WO2016201710A1 - 具有黑色矩阵的玻璃基板及其制备方法、液晶面板 - Google Patents

具有黑色矩阵的玻璃基板及其制备方法、液晶面板 Download PDF

Info

Publication number
WO2016201710A1
WO2016201710A1 PCT/CN2015/082145 CN2015082145W WO2016201710A1 WO 2016201710 A1 WO2016201710 A1 WO 2016201710A1 CN 2015082145 W CN2015082145 W CN 2015082145W WO 2016201710 A1 WO2016201710 A1 WO 2016201710A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
glass substrate
region
light
liquid crystal
Prior art date
Application number
PCT/CN2015/082145
Other languages
English (en)
French (fr)
Inventor
刘桓
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/784,054 priority Critical patent/US20170146852A1/en
Publication of WO2016201710A1 publication Critical patent/WO2016201710A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2045Exposure; Apparatus therefor using originals with apertures, e.g. stencil exposure masks
    • G03F7/2047Exposure with radiation other than visible light or UV light, e.g. shadow printing, proximity printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal panel in which a color filter is integrated on a thin film transistor array substrate (COA), and particularly relates to a glass substrate having a black matrix in the liquid crystal panel. And its preparation method.
  • COA thin film transistor array substrate
  • LCD Liquid Crystal Display
  • TFT Thin Film Transistor
  • TFT-LCD The rapid development of TFT-LCD is related to more amorphous silicon based platforms (of course, a small part of the products also use polysilicon), which is cheap, simple in process, and uniform in uniformity, so now there are 55 inches and 65 inches. Large size products. When the size of the liquid crystal panel is large, the impedance of the line is increased, and a thicker, thicker, or more conductive metal wiring is required, and the thickness cannot be increased indefinitely.
  • the material having the best conductivity is metallic silver and Copper, a better practical conductive material is estimated to have no breakthrough for a long time, it can only increase the line width, which further reduces the aperture ratio of the TFT-LCD.
  • a liquid crystal panel using COA technology as shown in FIG. 1 includes an upper glass substrate 10, a lower glass substrate 20, and a liquid crystal layer 30 between the upper glass substrate 10 and the lower glass substrate 20.
  • a plurality of thin film transistors 201 are disposed on a side of the lower glass substrate 20 adjacent to the liquid crystal layer 30. Each of the thin film transistors 201 is connected to a pixel electrode 205.
  • the pixel electrode 205 is further provided with a transparent passivation layer. Since the COA technology is employed, a color filter 203 is further disposed between the thin film transistor 201 and the pixel electrode 205, and the color filter 203 includes a red filter unit 203R and a green filter. The light unit 203G and the blue filter unit 203B; wherein each of the pixel electrodes 205 corresponds to one red filter unit 203R or green filter unit 203G or blue filter unit 203B.
  • the thin film transistor 201 and the color filter 203 are separated by a first insulating protective layer 202, and the color filter 203 and the pixel electrode 205 are separated by a second insulating protective layer 204.
  • An array of black matrix (BM) 101a is disposed on a side of the upper glass substrate 10 adjacent to the liquid crystal layer 30, and each black matrix 101a corresponds to an adjacent region of the two filter units 203R, 203G, and 203B, respectively, to prevent light. Give way.
  • the array of black matrices 101a is also covered with an ITO common electrode 102.
  • the liquid crystal panel using the COA technology does not have a problem that the color filter unit and the pixel electrode are not strictly aligned, so that the aperture ratio of the liquid crystal panel can be improved.
  • the black matrix array is usually prepared by a photolithography process.
  • a black matrix film layer is first coated on the substrate; then an exposure mask is placed on the black matrix film layer and exposed, in the exposed area, The black matrix film layer is cured by irradiation of light; finally, the unexposed areas in the black matrix film layer are removed by development, and the cured portion of the black matrix film layer is left to form a black matrix array.
  • the black matrix film layer is exposed by a common exposure mask, and the edge of the obtained black matrix usually forms a taper angle, as shown in FIG. 2, the top and side of the black matrix 101a. The angle ⁇ between them is approximately 90°.
  • the liquid crystal molecules 301 tend to be perpendicular to the surface of the black matrix 101a, and since the angle ⁇ between the top surface and the side surface of the black matrix 101a is approximately 90, part of the liquid crystal molecules 301 are perpendicular to The side of the black matrix 101a causes the liquid crystal molecules 301 in the region to be disordered, which reduces the transmittance of the product, and finally exhibits dark lines on the edge of the pixel in the display of the liquid crystal panel, which affects the display quality of the liquid crystal panel.
  • one existing method is to apply a flat layer on the array of the black matrix 101a.
  • this method adds a process of preparing a flat layer, and after the flat layer is provided, the aperture ratio of the liquid crystal panel is lowered, which is disadvantageous for reducing the cost of the product and improving the quality of the product.
  • the present invention provides a glass substrate having a black matrix, which is mainly used for integrating a color filter into a liquid crystal panel of a color filter on array (COA).
  • COA color filter on array
  • a glass substrate having a black matrix comprising a glass substrate and a black matrix array formed on the glass substrate, wherein the thickness of the black matrix gradually decreases toward the both ends in the middle.
  • the thickness of the black matrix gradually decreases gradually from the middle to the both ends.
  • the present invention also provides a method for preparing a glass substrate having a black matrix as described above, comprising the steps of: S101, providing a glass substrate and forming a black matrix film layer on the glass substrate; S102, exposing the black matrix film layer The process and the development process obtain the black matrix array; wherein, in performing the exposure process, the exposure mask corresponds to the exposed area of each black matrix, and the exposure amount thereof gradually decreases toward the both ends.
  • the exposure region is sequentially divided into first to nth regions from the middle to the both ends, wherein the light intensity of the exposure light source corresponding to the first to nth regions is gradually decreased, and n is an integer greater than 1.
  • the light intensity of the exposure light source in the nth region is 40% of the first region, and the light intensity of the exposure light source corresponding to the first to nth regions is gradually decreased.
  • the first to nth regions are sequentially divided into first to nth regions from the middle to the both ends, wherein the first to nth regions include light transmissive materials having different light transmittances, and the first to nth regions correspond to each other.
  • the light transmittance of the light material gradually decreases, and n is an integer greater than one.
  • the light transmittance of the light-transmitting material in the n-th region is 40% of that in the first region, and the light transmittance of the light-transmitting material corresponding to the first to n-th regions is gradually decreased.
  • the exposure region is sequentially divided into first to nth regions from the middle to the both ends, wherein the first to nth regions include a light transmitting portion and a non-light transmitting portion, and the first to nth regions correspond to the light transmitting portion.
  • the area is gradually decreasing, and n is an integer greater than one.
  • the area of the light transmitting portion in the nth region is 40% of the first region, and the area of the light transmitting portion corresponding to the first to nth regions is gradually decreased in equal difference.
  • a liquid crystal panel including a first glass substrate and a second glass substrate disposed opposite to each other and a liquid crystal layer between the first glass substrate and the second glass substrate, wherein
  • the first glass substrate is a glass substrate having a black matrix as described above
  • the second glass substrate is a thin film transistor array substrate having a color filter.
  • the thickness of each black matrix gradually decreases toward the two ends, and the edge of the black matrix is no longer a taper angle shape.
  • Liquid crystal molecules in the liquid crystal layer close to the black matrix region and liquid crystals outside the region The arrangement of the sub-differents is not large, effectively reducing the dark lines generated at the edges of the pixels.
  • the invention improves the shape of the black matrix in the process of preparing the black matrix, without additionally increasing the structural layer on the glass substrate, and improves the display quality of the liquid crystal panel without increasing the cost of the product.
  • FIG. 1 is a schematic structural view of a conventional COA liquid crystal panel.
  • Fig. 2 is a partially enlarged schematic view showing a portion A in Fig. 1.
  • FIG. 3 is a schematic structural view of a COA liquid crystal panel in an embodiment of the present invention.
  • Fig. 4 is a partially enlarged schematic view showing a portion B in Fig. 3;
  • FIG. 5 is a flow chart showing a process for preparing a glass substrate having a black matrix in an embodiment of the present invention.
  • 6a to 6d are diagrams showing a preparation process of a glass substrate having a black matrix in an embodiment of the present invention.
  • Fig. 7 is an exemplary diagram for realizing a change in exposure amount in an embodiment of the present invention.
  • FIG. 8 is an exemplary diagram for realizing a change in exposure amount in another embodiment of the present invention.
  • Fig. 9 is an exemplary illustration of realizing a change in exposure amount in another embodiment of the present invention.
  • the present invention is directed to a COA liquid crystal panel of the prior art in which a pixel having a black matrix is provided with a black matrix due to the defect that the edge of the black matrix has a sharp corner, resulting in a black matrix.
  • the glass substrate comprises a glass substrate and a black matrix array formed on the glass substrate, wherein the thickness of the black matrix gradually decreases toward the both ends in the middle.
  • the embodiment provides a liquid crystal panel using a COA technology, the liquid crystal panel including a first glass substrate 10, a second glass substrate 20, and a first glass substrate 10 and a second glass substrate. 20 between the liquid crystal layers 30.
  • the first glass substrate 10 is a glass substrate having a black matrix
  • the second glass substrate 20 is a thin film transistor array substrate having a color filter.
  • a plurality of thin film transistors 201 are disposed on a side of the second glass substrate 20 adjacent to the liquid crystal layer 30, and each of the thin film transistors 201 is connected to a pixel electrode 205, and is usually disposed on the pixel electrode 205.
  • a transparent passivation layer There is a transparent passivation layer. Since the COA technology is employed, a color filter 203 is further disposed between the thin film transistor 201 and the pixel electrode 205, and the color filter 203 includes a red filter unit 203R, a green filter unit 203G, and a blue filter unit 203B.
  • Each of the pixel electrodes 205 corresponds to one red filter unit 203R or green filter unit 203G or blue filter unit 203B.
  • the thin film transistor 201 and the color filter 203 are separated by a first insulating protective layer 202, and the color filter 203 and the pixel electrode 205 are separated by a second insulating protective layer 204.
  • An array of black matrices 101 is disposed on a side of the first glass substrate 10 adjacent to the liquid crystal layer 30, and each of the black matrices 101 corresponds to an adjacent region of the two filter units 203R, 203G, and 203B, respectively, to prevent light from leaking. Further, the black matrix 101 array is further covered with an ITO common electrode 102.
  • the shape of the black matrix 101 therein is improved, as shown in FIG. 4, the black matrix formed on the first glass substrate 10.
  • the thickness of 101 gradually decreases toward the both ends in the middle.
  • the thickness of the black matrix 101 gradually decreases gradually toward the both ends in the middle.
  • the liquid crystal molecules 301 tend to be perpendicular to the surface of the black matrix 101, but since the surface of the black matrix 101 is continuously and gently lowered, the liquid crystal molecules 301 in the liquid crystal layer 30 near the black matrix 101 region are The arrangement of the liquid crystal molecules 301 outside the region is not much different (the liquid crystal molecules 301 having a large difference in arrangement are few), and the dark lines generated by the edges of the pixels due to the disorder of the arrangement of the liquid crystal molecules 301 are effectively reduced.
  • the preparation method comprises the steps of:
  • the exposure mask 40 corresponds to the exposure area 401 of each black matrix 101, and the exposure amount thereof gradually decreases toward the both ends in the middle, as shown in FIGS. 6b and 6c.
  • the exposure process when the exposure process is performed, for the exposure region 401 of the exposure mask 40, the exposure may be performed.
  • the region 401 is sequentially divided into the first to nth regions from the middle to the both ends, and the exposure amounts of the first to nth regions are gradually decreased, where n is an integer greater than 1.
  • the middle of the exposure region 401 is set as the first region 401a, and the first region 401a to the end of the exposure region 401 is the second region 401b, the third region 401c, and the fourth region.
  • 401d is the second region 401b, the third region 401c, and the fourth region 401d in order from the first region 401a to the other end of the exposure region 401.
  • Each of the first region 401a, the second region 401b, the third region 401c, and the fourth region 401d has the same exposure area and light transmittance.
  • exposure light sources having different light intensities I are respectively supplied to the first region 401a, the second region 401b, the third region 401c, and the fourth region 401d.
  • the light intensity I of the exposure light source of the first region 401a is 100%
  • the light intensity I of the exposure light source of the second region 401b is 80%
  • the light intensity I of the exposure light source of the third region 401c is At 60%
  • the light intensity I of the exposure light source of the fourth region 401d is 40%.
  • the light intensity I of the exposure light source of the first region 401a is 100%
  • the light intensity I of the exposure light source of the nth region is the first 40% of the 1 area
  • the light intensity I of the exposure light source corresponding to the 1st to nth areas gradually decreases with equal difference.
  • the middle of the exposure region 401 is set as the first region 401a, and the first region 401a to the end of the exposure region 401 is the second region 401b, the third region 401c, and the fourth region.
  • 401d is the second region 401b, the third region 401c, and the fourth region 401d in order from the first region 401a to the other end of the exposure region 401.
  • Each of the first region 401a, the second region 401b, the third region 401c, and the fourth region 401d has the same exposure area and an exposure light source of the same light intensity. In this manner, different regions contain light transmissive materials having different light transmittances T.
  • the light transmittance T of the light-transmitting material of the first region 401a is 100%
  • the light transmittance T of the light-transmitting material of the second region 401b is 80%
  • the third region 401c The light transmittance T of the light-transmitting material was 60%
  • the light transmittance T of the light-transmitting material of the fourth region 401d was 40%.
  • the exposure amount is stepwise decreasing, due to the scattering of light during the exposure and the interaction of the black matrix film layer, it is finally obtained that the black matrix 101 does not have a distinct step shape, but is gradually and gradually decreasing. shape.
  • the value of n is not 4, the light transmittance T of the light-transmitting material of the first region 401a is 100%, and the light of the light-transmitting material of the n-th region is The transmittance T is 40% of the first region, and the first to nth regions correspond to the light transmissive material The light transmittance T is gradually decreasing with equal difference.
  • the third mode Referring to Fig. 9, first, the middle of the exposure region 401 is set as the first region 401a, and the first region 401a to the end of the exposure region 401 is the second region 401b, the third region 401c, and the fourth region.
  • the second region 401b, the third region 401c, and the fourth region 401d are sequentially arranged, and each of the first region 401a, the second region 401b, the third region 401c, and the first region
  • the 4 regions 401d respectively include a light transmitting portion 4011 and a non-light transmitting portion 4012 (the first regions 401a may all be the light transmitting portions 4011), and the light transmitting portions 4011 in each of the regions have the same light transmittance and each
  • the area uses an exposure source of the same intensity. In this mode, the exposure amount is mainly controlled by setting the area S (exposure area) of the light transmitting portion 4011.
  • the area S of the light transmitting portion 4011 of the first region 401a is 100%, and the area S of the light transmitting portion 4011 of the second region 401b is 80%, and the light transmitting portion 4011 of the third region 401c.
  • the area S is 60%, and the area S of the light transmitting portion 4011 of the fourth region 401d is 40%.
  • the value of n is not 4, the area S of the light transmitting portion 4011 of the first region 401a is 100%, and the area S of the light transmitting portion 4011 of the nth region.
  • the area S of the light transmitting portion 4011 corresponding to the first to nth regions is gradually decreasing with an equal difference of 40% of the first region.
  • the thickness of each black matrix is gradually decreased toward the both ends, and the edge of the black matrix is no longer a sharp corner (taper)
  • the shape of the angle) the liquid crystal molecules in the liquid crystal layer close to the black matrix region and the arrangement of the liquid crystal molecules outside the region are not much different, effectively reducing the dark lines generated at the edges of the pixels.
  • the invention improves the shape of the black matrix in the process of preparing the black matrix, without additionally increasing the structural layer on the glass substrate, and improves the display quality of the liquid crystal panel without increasing the cost of the product.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

一种具有黑色矩阵的玻璃基板,其包括玻璃基板(10)以及形成于玻璃基板上的黑色矩阵阵列(101),黑色矩阵的厚度呈中间向两端逐渐递减。该玻璃基板的制备方法包括步骤:提供一玻璃基板并在该玻璃基板上形成一黑色矩阵薄膜层;对黑色矩阵薄膜层进行曝光工艺和显影工艺,获得黑色矩阵阵列;在进行曝光工艺时,曝光光罩对应于每一黑色矩阵的曝光区域,其曝光量呈中间向两端逐渐递减。还公开了包含上述玻璃基板的一种将彩色滤光片整合到薄膜晶体管阵列基板上(Color filter on array,COA)的液晶面板。

Description

具有黑色矩阵的玻璃基板及其制备方法、液晶面板 技术领域
本发明属于液晶显示器技术领域,尤其涉及一种将彩色滤光片整合到薄膜晶体管阵列基板上(Color filter on array,COA)的液晶面板,具体涉及到该液晶面板中的具有黑色矩阵的玻璃基板及其制备方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD),为平面超薄的显示设备,它由一定数量的彩色或黑白像素组成,放置于光源或者反射面前方。液晶显示器功耗很低,并且具有高画质、体积小、重量轻的特点,因此倍受大家青睐,成为显示器的主流。目前液晶显示器是以薄膜晶体管(Thin Film Transistor,TFT)液晶显示器为主。
TFT-LCD之所以能迅猛发展,与其更多的基于非晶硅平台有关(当然很小一部分产品也使用多晶硅),价格便宜,工艺简单,均一性较好,所以现在出现了55英寸、65英寸等大尺寸的产品。当液晶面板的尺寸大了以后,线路的阻抗增加,就需要用更粗、更厚或者导电率更好的金属配线,厚度是无法无限度增加的,导电率最好的材料是金属银和铜,更好的实用的导电材料估计在很长时间内都不会有突破,那就只能增加线宽了,这就进一步降低了TFT-LCD的开口率。
针对TFT-LCD开口率低的缺点,从技术角度有很多方案可以解决此问题,比如使用阻抗更低的金属导线,使用更具有挑战性的设计方案,使用一些新的液晶显示模式。其中的一种方式是将彩色滤光片整合到薄膜晶体管阵列基板上(Color filter on array,COA)。如图1所示的一种采用COA技术的液晶面板,其包括上玻璃基板10、下玻璃基板20以及上玻璃基板10和下玻璃基板20之间的液晶层30。下玻璃基板20上靠近液晶层30的一侧设置有多个薄膜晶体管201,每个薄膜晶体管201对应连接有一像素电极205,通常像素电极205上还设置有透明的钝化层。由于采用了COA技术,薄膜晶体管201和像素电极205之间还设置有彩色滤光片203,所述彩色滤光片203包括红色滤光单元203R、绿色滤 光单元203G和蓝色滤光单元203B;其中,每一像素电极205分别对应一个红色滤光单元203R或绿色滤光单元203G或蓝色滤光单元203B。其中,薄膜晶体管201与彩色滤光片203之间由第一绝缘保护层202隔离,彩色滤光片203与像素电极205之间由第二绝缘保护层204隔离。在上玻璃基板10靠近液晶层30的一侧设置有黑色矩阵(Black Matrix,BM)101a阵列,每一黑色矩阵101a分别对应于两个滤光单元203R、203G、203B的相邻区域,防止光线泄露。通常地,黑色矩阵101a阵列上还覆盖有ITO共电极102。相对于传统的液晶面板,采用COA技术的液晶面板不存在彩色滤光单元与像素电极未严格对准的问题,因此可以提高液晶面板的开口率。
黑色矩阵阵列通常采用光刻工艺制备获得,在负性的光刻工艺中,首先在基底上涂覆黑色矩阵薄膜层;然后在黑色矩阵薄膜层上设置曝光光罩并进行曝光,在曝光区域,黑色矩阵薄膜层受到光的照射发生固化;最后显影清除黑色矩阵薄膜层中未曝光的区域,剩下黑色矩阵薄膜层固化的部分,形成黑色矩阵阵列。现有技术中,采用普通的曝光光罩对黑色矩阵薄膜层进行曝光,其获得的黑色矩阵的边缘通常会形成尖角(taper angle),如图2所示,黑色矩阵101a的顶面与侧面之间的夹角α近似为90°。液晶层30中靠近黑色矩阵101a的区域,液晶分子301倾向于垂直黑色矩阵101a的表面,而由于黑色矩阵101a的顶面与侧面之间的夹角α近似为90°,部分液晶分子301垂直于黑色矩阵101a侧面,导致该区域的液晶分子301排布混乱,其降低了产品的透过率,最终在液晶面板的显示中体现为在像素边缘具有暗纹,影响了液晶面板的显示品质。
为了改善如上结构的黑色矩阵101a导致像素边缘产生暗纹的问题,现有的一种方法是在黑色矩阵101a阵列上覆设一层平坦层。但是该种方法增加了一道制备平坦层的工序,并且设置平坦层后,液晶面板的开口率会降低,不利于降低产品的成本以及提高产品的品质。
发明内容
鉴于现有技术存在的不足,本发明提供了一种具有黑色矩阵的玻璃基板,其主要应用于将彩色滤光片整合到薄膜晶体管阵列基板上(Color filter on array,COA)的液晶面板中,解决了现有技术中由于黑色矩阵的边缘具有尖角而导致像素边缘具有暗纹的缺陷。
为了达到上述的目的,本发明采用了如下的技术方案:
一种具有黑色矩阵的玻璃基板,包括玻璃基板以及形成于玻璃基板上的黑色矩阵阵列,其中,所述黑色矩阵的厚度呈中间向两端逐渐递减。
其中,所述黑色矩阵的厚度呈中间向两端连续地逐渐递减。
本发明还提供了如上具有黑色矩阵的玻璃基板的制备方法,其包括步骤:S101、提供一玻璃基板并在该玻璃基板上形成一黑色矩阵薄膜层;S102、对所述黑色矩阵薄膜层进行曝光工艺和显影工艺,获得所述黑色矩阵阵列;其中,在进行曝光工艺时,曝光光罩对应于每一黑色矩阵的曝光区域,其曝光量呈中间向两端逐渐递减。
其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域对应的曝光光源的光强逐渐递减,n为大于1的整数。
其中,第n区域的曝光光源的光强为第1区域的40%,第1至第n区域对应的曝光光源的光强呈等差逐渐递减。
其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域包括具有不同光线透过率的透光材料,第1至第n区域对应的透光材料的光线透过率逐渐递减,n为大于1的整数。
其中,第n区域的透光材料的光线透过率为第1区域的40%,第1至第n区域对应的透光材料的光线透过率呈等差逐渐递减。
其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域包括透光部和非透光部,第1至第n区域对应的透光部的面积逐渐递减,n为大于1的整数。
其中,第n区域的透光部的面积为第1区域的40%,第1至第n区域对应的透光部的面积呈等差逐渐递减。
本发明的另一方面是提供一种液晶面板,其包括相对设置的第一玻璃基板和第二玻璃基板以及位于所述第一玻璃基板和第二玻璃基板之间的液晶层,其中,所述第一玻璃基板为如上所述的具有黑色矩阵的玻璃基板,所述第二玻璃基板为具有彩色滤光片的薄膜晶体管阵列基板。
本发明实施例提供的COA液晶面板,其中的具有黑色矩阵的玻璃基板中,每一黑色矩阵的厚度呈中间向两端逐渐递减,黑色矩阵的边缘不再是尖角(taper angle)的形状,液晶层中靠近黑色矩阵区域的液晶分子与该区域之外的液晶分 子的排布差异不大,有效降低了像素边缘产生的暗纹。本发明是在制备黑色矩阵的工艺中对黑色矩阵的形状进行改进,不另外增加玻璃基板上的结构层,在提高液晶面板显示品质的同时并未增加产品的成本。
附图说明
图1是现有的一种COA液晶面板的结构示意图。
图2是如图1中的A部分的局部放大示意图。
图3是本发明实施例中的COA液晶面板的结构示意图。
图4是如图3中的B部分的局部放大示意图。
图5是本发明实施例中具有黑色矩阵的玻璃基板的制备工艺流程图。
图6a至6d是本发明实施例中具有黑色矩阵的玻璃基板的制备过程图示。
图7是本发明一实施方式中实现曝光量变化的示例性图示。
图8是本发明另一实施方式中实现曝光量变化的示例性图示。
图9是本发明另一实施方式中实现曝光量变化的示例性图示。
具体实施方式
如前所述,本发明针对现有技术的COA液晶面板中,由于黑色矩阵的边缘具有尖角而导致像素边缘具有暗纹的缺陷,提供了一种具有黑色矩阵的玻璃基板,该具有黑色矩阵的玻璃基板包括玻璃基板以及形成于玻璃基板上的黑色矩阵阵列,其中,所述黑色矩阵的厚度呈中间向两端逐渐递减。通过对黑色矩阵的形状进行改进,黑色矩阵的边缘不再是尖角(taper angle)的形状,液晶层中靠近黑色矩阵区域的液晶分子与该区域之外的液晶分子的排布差异不大,解决了由于黑色矩阵的边缘具有尖角而导致像素边缘具有暗纹的问题。
下面将结合附图以及具体实施例,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护范围。
参阅附图3,本实施例提供了一种采用COA技术的液晶面板,该液晶面板包括第一玻璃基板10、第二玻璃基板20以及第一玻璃基板10和第二玻璃基板 20之间的液晶层30。其中,所述第一玻璃基板10为具有黑色矩阵的玻璃基板,所述第二玻璃基板20为具有彩色滤光片的薄膜晶体管阵列基板。
具体地,如图3所示的,第二玻璃基板20上靠近液晶层30的一侧设置有多个薄膜晶体管201,每个薄膜晶体管201对应连接有一像素电极205,通常像素电极205上还设置有透明的钝化层。由于采用了COA技术,薄膜晶体管201和像素电极205之间还设置有彩色滤光片203,所述彩色滤光片203包括红色滤光单元203R、绿色滤光单元203G和蓝色滤光单元203B;其中,每一像素电极205分别对应一个红色滤光单元203R或绿色滤光单元203G或蓝色滤光单元203B。其中,薄膜晶体管201与彩色滤光片203之间由第一绝缘保护层202隔离,彩色滤光片203与像素电极205之间由第二绝缘保护层204隔离。在第一玻璃基板10靠近液晶层30的一侧设置有黑色矩阵101阵列,每一黑色矩阵101分别对应于两个滤光单元203R、203G、203B的相邻区域,防止光线泄露。进一步地,黑色矩阵101阵列上还覆盖有ITO共电极102。
与现有技术不同的是,本实施例提供的第一玻璃基板10中,对其中的黑色矩阵101的形状进行了改进,如图4所示的,形成于第一玻璃基板10上的黑色矩阵101的厚度呈中间向两端逐渐递减。具体地,黑色矩阵101的厚度呈中间向两端连续平缓地逐渐递减。液晶层30中靠近黑色矩阵101的区域,液晶分子301倾向于垂直黑色矩阵101的表面,但是由于黑色矩阵101的表面呈连续平缓地下降,液晶层30中靠近黑色矩阵101区域的液晶分子301与该区域之外的液晶分子301的排布差异不大(排布差异大的液晶分子301很少),有效降低了因液晶分子301排布混乱而导致像素边缘产生的暗纹。
下面介绍具有如上所述的黑色矩阵101的第一玻璃基板10的制备方法。参阅附图5以及图6a~6d,该制备方法包括步骤:
S101、提供第一玻璃基板10并在该玻璃基板10上形成一黑色矩阵薄膜层10a,如图6a所示。
S102、对所述黑色矩阵薄膜层10a进行曝光工艺和显影工艺,获得黑色矩阵101阵列。其中,在进行曝光工艺时,曝光光罩40对应于每一黑色矩阵101的曝光区域401,其曝光量呈中间向两端逐渐递减,如图6b和图6c所示。
S103、在所述黑色矩阵101阵列上制备一层ITO共电极102,如图6d所示。
其中,在进行曝光工艺时,对于曝光光罩40的曝光区域401,可以将曝光 区域401从中间向两端依次划分为第1至第n区域,第1至第n区域的曝光量逐渐递减,其中n为大于1的整数。下面以n=4为例,介绍几种实现第1至第n区域的曝光量逐渐递减的方式:
第一种方式:参阅图7,首先将曝光区域401的中间设定为第1区域401a,从第1区域401a向曝光区域401的一端依次为第2区域401b、第3区域401c和第4区域401d,从第1区域401a向曝光区域401的另一端也依次为第2区域401b、第3区域401c和第4区域401d。每一第1区域401a、第2区域401b、第3区域401c和第4区域401d均具有相同的曝光面积和光线透过率。然后,针对第1区域401a、第2区域401b、第3区域401c和第4区域401d分别提供具有不同光强I的曝光光源。具体到本实施例中,以第1区域401a的曝光光源的光强I为100%,则第2区域401b的曝光光源的光强I为80%,第3区域401c的曝光光源的光强I为60%,第4区域401d的曝光光源的光强I为40%。以上方式中,虽然曝光量呈阶梯性递减,但是由于曝光过程中光的散射以及黑色矩阵薄膜层的相互作用,最终得到了黑色矩阵101不会呈明显的阶梯形状,而是呈均匀缓慢逐渐下降的形状。需要说明的是,在另外的实施例中,例如n的取值不为4,则以第1区域401a的曝光光源的光强I为100%,第n区域的曝光光源的光强I为第1区域的40%,第1至第n区域对应的曝光光源的光强I呈等差逐渐递减。
第二种方式:参阅图8,首先将曝光区域401的中间设定为第1区域401a,从第1区域401a向曝光区域401的一端依次为第2区域401b、第3区域401c和第4区域401d,从第1区域401a向曝光区域401的另一端也依次为第2区域401b、第3区域401c和第4区域401d。每一第1区域401a、第2区域401b、第3区域401c和第4区域401d均具有相同的曝光面积和并且采用相同光强的曝光光源。在该方式中,不同的区域包含有不同光线透过率T的透光材料。具体到本实施例中,以第1区域401a的透光材料的光线透过率T为100%,则第2区域401b的透光材料的光线透过率T为80%,第3区域401c的透光材料的光线透过率T为60%,第4区域401d的透光材料的光线透过率T为40%。以上方式中,虽然曝光量呈阶梯性递减,但是由于曝光过程中光的散射以及黑色矩阵薄膜层的相互作用,最终得到了黑色矩阵101不会呈明显的阶梯形状,而是呈均匀缓慢逐渐下降的形状。需要说明的是,在另外的实施例中,例如n的取值不为4,则以第1区域401a的透光材料的光线透过率T为100%,第n区域的透光材料的光线透过率T为第1区域的40%,第1至第n区域对应的透光材料的 光线透过率T呈等差逐渐递减。
第三种方式:参阅图9,首先将曝光区域401的中间设定为第1区域401a,从第1区域401a向曝光区域401的一端依次为第2区域401b、第3区域401c和第4区域401d,从第1区域401a向曝光区域401的另一端也依次为第2区域401b、第3区域401c和第4区域401d,每一第1区域401a、第2区域401b、第3区域401c和第4区域401d分别包括透光部4011和非透光部4012(第1区域401a可以全部为透光部4011),其中的每一区域中的透光部4011具有相同的光线透过率并且每一区域采用相同光强的曝光光源。在该方式中,主要通过设定透光部4011的面积S(曝光面积)来控制曝光量。具体到本实施例中,以第1区域401a的透光部4011的面积S为100%,则第2区域401b的透光部4011的面积S为80%,第3区域401c的透光部4011的面积S为60%,第4区域401d的透光部4011的面积S为40%。以上方式中,虽然曝光量呈阶梯性递减,但是由于曝光过程中光的散射以及黑色矩阵薄膜层的相互作用,最终得到了黑色矩阵101不会呈明显的阶梯形状,而是呈均匀缓慢逐渐下降的形状。需要说明的是,在另外的实施例中,例如n的取值不为4,则以第1区域401a的透光部4011的面积S为100%,第n区域的透光部4011的面积S为第1区域的40%,第1至第n区域对应的透光部4011的面积S呈等差逐渐递减。
综上所述,本发明实施例提供的COA液晶面板,其中的具有黑色矩阵的玻璃基板中,每一黑色矩阵的厚度呈中间向两端逐渐递减,黑色矩阵的边缘不再是尖角(taper angle)的形状,液晶层中靠近黑色矩阵区域的液晶分子与该区域之外的液晶分子的排布差异不大,有效降低了像素边缘产生的暗纹。本发明是在制备黑色矩阵的工艺中对黑色矩阵的形状进行改进,不另外增加玻璃基板上的结构层,在提高液晶面板显示品质的同时并未增加产品的成本。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (17)

