) * 2014-07-10 2014-12-31 西南交通大学 一种无工频变压器的三电平电力电子牵引变压器
EP3023291A1 (de) * 2014-11-20 2016-05-25 ABB Technology AG Umrichtersystem zum elektrischen antreiben eines fahrzeuges
CN104539187A (zh) * 2014-12-01 2015-04-22 东北电力大学 一种新型有源前端控制器拓扑结构
CN204205997U (zh) * 2014-12-04 2015-03-11 艾默生网络能源有限公司 一种三相整流电路及不间断电源
US9758047B2 (en) * 2015-02-13 2017-09-12 Mcmaster University Dual voltage charging system with an integrated active filter auxiliary power module
CN104702114B (zh) * 2015-03-05 2017-07-18 清华大学 一种开关电容接入的高频链双向直流变压器及其控制方法
US9793793B2 (en) * 2015-06-26 2017-10-17 Sharp Kabushiki Kaisha Power factor correction circuit and power supply device

Also Published As

Publication number Publication date
CN110061636A (zh) 2019-07-26
EP3316469A4 (en) 2019-03-06
CN107231097B (zh) 2020-09-29
EP3316469A1 (en) 2018-05-02
WO2016206269A1 (zh) 2016-12-29
US10284093B2 (en) 2019-05-07
US20180183335A1 (en) 2018-06-28
CN105720840A (zh) 2016-06-29
CN107231097A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN105720840B (zh) 功率变换装置及其设置方法
Tang et al. Hybrid switched-inductor converters for high step-up conversion
EP2110937B1 (en) Insulation type ac-dc converter and led dc power supply device using the same
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
CN104218813B (zh) 电感电容复合利用的级联型谐振dc‑dc变换电路
CN101951159A (zh) 电容隔离型多路恒流输出谐振式直流/直流变流器
CN106169873A (zh) 适用于高压或大电流输出的混合串并联全桥电路及其控制方法
CN105450030B (zh) 双变压器变绕组隔离变换器及其控制方法
CN108235509B (zh) 一种集成降压Cuk和LLC电路的单级LED驱动电路
CN205725513U (zh) 一种单相ac‑dc/dc‑ac双用电路及三相ac‑dc/dc‑ac双用电路
US20170317524A1 (en) Digitalized double-excitation uninterrupted switching power supply
CN109842299B (zh) 组合式直流变换系统及其控制方法
CN109889048A (zh) 一种隔离双向dc-dc变换器
CN105871244A (zh) 一种单相ac-dc/ dc-ac双用电路及三相ac-dc/ dc-ac双用电路
CN104993707A (zh) 基于llc谐振的双向dc/dc变换器的控制方法
CN103595259A (zh) 一种双变压器串并联式隔离型软开关直流变换器及其控制方法
CN103337968B (zh) 单级高频ac/ac变换器
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
CN103269164A (zh) 原边恒流控制的准单级高功率因数电路及装置
CN203617902U (zh) 集成降压-反激式高功率因数恒流电路及装置
CN109286307A (zh) 一种正反激功率因数校正装置
CN107171563B (zh) 紧调整输出的组合变流器
CN104967304B (zh) 一种基于无桥cuk隔离型三相功率因数校正变换器
CN108377098B (zh) 一种双级输入逆变电源的恒压输出电路
EP4113813A1 (en) Power electronic apparatus for converting input ac into dc

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant