WO2016206126A1 - 彩色滤光基板、液晶面板以及液晶显示器 - Google Patents

彩色滤光基板、液晶面板以及液晶显示器 Download PDF

Info

Publication number
WO2016206126A1
WO2016206126A1 PCT/CN2015/082674 CN2015082674W WO2016206126A1 WO 2016206126 A1 WO2016206126 A1 WO 2016206126A1 CN 2015082674 W CN2015082674 W CN 2015082674W WO 2016206126 A1 WO2016206126 A1 WO 2016206126A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
liquid crystal
substrate
color filter
common electrode
Prior art date
Application number
PCT/CN2015/082674
Other languages
English (en)
French (fr)
Inventor
彭海波
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2016206126A1 publication Critical patent/WO2016206126A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a color filter substrate, and to a liquid crystal panel including the color filter substrate and a liquid crystal display.
  • Liquid Crystal Display is a flat ultra-thin display device consisting of a certain number of color or black-and-white pixels placed in front of a light source or a reflective surface. LCD monitors have low power consumption and are characterized by high image quality, small size, and light weight. Therefore, they are favored by everyone and become the mainstream of displays.
  • liquid crystal displays are mainly Thin Film Transistor (TFT) liquid crystal displays.
  • TFT Thin Film Transistor
  • Most of the liquid crystal displays on the existing market are backlight type liquid crystal displays, including a liquid crystal panel and a backlight module. The liquid crystal panel and the backlight module are oppositely disposed, and the backlight module provides a display light source to the liquid crystal panel to enable the liquid crystal panel to display images.
  • a commonly used liquid crystal panel includes at least a thin film transistor array substrate 1 and a color filter substrate 2 and a liquid crystal between the array substrate 1 and the color filter substrate 2 .
  • the layer 3, the array substrate 1 and the color filter substrate 2 are also laminated with a first polarizer 4 and a second polarizer 5, respectively.
  • the array substrate 1 includes a first substrate 11 and an array of thin film transistors 12 formed on the first substrate 11 , and further includes a pixel electrode 13 electrically connected to the thin film transistor 12 . As shown in FIG.
  • the color filter substrate 2 includes a second substrate 21, a color filter layer 22 disposed on the second substrate 21, a black matrix (BM) 23, and a common electrode layer 24, and the color filter
  • the light layer 22 includes a red filter unit 22R, a green filter unit 22G, and a blue filter unit 22B.
  • the black matrix 23 is disposed corresponding to the thin film transistor 12, and the red filter unit 22R, the green filter unit 22G, and the blue filter unit 22B are disposed corresponding to the pixel electrode 13.
  • the reason why the liquid crystal display can form color is mainly set by the color filter substrate 2.
  • the liquid crystal panel controls the alignment state of the liquid crystal molecules by the voltage change of the driving IC, forms a gate to select whether the light of the backlight penetrates, and includes the red filter unit 22R, the green filter unit 22G, and the color filter layer 22.
  • the color filter substrate 2 of the blue filter unit 22B forms light of different colors. Referring to FIG. 2, in general, the color filter substrate 2 is formed on the transparent second substrate 21 to form an array of black matrixes 23; Then, the color filter layer 22 is further prepared, wherein any two adjacent filter units in the color filter layer 22 are separated by a black matrix 23; finally, a uniform thickness is prepared on the color filter layer 22 and the black matrix 23.
  • the common electrode layer 24 is provided to form a uniform thickness of the color filter layer 22 and the black matrix 23.
  • the light emitted by the backlight is sequentially absorbed and refracted by the polarizer, the array substrate, the liquid crystal layer, the color filter substrate, etc., and the final light transmittance is generally about 6%, which increases the light transmittance of the liquid crystal panel. Overshoot is an effective way to increase backlight utilization.
  • the present invention provides a color filter substrate, which can be used in a liquid crystal panel to improve the light transmittance of the liquid crystal panel, thereby improving the utilization ratio of the backlight.
  • a color filter substrate comprising: a second substrate; a light shielding layer formed on the second substrate and having a black matrix structure; a color filter layer formed in the black matrix structure, the color filter
  • the layer includes a red filter unit, a green filter unit, and a blue filter unit; a common electrode layer formed on the light shielding layer and the color filter layer; wherein the red filter unit and the green filter are located
  • the common electrode layer on the cell has a first thickness
  • the common electrode layer on the blue filter unit has a second thickness
  • the first thickness is greater than the second thickness.
  • the first thickness and the second thickness range from 100 to 150 nm.
  • the first thickness ranges from 120 to 150 nm
  • the second thickness ranges from 100 to 130 nm
  • the first thickness is greater than the second thickness by 20 to 30 nm.
  • first thickness is 150 nm and the second thickness is 120 nm.
  • the common electrode layer is formed by preparing a material having conductivity and light transmittance.
  • the material of the common electrode layer is indium tin oxide.
  • the present invention also provides a liquid crystal panel comprising an array substrate and a color filter substrate disposed opposite to each other and a liquid crystal layer between the array substrate and the color filter substrate, wherein the color filter substrate is as described above
  • the array substrate includes a first substrate and a thin film transistor array disposed on the first substrate.
  • a liquid crystal display including a liquid crystal panel and a backlight module, wherein the liquid crystal panel is disposed opposite to the backlight module, and the backlight module provides a display light source to the liquid crystal a panel for causing the liquid crystal panel to display an image, wherein the liquid crystal panel is the aforementioned liquid crystal panel.
  • the color filter substrate provided by the embodiment of the present invention wherein the common electrode layer adopts a composite film thickness structure, and the common electrode layer has a thickness on the red filter unit and the green filter unit, and the common electrode layer is located in the blue layer.
  • the thickness on the color filter unit For the longer wavelength red and green light, the common electrode layer has a higher transmittance when the thickness is larger, and for the shorter wavelength blue light, the common electrode layer has a higher transmittance when the thickness is smaller. . Therefore, since the liquid crystal panel including the color filter substrate adopts a common electrode layer having a composite film thickness structure, the light of the liquid crystal panel can be improved as a whole as compared with the common electrode layer having a uniform film thickness in the prior art. Transmittance, which improves backlight utilization.
  • FIG. 1 is a schematic structural view of a conventional liquid crystal panel.
  • FIG. 2 is a schematic structural view of a conventional color filter substrate.
  • Fig. 3 is a graph showing the relationship between the thickness of the ITO material and the light transmittance in the visible light band.
  • FIG. 4 is a schematic structural view of a liquid crystal panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a color filter substrate according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a liquid crystal display according to an embodiment of the present invention.
  • the object of the present invention is to improve the light transmittance of the liquid crystal panel to improve the utilization of the backlight, and to provide a color filter substrate in which the common electrode layer on the color filter substrate is mainly performed. Improve.
  • the common electrode layer is mainly formed by using a material having conductivity and light transmittance, and a commonly used material is ITO (Indium tin oxide).
  • ITO Indium tin oxide
  • a common electrode layer formed of an ITO material having a uniform film thickness is generally used, and the thickness thereof is in the range of 100 to 150 nm to satisfy electrical requirements.
  • 3 is a graph showing the relationship between the thickness of the ITO material and the light transmittance in the visible light band, and exemplarily shows the relationship between the thicknesses of 120 nm and 150 nm, wherein the red light, the green light, and the blue light correspond to each other.
  • the wavelength range is sequentially limited to 650 to 780 nm, 500 to 650 nm, and 435 to 500 nm.
  • the ITO material with a smaller thickness corresponding to 120 nm
  • the ITO material with a large thickness corresponding to 150 nm
  • the invention is based on the above mechanism, and the common electrode layer is improved.
  • the improved structure is: the thickness of the common electrode layer corresponding to the red filter unit and the green filter unit portion is larger than the common electrode layer corresponding to the blue filter. The thickness of the unit part.
  • the liquid crystal panel provided in this embodiment includes an array substrate 10 and a color filter substrate 20 disposed opposite to each other, and a liquid crystal layer 30 between the array substrate 10 and the color filter substrate 20, the array substrate 10, and the color filter.
  • the optical substrate 20 is also laminated with a first polarizer 40 and a second polarizer 50, respectively.
  • the array substrate 10 includes a first substrate 101 and an array of thin film transistors 102 formed on the first substrate 101 , and further includes a pixel electrode 103 electrically connected to the thin film transistor 102 .
  • An insulating layer 104 is disposed between the thin film transistor 102 and the pixel electrode 103.
  • the pixel electrode 103 is electrically connected to the source or the drain of the thin film transistor 102 through a via provided in the insulating layer 104.
  • the color filter substrate 20 includes a second substrate 201 and a light shielding layer 202 , a color filter layer 203 , and a common electrode layer 204 disposed on the second substrate 201 , wherein the light shielding layer 202 has a black matrix 202a structure, the color filter layer 203 includes a red filter unit 203R, a green filter unit 203G, and a blue filter unit 203B, and the filter units 203R, 203G, 203B are formed on the black matrix In the structure 202a, the black matrix 202a is spaced apart from every two adjacent filter units 203R, 203G, 203B.
  • a side of the color filter substrate 20 having the common electrode layer 204 is disposed toward the array substrate 10, and the black matrix 202a is disposed corresponding to the thin film transistor 102.
  • the red filter unit 202R, the green filter unit 202G, and the blue filter unit 202B are disposed corresponding to the pixel electrode 103.
  • the common electrode layer 204 has a structure of a composite film thickness. Specifically, as shown in FIG. 5 , in the color filter substrate 20 , the common electrode layer 204 is disposed on the light shielding layer 202 and the color filter layer 203 . Wherein, corresponding to the red filter unit The common electrode layer 204 above the 203R and the green filter unit 203G has a first thickness D1 corresponding to the common electrode layer 204 above the blue filter unit 203B having a second thickness D2, and the first thickness D1 is greater than the second Thickness D2. The range of the first thickness D1 and the second thickness D2 may be selected from 100 to 150 nm as long as D1>D2 is satisfied.
  • the first thickness D1 ranges from 120 to 150 nm
  • the second thickness D2 ranges from 100 to 130 nm
  • the first thickness D1 is greater than the second thickness.
  • D2 is 20 to 30 nm in size.
  • the most preferred embodiment is that the first thickness is 150 nm and the second thickness is 120 nm.
  • the common electrode layer on the color filter substrate has a structure of a composite film thickness, and the thickness of the common electrode layer on the red filter unit and the green filter unit is greater than the common electrode layer.
  • the thickness on the blue filter unit For the longer wavelength red and green light, the common electrode layer has a higher transmittance when the thickness is larger, and for the shorter wavelength blue light, the common electrode layer has a higher transmittance when the thickness is smaller. . Therefore, since the liquid crystal panel including the color filter substrate adopts a common electrode layer having a composite film thickness structure, the light of the liquid crystal panel can be improved as a whole as compared with the common electrode layer having a uniform film thickness in the prior art. Transmittance, which improves backlight utilization.
  • the light transmittance of the color filter substrate 20 which is obtained by using the uniform film thickness and the composite film thickness of the common electrode layer 204 is provided below.
  • D represents the film thickness of the common electrode layer 204
  • D1 is the thickness of the common electrode layer 204 above the red filter unit 203R and the green filter unit 203G
  • D2 is above the blue filter unit 203B.
  • Type where R represents red light, G represents green light, B represents blue light, and W represents white light.
  • the present embodiment further provides a liquid crystal display.
  • the liquid crystal display includes a liquid crystal panel 100 and a backlight module 200 .
  • the liquid crystal panel 100 is opposite to the backlight module 200 .
  • the display 200 provides a display light source to the liquid crystal panel 100 to cause the liquid crystal panel 100 to display an image.
  • the liquid crystal panel 100 uses the liquid crystal panel provided in the foregoing embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种彩色滤光基板(20),其包括:第二基板(201);遮光层(202),形成于所述第二基板(201)上,具有黑色矩阵(202a)结构;彩色滤光层(203),形成于所述黑色矩阵(202a)结构中,所述彩色滤光层(203)包括红色滤光单元(202R)、绿色滤光单元(203G)和蓝色滤光单元(203B);公共电极层(204),形成于所述遮光层(202)和所述彩色滤光层(203)上;其中,位于所述红色滤光单元(202R)和绿色滤光单元(203G)上的公共电极层(204)具有第一厚度(D1),位于所述蓝色滤光单元(203B)上的公共电极层(204)具有第二厚度(D2),并且,第一厚度(D1)大于第二厚度(D2)。以及包含如上所述彩色滤光基板(20)的液晶面板(100)以及液晶显示器。

Description

彩色滤光基板、液晶面板以及液晶显示器 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种彩色滤光基板,还涉及包含该彩色滤光基板的液晶面板以及液晶显示器。
背景技术
液晶显示器(Liquid Crystal Display,LCD),为平面超薄的显示设备,它由一定数量的彩色或黑白像素组成,放置于光源或者反射面前方。液晶显示器功耗很低,并且具有高画质、体积小、重量轻的特点,因此倍受大家青睐,成为显示器的主流。目前液晶显示器是以薄膜晶体管(Thin Film Transistor,TFT)液晶显示器为主。现有市场上的液晶显示器大部分为背光型液晶显示器,包括液晶面板及背光模组,液晶面板与背光模组相对设置,背光模组提供显示光源给液晶面板,以使液晶面板显示影像。
如图1所示,常用的液晶面板至少包括相对设置的薄膜晶体管阵列基板(array substrate)1和彩色滤光基板(color filter substrate)2以及位于阵列基板1和彩色滤光基板2之间的液晶层3,阵列基板1和彩色滤光基板2还分别叠层连接有第一偏光片4和第二偏光片5。其中,阵列基板1包括第一基板11以及形成于第一基板11上的薄膜晶体管12阵列,还包括与薄膜晶体管12电性连接的像素电极13。如图2所示,彩色滤光基板2包括第二基板21以及设置于第二基板21上的彩色滤光层22、黑色矩阵(Black matrix,BM)23和公共电极层24,所述彩色滤光层22包括红色滤光单元22R、绿色滤光单元22G和蓝色滤光单元22B。其中,所述黑色矩阵23与所述薄膜晶体管12相对应设置,所述红色滤光单元22R、绿色滤光单元22G和蓝色滤光单元22B与所述像素电极13相对应设置。液晶显示器之所以能形成彩色,主要是由彩色滤光基板2设置。液晶面板通过驱动IC的电压改变来控制液晶分子的排列状态,形成闸门来选择背光源的光线穿透与否,并由含有彩色滤光层22包括红色滤光单元22R、绿色滤光单元22G和蓝色滤光单元22B的彩色滤光基板2来形成不同颜色的光。参阅图2,一般地,彩色滤光基板2是在透明的第二基板21上先制作黑色矩阵23阵列; 然后再制备彩色滤光层22,其中,彩色滤光层22中任意相邻的两个滤光单元均由黑色矩阵23间隔;最后在彩色滤光层22和黑色矩阵23上制备一层厚度均一的公共电极层24。
在液晶显示器中,背光源发出的光要依次经过偏光片、阵列基板、液晶层、彩色滤光基板等等的吸收和折射,最终的透光率一般在6%左右,增加液晶面板的光线透过率是提高背光源利用率的有效途径。
发明内容
有鉴于此,本发明提供了一种彩色滤光基板,其应用液晶面板中,可以提高液晶面板的光线透过率,从而提高背光源的利用率。
为了实现上述目的,本发明采用了如下的技术方案:
一种彩色滤光基板,其包括:第二基板;遮光层,形成于所述第二基板上,具有黑色矩阵结构;彩色滤光层,形成于所述黑色矩阵结构中,所述彩色滤光层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;公共电极层,形成于所述遮光层和所述彩色滤光层上;其中,位于所述红色滤光单元和绿色滤光单元上的公共电极层具有第一厚度,位于所述蓝色滤光单元上的公共电极层具有第二厚度,并且,第一厚度大于第二厚度。
其中,所述第一厚度和第二厚度的取值范围是100~150nm。
其中,所述第一厚度的取值范围是120~150nm,所述第二厚度的取值范围是100~130nm,并且,所述第一厚度比第二厚度大20~30nm。
其中,所述第一厚度为150nm,所述第二厚度为120nm。
其中,所述公共电极层是由具有导电性和透光性的材料制备形成。
其中,所述公共电极层的材料为氧化铟锡。
本发明还提供了一种液晶面板,其包括相对设置的阵列基板和彩色滤光基板以及位于阵列基板和彩色滤光基板之间的液晶层,其中,所述彩色滤光基板为如上所述的彩色滤光基板,所述阵列基板包括第一基板以及设置于该第一基板上的薄膜晶体管阵列。
本发明的另一方是提供一种液晶显示器,其包括液晶面板及背光模组,所述液晶面板与所述背光模组相对设置,所述背光模组提供显示光源给所述液晶 面板,以使所述液晶面板显示影像,其中,所述液晶面板为前述的液晶面板。
本发明实施例提供的彩色滤光基板,其中的公共电极层采用复合膜厚的结构,该公共电极层在位于红色滤光单元和绿色滤光单元上的厚度,大于该公共电极层在位于蓝色滤光单元上的厚度。对于波长较长的红色光和绿色光,公共电极层的厚度较大时具有较高的透过率,而对于波长较短的蓝色光,公共电极层的厚度较小时具有较高的透过率。因此,包含该彩色滤光基板的液晶面板,由于采用了具有复合膜厚结构的公共电极层,相较于现有技术中采用均一膜厚的公共电极层,可以从整体上提高液晶面板的光线透过率,从而提高背光源的利用率。
附图说明
图1是现有的一种液晶面板的结构示意图。
图2是现有的一种彩色滤光基板的结构示意图。
图3是在可见光波段内ITO材料的厚度与光线透过率的关系曲线图。
图4是本发明实施例提供的液晶面板的结构示意图。
图5是本发明实施例提供的彩色滤光基板的结构示意图。
图6是本发明实施例提供的液晶显示器的结构图示。
具体实施方式
如前所述,本发明的目的是为了提高液晶面板的光线透过率,以提高背光源的利用率,提供了一种彩色滤光基板,其中主要对彩色滤光基板上的公共电极层进行改进。
在液晶面板中,公共电极层主要采用具有导电性和透光性的材料制备形成,比较常用的一种材料是ITO(Indium tin oxide,氧化铟锡)。现有技术中,通常采用均一膜厚的由ITO材料制备形成的公共电极层,其厚度在100~150nm的范围内均可满足电性方面的要求。图3是在可见光波段内ITO材料的厚度与光线透过率的关系曲线图,图中示例性地示出了厚度为120nm和150nm的关系曲线,其中,红色光、绿色光和蓝色光各自对应的波长范围依次限定为650~780nm、500~650nm、435~500nm。从图3可以看出,在波长较短的范围内(对应蓝色光),厚度较小(对应120nm)的ITO材料具有较高的透过率;在波长较长的范围内 (对应红色光和绿色光),厚度较大(对应150nm)的ITO材料具有较高的透过率。本发明基于以上的机理,对公共电极层进行改进,改进的结构为:公共电极层在对应于红色滤光单元和绿色滤光单元部分的厚度,大于该公共电极层在对应于蓝色滤光单元部分的厚度。由此从整体上提高液晶面板的光线透过率,从而提高背光源的利用率。
下面将结合附图以及具体实施例,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
如图4所示,本实施例提供的液晶面板包括相对设置的阵列基板10和彩色滤光基板20以及位于阵列基板10和彩色滤光基板20之间的液晶层30,阵列基板10和彩色滤光基板20还分别叠层连接有第一偏光片40和第二偏光片50。
具体地,如图4所示的,所述阵列基板10包括第一基板101以及形成于第一基板101上的薄膜晶体管102阵列,还包括与薄膜晶体管102电性连接的像素电极103。其中,薄膜晶体管102与像素电极103之间设置有绝缘层104,像素电极103通过设置在绝缘层104中的过孔电性连接到薄膜晶体管102的源极或漏极。
具体地,如图4所示的,彩色滤光基板20包括第二基板201以及设置于第二基板201上的遮光层202、彩色滤光层203以及公共电极层204,其中,所述遮光层202具有黑色矩阵202a结构,所述彩色滤光层203包括红色滤光单元203R、绿色滤光单元203G和蓝色滤光单元203B,所述滤光单元203R、203G、203B形成于所述黑色矩阵202a结构中,所述黑色矩阵202a间隔每两个相邻的滤光单元203R、203G、203B。
具体地,如图4所示的,所述彩色滤光基板20中具有公共电极层204的一侧朝向所述阵列基板10设置,并且,所述黑色矩阵202a与所述薄膜晶体管102相对应设置,所述红色滤光单元202R、绿色滤光单元202G和蓝色滤光单元202B与所述像素电极103相对应设置。
进一步地,本实施例提供的彩色滤光基板20中,公共电极层204采用复合膜厚的结构。具体地,如图5所示,彩色滤光基板20中,公共电极层204覆设于所述遮光层202和所述彩色滤光层203上。其中,对应于所述红色滤光单元 203R和绿色滤光单元203G上方的公共电极层204具有第一厚度D1,对应于所述蓝色滤光单元203B上方的公共电极层204具有第二厚度D2,并且,第一厚度D1大于第二厚度D2。其中,所述第一厚度D1和第二厚度D2的取值范围可以选择是100~150nm,只要满足D1>D2即可。
作为优选的实施例方案,所述第一厚度D1的取值范围选择是120~150nm,所述第二厚度D2的取值范围是100~130nm,并且,所述第一厚度D1比第二厚度D2大20~30nm。
最为优选的实施例方案是:所述第一厚度为150nm,所述第二厚度为120nm。
如上实施例提供的液晶面板中,其中彩色滤光基板上的公共电极层采用复合膜厚的结构,该公共电极层在位于红色滤光单元和绿色滤光单元上的厚度,大于该公共电极层在位于蓝色滤光单元上的厚度。对于波长较长的红色光和绿色光,公共电极层的厚度较大时具有较高的透过率,而对于波长较短的蓝色光,公共电极层的厚度较小时具有较高的透过率。因此,包含该彩色滤光基板的液晶面板,由于采用了具有复合膜厚结构的公共电极层,相较于现有技术中采用均一膜厚的公共电极层,可以从整体上提高液晶面板的光线透过率,从而提高背光源的利用率。
为了进一步说明本实施例的技术方案所取得的技术效果,以下提供公共电极层204采用均一膜厚和复合膜厚所测试得到的彩色滤光基板20的光线透过率。
表1:
Figure PCTCN2015082674-appb-000001
表1中,D表示公共电极层204的膜厚,D1是红色滤光单元203R和绿色滤光单元203G上方的公共电极层204的厚度,D2是蓝色滤光单元203B上方的 公共电极层204的厚度,其中D1=D2表示公共电极层204具有均一膜厚,D1≠D2表示公共电极层204具有复合膜厚;T表示彩色滤光基板20的光线透过率;L表示光线的类型,其中R表示红色光,G表示绿色光,B表示蓝色光,W表示白色光。当公共电极层204采用复合膜厚时,例如D1=150nm,D2=120nm,此时每一种光线类型对应的公共电极层204的厚度,彩色滤光基板20都具有较佳的透过率参数,由此从整体上提高液晶面板的光线透过率。
本实施例还提供了一种液晶显示器,如图6所示,该液晶显示器包括液晶面板100及背光模组200,所述液晶面板100与所述背光模组200相对设置,所述背光模组200提供显示光源给所述液晶面板100,以使所述液晶面板100显示影像。其中,所述液晶面板100采用本实施例前述提供的液晶面板。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (18)

  1. 一种彩色滤光基板,其中,该彩色滤光基板包括:
    第二基板;
    遮光层,形成于所述第二基板上,具有黑色矩阵结构;
    彩色滤光层,形成于所述黑色矩阵结构中,所述彩色滤光层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;
    公共电极层,形成于所述遮光层和所述彩色滤光层上;其中,位于所述红色滤光单元和绿色滤光单元上的公共电极层具有第一厚度,位于所述蓝色滤光单元上的公共电极层具有第二厚度,并且,第一厚度大于第二厚度。
  2. 根据权利要求1所述的彩色滤光基板,其中,所述第一厚度和第二厚度的取值范围是100~150nm。
  3. 根据权利要求1所述的彩色滤光基板,其中,所述第一厚度的取值范围是120~150nm,所述第二厚度的取值范围是100~130nm,并且,所述第一厚度比第二厚度大20~30nm。
  4. 根据权利要求3所述的彩色滤光基板,其中,所述第一厚度为150nm,所述第二厚度为120nm。
  5. 根据权利要求1所述的彩色滤光基板,其中,所述公共电极层是由具有导电性和透光性的材料制备形成。
  6. 根据权利要求5所述的彩色滤光基板,其中,所述公共电极层的材料为氧化铟锡。
  7. 一种液晶面板,包括相对设置的阵列基板和彩色滤光基板以及位于阵列基板和彩色滤光基板之间的液晶层,其中,所述阵列基板包括第一基板以及设置于该第一基板上的薄膜晶体管阵列;所述彩色滤光基板包括:
    第二基板;
    遮光层,形成于所述第二基板上,具有黑色矩阵结构;
    彩色滤光层,形成于所述黑色矩阵结构中,所述彩色滤光层包括红色滤光 单元、绿色滤光单元和蓝色滤光单元;
    公共电极层,形成于所述遮光层和所述彩色滤光层上;其中,位于所述红色滤光单元和绿色滤光单元上的公共电极层具有第一厚度,位于所述蓝色滤光单元上的公共电极层具有第二厚度,并且,第一厚度大于第二厚度。
  8. 根据权利要求7所述的液晶面板,其中,所述第一厚度和第二厚度的取值范围是100~150nm。
  9. 根据权利要求7所述的液晶面板,其中,所述第一厚度的取值范围是120~150nm,所述第二厚度的取值范围是100~130nm,并且,所述第一厚度比第二厚度大20~30nm。
  10. 根据权利要求9所述的液晶面板,其中,所述第一厚度为150nm,所述第二厚度为120nm。
  11. 根据权利要求7所述的液晶面板,其中,所述公共电极层是由具有导电性和透光性的材料制备形成。
  12. 根据权利要求11所述的液晶面板,其中,所述公共电极层的材料为氧化铟锡。
  13. 一种液晶显示器,包括液晶面板及背光模组,所述液晶面板与所述背光模组相对设置,所述背光模组提供显示光源给所述液晶面板,以使所述液晶面板显示影像,其中,所述液晶面板包括相对设置的阵列基板和彩色滤光基板以及位于阵列基板和彩色滤光基板之间的液晶层,所述阵列基板包括第一基板以及设置于该第一基板上的薄膜晶体管阵列;所述彩色滤光基板包括:
    第二基板;
    遮光层,形成于所述第二基板上,具有黑色矩阵结构;
    彩色滤光层,形成于所述黑色矩阵结构中,所述彩色滤光层包括红色滤光单元、绿色滤光单元和蓝色滤光单元;
    公共电极层,形成于所述遮光层和所述彩色滤光层上;其中,位于所述红色滤光单元和绿色滤光单元上的公共电极层具有第一厚度,位于所述蓝色滤光单元上的公共电极层具有第二厚度,并且,第一厚度大于第二厚度。
