WO2016206067A1 - 用于自动转换开关的永磁操作机构 - Google Patents

用于自动转换开关的永磁操作机构 Download PDF

Info

Publication number
WO2016206067A1
WO2016206067A1 PCT/CN2015/082435 CN2015082435W WO2016206067A1 WO 2016206067 A1 WO2016206067 A1 WO 2016206067A1 CN 2015082435 W CN2015082435 W CN 2015082435W WO 2016206067 A1 WO2016206067 A1 WO 2016206067A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable contact
shaft
contact member
drive rod
permanent magnet
Prior art date
Application number
PCT/CN2015/082435
Other languages
English (en)
French (fr)
Inventor
季雪峰
胡同先
褚栋炎
Original Assignee
康明斯发电Ip公司
季雪峰
胡同先
褚栋炎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康明斯发电Ip公司, 季雪峰, 胡同先, 褚栋炎 filed Critical 康明斯发电Ip公司
Priority to CN201580081244.XA priority Critical patent/CN107924774B/zh
Priority to US15/739,623 priority patent/US10692677B2/en
Priority to PCT/CN2015/082435 priority patent/WO2016206067A1/zh
Publication of WO2016206067A1 publication Critical patent/WO2016206067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/60Contact arrangements moving contact being rigidly combined with movable part of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/018Application transfer; between utility and emergency power supply

Definitions

  • the present application relates to an automatic transfer switch (ATS) operating device including a permanent magnet drive.
  • ATS automatic transfer switch
  • An Automatic Transfer Switch (ATS) for user applications can be used, for example, to selectively couple local loads from residential or commercial buildings to the utility grid.
  • the ATS device can also be used to selectively couple the local load to the generator when a power outage occurs.
  • a typical ATS has two power inputs and one output.
  • a typical ATS consists of multiple parts, such as drivers, solenoids, and contactors.
  • Most ATS devices utilize solenoid or motor operating mechanisms for opening and closing operations and require special locking and release devices to maintain open and closed states.
  • the ATS design has a complex structure and a large number of components, especially with respect to the subsystems used for the drive.
  • One embodiment of the present disclosure is directed to an ATS system including: a contact subsystem having a plurality of movable contact members and at least one fixed contact member in one position, the plurality of movable contact members being included At least one first movable contact member at the first position and at least one second movable contact member at the second position.
  • the ATS system further includes a permanent magnet operating mechanism configured to control opening and closing of the plurality of movable contact members relative to the at least one fixed contact member to generate a retaining force to at least one The state of a movable contact member is maintained in the first position and the state of the at least one second movable contact member is maintained at the second position and connected to the subsystem by a connecting rod.
  • the ATS system additionally includes a solenoid that allows the at least one first movable contact member at a first position and the at least one second movable contact member at a second position The movement of one of the ones.
  • the ATS includes a pair of movable contact members, fixed contact members, solenoids, and permanent a magnetic actuator, the pair of movable contact members including a first movable contact member at a first position and a second movable contact member at a second position, the solenoid allowing selection of the first And one of the second movable contact members.
  • the driver includes a driver body, a first drive rod, and a second drive rod.
  • the actuator is configured to move the first drive rod in a first direction independently of movement of the second drive rod to move the first drive rod to drive the pair of movable contact members and to cause the second drive rod Move to select the power source.
  • the ATS includes a plurality of movable contact members including a first set of movable contact members fixed to the first shaft and rotatable together with the first shaft and fixed to the second shaft And a second set of movable contact members that are rotatable with the second shaft.
  • the ATS further includes a drive for controlling opening and closing of the movable contact member, a solenoid for moving the movable contact member, at least one fixed contact member, and a first drive rod fixed by the first shaft and the second shaft, respectively Second drive rod.
  • the method includes controlling opening and closing of the plurality of movable contact members relative to the at least one fixed contact member, and generating a retaining force to maintain a state of the first set of movable contact members and the first The state of the two sets of movable contact members.
  • the method also includes opening the first shaft when the second shaft is closed and opening the second shaft when the first shaft is closed.
  • Various embodiments of the systems, devices, and methods described herein may increase reliability and extend life by more enhanced designs. Moreover, in various embodiments, all of the complexity and precision required in manufacturing can be reduced. It also reduces assembly time.
  • Figure 1 shows a perspective view of an ATS system in accordance with an embodiment
  • Figure 2 is a left side view of the ATS system in the neutral position shown in Figure 1;
  • Figure 3 depicts a left side view of the ATS system of Figure 2 with the permanent magnet drive removed;
  • Figure 4 depicts a right side view of the ATS system shown in Figure 1 with the bracket removed;
  • Figure 5 depicts a left side view of the ATS system of Figure 1 with the first movable contact subsystem in a closed position;
  • Figure 6 depicts a left side view of the ATS system of Figure 5 with the permanent magnet drive removed;
  • Figure 7 depicts a right side view of the ATS system of Figure 5 with the bracket removed;
  • Figure 8 depicts a left side view of the ATS system of Figure 1 with the second movable contact subsystem in a closed position;
  • Figure 9 is a left side view of the ATS system of Figure 8 with the permanent magnet drive removed;
  • Figure 10 depicts a right side view of the ATS system of Figure 8 with the bracket removed;
  • FIG. 11 depicts a method of performing automatic conversion switching in accordance with an embodiment.
  • ATS devices are typically made of complex structures that may have a less robust design and that must acquire and integrate a large number of components. These devices suffer from reliability problems that may eventually shorten their life cycle, and they require a large number of components and high manufacturing precision making it difficult to control their consistency. As a result, a more robust and simpler switch can reduce the manufacturing and reliability challenges associated with these devices while extending the life cycle of their products.
  • ATS devices may include a permanent magnet drive.
  • the ATS device with these drives is described on January 30, 2014 and is entitled “Automatic Transfer Switch” PCT Patent Application No. PCT/CN2014/071857 and PCT Patent Application No. PCT/CN2014/079590, filed on June 10, 2014, entitled " Automatic Transfer Switch,"
  • the text is incorporated herein by reference in its entirety as the same as the disclosure of the disclosure.
  • inventions discussed below advantageously achieve high reliability and long life cycles while reducing maintenance requirements. These embodiments provide significant reliability and performance improvements over conventional ATS devices.
  • conventional ATS devices severely limit the distance between the drive shafts of the two sources due to the structure of their operating mechanisms. This limited distance may reduce the driving force, making it more difficult to achieve good contact force, especially for high current ATS devices.
  • the embodiments herein have less risk of erroneous operation and may require less maintenance.
  • various embodiments disclosed herein relate to an ATS system having a permanent magnet drive.
  • the permanent magnet drive operates the transmission assembly to open or close a movable contact subsystem (also referred to as a contact member) on the fixed contact subsystem.
  • the switch is used to select a first movable contact subsystem ("source A") or a second movable contact subsystem (“source B"). Operation of the drive assembly by the permanent magnet drive moves the selected movable contact subsystem into the open or closed position.
  • the movable contact subsystem is fixed by the force generated by the permanent magnet drive, without relying on conventional mechanical locking and release devices.
  • FIG. 1 depicts an embodiment of an ATS system 100 shown from a perspective view.
  • ATS 100 has a substrate 1 that includes at least two polar contact systems 28,32.
  • the electrode contact systems 28, 32 include two sources for the movable contact subsystems 30, 34.
  • the ATS 100 also includes a permanent fixed contact system 29, a permanent fixed contact system 33 and a crowbar system 27, and an arc suppression grid system 35.
  • the arc chute system 27, 35 is arc extinguished.
  • the ATS 100 includes a stabilizing member such as a bracket 2 that supports the components on the substrate 1.
  • the bracket 2 may be disposed in different orientations from each other and may be configured differently.
  • the bracket 2 includes a substantially horizontal portion that is parallel to the substrate 1 and a substantially vertical portion that protrudes from the substrate 1 and is perpendicular to the substrate 1.
  • the bracket 2, bracket 31 is configured to contact additional components of the ATS 100.
  • the ATS 100 further includes a square shaft 21, a square shaft 26, a square shaft 21, and a square shaft 26 connected between the bracket 2 and the bracket 31 through holes in the bracket 2 and the bracket 31.
  • Shaft 21, shaft 26 is a linkage that connects the driver as discussed below to movable contact system 30, movable contact system 34.
  • the movable contact subsystem 30 is fixed to the square shaft 26 and rotates with the square shaft 26.
  • the movable contact system 34 is fixed to the square shaft 21 and rotates with the square shaft 21.
  • the square shaft 21 is also fixed by the swing lever 22 and rotates with the swing lever 22.
  • the square shaft 26 is also fixed by the swing lever 25 and rotates with the swing lever 25.
  • the swinging lever 22 and the swinging lever 25 allow an extension of the distance between the square shaft 21 and the square shaft 26, thereby improving the force transmission condition.
  • the ATS system 100 shown in Figure 1 is an open-circuit converted ATS that applies a permanent magnet driver 3 to cause the movable contact subsystem 30, the movable contact subsystem 34 to be closed at a fixed contact by a transmission assembly as described below.
  • the system 29, the fixed contact subsystem 33, or the stationary contact subsystem 29, the fixed contact subsystem 33 are opened.
  • the ATS system 100 also includes a solenoid 7 and an extension structure to select the source A movable contact subsystem 34 or the source B movable contact subsystem 30 to be moved. In this manner, the ATS system 100 eliminates the need for conventional mechanical locking and release devices.
  • the ATS system 100 advantageously uses the permanent magnet retention force generated by the permanent magnet driver 3 to maintain the state of the movable contact subsystem 30, the movable contact subsystem 34.
  • the bracket 2 is provided with a plurality of slots or apertures, which may have different orientations, sizes and positions.
  • the pin 23 and the pin 24 are provided to connect the swing lever 22 and the swing lever 25 to the bracket 2 through the slots in the bracket 2.
  • the pin 23 and the pin 24 are connected to the swing lever 22 and the swing lever 25 by the swing lever 22, the groove in the swing lever 25, and the groove in the bracket 2.
  • the pin 23 moves along the groove in the swinging lever 22, and the pin 24 moves along the groove in the swinging lever 25.
  • the slots in the bracket 2 can have a variety of shapes.
  • the slot in the bracket 2 can have a shape similar to the number "7", wherein the shape of the slot is defined by a control point (ie, being aligned) or an inflection point.
  • the slots may be polygonal or serpentine and may include, for example, line elements and/or curve elements.
  • the various components can also be connected directly or indirectly to the bracket 2. For example, as shown in FIG. 1, the bracket 4 is attached to the bracket 2.
  • the permanent magnet driver 3 is fixed to the bracket 4 and has an axis perpendicular to the substrate 1. Moreover, the bracket 4 is fixed to the bracket 2. As shown in FIG. 3, one end of the permanent magnet driver 3 is connected to the link 6 through the shaft 5. The link 6 is connected to the swinging plate 18 by a pin 14. As shown in FIG. 3, the swinging plate 18 is coupled to the bracket 2 by pins 16. Further, as shown in FIG. 3, for example, the link 17 and the swinging plate 18 are connected by a pin 15. Further, as shown in FIGS. 3 and 6, the link 20 and the swinging plate 18 are connected by a pin 19.
  • the pin 15, pin 19 is mounted through a hole that can be aligned with a hole for mounting the pin 16 in the horizontal direction on the wobble plate 18. As shown in FIGS. 4, 6, and 7, for example, the pin 23 is fixed to the link 20, and the pin 24 is fixed to the link 17.
  • the ATS also includes a solenoid 7 on one side.
  • the solenoid 7 is fixed to the bracket 8, and the vertical axis of the solenoid 7 is perpendicular to the substrate 1.
  • the bracket 8 is fixed to the bracket 2.
  • one end of the solenoid 7 is connected to the link 10 by a pin 9, and the pin 9 passes through a groove in one end of the link 10 and a hole in the solenoid 7.
  • the link 10 is coupled to the bracket 4 by a pin 11 and is in contact with a bump in the link 6.
  • the tension spring 13 is coupled to the other end of the link 10.
  • the link 10 Under the action of the tension spring 13 in the free state, the link 10 is rotated clockwise in the clockwise direction to a predetermined angle, so that the link 6 is rotated clockwise along the shaft 5 to a predetermined angle.
  • the shaft 12 is fixed to the bracket 2 and coupled to the tension spring 13.
  • the ATS system 100 is configured to operate such that when the swing lever 22 is rotated in the clockwise direction and the swing lever 25 is rotated in the counterclockwise direction, the opening and closing of the movable contact subsystem 30, the movable contact subsystem 34 are controlled. . Specifically, when the swing lever 22 is rotated in the counterclockwise direction, the movable contact subsystem 34 is closed. Conversely, when the swing lever 25 is rotated in the clockwise direction, the swing lever 25 causes the movable contact subsystem 30 to close.
  • the driver has a first state in which the permanent magnet operating mechanism is configured to hold the driver unless the coil is powered to maintain the driver in the second state.
  • the driver has a first magnetically stable hold state and a second magnetically stable hold state, and the driver is configured to transition between the first state and the second state when the at least one coil of the driver receives power.
  • a driver of some embodiments is coupled to the first end and the second end of the driver and configured to move the automatic transfer switch between the first state, the second state, and the third state move.
  • the first state corresponds to the first source
  • the second state corresponds to the neutral
  • the third state corresponds to the second source.
  • the ATS system 100 has at least a neutral state, a state in which the source A movable contact subsystem 34 is closed, and a state in which the source B movable contact subsystem 30 is closed.
  • Figure 2 depicts the ATS system 100 in a neutral position.
  • the permanent magnet driver 3 utilizes a permanent magnet holding force to pull the link 6 downward through the shaft 5 to drive the swinging plate 18 to rotate by a certain angle, so that the swinging plate 18 reaches a temporary position (which is also possible here) It is called an intermediate position, a transition position, or an intermediary position).
  • the ATS system 100 is constructed such that the various components are controlled by permanent magnet retention.
  • the permanent magnet holding force acts to maintain the position of the wobble plate 18.
  • the permanent magnet holding force also functions so that the connecting rod 17 and the connecting rod 20 are held in the corners of their slots in the bracket 2, so that the swinging lever 22 and the swinging lever 25 are maintained at the maximum rotation angle, which makes the movable contact
  • the subsystem 30, the movable contact subsystem 34 is opened from the fixed contact subsystem 29, the fixed contact subsystem 33 to a maximum defined angle.
  • the solenoid 7 remains stationary during this process, and the link 10 is rotated in the clockwise direction by a force of the tension spring 13 along the pin 11 to a predetermined angle, as shown in Fig.
  • FIG. 6 a state of the ATS system 100 is depicted in which the source A movable contact subsystem 34 is closed.
  • Source A movable contact subsystem 34 is closed from the neutral position, thereby moving source A movable contact subsystem 34 from the first position to the second position.
  • the permanent magnet driver 3 pushes the link 6 upward through the shaft 5 by the permanent magnet holding force to drive the swinging plate 18 to rotate in the counterclockwise direction by a predetermined angle along the pin 16.
  • the push link 16 acts to move the swing plate 18 to the restrained position and remain in this position.
  • the force acts so that the link 20 is pulled downward through the slot in the bracket 2 to a defined position and held in this position by the oscillating plate 18 that passes through the pin 19.
  • the swing lever 22 is rotated by the link 20 by the link 20 in the counterclockwise direction along the axis of the square shaft 21 by a predetermined angle to a defined position.
  • the pin 23 rotates the square shaft 21
  • the source A movable contact subsystem 34 on the fixed contact subsystem 33 is closed at the same angle.
  • the link 17 is pushed up along the slot in the bracket 2 and the slot in the swing lever 25 (in other variations, it may also be in the shape of a "contrapuntal" slot formed like a number "7").
  • the swing lever 25 is configured to remain in place (keep still) such that the source B movable contact subsystem 30 continues to open.
  • the solenoid 7 also remains stationary during this process, while the link 10 is rotated in the clockwise direction by the force of the tension spring 13 by the same defined angle along the pin 11 when in the neutral position. In this case, the link 10 is no longer in contact with the link 6.
  • Figure 8 depicts the state of the ATS system 100 in which the source B movable contact subsystem 30 is closed. Specifically, the source B movable contact subsystem 30 is closed from the neutral position, thereby moving the source B movable contact subsystem 30 from the first position to the second position.
  • the solenoid 7 is first energized and pulled by the electromagnetic force to pull the rod 10 through the pin 9 to rotate the link 10 in the counterclockwise direction along the pin 11 to a defined limit position.
  • the force of the solenoid 7 causes the link 6 to rotate in the counterclockwise direction along the shaft 5 to a defined angle.
  • the permanent magnet driver 3 can push the link 6 upward via the shaft 5 with its permanent magnet holding force.
  • the link 6 is used to drive the swinging plate 18 by pushing the link 6 upward through the shaft 5.
  • the oscillating plate 18 is rotated in the clockwise direction along the pin 16 to define an angle to a restricted position.
  • the swinging plate 18 is configured to maintain the restricted position.
  • the link 17 as shown in FIG. 9 is pulled down along the slot in the bracket 2 to a defined position and held in this position by the swinging plate 18 by the pin 15.
  • the swinging lever 25 can be rotated in a clockwise direction along the axis of the square shaft 26 to a defined angle by a connecting rod 17 passing through the pin 24 to a defined position, which causes the square shaft 26 to rotate to the same angle and source
  • the B movable contact subsystem 30 is closed on the fixed contact subsystem 29.
  • the connecting rod 20 is pushed up along its slot in the bracket 2 and along the corresponding slot in the swinging lever 22.
  • the swing lever 22 remains in place and remains stationary, thereby causing the source A movable contact subsystem 34 to continue to open.
  • the link 10 is no longer in contact with the link 6, and the solenoid 7 no longer supplies power to the link 10. Therefore, the link 10 is rotated in the clockwise direction along the pin 11 by the force of the tension spring 13 back to the same before the solenoid 7 supplies power to the link 10. Position without contact with the connecting rod 6.
  • the ATS system 100 is applied in an open transition mode.
  • the source A movable contact subsystem 34 is closed and the source B movable contact subsystem 30 is closed, the source A movable contact subsystem 34 should first be opened to the neutral position described above and then the source will be sourced. The process by which the B movable contact subsystem 30 is closed from the neutral position and vice versa.
  • the driver 3 can be a dual-dual dual-slug actuator or a single-slug piston actuator.
  • the driver 3 may be bistable in certain embodiments with a permanent magnet holding state at each of the first and second ends of the throw of the driver 3.
  • the driver 3 may be monostable with only a single permanent magnet hold state at the first end of the swing of the drive, and the other end of the other state or swing is only maintained when driven.
  • the movable contact subsystem 30, the movable contact subsystem 34 can be moved as described above, they can also be configured to be manually moved.
  • the solenoid 7 can be controlled by a control module 46 as shown in FIG.
  • Control module 46 controls solenoid 7 to select one of first and second movable contact subsystems 30, 34 and move them in the manner described above.
  • FIG. 2 depicts the control module 46 with the solenoid 7, an alternative embodiment may provide the control module 46 at a remote location from the solenoid 7.
  • control module 46 can include a computer permanently readable medium.
  • the described method 1100 is for performing an automatic switching switch of an ATS system (eg, the ATS system 100) including a plurality of movable members, the plurality of movable members including being fixed on the first shaft and rotatable together with the first shaft A first set of movable contact members and a second set of movable contact members fixed to the second shaft and rotatable with the second shaft.
  • the switch also includes at least one fixed contact member and first and second rods respectively secured to the first square shaft and the second square shaft.
  • Method 1100 includes performing a switch by a driver, such as driver 3 described above. More specifically, the method includes controlling opening and closing of the plurality of moveable members relative to the at least one fixed member (1101). Additionally, the method includes generating a magnetic driving force through one or more permanent magnet drivers (1102). The method also involves opening the first shaft when the second shaft is closed and opening the second shaft (1103) when the first shaft is closed. The method also includes maintaining a state of the first set of moveable members and maintaining a state of the second set of moveable members under permanent magnet retention (1104).
  • the permanent magnet operating mechanism of the various embodiments described above can be applied to a variety of ATS devices.
  • the permanent magnet operating mechanism can be applied to at least the applicable International Electrotechnical Commission (IEC) standards and applicable Underwriter Laboratories Inc. (UL) standards.
  • IEC International Electrotechnical Commission
  • UL Underwriter Laboratories Inc.
  • a consistent ATS advantageously improve operational performance and reduce warranty costs.
  • Coupled are meant to connect two members directly or indirectly to another member. These connections may be stationary (eg permanent) or movable (eg detachable or releasable). These connections may be realized by two members, or by integrally forming the two members and any additional intermediate members into one body, or by attaching two members or two members and any additional intermediate members to each other. achieve.
  • modules can be implemented as hardware circuits, including custom Very Large Scale Integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • modules may also be implemented as programmable hardware devices, such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • Modules may also be implemented as a machine readable medium for execution by various types of processors.
  • an identification module of executable code can include physical or logical blocks of one or more computer instructions that can be recognized, for example, as an object, program, or function.
  • the executable module does not require an executable Rather, they are arranged together, but may include different instructions stored in different locations that, when logically connected, include the module and implement the stated purpose for the module.
  • a module of computer readable program code can be a single instruction or multiple instructions, and can even be divided into a plurality of different code segments in different programs and across multiple storage devices.
  • operational data may be identified and illustrated herein in modules and may be embodied in any suitable form and identified in any suitable type of data structure. The operational data may be collected as a single data set or may be distributed in different locations (including on different storage devices) and may only be (at least partially) present as electronic signals on the system or network.
  • the computer readable program code can be stored and/or propagated in one or more computer readable media. .
  • the computer readable medium or medium can be a tangible computer readable storage medium or medium storing computer readable program code.
  • the computer readable storage medium or medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, full-image, micro-mechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. .
  • Computer readable media or media may include, but are not limited to, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable An erasable programmable read-only memory (EPROM), a compact disc read-only memory (CD-ROM), a digital versatile disc (DVD), Optical storage device, magnetic storage device, full image storage medium, micromechanical storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain and/or store computer readable for use by an instruction execution system, apparatus or device and/or associated with an instruction execution system, apparatus or apparatus. code.
  • the computer readable medium or medium can also be a computer readable signal medium or medium.
  • a computer readable signal medium or medium may comprise a propagated data signal with a computer readable program code embodied therein, for example, in a baseband or as part of a carrier. This kind of propagation signal can be used in any number of Forms include, but are not limited to, electrical, electromagnetic, magnetic, optical, or any suitable combination thereof.
  • the computer readable signal medium can be any computer readable medium that is not a computer readable storage medium that can communicate, propagate or transport the computer for use by the instruction execution system, apparatus or device and/or computer associated with the instruction execution system, apparatus or device. Read the program code.
  • the computer readable program code embodied on a computer readable signal medium can be transmitted using any suitable medium, including but not limited to wireless, cable, fiber optic cable, radio frequency (RF), etc. Any suitable combination.
  • Computer readable media or media may comprise a combination of one or more computer readable storage media and one or more computer readable signal media.
  • the computer readable program code can be propagated as an electromagnetic signal that is executed by the processor through the fiber optic cable and stored on a RAM storage device that is executed by the processor.
  • Computer readable program code for performing aspects of the present invention can be written in any combination of one or more programming languages including, for example, Java, Smalltalk, C++, etc., and, for example, an object oriented programming language and A "C" programming language or a traditional programming language similar to a programming language.
  • the computer readable program code can be executed entirely on the user's computer, partly on the user's computer (as a stand-alone computer-readable package), partly on the user's computer and partly on a remote computer or all remotely Executed on a computer or server.
  • the remote computer can be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computer (for example, By using the Internet service provider's Internet).
  • LAN local area network
  • WAN wide area network
  • the program code can also be stored in a computer readable medium that can direct a computer, other programmable data processing device or other device to function in a particular manner, such that the generation of instructions stored in the computer readable medium is included in the illustrative A finished product of the manufacture of instructions/functions in a flowchart or/or schematic block diagram block or block.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种自动转换开关系统,包括:接触子系统,其具有多个可移动的接触构件和至少一个固定接触构件,该多个可移动的接触构件包括分别在第一位置和第二位置的至少一个第一可移动的接触构件和至少一个第二可移动的接触构件。开关系统还包括永磁体操作机构和螺线管,该永磁体操作机构控制可移动的接触构件相对于固定接触构件的打开和闭合,产生保持力保持该至少一个第一可移动的接触构件的状态于该第一位置和该至少一个第二可移动的接触构件的状态于第二位置,并且通过连杆连接至子系统,该螺线管允许分别处于第一位置和第二位置的至少一个第一可移动的接触构件和至少一个第二可移动的接触构件的移动。

Description

用于自动转换开关的永磁操作机构 技术领域
本申请涉及一种包括永磁驱动器的自动转换开关(ATS)操作装置。
背景技术
针对用户应用的自动转换开关(Automatic Transfer Switch,ATS)可以用于例如选择性地将来自住宅或商业大厦的本地负载与公用电网联接。当发生电力中断时,ATS装置还可以用于选择性地将本地负载与发电机联接。典型的ATS具有两个电源输入端和一个输出端。典型的ATS由多个部分组成,如驱动器、螺线管和接触器。大多数ATS装置利用用于打开和闭合操作的螺线管或电机操作机构,并且需要专门的锁定和松开装置,以保持打开和闭合状态。ATS设计具有复杂的结构和大量的部件,尤其相对于用于驱动的子系统。
发明内容
本公开的一种实施方式涉及一种ATS系统,包括:接触子系统,其具有多个可移动的接触构件以及处于一个位置的至少一个固定接触构件,所述多个可移动的接触构件包括在第一位置处的至少一个第一可移动的接触构件和在第二位置处的至少一个第二可移动的接触构件。所述ATS系统还包括永磁体操作机构,该永磁体操作机构构成为控制所述多个可移动的接触构件相对于所述至少一个固定接触构件的打开和闭合,产生保持力以将至少一个第一可移动的接触构件的状态保持于第一位置和将至少一个第二可移动的接触构件的状态保持在第二位置处,并且通过连杆连接至所述子系统。所述ATS系统另外包括螺线管,该螺线管允许在第一位置处的所述至少一个第一可移动的接触构件和在第二位置处的所述至少一个第二可移动的接触构件中的一者的移动。
另一种实施方式涉及一种具有开路转变(open transition)的ATS的传动子系统。所述ATS包括一对可移动的接触构件、固定接触构件、螺线管和永 磁驱动器,所述一对可移动的接触构件包括在第一位置处的第一可移动的接触构件和在第二位置处的第二可移动的接触构件,所述螺线管允许选择第一和第二可移动的接触构件中一者。所述驱动器包括驱动器本体、第一驱动杆和第二驱动杆。所述驱动器构成为使第一驱动杆独立于所述第二驱动杆的运动沿第一方向移动,以使第一驱动杆移动来驱动所述一对可移动的接触构件并且使第二驱动杆移动来选择电源。
再一种实施方式涉及在系统中驱动ATS的方法。ATS包括多个可移动的接触构件,所述多个可移动的接触构件包括固定在第一轴上且能够与第一轴一起旋转的第一组可移动的接触构件和固定在第二轴上且能够与第二轴一起旋转的第二组可移动的接触构件。ATS进一步包括控制可移动的接触构件的打开和闭合的驱动器、使可移动的接触构件移动的螺线管、至少一个固定接触构件以及分别用第一轴和第二轴固定的第一驱动杆和第二驱动杆。所述方法包括控制所述多个可移动的接触构件相对于所述至少一个固定接触构件的打开和闭合,并且产生保持力以维持所述第一组可移动的接触构件的状态和所述第二组可移动的接触构件的状态。所述方法还包括当第二轴闭合时打开第一轴,并且当第一轴闭合时打开第二轴。
此处所描述的系统、装置和方法的各个实施方式可以通过更多增强设计来提高可靠性和延长寿命。此外,在不同的实施方式中,可以减少在制造中所要求的所有复杂性和精度。还减少了组装时间。
本公开的其他特点、优点和实施方式可以从以下的具体说明、附图和权利要求中阐明。而且,可以理解,本发明的前述发明内容和下面的具体说明均是典型示例并且用于进一步提供解释说明,而非进一步限制所要求的本公开的范围。
附图说明
图1显示了根据实施方式的ATS系统的透视图;
图2是图1中所示的处于空档位置的ATS系统的左侧视图;
图3描绘了图2所示的ATS系统的左侧视图,其中去除了永磁驱动器;
图4描绘了图1中所示的ATS系统的右侧视图,其中去除了支架;
图5描绘了图1的ATS系统的左侧视图,其第一可移动接触子系统处于闭合位置中;
图6描绘了图5的ATS系统的左侧视图,其中去除了永磁驱动器;
图7描绘了图5的ATS系统的右侧视图,其中去除了支架;
图8描绘了图1的ATS系统的左侧视图,其第二可移动接触子系统处于闭合位置中;
图9是图8的ATS系统的左侧视图,其中去除了永磁驱动器;
图10描绘了图8的ATS系统的右侧视图,其中去除了支架;
图11描绘了根据实施方式执行自动转换切换的方法。
具体实施方式
以下详细的说明中参考了形成其一部分的附图。在附图中,除非上下文另有所指,类似的标记通常表示类似组件。详细说明中所描述的示例性实施方式、附图以及权利要求并非意味着是限制性的。在不背离此处呈现的所述主题的精神或范围的前提下,可以使用其他实施方式以及可以做出其他改变。容易理解的是本公开的各个方面如此处通常所描述的以及附图中所示出的可以在多种不同的配置中被布置、替换、组合以及设计,所有这些均是被明确地预期并能够作为本公开的一部分。
如上所见,ATS装置通常由复杂的结构制成,这些结构可能具有较不稳健的设计并且这些结构必须获得和集成大量部件。这些装置遭受最终可能缩短它们的生命周期的可靠性问题,并且它们需要大量组件和较高的制造精度使得难以控制它们的一致性。因此,更坚固且更简易的开关可以降低与这些装置相关的制造和可靠性挑战,同时延长其产品的生命周期。
一些ATS装置可以包括永磁驱动器。具有这些驱动器的ATS装置描述在2014年1月30日提交的、名称为“自动转换开关(Automatic Transfer Switch)” 的PCT专利申请号为PCT/CN2014/071857和2014年6月10日提交的、名称为“自动转换开关(Automatic Transfer Switch)”的PCT专利申请号为PCT/CN2014/079590中,这些PCT专利申请整体通过引用而并入本文中,而作为其中所描述的技术和背景信息。
下面讨论的实施方式有利地实现了高可靠性和长生命周期,同时减少了维护的需求。与通常的ATS装置相比,这些实施方式提供了显著的可靠性与性能的改进。特别地,通常的ATS装置由于它们的操作机构的结构而严格地限制了两个源的传动方轴之间的距离。该受限的距离可能会减小驱动力,使得更加难以实现良好的接触力,尤其对于高电流的ATS装置。而且,鉴于一些永磁装置对两个源接触器单独操作且可能误操作,而此处的实施方式具有较小的误操作风险且可以需要较少的检修。
通常参考附图,此处所公开的各种实施方式涉及具有永磁驱动器的ATS系统。永磁驱动器操作传动组件,以打开或闭合固定接触子系统上的可移动接触子系统(也被称为接触构件)。开关用于选择第一可移动接触子系统(“源A”)或第二可移动接触子系统(“源B”)。通过永磁驱动器对传动组件的操作使所选择的可移动接触子系统移动到打开或闭合位置中。可移动接触子系统利用永磁驱动器所产生的力固定,而不依赖于传统的机械锁定及松开装置。
图1描绘了从透视图示出的ATS系统100的一实施方式。如图1所示,ATS 100具有包括至少两个极性接触系统28、32的基板1。电极接触系统28、32包括用于可移动的接触子系统30、34的两个源。ATS 100还包括永久固定接触系统29、永久固定接触系统33和消弧栅系统27、消弧栅系统35。消弧栅系统27、35消弧。
再次参考图1,ATS 100包括诸如支架2、支架31的稳定构件,该稳定构件为基板1上的组件提供支撑。如图1所示,支架2、支架31可以以彼此不同取向设置并且可以不同地配置。如图1所描绘的,支架2包括平行于基板1的大致水平部和从基板1突出且垂直于基板1的大致竖直部。如以下更详尽地讨论,支架2、支架31配置成接触ATS 100的额外的组件。
再一次参考图1,ATS 100还包括方轴21、方轴26,方轴21、方轴26通过支架2、支架31中的孔连接在支架2、支架31之间。轴21、轴26是将如下所讨论的驱动器连接到可移动的接触系统30、可移动的接触系统34的连杆。可移动的接触子系统30固定在方轴26上且随方轴26旋转。可移动的接触系统34固定在方轴21上且随方轴21旋转。另外,方轴21还用摆动杆22固定且随摆动杆22旋转。方轴26还用摆动杆25固定且随摆动杆25旋转。摆动杆22、摆动杆25允许方轴21和方轴26之间距离的延长,从而改善了力传动条件。
图1所示的ATS系统100是开路转变的ATS,其应用永磁驱动器3以引起可移动的接触子系统30、可移动的接触子系统34通过以下所描述的传动组件闭合在固定的接触子系统29、固定的接触子系统33上或从固定的接触子系统29、固定的接触子系统33打开。ATS系统100还包括螺线管7和延伸结构,以选择待移动的源A可移动的接触子系统34或源B可移动的接触子系统30。通过这种方式,ATS系统100排除了对传统的机械锁定和释放装置的需求。特别地,ATS系统100有利地使用由永磁驱动器3产生的永磁保持力来保持可移动的接触子系统30、可移动的接触子系统34的状态。
参考图2和图3,支架2设置有多个槽或孔,所述多个槽或孔可以具有不同的取向、尺寸和位置。如图4所示,设置销23、销24以便通过支架2中的槽将摆动杆22、摆动杆25与支架2连接。特别地,通过摆动杆22、摆动杆25中的槽和支架2中的槽使销23、销24与摆动杆22、摆动杆25连接。销23沿摆动杆22中的槽移动,而销24沿摆动杆25中的槽移动。
再次参考图2和图3,支架2中的槽可以具有各种形状。例如,在至少一个实施方式中,支架2中的槽可以具有类似数字“7”的形状,其中,槽的形状通过对照点(即,为对位的)或拐点限定。在一些配置中,槽可以是多边形或蜿蜒蛇形(serpentine),并且可以包括例如直线元素和/或曲线元素。另外,各种组件还可以直接或间接地与支架2连接。例如,如图1所示,支架4附接至支架2。
如图1和图2所示,永磁驱动器3固定在支架4上且具有垂直于基板1的轴线。而且,支架4固定在支架2上。如图3所示,永磁驱动器3的一端通过轴5与连杆6连接。连杆6通过销14连接于摆动板18。如图3所示,摆动板18通过销16连接于支架2。此外,如图3所示,例如连杆17与摆动板18通过销15连接。进一步地,如图3和图6所示,连杆20与摆动板18通过销19连接。销15、销19通过孔进行安装,所述孔可以与用于将销16沿水平方向安装在摆动板18上的孔对齐。如图4、图6和图7所示,例如销23固定在连杆20上,并且销24固定在连杆17上。
现在参考图5,ATS还包括在一侧上的螺线管7。螺线管7固定在支架8上,螺线管7的竖直轴垂直于基板1。支架8固定在支架2上。另外,如图6所示,例如,螺线管7的一端与连杆10通过销9连接,销9穿过连杆10一端中的槽和螺线管7中的孔。连杆10通过销11连接于支架4并且与连杆6中的凸块接触。如图6所示,拉伸弹簧13与连杆10的另一端连接。在处于自由状态中的拉伸弹簧13的作用下,连杆10沿着销11在顺时针方向上旋转至预定角度,从而使得连杆6沿着轴5在顺时针方向上旋转至预定的角度。此外,轴12固定在支架2上并且联接于拉伸弹簧13。
ATS系统100构成为如此操作,从而当摆动杆22沿顺时针方向旋转以及摆动杆25沿逆时针方向旋转时,可移动的接触子系统30、可移动的接触子系统34的打开和闭合受控制。具体地,当摆动杆22沿逆时针方向旋转时,可移动的接触子系统34闭合。相反地,当摆动杆25沿顺时针方向旋转时,摆动杆25使得可移动的接触子系统30闭合。
在至少一个实施方式中,驱动器具有第一状态,在该第一状态中,永磁体操作机构配置成保持驱动器,除非线圈被供电以将驱动器保持在第二状态中。在至少一个实施方式中,驱动器具有第一磁稳定保持状态和第二磁稳定保持状态,并且驱动器配置成当驱动器的至少一个线圈接收电力时在第一状态和第二状态之间转变。某些实施方式的驱动器连接在驱动器的第一端和第二端,并且配置成使自动转换开关在第一状态、第二状态和第三状态之间移 动。在至少一个实施方式中,第一状态与第一源相对应,第二状态与空档相对应,以及第三状态与第二源相对应。
如以下进一步所详尽描述的,ATS系统100至少具有空档状态、其中源A可移动的接触子系统34闭合的状态以及源B可移动的接触子系统30闭合的状态。例如,图2描绘了处于空档位置中的ATS系统100。在该空档位置中,永磁驱动器3利用永磁保持力以通过轴5向下拉动连杆6,以驱动摆动板18旋转一定角度,从而摆动板18达到临时位置(其在此处还可以被称为中间位置、过渡位置或中介位置)。
特别地,ATS系统100如此构成,从而通过永磁保持力控制各个组件。特别地,永磁保持力起作用以维持摆动板18的位置。永磁保持力还起作用,从而使连杆17、连杆20保持在支架2中它们的槽的拐角中,从而摆动杆22、摆动杆25保持在最大旋转角度处,这使得可移动的接触子系统30、可移动的接触子系统34从固定的接触子系统29、固定的接触子系统33打开至最大限定角。螺线管7在该过程中保持静止,而连杆10通过拉伸弹簧13的力沿着销11在顺时针方向上旋转到预定角度,如图8所示,此处螺线管7和拉伸弹簧13设置在驱动器3的相对两侧上。通过这种方式,连杆6还沿着轴5在顺时针方向上旋转到预定角度,以便于源A可移动的接触子系统34的闭合操作。
现在参考图6,描绘了ATS系统100的状态,其中,源A可移动的接触子系统34闭合。源A可移动的接触子系统34从空档位置闭合,从而使源A可移动的接触子系统34从第一位置移动至第二位置。为了达到该闭合状态,永磁驱动器3利用永磁保持力通过轴5向上推动连杆6,以驱动摆动板18沿着销16在逆时针方向上旋转预定角度。该推动连杆16作用以将摆动板18移动至限制位置并且保持在该位置。
进一步,该力起作用,从而连杆20被向下拉动穿过支架2中的槽到达限定位置并且被穿过销19的摆动板18保持在该位置。如图9所示,通过这种方式,通过销23由连杆20使摆动杆22沿着方轴21的轴线在逆时针方向上旋转了预定角度至限定位置。特别地,如图7所示,销23使方轴21旋转相 同角度并且使固定接触子系统33上的源A可移动接触子系统34闭合。而且,连杆17沿支架2中的槽和摆动杆25中的槽(在其他变型中,其也可以是形成为像数字“7”的“对位(contrapuntal)”槽的形状)被向上推动,并且摆动杆25构成为保持在原地(保持不动),使得源B可移动接触子系统30继续打开着。螺线管7在该过程中也保持不动,而当处于空档位置中时连杆10通过拉伸弹簧13的力沿着销11沿顺时针方向旋转相同的限定角度。在该情况下,连杆10不再与连杆6接触。
图8描绘了ATS系统100的状态,其中,源B可移动的接触子系统30处于闭合。具体地,源B可移动的接触子系统30从空档位置闭合,从而使源B可移动的接触子系统30从第一位置移动至第二位置。在该状态中,螺线管7首先被通电并利用电磁力以向下拉动通过销9的连杆10,以使连杆10沿着销11在逆时针方向上旋转至限定限制位置。螺线管7的力使得连杆6沿着轴5在逆时针方向上旋转到限定角度。
此外,永磁驱动器3可以利用其永磁保持力经由轴5向上推动连杆6。通过经由轴5向上推动连杆6,连杆6用于驱动摆动板18。如图9所示,例如摆动板18沿着销16在顺时针方向上旋转限定角度至限制位置。在被连杆6驱动时,摆动板18配置成保持限制位置。
另外,如图9所示的连杆17沿支架2中的槽被向下拉动至限定位置且通过销15由摆动板18保持在该位置中。此外,通过穿过销24的连杆17可以使摆动杆25沿着方轴26的轴线在顺时针方向上旋转至限定角度从而至限定位置,这使得方轴26旋转到相同的角度并且将源B可移动的接触子系统30闭合在固定接触子系统29上。大致上同时,连杆20沿其在支架2中的槽和沿摆动杆22中相应的槽被向上推动。摆动杆22保持在原地,保持静止,从而使源A可移动接触子系统34继续打开着。
如上所注意的,在操作永磁驱动器3之后,连杆10不再与连杆6接触,并且螺线管7不再向连杆10提供电力。因此,连杆10通过拉伸弹簧13的力沿着销11以顺时针方向旋转回到在螺线管7向连杆10提供电力之前相同的 位置,而不与连杆6接触。此处ATS系统100应用在开路转变模式中。因此,当源A可移动的接触子系统34闭合且闭合源B可移动的接触子系统30时,源A可移动的接触子系统34应当首先被打开至上述的空档位置,然后进行将源B可移动的接触子系统30从空档位置闭合的过程,反之亦然。
对于上述实施方式,显然考虑到许多变型和替换方式。例如,驱动器3可以是双端双塞驱动器(dual-end,dual-slug actuator)或单塞活塞驱动器(single-slug piston actuator)。另外,驱动器3在某些实施方式中可以是双稳态的,在驱动器3的摆度(throw)的第一端和第二端的每端具有永磁保持状态。可替选地,驱动器3可以是单稳态的,仅在驱动器的摆度的第一端具有单个永磁保持状态,并且其他状态或摆度的第二端仅当驱动时才被保持。另外,尽管可移动的接触子系统30、可移动的接触子系统34可以如上所述移动,它们也可以配置成手动移动。