  1. 一种具有黑色矩阵的玻璃基板,包括玻璃基板以及形成于玻璃基板上的黑色矩阵阵列,其中,所述黑色矩阵的厚度呈中间向两端逐渐递减。
  2. 根据权利要求1所述的具有黑色矩阵的玻璃基板,其中,所述黑色矩阵的厚度呈中间向两端连续地逐渐递减。
  3. 根据权利要求1所述的具有黑色矩阵的玻璃基板,其中,所述黑色矩阵阵列上还设置有一层ITO共电极。
  4. 一种具有黑色矩阵的玻璃基板的制备方法,其中,所述具有黑色矩阵的玻璃基板包括玻璃基板以及形成于玻璃基板上的黑色矩阵阵列,所述黑色矩阵的厚度呈中间向两端逐渐递减;其制备方法包括步骤:
    S101、提供一玻璃基板并在该玻璃基板上形成一黑色矩阵薄膜层;
    S102、对所述黑色矩阵薄膜层进行曝光工艺和显影工艺,获得所述黑色矩阵阵列;其中,在进行曝光工艺时,曝光光罩对应于每一黑色矩阵的曝光区域,其曝光量呈中间向两端逐渐递减。
  5. 根据权利要求4所述的具有黑色矩阵的玻璃基板的制备方法,其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域对应的曝光光源的光强逐渐递减,n为大于1的整数。
  6. 根据权利要求5所述的具有黑色矩阵的玻璃基板的制备方法,其中,第n区域的曝光光源的光强为第1区域的40%,第1至第n区域对应的曝光光源的光强呈等差逐渐递减。
  7. 根据权利要求4所述的具有黑色矩阵的玻璃基板的制备方法,其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域包括具有不同光线透过率的透光材料,第1至第n区域对应的透光材料的光线透过率逐渐递减,n为大于1的整数。
  8. 根据权利要求5所述的具有黑色矩阵的玻璃基板的制备方法,其中,第n区域的透光材料的光线透过率为第1区域的40%,第1至第n区域对应的透光材料的光线透过率呈等差逐渐递减。
  9. 根据权利要求4所述的具有黑色矩阵的玻璃基板的制备方法,其中,所述曝光区域从中间向两端依次划分为第1至第n区域,其中,第1至第n区域包括透光部和非透光部,第1至第n区域对应的透光部的面积逐渐递减,n为大于1的整数。
  10. 根据权利要求5所述的具有黑色矩阵的玻璃基板的制备方法,其中,第n区域的透光部的面积为第1区域的40%,第1至第n区域对应的透光部的面积呈等差逐渐递减。
  11. 根据权利要求3所述的具有黑色矩阵的玻璃基板的制备方法,其中,还包括步骤S103、在所述黑色矩阵阵列上制备一层ITO共电极。
  12. 根据权利要求3所述的具有黑色矩阵的玻璃基板的制备方法,其中,所述黑色矩阵的厚度呈中间向两端连续地逐渐递减。
  13. 一种液晶面板,包括相对设置的第一玻璃基板和第二玻璃基板以及位于所述第一玻璃基板和第二玻璃基板之间的液晶层,其中,所述第一玻璃基板为具有黑色矩阵的玻璃基板,其包括玻璃基板以及形成于玻璃基板上的黑色矩阵阵列,所述黑色矩阵的厚度呈中间向两端逐渐递减;所述第二玻璃基板为具有彩色滤光片的薄膜晶体管阵列基板。
  14. 根据权利要求13所述的液晶面板,其中,所述黑色矩阵的厚度呈中间向两端连续地逐渐递减。
  15. 根据权利要求13所述的液晶面板,其中,所述黑色矩阵阵列上还设置有一层ITO共电极。
  16. 根据权利要求13所述的液晶面板,其中,所述第二玻璃基板上靠近液晶层的一侧设置有多个薄膜晶体管,每个薄膜晶体管对应连接有一像素电极;所述薄膜晶体管和所述像素电极之间设置有彩色滤光片,所述彩色滤光片包括红色滤光单元、绿色滤光单元和蓝色滤光单元;其中,每一像素电极分别对应一个红色滤光单元或绿色滤光单元或蓝色滤光单元;所述第一玻璃基板中的每一黑色矩阵分别对应于两个滤光单元的相邻区域。
  17. 根据权利要求16所述的液晶面板,其中,所述薄膜晶体管与所述彩色滤光片之间由第一绝缘保护层隔离,所述彩色滤光片与所述像素电极之间由第二绝缘保护层隔离。
PCT/CN2015/082145 2015-06-16 2015-06-24 具有黑色矩阵的玻璃基板及其制备方法、液晶面板 WO2016201710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/784,054 US20170146852A1 (en) 2015-06-16 2015-06-24 Glass substrate having black matrix, preparing method thereof and liquid crystal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510334537.6 2015-06-16
CN201510334537.6A CN104865738A (zh) 2015-06-16 2015-06-16 具有黑色矩阵的玻璃基板及其制备方法、液晶面板