  14. 根据权利要求13所述的液晶显示器,其中,所述第一厚度和第二厚度 的取值范围是100~150nm。
  15. 根据权利要求13所述的液晶显示器,其中,所述第一厚度的取值范围是120~150nm,所述第二厚度的取值范围是100~130nm,并且,所述第一厚度比第二厚度大20~30nm。
  16. 根据权利要求15所述的液晶显示器,其中,所述第一厚度为150nm,所述第二厚度为120nm。
  17. 根据权利要求13所述的液晶显示器,其中,所述公共电极层是由具有导电性和透光性的材料制备形成。
  18. 根据权利要求17所述的液晶显示器,其中,所述公共电极层的材料为氧化铟锡。
PCT/CN2015/082674 2015-06-23 2015-06-29 彩色滤光基板、液晶面板以及液晶显示器 WO2016206126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510349335.9A CN104880870A (zh) 2015-06-23 2015-06-23 彩色滤光基板、液晶面板以及液晶显示器
CN201510349335.9 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016206126A1 true WO2016206126A1 (zh) 2016-12-29

Family

ID=53948422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082674 WO2016206126A1 (zh) 2015-06-23 2015-06-29 彩色滤光基板、液晶面板以及液晶显示器

Country Status (2)

Country Link
CN (1) CN104880870A (zh)
WO (1) WO2016206126A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061298B (zh) * 2022-08-05 2022-11-25 惠科股份有限公司 显示面板、显示面板的制备方法及显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233359A1 (en) * 2003-05-23 2004-11-25 Lg. Philips Lcd Co., Ltd. Transflective liquid crystal display device and fabricating method thereof
CN1886013A (zh) * 2005-06-21 2006-12-27 三星电子株式会社 发光元件及其制造方法和具有其的显示基板
US7423707B2 (en) * 2003-12-31 2008-09-09 Lg Display Co., Ltd. Liquid crystal display device and fabricating method for forming polarizer by depositing, drying and curing lyotropic liquid crystal on color filter pattern
CN102627823A (zh) * 2011-08-10 2012-08-08 京东方科技集团股份有限公司 透明导电树脂、彩膜基板及制作方法、液晶显示装置
CN103676297A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种彩膜基板及液晶显示装置
CN103926754A (zh) * 2013-12-27 2014-07-16 厦门天马微电子有限公司 一种阵列基板及其制备方法、显示面板、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465722C (zh) * 2004-05-21 2009-03-04 三洋电机株式会社 半穿透型液晶显示装置及彩色液晶显示装置
KR20070078244A (ko) * 2006-01-26 2007-07-31 삼성전자주식회사 표시 기판과 그 제조 방법 및 이를 포함하는 표시 장치
KR20120076256A (ko) * 2010-12-29 2012-07-09 엘지디스플레이 주식회사 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233359A1 (en) * 2003-05-23 2004-11-25 Lg. Philips Lcd Co., Ltd. Transflective liquid crystal display device and fabricating method thereof
US7423707B2 (en) * 2003-12-31 2008-09-09 Lg Display Co., Ltd. Liquid crystal display device and fabricating method for forming polarizer by depositing, drying and curing lyotropic liquid crystal on color filter pattern