通过进一步举例,在至少一种实施方式中,螺线管7可以由如图2所示的控制模块46控制。控制模块46控制螺线管7选择第一和第二可移动接触子系统30、34的一者并且以上述方式移动它们。尽管图2中的实施方式描述了与螺线管7一起的控制模块46,可替选的实施方式可以在距离螺线管7的远程位置处提供控制模块46。而且,如以下更具体描述的,控制模块46可以包括计算机永久可读介质。
现在回到图11,显示了根据实施方式的执行自动转换切换的方法。特别地,描述的方法1100用于执行包括数个可移动构件的ATS系统(例如ATS系统100)的自动转换切换,数个可移动构件包括固定在第一轴上且可与第一轴一起旋转的第一组可移动接触构件以及固定在第二轴上且可与第二轴一起旋转的第二组可移动接触构件。开关还包括至少一个固定接触构件和与第一方轴和第二方轴分别固定的第一杆和第二杆。
方法1100包括通过驱动器(例如上述的驱动器3)执行切换。更具体地,该方法包括控制数个可移动构件相对于至少一个固定构件的打开和闭合(1101)。此外,该方法包括通过一个或多个永磁体驱动器产生磁驱动力 (1102)。该方法还涉及当第二轴闭合时打开第一轴以及当第一轴闭合时打开第二轴(1103)。该方法还包括在永磁保持力下维持第一组可移动构件的状态和维持第二组可移动构件的状态(1104)。
上述各种实施方式的永磁操作机构可以应用到多种ATS装置中。例如,根据各种实施方式,永磁操作机构可以应用于与可适用的国际电工委员会(International Electrotechnical Commission,IEC)标准和可适用的美国保险商试验所(Underwriter Laboratories Inc.,UL)标准的至少一种相符合的ATS。而且,如上所述,这些实施方式有利地改善了操作性能并减少了保修费用。
关于此处使用的大量的任意复数和/或单数的术语,本领域技术人员能够从复数转换为单数和/或从单数转换为复数,这对上下文和/或申请是合适的。为清楚起见,各种单数/复数变换在此处可以被清楚地阐明。
此处所使用的术语“联接”、“连接”等是指将两个构件与另一个构件直接或间接地连接。这些连接可以静止的(例如永久的)或可移动的(例如可拆卸的或可释放的)。这些连接可以是由两个构件来实现,或由两个构件和任意额外的中间构件彼此一体成型为一个整体来实现,或者由两个构件或两个构件和任意额外的中间构件彼此附接来实现。
此处参考的元件的位置(例如,“上”、“下”、“右”、“左”等)仅仅用于描述附图中各个构件的取向。需要注意的是,各个元件的取向根据其他示例的实施方式而可以不同,并且这些变型旨在被本公开所包含。
在本说明书中所描述的某种功能细节被描述为模块,以便更具体地强调它们的实施的独立性。例如,模块可以实施为硬件电路,包括定制的超大规模集成(Very Large Scale Integration,VLSI)电路或门阵列、现成的半导体,例如逻辑芯片、晶体管或其他分立组件。模块也可以实施为可编程硬件装置,例如现场可编程门阵列、可编程阵列逻辑、可编程逻辑装置等。
模块也可以实施为用于由各种类型的处理器执行的机器可读介质。例如,可执行代码的识别模块可以包括一个或多个计算机指令的物理或逻辑块,其可以例如被识别为对象、程序或函数。然而,识别模块的可执行性不需要物 理上设置在在一起,而是可以包括存储在不同位置中的不同的指令,其当逻辑上连接起来时包括该模块并且实现用于该模块的所述目的。
事实上,计算机可读程序代码的模块可以为单条指令或多条指令,并且甚至可以被分配成在不同程序中的多个不同代码段,并且跨越多个存储装置。相似地,在此操作数据可以在模块中被识别和说明,并且可以以任何合适的形式被体现并且在数据结构任何合适的类型中被识别。操作数据可以被收集成单个数据组或者可以被分配在不同位置中(包括在不同存储装置上),并且可以仅仅(至少部分地)存在为系统或网络上的电子信号。在机器可读媒介或介质(或计算机可读媒介或介质)中实施模块或实施模块的部分的地方,计算机可读程序代码可以在一个或多个计算机可读介质中被存储和/或被传播。
计算机可读媒介或介质可以是存储计算机可读程序代码的有形计算机可读存储媒介或介质。计算机可读存储媒介或介质例如可以是但不限于电子的、磁的、光学的、电磁的、红外的、全图像的、微观机械的或半导体的系统、设备或装置或前述的任意适当的结合。
计算机可读媒介或介质的更具体的例子可以包括但不限于便携的计算机磁盘、硬盘、随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程序只读存储器(erasable programmable read-only memory,EPROM,或闪存)、便携的光盘只读存储器(compact disc read-only memory,CD-ROM)、数字化视频光盘(digital versatile disc,DVD)、光存储装置、磁存储装置、全图像存储媒介、微观机械存储装置或前述的任意适当的结合。在本文的上下文中,计算机可读存储媒介可以是任意有形媒介,其可以包含和/或存储有供指令执行系统、设备或装置使用和/或与指令执行系统、仪器或装置相关的计算机可读程序代码。
计算机可读媒介或介质也可以是计算机可读信号媒介或介质。计算机可读信号媒介或介质可以包括例如在基带或作为载波的一部分中带有体现在其中的计算机可读程序代码的传播数据信号。这种传播信号可以采用任意多种 形式,包括但不限于电的、电磁的、磁的、光学的或其任意的适当结合。计算机可读信号媒介可以是非计算机可读存储媒介的任意计算机可读媒介,其能够通信、传播或传输供指令执行系统、设备或装置使用和/或与指令执行系统、设备或装置相关的计算机可读程序代码。体现在计算机可读信号媒介上的计算机可读程序代码可以使用任意合适的媒介被传输,所述合适的媒介包括但不限于无线、电缆、光纤电缆、无线电频率(Radio Frequency,RF)等或前述的任意适当的结合。
计算机可读媒介或介质可以包括一个或多个计算机可读存储介质与一个或多个计算机可读信号介质的结合。例如,计算机可读程序代码可以传播为由处理器执行的通过纤维光学电缆的电磁信号并且存储在由处理器执行的RAM存储装置上。
用于执行本发明的各方面操作的计算机可读程序代码可以被写在一种或多种程序语言的任意结合中,所述程序语言包括例如Java、Smalltalk、C++等面向对象的程序语言以及例如“C”程序语言或类似程序语言的传统程序编程语言。计算机可读程序代码可以全部在用户的计算机上执行、部分在用户的计算机上执行(作为独立的计算机可读包)、部分在用户的计算机上且部分在远程的计算机上执行或者全部在远程的计算机或伺服器上执行。在后一方案中,远程的计算机可以通过任何类型的网络连接于用户的计算机,其包括局域网(local area network,LAN)或广域网(wide area network,WAN),或者可以连接到外部计算机(例如,通过利用因特网服务供应商的因特网)。
程序代码也可以存储在计算机可读媒介中,计算机可读媒介能够指引计算机、其他可编程数据处理设备或其他装置以特定的方式起作用,从而存储在计算机可读媒介的指令生成包括在示意性流程图和/或示意性方框图块或块中实施功能/作用的指令的制造的成品。
前述各种示例的实施方式的结构和布置方式仅仅为说明性的。尽管在本公开中只详尽描述了一些实施方式,但是本领域技术人员可以理解的是,除非特别指明,在未实质性背离此处所描述的主题的教导和优点的情况下可以 进行许多变型(例如,各个元件的尺寸、结构、形状和比例的变型、参数值、安装布置、材料的使用、取向等)。例如,如一体成型所示的构件可以由多个部件或构件组成,构件的位置可以相反的或是以其他方式改变,并且分立元件的特征或数量或位置可以被改动或改变。除非特别指明,根据可替选的实施方式,任何过程或方法步骤的顺序或序列可以被改变或重新排列。
所示出的实施方式的前述说明并非旨在针对所公开的准确形式的穷尽性的或限制性的,并且变形或改变(诸如以上所讨论的那些变形或改变)根据上述教导是可能的,或者从所公开的实施方式的实践中可以获得的。在不背离本发明范围的情况下,在各种示例性的实施方式的设计、操作条件和布置中也可以进行其他替换、修改、改变或省略。

Claims (20)

  1. 一种自动转换开关系统,其特征在于,包括:
    接触子系统,所述接触子系统包括:
    多个可移动的接触构件,所述多个可移动的接触构件包括在第一位置处的至少一个第一可移动的接触构件和在第二位置处的至少一个第二可移动的接触构件;以及
    至少一个固定接触构件;
    永磁体操作机构,所述永磁体操作机构通过连杆连接至所述接触子系统,所述永磁体操作机构控制所述多个可移动的接触构件相对于所述至少一个固定接触构件的打开和闭合,并且通过永磁保持力将所述至少一个第一可移动的接触构件的状态保持在所述第一位置处和将所述至少一个第二可移动的接触构件的状态保持在所述第二位置处;以及
    螺线管,所述螺线管允许在所述第一位置处的所述至少一个第一可移动的接触构件和在所述第二位置处的所述至少一个第二可移动的接触构件中的一者的移动。
  2. 根据权利要求1所述的自动转换开关系统,其特征在于,所述永磁体操作机构包括具有驱动器本体、第一驱动杆和第二驱动杆的驱动器。
  3. 根据权利要求2所述的自动转换开关系统,其特征在于,
    所述第一驱动杆和所述第二驱动杆中的每一者能够移动,以从所述驱动器本体传递驱动力;
    所述永磁体操作机构的力使所述第一驱动杆和所述第二驱动杆分别沿第一方向和第二方向彼此独立地移动。
  4. 根据权利要求2所述的自动转换开关系统,其特征在于,所述第一驱动杆的驱动力使所述至少一个第一可移动的接触构件从所述第一位置移动至另一位置,并且所述第二驱动杆的驱动力使所述至少一个第二可移动的接触构件从所述第二位置移动至另一位置。
  5. 根据权利要求1或2所述的自动转换开关系统,其特征在于,
    所述连杆包括第一轴和第二轴,所述第一轴和所述第二轴由所述永磁体操作机构可旋转地支撑且联接至所述第一可移动的接触构件和所述第二可移动的接触构件,以及
    所述第一轴和所述第二轴由至少一个驱动杆驱动。
  6. 根据权利要求2所述的自动转换开关系统,其特征在于,还包括设置在所述第一驱动杆和所述第二驱动杆之间的构件。
  7. 根据权利要求5所述的自动转换开关系统,其特征在于,
    所述第一轴和所述第二轴设置成根据所述多个可移动的接触构件的打开和闭合而旋转,
    当所述第二轴闭合时所述第一轴打开,而当所述第一轴闭合时所述第二轴打开。
  8. 根据权利要求1-7中任一项所述的自动转换开关系统,其特征在于,所述接触子系统由所述多个可移动的接触构件和至少两个固定接触构件组成。
  9. 根据权利要求1-8中任一项所述的自动转换开关系统,其特征在于,所述多个可移动的接触构件配置成手动移动。
  10. 根据权利要求1所述的自动转换开关系统,其特征在于,所述永磁体操作机构允许将至少一个可移动的接触构件闭合到至少一个固定接触构件上以及将至少一个可移动的接触构件从至少一个固定接触构件打开。
  11. 一种具有开路转变的自动转换开关的传动子系统,其特征在于,包括:
    一对可移动的接触构件,所述一对可移动的接触构件包括在第一位置处的第一可移动的接触构件和在第二位置处的第二可移动的接触构件;
    固定接触构件;
    控制器,所述控制器允许选择所述第一可移动的接触构件和所述第二可移动的接触构件中的一者;以及
    永磁驱动器,所述永磁驱动器包括驱动器本体、第一驱动杆和第二驱动杆且实现所述第一驱动杆独立于所述第二驱动杆的移动沿第一方向移动;
    其中,所述第一驱动杆驱动所述一对可移动的接触构件,并且
    其中,电源能够通过移动所述第二驱动杆来选择。
  12. 根据权利要求11所述的传动子系统,其特征在于,所述永磁驱动器是双稳态的永久驱动器。
  13. 根据权利要求11所述的传动子系统,其特征在于,所述永磁驱动器是单稳态的永久驱动器。
  14. 根据权利要求11-13中任一项所述的传动子系统,其特征在于,所述控制器包括电磁螺线管。
  15. 根据权利要求11-14中任一项所述的传动子系统,其特征在于,接触子系统由所述一对可移动的接触构件和所述固定接触构件组成。
  16. 根据权利要求11-15中任一项所述的传动子系统,其特征在于,所述一对可移动的接触构件能够手动地移动。
  17. 一种在系统中驱动自动转换开关的方法,其特征在于,所述方法包括:
    通过驱动器控制多个可移动的接触构件相对于至少一个固定接触构件的打开和闭合,所述多个可移动的接触构件包括能够与第一轴一起旋转的第一组可移动的接触构件和能够与第二轴一起旋转的第二组可移动的接触构件,
    通过螺线管控制分别用所述第一轴和所述第二轴固定的第一驱动杆和第二驱动杆,以便使所述可移动的接触构件移动,
    产生由所述驱动器传输的驱动力;
    当所述第二轴闭合时打开所述第一轴,而当所述第一轴闭合时打开所述第二轴,以及
    通过保持力维持所述第一组可移动的接触构件的状态和所述第二组可移动的接触构件的状态。
  18. 根据权利要求17所述的方法,其特征在于,还包括:
    选择所述第一组可移动的接触构件和所述第二组可移动的接触构件中的一者作为相对于所述至少一个固定接触构件为打开或闭合的可移动的接触构件。
  19. 根据权利要求17或18所述的方法,其特征在于,还包括:
    使至少一组所述可移动的接触构件从打开位置转变至空档位置,以及
    使所述至少一组所述可移动的接触构件从所述空档位置转变至闭合位置。
  20. 根据权利要求17或18所述的方法,其特征在于,还包括:
    当所述驱动器的至少一个线圈接收电力时,在所述驱动器的第一磁稳定保持状态和所述驱动器的第二磁稳定保持状态之间转变。
PCT/CN2015/082435 2015-06-26 2015-06-26 用于自动转换开关的永磁操作机构 WO2016206067A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580081244.XA CN107924774B (zh) 2015-06-26 2015-06-26 用于自动转换开关的永磁操作机构
US15/739,623 US10692677B2 (en) 2015-06-26 2015-06-26 Permanent magnet operating mechanism for use in automatic transfer switch
PCT/CN2015/082435 WO2016206067A1 (zh) 2015-06-26 2015-06-26 用于自动转换开关的永磁操作机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082435 WO2016206067A1 (zh) 2015-06-26 2015-06-26 用于自动转换开关的永磁操作机构