Publications (1)

Publication Number Publication Date
WO2016201710A1 true WO2016201710A1 (zh) 2016-12-22

Family

ID=53911671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082145 WO2016201710A1 (zh) 2015-06-16 2015-06-24 具有黑色矩阵的玻璃基板及其制备方法、液晶面板

Country Status (3)

Country Link
US (1) US20170146852A1 (zh)
CN (1) CN104865738A (zh)
WO (1) WO2016201710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065205A (zh) * 2017-02-28 2017-08-18 京东方科技集团股份有限公司 黑矩阵和显示装置
CN110824762A (zh) * 2019-10-29 2020-02-21 深圳市华星光电技术有限公司 显示面板及显示装置
CN111624780A (zh) * 2020-05-28 2020-09-04 武汉华星光电技术有限公司 准直器结构、显示装置及显示装置的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141484A1 (en) * 2005-12-19 2007-06-21 Ming-Shu Lee Color filter and manufacture method thereof
CN101261334A (zh) * 2007-03-07 2008-09-10 富士胶片株式会社 滤光器、以及使用其的液晶显示装置
JP2009075446A (ja) * 2007-09-21 2009-04-09 Mitsubishi Chemicals Corp 樹脂ブラックマトリックス、遮光性感光性樹脂組成物及び液晶表示装置
CN102947750A (zh) * 2010-06-18 2013-02-27 凸版印刷株式会社 半透射型液晶显示装置用基板、滤色器基板及液晶显示装置
WO2014136738A1 (ja) * 2013-03-07 2014-09-12 東レ株式会社 ブラックマトリクス基板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW475084B (en) * 1998-08-07 2002-02-01 Ind Tech Res Inst Method to manufacture multiple gap color filter of LCD
CN1576990A (zh) * 2003-07-29 2005-02-09 友达光电股份有限公司 彩色滤光膜基板的制造方法及其结构
CN1629689A (zh) * 2003-12-17 2005-06-22 鸿富锦精密工业(深圳)有限公司 导光板模仁制造方法
KR20060024939A (ko) * 2004-09-15 2006-03-20 엘지.필립스 엘시디 주식회사 액정표시장치용 컬러필터기판 및 그의 제조방법
CN100430759C (zh) * 2006-11-01 2008-11-05 友达光电股份有限公司 彩色滤光片的制造方法
JP5233404B2 (ja) * 2008-05-19 2013-07-10 凸版印刷株式会社 濃度分布マスクの製造方法及びマイクロレンズアレイの製造方法
EP2579090A4 (en) * 2010-05-27 2016-01-20 Toppan Printing Co Ltd SUBSTRATE FOR A LIQUID CRYSTAL DISPLAY DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE
KR101196318B1 (ko) * 2010-12-01 2012-11-01 주식회사 동부하이텍 마이크로 렌즈 제조 방법 및 마이크로 렌즈 어레이
JP2013024996A (ja) * 2011-07-19 2013-02-04 Japan Display Central Co Ltd 液晶表示装置
KR102246102B1 (ko) * 2013-11-26 2021-04-30 삼성디스플레이 주식회사 표시 장치
CN103869606B (zh) * 2014-04-04 2016-06-08 深圳市华星光电技术有限公司 曝光光罩以及彩色滤光片的制作方法
CN104102042B (zh) * 2014-06-30 2017-08-25 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示装置
CN104298011A (zh) * 2014-09-05 2015-01-21 深圳市华星光电技术有限公司 一种掩模板及使用掩模板制作光阻间隔物的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141484A1 (en) * 2005-12-19 2007-06-21 Ming-Shu Lee Color filter and manufacture method thereof
CN101261334A (zh) * 2007-03-07 2008-09-10 富士胶片株式会社 滤光器、以及使用其的液晶显示装置
JP2009075446A (ja) * 2007-09-21 2009-04-09 Mitsubishi Chemicals Corp 樹脂ブラックマトリックス、遮光性感光性樹脂組成物及び液晶表示装置
CN102947750A (zh) * 2010-06-18 2013-02-27 凸版印刷株式会社 半透射型液晶显示装置用基板、滤色器基板及液晶显示装置
WO2014136738A1 (ja) * 2013-03-07 2014-09-12 東レ株式会社 ブラックマトリクス基板

Also Published As

Publication number Publication date
CN104865738A (zh) 2015-08-26
US20170146852A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
US7547494B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal display
KR102363676B1 (ko) 표시장치 및 그 제조방법
WO2016086539A1 (zh) 液晶面板及其制作方法
US9323096B2 (en) Pixel unit, method for fabricating the same and liquid crystal display device
US20150285968A1 (en) Color filter substrate, preparing method thereof, and display device
US9488873B2 (en) Substrate and display device
WO2019047461A1 (zh) 液晶面板及其制作方法
US10365523B2 (en) Display panel and manufacturing method based on BOA technology
US20180307071A1 (en) Liquid crystal display panel, manufacturing method thereof, and display device applied thereto
US11262632B2 (en) Active switch array substrate, manufacturing method thereof and liquid crystal display panel applying the same
WO2016201710A1 (zh) 具有黑色矩阵的玻璃基板及其制备方法、液晶面板
TWI291764B (en) Liquid crystal display device and manufacturing process thereof
US9921427B2 (en) Method for manufacturing color filter, color filter, and liquid crystal display panel
WO2015149378A1 (zh) 曝光光罩以及彩色滤光片的制作方法
WO2020062489A1 (zh) 液晶显示模组、液晶显示器及显示设备
WO2016082239A1 (zh) 彩色滤光基板及液晶显示面板
WO2019007073A1 (zh) 阵列基板及其制作方法、反射式液晶显示装置
CN101144927B (zh) 液晶显示装置及其制造方法
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
TW200912394A (en) Liquid crystal display, multi-view liquid crystal display panel and fabrication methods thereof
US9664944B2 (en) Liquid crystal display device and method of fabricating the same
KR20080023380A (ko) 표시 패널 및 표시 기판의 제조 방법
WO2016206126A1 (zh) 彩色滤光基板、液晶面板以及液晶显示器
WO2016173150A1 (zh) 用于液晶面板的偏光片及液晶面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14784054

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895283

Country of ref document: EP

Kind code of ref document: A1