CN1886013A (zh) * 2005-06-21 2006-12-27 三星电子株式会社 发光元件及其制造方法和具有其的显示基板
CN102627823A (zh) * 2011-08-10 2012-08-08 京东方科技集团股份有限公司 透明导电树脂、彩膜基板及制作方法、液晶显示装置
CN103676297A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种彩膜基板及液晶显示装置
CN103926754A (zh) * 2013-12-27 2014-07-16 厦门天马微电子有限公司 一种阵列基板及其制备方法、显示面板、显示装置

Also Published As

Publication number Publication date
CN104880870A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
US10509282B2 (en) Reflective LCD panel having reflective red sub-pixel, reflective green sub-pixel, reflective blue sub-pixel, and reflective white sub-pixel separated by black matrix
WO2019085057A1 (zh) 液晶显示面板以及液晶显示装置
WO2016070518A1 (zh) 像素结构及具有该像素结构的液晶显示面板
US20060028604A1 (en) Liquid crystal display device
US20190384100A1 (en) Liquid crystal panel and liquid crystal display device
US9091879B2 (en) Liquid crystal display panel and liquid crystal display apparatus
KR20130015471A (ko) 디스플레이패널 및 이를 채용한 디스플레이장치
WO2001033290A1 (fr) Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique
US20190129262A1 (en) Liquid crystal display panel and liquid crystal display device
WO2019127758A1 (zh) 液晶显示面板及其像素结构、液晶显示装置
CN106526988B (zh) 显示器阵列基板画素结构及其应用的显示设备
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
JP6195398B2 (ja) 画素構造
WO2016070440A1 (zh) 偏光片、液晶面板以及液晶显示器
WO2020062489A1 (zh) 液晶显示模组、液晶显示器及显示设备
WO2016082239A1 (zh) 彩色滤光基板及液晶显示面板
WO2018223480A1 (zh) 显示面板及其应用的显示装置
US20180188592A1 (en) Color filter substrate, liquid crystal panel and liquid crystal display
US10962839B2 (en) Liquid crystal display panel and method for producing liquid crystal display panel
WO2016206126A1 (zh) 彩色滤光基板、液晶面板以及液晶显示器
WO2016201710A1 (zh) 具有黑色矩阵的玻璃基板及其制备方法、液晶面板
US20210041743A1 (en) Display panel, method for manufacturing same, and display device
US9354469B2 (en) Transflective liquid crystal display panel and display device
US20210333617A1 (en) Display panel and display apparatus
US9147371B2 (en) Liquid crystal display panel used in normally black mode and display apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896022

Country of ref document: EP

Kind code of ref document: A1