Publications (1)

Publication Number Publication Date
WO2016206067A1 true WO2016206067A1 (zh) 2016-12-29

Family

ID=57584623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082435 WO2016206067A1 (zh) 2015-06-26 2015-06-26 用于自动转换开关的永磁操作机构

Country Status (3)

Country Link
US (1) US10692677B2 (zh)
CN (1) CN107924774B (zh)
WO (1) WO2016206067A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201112159Y (zh) * 2007-07-27 2008-09-10 浙江正泰电器股份有限公司 一种采用永磁操作机构的自动转换开关
CN101901702A (zh) * 2009-05-15 2010-12-01 伊顿公司 用于自动转换开关的电力触点的惯性捕捉装置
CN102034619A (zh) * 2010-11-29 2011-04-27 西安交通大学 永磁机构自动转换开关
US20150055270A1 (en) * 2007-03-14 2015-02-26 Zonit Structured Solutions, Llc Hybrid relay

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936782A (en) * 1975-01-29 1976-02-03 Automatic Switch Company Automatic transfer switch
US4021678A (en) * 1976-01-19 1977-05-03 Automatic Switch Company Automatic transfer switch
US4423336A (en) * 1982-05-17 1983-12-27 Mcgraw-Edison Company Electromechanically controlled automatic transfer switch and bypass switch assembly
JPS6171524A (ja) * 1984-09-17 1986-04-12 株式会社 愛知電機製作所 電源切替開閉器
US4804933A (en) * 1988-04-01 1989-02-14 Brown Industrial Gas, Inc. Automatic transfer switch
US5070252A (en) * 1990-04-03 1991-12-03 Automatic Switch Company Automatic transfer switch
US20020135232A1 (en) * 2000-10-13 2002-09-26 Xantrex International Method and apparatus for distributing electric power
US6815622B2 (en) * 2001-03-13 2004-11-09 General Electric Company Methods and apparatus for automatically transferring electrical power
US6815624B2 (en) * 2002-03-28 2004-11-09 General Electric Company Methods and apparatus for transferring electrical power
US7898372B2 (en) * 2006-02-06 2011-03-01 Asco Power Technologies, L.P. Method and apparatus for control contacts of an automatic transfer switch
US9646789B2 (en) * 2007-03-14 2017-05-09 Zonit Structured Solutions, Llc Accelerated motion relay
US8471659B1 (en) * 2008-03-05 2013-06-25 Reliance Controls Corporation Automatic transfer switch having an interlock arrangement
US8222548B2 (en) * 2008-07-30 2012-07-17 Generac Power Systems, Inc. Automatic transfer switch
CN201262901Y (zh) 2008-09-03 2009-06-24 深圳市泰永科技股份有限公司 一种瞬间并联装置的自动转换开关电器
US8830018B1 (en) * 2013-02-15 2014-09-09 Ward Leonard Investment Holdings, LLC Solenoid-driven automatic transfer switch
US9142365B2 (en) * 2013-02-15 2015-09-22 Ward Leonard Investment Holdings, LLC Solenoid-driven automatic transfer switch
WO2015188314A1 (en) * 2014-06-10 2015-12-17 Cummins Power Generation Ip, Inc. Automatic transfer switch
WO2017070563A1 (en) * 2015-10-23 2017-04-27 Cummins Power Generation Ip, Inc. Balanced force blow-on contact automatic transfer switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055270A1 (en) * 2007-03-14 2015-02-26 Zonit Structured Solutions, Llc Hybrid relay
CN201112159Y (zh) * 2007-07-27 2008-09-10 浙江正泰电器股份有限公司 一种采用永磁操作机构的自动转换开关
CN101901702A (zh) * 2009-05-15 2010-12-01 伊顿公司 用于自动转换开关的电力触点的惯性捕捉装置
CN102034619A (zh) * 2010-11-29 2011-04-27 西安交通大学 永磁机构自动转换开关

Also Published As

Publication number Publication date
US10692677B2 (en) 2020-06-23
CN107924774A (zh) 2018-04-17
US20180190460A1 (en) 2018-07-05
CN107924774B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP4776425B2 (ja) 開閉装置の操作機構
WO2017088802A1 (zh) 用于开关设备的联锁装置及开关柜
JP5791847B1 (ja) バイパススイッチ
US10643813B2 (en) Automatic transfer switch with permanent magnetic actuation
JP2006040615A (ja) 電磁操作装置
WO2016206068A1 (zh) 自动转换开关和传动子系统
CN203607342U (zh) 双极磁保持继电器
US9748052B2 (en) Automatic transfer switch and method thereof
WO2016206067A1 (zh) 用于自动转换开关的永磁操作机构
CN101763959B (zh) 转换开关电器中的转换机构
JP2012043661A (ja) 真空遮断器
CN100397540C (zh) 小型断路器的操作机构
CN205190906U (zh) 平动模式的双稳态动作执行器
CN209249321U (zh) 一种双电源转换开关的锁扣装置及双电源转换开关
WO2022007386A1 (zh) 一种双电源转换机构和转换开关
CN105448555A (zh) 双稳态光路调整机构及方法
US11264191B2 (en) Breaker
CN205194547U (zh) 双稳态光路调整机构
CN105443842B (zh) 平动模式的双稳态动作执行器及方法
CN204045489U (zh) 一种双永磁机构操作的断路器的分闸装置
KR101268442B1 (ko) 자동부하전환개폐기
WO2012174861A1 (zh) 电子群锁系统
CN201508798U (zh) 永磁真空断路器
CN204424774U (zh) 活门驱动机构
CN104485243B (zh) 一种上隔离开关的联锁机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895967

Country of ref document: EP

Kind code of ref document: A1