WO2022007386A1 - 一种双电源转换机构和转换开关 - Google Patents

一种双电源转换机构和转换开关 Download PDF

Info

Publication number
WO2022007386A1
WO2022007386A1 PCT/CN2021/073015 CN2021073015W WO2022007386A1 WO 2022007386 A1 WO2022007386 A1 WO 2022007386A1 CN 2021073015 W CN2021073015 W CN 2021073015W WO 2022007386 A1 WO2022007386 A1 WO 2022007386A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
power switch
conversion mechanism
pulleys
switch
Prior art date
Application number
PCT/CN2021/073015
Other languages
English (en)
French (fr)
Inventor
李兵
刘浩
左鉴波
Original Assignee
陕西铭拓机电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西铭拓机电技术有限公司 filed Critical 陕西铭拓机电技术有限公司
Publication of WO2022007386A1 publication Critical patent/WO2022007386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/38Driving mechanisms, i.e. for transmitting driving force to the contacts using spring or other flexible shaft coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/42Driving mechanisms, i.e. for transmitting driving force to the contacts using cam or eccentric

Definitions

  • the application relates to the technical field of electrical switches, in particular to a dual power conversion mechanism and a conversion switch.
  • the transfer switch is a low-voltage electrical switch, which is used in the power distribution system to select, convert and connect one of the two power supplies to ensure that the output end of the switch continuously outputs electrical energy.
  • the prior art discloses a transfer switch, which includes a power switch on a common side, a power switch on a standby side, a first transmission part, a second transmission part, a first electric drive part and a second electric drive part, and the first electric drive part drives The first transmission part drives the power switch on the normal side to close and break, and the second electric drive part drives the second transmission part to drive the power switch on the standby side to close and open.
  • the power switch on the normal side and the power switch on the standby side are driven by independent electrical driving parts and transmission parts, respectively.
  • the position node of the power switch feeds back the state of the switch, which is executed by the program control sequence. If the position of the power switch is wrong or the control program is chaotic, the power switch on the common side and the power switch on the standby side will be closed at the same time, resulting in a short circuit between the two power sources, which will damage the entire power distribution system. Low.
  • the technical problem to be solved by this application is to eliminate the risk of short-circuiting of two power sources, improve the safety and reliability of the transfer switch, and stabilize the power distribution system.
  • a dual power conversion mechanism comprising:
  • a cam on which at least two cam curved surfaces with different turning radii are arranged
  • the two pulleys are both supported on the cam curved surface.
  • one of the pulleys moves in a straight line close to the cam rotating shaft, and the other pulley moves away from the cam surface. the linear motion of the cam shaft;
  • Two limiting action pieces which limit the pulley to slide along the cam curved surface.
  • the pulleys are respectively supported by the cam curved surfaces of different rotational radii.
  • the two pulleys do not simultaneously move away from/close to the cam shaft in a linear motion.
  • linkage structure is oscillatingly arranged.
  • a driving structure is also included, and the driving structure drives the cam to rotate and keep still.
  • the driving structure includes an electromagnetic driving structure, and the electromagnetic driving structure drives the cam to rotate.
  • the driving structure further includes a permanent magnet driving structure or a cam locking structure, and the permanent magnet driving structure or the cam locking structure drives the cam to remain stationary.
  • the power switch is a vacuum switch.
  • the power switch is an air switch.
  • a transfer switch includes the above-mentioned dual power conversion mechanism.
  • a dual power conversion mechanism includes: a cam on which at least two cam curved surfaces with different turning radii are arranged; two pulleys are both supported on the cam curved surfaces, and when the cam rotates, According to the difference of the cam surface, one of the pulleys moves in a straight line close to the cam shaft, and the other pulley moves in a straight line away from the cam shaft; two linkage structures, the input end of the linkage structure are connected to the pulley respectively, and the output ends of the linkage structure are connected to the power switch respectively, and the closing and breaking of the power switch is driven by the linear motion of the pulley; The pulley slides along the cam curved surface.
  • a dual power conversion mechanism of this structure the closing and breaking of the power switch are driven by the rotation of the cam, the linear movement of the pulley, and the swing of the linkage structure. Since the curved surface of the cam has different turning radii, the pulley corresponds to the straight line at different turning radii. Different positions in the movement, that is, when the pulley is on the cam surface with a small turning radius, corresponds to the position close to the cam shaft in linear motion, and when it is on the cam surface with a large turning radius, it corresponds to the position away from the cam shaft in linear motion.
  • the different positions of the pulley in the linear motion drive the movement of the linkage structure to realize the closing and breaking of the power switch, and because one pulley moves linearly close to the cam shaft, the other pulley moves away from the cam shaft, thus ensuring that the two pulleys are different.
  • Linear motion in different directions corresponds to different states of the power switch, that is, one power switch is closed and the other power switch is disconnected, and both of them will not be closed, thus avoiding the short circuit and damage of the two power sources.
  • the transfer switch and the situation of potential safety hazard appear to ensure the reliability of the transfer switch.
  • a dual power conversion mechanism of the present application when the cam is stationary, the pulleys are respectively supported by the cam curved surfaces of different rotational radii.
  • a dual power conversion mechanism of this structure when the cam is stationary, the pulleys are respectively supported by the cam curved surfaces of different turning radii, so that the pulleys are in different positions in the linear motion, that is, one power switch is closed and the other power switch is disconnected, And keep the corresponding state of the two power switches.
  • a dual power conversion mechanism of the present application wherein the driving structure comprises an electromagnetic driving structure, and the electromagnetic driving structure drives the cam to rotate.
  • a dual power conversion mechanism of this structure is provided with an electromagnetic drive structure, when the power switch is driven, the contacts of the power switch are made to move quickly, and the closing and breaking of the power switch can be quickly realized.
  • a dual power conversion mechanism of the present application wherein the drive structure further comprises a permanent magnet drive structure or a cam lock structure, and the permanent magnet drive structure or the cam lock structure drives the cam to remain stationary.
  • a dual power conversion mechanism of this structure is provided with a permanent magnet drive structure or a cam lock structure, wherein the permanent magnet drive structure relies on the permanent magnet force to keep the cam in a static state, and the cam lock structure relies on the mechanical structure to keep the cam in a static state. , instead of relying on electromagnetic force, that is, there is no need to continuously turn on the electromagnetic force to maintain the state of the transfer switch, saving energy.
  • a dual power conversion mechanism of the present application wherein the power switch is a vacuum switch.
  • a dual power conversion mechanism of this structure because the power switch is a vacuum switch, there is no arc extinguishing time, so that the contact of the vacuum switch moves quickly, and the action time of the contact can be shortened to within 10ms, and the switching of the transfer switch can be changed. The time is shortened to less than 20ms, which can be used in UPS uninterruptible power supply, and is directly applicable to severe loads such as computers and servers.
  • a transfer switch of the present application comprising the above-mentioned dual power conversion mechanism.
  • the changeover switch of this structure because it includes the above-mentioned dual power supply conversion mechanism, naturally has the advantages brought about by including the above-mentioned dual power supply conversion mechanism.
  • FIG. 1 is a schematic structural diagram of a dual power conversion mechanism provided in Embodiment 1 of the application;
  • FIG. 2 is a schematic structural diagram of the disconnection of the power switch on the common side and the disconnection of the power switch on the standby side in the dual power conversion mechanism shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being disconnected in the dual power conversion mechanism shown in FIG. 2 ;
  • FIG. 4 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being closed in the dual power conversion mechanism shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of the dual power conversion mechanism provided in Embodiment 2 of the present application.
  • FIG. 6 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being disconnected in the dual power conversion mechanism shown in FIG. 5 ;
  • FIG. 7 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being disconnected in the dual power conversion mechanism shown in FIG. 6 ;
  • FIG. 8 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being closed in the dual power conversion mechanism shown in FIG. 7 ;
  • Embodiment 9 is a schematic structural diagram of the dual power conversion mechanism provided in Embodiment 3 of the present application.
  • FIG. 10 is a schematic structural diagram of the power switch on the common side and the power switch on the standby side being off in the dual power conversion mechanism shown in FIG. 9;
  • FIG. 11 is a schematic structural diagram of the power switch on the common side being disconnected and the power switch on the standby side being closed in the dual power conversion mechanism shown in FIG. 10 ;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • This embodiment provides a dual power conversion mechanism as shown in FIG. 1 to FIG. 4 , which includes a cam 2 , two pulleys, two linkage structures, two limiting action members, and a driving structure.
  • the cam 2 is rotatably connected to the first support, and the cam 2 is provided with at least two cam curved surfaces with different rotational radii, that is, the cam curved surface includes at least a first cam curved surface 21 and a second cam curved surface Curved surface 22 , wherein the rotation radius of the first cam curved surface 21 is larger than the rotation radius of the second cam curved surface 22 .
  • two pulleys namely the common side pulley 81 and the spare side pulley 82, are supported on the cam surface.
  • the cam 2 rotates, one of the pulleys first moves away from the cam according to the difference of the cam surface.
  • the linear motion of the other pulley is followed by a linear motion close to the cam.
  • the pulleys are respectively supported by the cam curved surfaces of different rotation radii; when the cam 2 rotates, the two pulleys do not simultaneously move away from/close to the cam in a straight line.
  • the pulleys When the cam 2 is stationary, the pulleys are respectively supported by the cam curved surfaces of different turning radii, so that the pulleys are in different positions in the linear motion, that is, one power switch is closed and the other power switch is disconnected, and the state corresponding to the two power switches is maintained. .
  • the pulley that is farthest from (or closest to) the cam shaft moves first, and the corresponding switch is disconnected first; then the pulley that is closest to (or farthest from) the cam shaft moves backward, and the corresponding switch is closed again.
  • the closing and breaking of the two power switches are in sequence to ensure that the two power switches will not be closed even when there is an arc.
  • the input ends of the linkage structure are all rotatably connected to the pulley, and the output ends of the linkage structure are fixedly connected to the moving contacts of the power switch, and the linear motion of the pulley drives the closing and breaking of the power switch.
  • the power switch in this embodiment is a vacuum switch.
  • there are two power switches one of which is the power switch 11 on the normal side and the other is the power switch 12 on the standby side, that is, in FIG. 1 to FIG. 4 , the power switch located at the upper part of the figure It is the power switch 11 on the common side, and the power switch at the bottom in the figure is the power switch 12 on the standby side, and each power switch includes a moving contact and a static contact.
  • the power switch is a vacuum switch, there is no arc extinguishing time, so that the contact of the vacuum switch can move quickly, and the operation time of the contact can be shortened to less than 10ms, which can shorten the switching time of the transfer switch to less than 20ms, which can be used for UPS In uninterruptible power supply, it is directly applicable to severe loads such as computers and servers.
  • the linkage structure is oscillatingly arranged and there are two, which are the common side linkage structure and the standby side linkage structure respectively.
  • the common-side linkage structure in this embodiment includes a common-side first swinging member and a common-side first connecting member 32 .
  • the first swing member on the common side includes a first swing connecting arm 311 on the common side and a second swing connecting arm 312 on the common side.
  • first swing connecting arm 311 on the common side is rotatably connected to the second support on the common side and the other One end is rotatably connected with the first connecting piece 32 on the common side
  • the second swing connecting arm 312 on the common side is arranged on the side of the first swing connecting arm 311 on the common side, and the end of the second swing connecting arm 312 on the common side forms the input end to rotate It is connected to the common side pulley 81;
  • the interlocking structure on the standby side in this embodiment includes a first swinging member on the standby side and a first connecting member 34 on the standby side.
  • the first swing member on the backup side includes a first swing connecting arm 331 on the backup side and a second swing connecting arm 332 on the backup side.
  • One end of the first swing connecting arm 331 on the backup side is rotatably connected to the second support on the backup side and the other One end is connected in rotation with the first connecting piece 34 on the standby side
  • the second swinging connecting arm 332 on the standby side is arranged on the side of the first swinging connecting arm 331 on the standby side, and the end of the second swinging connecting arm 332 on the standby side forms the input end to rotate.
  • the standby side pulley 82 Connected to the standby side pulley 82 ; the end of the standby side first connecting member 34 away from the standby side first swing connecting arm 331 forms a movable contact whose output end is fixedly connected to the standby side
  • the two limiting action pieces in this embodiment are the common side limiting action piece 91 and the spare side limiting action piece 92 respectively, and the corresponding pulleys are limited to slide along the cam curved surface.
  • Both of the limiting action members can be tension springs. Referring specifically to FIGS. 1 to 4 , one end of the common side limiting action piece 91 is fixed on the first support, and the other end of the common side limiting action piece 91 is fixed on the common side pulley 81 ; the spare side limiting action piece 92 One end of the spare side limiting action member 92 is fixed on the first support, and the other end of the spare side limiting action member 92 is fixed on the spare side pulley 82 .
  • the driving structure in this embodiment drives the cam 2 to rotate and keeps it stationary.
  • the drive structure includes an electromagnetic drive structure and a permanent magnet drive structure.
  • the electromagnetic drive structure drives the cam 2 to rotate, and the permanent magnet drive structure drives the cam 2 to remain stationary.
  • the electromagnetic drive structure includes a drive connector 41, a closing coil 42, a closing iron core 43, an opening coil 44, an opening iron core 45 and an armature;
  • the permanent magnet drive structure includes a permanent magnet 46 and a first biasing member 47.
  • an electromagnetic drive structure By being provided with an electromagnetic drive structure, when the power switch is driven, the contacts of the power switch are made to move quickly, and the closing and breaking of the power switch can be quickly realized.
  • the permanent magnet drive structure relies on the permanent magnet force to keep the cam 2 in a static state, instead of relying on the electromagnetic force, that is, there is no need to continuously turn on the electromagnetic force to maintain the state of the transfer switch, thereby saving energy.
  • the closing coil 42 is arranged around the closing iron core 43 to close the power switch on the normal side; the opening coil 44 is arranged around the opening iron core 45 to disconnect the power switch on the standby side; the drive connector 41 can be welded or glued etc. are fixed on the cam 2; the armature is arranged on the side of the driving connector 41 close to the closing iron core 43 and corresponding to the closing iron core 43 and the opening iron core 45; the permanent magnet 46 makes the armature and the closing iron core 43 different.
  • the two are kept in a fit state, so that the power switch 11 on the common side or the power switch 12 on the standby side is closed, or the permanent magnet keeps the armature and the closing iron core 43 in a separate state, so that the power switch 11 on the common side or the power switch on the standby side is kept separate.
  • the power switch 12 is disconnected; the first biasing member 47 applies a biasing force to the driving connecting member 41 to move it away from the closing iron core 43 to overcome the attractive force of the permanent magnet 46 to keep the armature away from the closing iron core 43, wherein the first A biasing member 47 may be a compression spring.
  • the driving connecting piece 41 rotates clockwise under the action of the first biasing piece 47, and drives the cam 2 clockwise around the first support
  • the common side pulley 81 moves from the second cam curved surface 22 to the first cam curved surface 21
  • the common side pulley 81 drives the common side first swing connecting arm 311 to rotate clockwise around the common side second support, and the common side first swing connection
  • the arm 311 drives the first connecting piece 32 on the common side to move in a direction away from the moving contact, so that the moving contact is far away from the stationary contact, so that the power switch 11 on the common side is disconnected
  • the first cam curved surface 21 moves up, so it remains stationary relative to the first support, and the power supply on the standby side is kept disconnected;
  • the driving connector 41 continues to rotate clockwise around the first support, the common side pulley 81 moves on the first cam curved surface 21 on the cam 2, and remains stationary relative to the first support, and the common side power switch 11 remains disconnected; and
  • the first cam curved surface 21 of the standby side pulley 82 on the cam 2 moves to the second cam curved surface 22, which drives the standby side first swing connecting arm 331 to rotate clockwise around the standby side second support, and the standby side first swings
  • the connecting arm 331 pushes the first connecting member 34 on the standby side to move toward the direction close to the stationary contact, so that the moving contact is close to the static contact, so that the power switch 12 on the standby side is closed.
  • the cam 2 remains stationary under the action of the component 47, and the state of the cam 2 remains unchanged, so that the states of the power switch 11 on the common side and the power switch 12 on the standby side remain unchanged.
  • the closing coil 42 When the closing coil 42 is energized, the armature on the drive connecting piece 41 moves downward against the elastic force of the first biasing piece 47 under the combined force of the electromagnetic force of the closing iron core 43 and the permanent magnet force of the permanent magnet 46, and drives the cam 2 Rotate counterclockwise around the first support, through the movement of the common side pulley 81 and the spare side pulley 82 on the cam 2, the common side first swing connecting arm 311 and the spare side first swing connecting arm 331 are respectively driven around the common side second support
  • the seat and the second support on the spare side rotate counterclockwise, the first connecting piece 34 on the spare side moves away from the static contact, and the first connecting piece 3232 on the common side moves close to the static contact, so that the power switch 12 on the spare side is first disconnected, and then the first connecting piece 3232 on the common side is disconnected.
  • the opening coil 44 is closed to generate magnetic flux, which weakens the magnetic flux of the permanent magnet 46 .
  • the brake iron core 45 moves in the direction, the cam 2 rotates clockwise around the first support, the common side pulley 81 moves from the second cam curved surface 22 to the first cam curved surface 21, and the common side first swing connecting arm 311 surrounds the common side second support
  • the seat rotates clockwise, the first connector 32 on the common side drives the moving contacts away from the static contacts, so that the power switch 11 on the common side is disconnected, the pulley 82 on the standby side remains stationary relative to the first support, and the power switch 12 on the standby side remains disconnected.
  • the driving connector 41 continues to move away from the opening iron core 45 under the elastic force of the first biasing force, the cam 2 continues to rotate clockwise around the first support, and the common side pulley 81 is relatively opposite to the first support.
  • a stand is stationary, the power switch 11 on the common side remains disconnected, the pulley 82 on the standby side moves from the first cam curved surface 21 to the second cam curved surface 22, and the first swing connecting arm 331 on the standby side rotates clockwise around the second stand on the standby side, The moving contact moves close to the stationary contact under the action of the first connecting piece 34 on the standby side, so that the power switch 12 on the standby side is closed.
  • the closing coil 42 is closed to generate magnetic flux, the magnetic flux of the permanent magnet 46 is enhanced, and the magnetic force is greater than the elastic force of the first biasing member 47 , and the armature together with the driving plate member approach the direction of the opening iron core 45 .
  • the cam 2 rotates counterclockwise around the first support
  • the pulley 82 on the standby side moves from the second cam curved surface 22 to the first cam curved surface 21
  • the first swing connecting arm 331 on the standby side rotates counterclockwise around the second stand on the standby side
  • the first connector 34 on the standby side drives the moving contacts away from the static contacts, so that the standby side power switch 12 is disconnected, the common side pulley 81 remains stationary relative to the first support, and the common side power switch 11 remains disconnected.
  • the cam 2 continues to rotate counterclockwise around the first support, the spare side pulley 82 is stationary relative to the first support, the spare side power switch 12 is kept disconnected, and the common side
  • the pulley 81 moves from the first cam curved surface 21 to the second cam curved surface 22 , the first swing connecting arm 311 on the common side rotates counterclockwise around the second support on the common side, and the moving contact moves close to the static state under the action of the first connecting piece 32 on the common side. contacts, so that the common side power switch 11 is closed.
  • the closing and breaking of the power switch are driven by the rotation of the cam 2, the linear movement of the pulley, and the swing of the linkage structure. Since the curved surface of the cam has different rotation radii, the pulley corresponds to Different positions in linear motion, that is, when the pulley is on the cam surface with a small turning radius, corresponds to the position close to the cam shaft in linear motion, and when it is on the cam surface with a large turning radius, it corresponds to the position away from the cam shaft in linear motion.
  • the power switch is closed and disconnected by driving the linkage structure to move at different positions of the pulley in the linear motion, and because one pulley moves in a straight line close to the cam shaft, the other pulley moves away from the cam shaft, so as to ensure that the two pulleys can Linear motion in different directions corresponds to different states of the power switch, that is, one power switch is closed and the other power switch is disconnected, and both of them will not be closed, thus avoiding the short circuit of the two power sources.
  • the transfer switch is damaged and there are potential safety hazards, so as to ensure the reliability of the transfer switch.
  • This embodiment provides a dual power conversion mechanism as shown in FIG. 5 to FIG. 8 , and the difference between it and Embodiment 1 is that the linkage structure and the driving structure are different.
  • the common-side linkage structure in this embodiment includes a common-side second swing member 51 , a common-side second connecting member 52 and a common-side third connecting member 53 , and the common-side second swinging member 51 It is rotatably connected to the third support on the common side.
  • the end of the second connecting piece 52 on the common side close to the second cam curved surface 22 forms an input portion that is rotatably connected to the pulley.
  • the third connecting piece 53 on the common side has an output portion that is fixedly connected to the common side.
  • the moving contacts of the power switch 11, the second connecting piece 52 on the common side and the third connecting piece 53 on the common side are rotatably connected to different ends of the swing fulcrum of the second swinging piece 51 on the common side, wherein the second connecting piece 51 on the common side
  • the swing fulcrum is the rotational connection between the second swing member 51 on the common side and the third support.
  • the interlocking structure on the standby side in this embodiment includes a second swinging member 55 on the standby side, a second connecting member on the standby side, and a third connecting member 56 on the standby side, and the second rocking member 55 on the standby side rotates Connected to the third support on the standby side, the end of the second connecting piece on the standby side close to the second cam curved surface 22 forms an input part that is rotatably connected to the pulley, and the third connecting piece 56 on the standby side has an output part that is fixedly connected to the power switch on the standby side 12, the second connecting piece on the spare side and the third connecting piece 56 on the spare side are rotatably connected to different ends of the swinging fulcrum of the second swinging piece 55 on the spare side, wherein the swinging fulcrum of the second swinging piece 55 on the spare side is The rotational connection between the second swing piece 55 on the spare side and the third support.
  • the second swinging member, the second connecting member and the third connecting member form a lever structure.
  • the swinging fulcrum of the second swinging member can be set close to the output end to realize the closing and breaking of the power switch driven by a small force.
  • the driving structure in this embodiment includes an electromagnetic driving structure and a cam locking structure
  • the electromagnetic driving structure drives the cam 2 to remain stationary
  • the cam locking structure drives the cam 2 to remain stationary.
  • the electromagnetic driving structure includes an electromagnetic coil 62 , an electromagnet core 64 and a linkage rod 65
  • the cam locking structure includes an abutting wall 61 and a second biasing member 63 .
  • the second biasing member 63 of the spring is located between the abutting wall 61 and the electromagnet core 64
  • the electromagnet coil 62 is arranged around the electromagnet core 64
  • the two ends of the linkage rod 65 are respectively rotatably connected to the electromagnet core 64 and cam 2.
  • the driving structure in Embodiment 1 and the driving structure in Embodiment 2 can be interchanged, or they may not be provided, but the cam 2 is manually driven to rotate.
  • This embodiment provides a dual power conversion mechanism as shown in FIG. 9 to FIG. 11 , which differs from Embodiment 1 in that the linkage structure and power switch are different, and no driving structure is provided. It can be driven by the driving structure in Embodiment 1 or Embodiment 2, or manually drive the power switch to close or open.
  • the power switch in this embodiment is an air switch, and the connection of the switch contacts can be a bridge type or a pointer type.
  • the common side linkage structure in this embodiment includes a common side fourth connecting piece 71 and a common side limiting sleeve 72 , and one end of the common side fourth connecting piece 71 forms the input end rotation It is connected to the common side pulley 81, and the other end forms an output end which is fixedly connected to the moving contact of the common side switch.
  • the linkage structure on the standby side in this embodiment includes a fourth connecting member 73 on the standby side and a limit sleeve 74 on the standby side, and one end of the fourth connecting member 73 on the standby side forms the rotation of the input end It is connected to the pulley 82 on the standby side, and the other end forms a movable contact whose output end is fixedly connected to the switch on the standby side.
  • the cam 2 rotates clockwise around the first support, the common side pulley 81 moves from the first cam curved surface 21 to the second cam curved surface 22 , and the common side fourth connecting piece 71 drives the moving contact Away from the static contact, the power switch 11 on the normal side is disconnected, the pulley 82 on the standby side remains stationary relative to the first support, and the power switch 12 on the standby side remains disconnected.
  • the cam 2 continues to rotate clockwise around the first support, the common side pulley 81 is stationary relative to the first support, the common side power switch 11 is kept disconnected, and the standby side pulley 82 is formed by the second cam curved surface. 22 moves to the first cam curved surface 21, and the moving contact moves close to the stationary contact under the action of the fourth connecting piece 73 on the standby side, so that the power switch 12 on the standby side is closed.
  • the cam 2 rotates counterclockwise around the first support, the pulley 82 on the standby side moves from the first cam curved surface 21 to the second cam curved surface 22 , and the fourth connecting piece 73 on the standby side drives the moving contact Away from the static contact, the standby side power switch 12 is disconnected, the normal side pulley 81 is kept stationary relative to the first support, and the normal side power switch 11 is kept disconnected.
  • the cam 2 continues to rotate counterclockwise around the first support, the standby side pulley 82 is stationary relative to the first support, the standby side power switch 12 is kept disconnected, and the common side pulley 81 rotates from the second cam
  • the curved surface 22 moves to the first cam curved surface 21 , and the moving contact approaches the stationary contact under the action of the fourth connecting piece 71 on the common side, so that the power switch 11 on the common side is closed.
  • This embodiment provides a conversion switch, including a dual power conversion mechanism provided in any one of Embodiments 1 to 3.

Abstract

本申请公开一种双电源转换机构和转换开关。双电源转换机构包括凸轮,其上设有至少两种不同转动半径的凸轮曲面;两个滑轮,所述凸轮转动时,其中一个所述滑轮做靠近所述凸轮转轴的直线运动,另一个所述滑轮做远离所述凸轮转轴的直线运动;两个联动结构,所述联动结构的输入端均分别连接于所述滑轮,输出端均分别连接于电源开关;两个限定作用件。通过滑轮位于直线运动中的不同位置带动联动结构运动实现电源开关的闭合、分断,一个滑轮做靠近凸轮转轴的直线运动时而另一个滑轮做远离凸轮转轴的直线运动,确保两个滑轮进行不同方向的直线运动,不同方向的直线运动对应于电源开关不同的闭合、分断状态,两个电源开关不会出现同时闭合的情况。

Description

一种双电源转换机构和转换开关
相关申请的援引
本申请要求在2020年7月7日提交中国专利局、申请号为2020106473377,发明名称为《一种双电源转换机构和转换开关》的中国专利申请的优先权,记载于上述申请中的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电器开关技术领域,具体涉及一种双电源转换机构和转换开关。
背景技术
转换开关是一种低压电器开关,用于配电系统中,在两路供电电源间选择、转换连接其中一路供电电源,保证开关输出端连续输出电能。
现有技术公开了一种转换开关,其包括常用侧电源开关、备用侧电源开关、第一传动件、第二传动件、第一电气驱动部和第二电气驱动部,第一电气驱动部驱动第一传动件带动常用侧电源开关闭合、分断,第二电气驱动部驱动第二传动件带动备用侧电源开关闭合、分断。
但是,上述的一种转换开关,常用侧电源开关和备用侧电源开关分别通过独立的电气驱动部和传动件带动,常用侧电源开关先分断、然后备用侧电源开关再闭合的顺序操作,是依靠电源开关的位置节点反馈开关状态、由程序控制顺序执行的。若电源开关位置节点有误或控制程序混乱时,会将常用侧电源开关与备用侧电源开关同时闭合,出现两路电源短接的情况,而损坏整个配电系统,这种转换开关的可靠性低。
发明内容
因此,本申请要解决的技术问题是杜绝两路电源短接的风险,提高转换开关的安全可靠性,稳固配电系统。
一种双电源转换机构,包括:
凸轮,其上设有至少两种不同转动半径的凸轮曲面;
两个滑轮,均支撑于所述凸轮曲面上,所述凸轮转动时,随所述凸轮曲面的不同,其中一个所述滑轮做靠近所述凸轮转轴的直线运动,另一个所述滑轮做远离所述凸轮转轴的直线运动;
两个联动结构,所述联动结构的输入端均分别连接于所述滑轮,以及所述联动结构的输出端均分别连接于电源开关,通过所述滑轮的直线运动带动所述电源开关的闭合、分断;
两个限定作用件,其限定所述滑轮沿所述凸轮曲面滑动。
进一步地,所述凸轮静止时,所述滑轮分别被不同转动半径的所述凸轮曲面所支撑。
进一步地,所述凸轮转动时,两个所述滑轮不同时做远离/靠近所述所述凸轮转轴的直线运动。
进一步地,所述联动结构摆动设置。
进一步地,还包括驱动结构,所述驱动结构驱动所述凸轮转动、保持静止。
进一步地,所述驱动结构包括电磁驱动结构,所述电磁驱动结构驱动所述凸轮转动。
进一步地,所述驱动结构还包括永磁驱动结构或凸轮闭锁结构,所述永磁驱动结构或所述凸轮闭锁结构驱动所述凸轮保持静止。
进一步地,所述电源开关为真空开关。
进一步地,所述电源开关为空气开关。
一种转换开关,包括如上述的双电源转换机构。
本申请技术方案,具有如下优点:
1.本申请提供的一种双电源转换机构,包括:凸轮,其上设有至少两种不同转动半径的凸轮曲面;两个滑轮,均支撑于所述凸轮曲面上,所述凸轮转动时,随所述凸轮曲面的不同,其中一个所述滑轮做靠近所述凸轮转轴的直线运动,另一个所述滑轮做远离所述凸轮转轴的直线运动;两个联动结构,所述联动结构的输入端均分别连接于所述滑轮,以及所述联动结构的输出端均分别连接于电源开关,通过所述滑轮的直线运动带动所述电源开关的闭合、分断;两个限定作用件,其限定所述滑轮沿所述凸轮曲面滑动。此结构的一种双电源转换机构,电源开关的闭合、分断是通过凸轮转动、滑轮直线移动、联动结构摆动来驱动实现的,由于凸轮曲面具有不同转动半径,滑轮在不同转动半径处对应于直线运动中的不同位置,即滑轮在转动半径小的凸轮曲面上时对应于直线运动中靠近凸轮转轴的位置,而在转动半径大的凸轮曲面上时对应于直线运动中远离凸轮转轴的位置,通过滑轮位于直线运动中的不同位置带动联动结构运动实现电源开关的闭合、分断,以及由于一个滑轮做靠近凸轮转轴的直线运动时而另一个滑轮做远离凸轮转轴的直线运动,从而确保两个滑轮进行不同方向的直线运动,不同方向的直线运动对应于电源开关的不同状态,即一个电源开关闭合且另一个电源开关分断,两者不会出现均闭合的情况,从而避免了两路电源短接、损坏转换开关、存在安全隐患的情况出现,以确保了转换开关的可靠性。
2.本申请的一种双电源转换机构,所述凸轮静止时,所述滑轮分别被不同转动半径的所述凸轮 曲面所支撑。此结构的一种双电源转换机构,通过凸轮静止时,滑轮分别被不同转动半径的凸轮曲面所支撑,使得滑轮处于直线运动中的不同位置处,即一个电源开关闭合且另一个电源开关分断,并保持两个电源开关对应的状态。
3.本申请的一种双电源转换机构,所述凸轮转动时,两个所述滑轮不同时做远离/靠近所述凸轮转轴的直线运动。此结构的一种双电源转换机构,处于最远离(或最靠近)所述凸轮转轴的滑轮先移动,对应的开关先分断;而后处于最靠近(或最远离)所述凸轮转轴的滑轮后移动,对应的开关再闭合。两个电源开关的闭合、分断是有先后顺序的,确保两个电源开关在有电弧的情况下也不会存在均闭合的情况。
4.本申请的一种双电源转换机构,所述驱动结构包括电磁驱动结构,所述电磁驱动结构驱动所述凸轮转动。此结构的一种双电源转换机构,通过设置有电磁驱动结构,驱动电源开关时,使得电源开关的触头动作快,可快速实现电源开关的闭合、分断。
5.本申请的一种双电源转换机构,所述驱动结构还包括永磁驱动结构或凸轮闭锁结构,所述永磁驱动结构或所述凸轮闭锁结构驱动所述凸轮保持静止。此结构的一种双电源转换机构,通过设置有永磁驱动结构或凸轮闭锁结构,其中永磁驱动结构依靠永磁力保持凸轮静止的状态,以及凸轮闭锁结构依靠机械结构的闭锁保持凸轮静止的状态,而非依靠电磁力,即无需持续接通产生电磁力来保持转换开关的状态,节约能源。
6.本申请的一种双电源转换机构,所述电源开关为真空开关。此结构的一种双电源转换机构,由于电源开关为真空开关,没有灭弧时间,使得真空开关的触头动作快,可将触头的动作时间缩短至10ms内,即可将转换开关的切换时间缩短至20ms以内,可以用于UPS不间断电源中,直接适用于计算机、服务器等严苛负载。
7.本申请的一种转换开关,包括如上述的双电源转换机构。此结构的转换开关,由于包括上述的双电源转换机构,为此自然而然地具有因包括上述的双电源转换机构所带来的优点。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例1中提供的双电源转换机构的结构示意图;
图2为图1所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关分断的结构示意图;
图3为图2所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关分断的结构示意图;
图4为图3所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关闭合的结构示意图;
图5为本申请的实施例2中提供的双电源转换机构的结构示意图;
图6为图5所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关分断的结构示意图;
图7为图6所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关分断的结构示意图;
图8为图7所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关闭合的结构示意图;
图9为本申请的实施例3中提供的双电源转换机构的结构示意图;
图10为图9所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关分断的的结构示意图;
图11为图10所示的双电源转换机构中的常用侧电源开关分断、备用侧电源开关闭合的结构示意图;
附图标记说明:
11-常用侧电源开关,12-备用侧电源开关;
2-凸轮,21-第一凸轮曲面,22-第二凸轮曲面;
311-常用侧第一摆动连接臂,312-常用侧第二摆动连接臂,32-常用侧第一连接件,331-备用侧第一摆动连接臂,332-备用侧第二摆动连接臂,34-备用侧第一连接件;
41-驱动连接件,42-合闸线圈,43-合闸铁芯,44-分闸线圈,45-分闸铁芯,46-永磁体,47-第一偏压件;
51-常用侧第二摆动件,52-常用侧第二连接件,53-常用侧第三连接件,54-备用侧第二摆动件,55-备用侧第二连接件,56-备用侧第三连接件;
61-抵接壁,62-电磁线圈,63-第二偏压件,64-电磁铁芯,65-联动杆;
71-常用侧第四连接件,72-常用侧限位套筒,73-备用侧第四连接件,74-备用侧限位套筒;
81-常用侧滑轮,82-备用侧滑轮;
91-常用侧限定作用件,92-备用侧限定作用件。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供如图1至图4所示的一种双电源转换机构,其包括凸轮2、两个滑轮、两个联动结构、两个限定作用件和驱动结构。
如图1至图4所示,凸轮2转动连接于第一支座上,且凸轮2上设有至少两种不同转动半径的凸轮曲面,即凸轮曲面至少包括第一凸轮曲面21和第二凸轮曲面22,其中第一凸轮曲面21的转动半径大于第二凸轮曲面22的转动半径。
如图1至图4所示,两个滑轮,分别为常用侧滑轮81和备用侧滑轮82,均支撑于凸轮曲面上,凸轮2转动时,随凸轮曲面的不同,其中一个滑轮先做远离凸轮的直线运动,另一个滑轮后做靠近凸轮的直线运动。其中凸轮2静止时,滑轮分别被不同转动半径的凸轮曲面所支撑;凸轮2转动时,两个滑轮不同时做远离/靠近凸轮的直线运动。
通过凸轮2静止时,滑轮分别被不同转动半径的凸轮曲面所支撑,使得滑轮处于直线运动中的不同位置处,即一个电源开关闭合且另一个电源开关分断,并保持两个电源开关对应的状态。处于最远离(或最靠近)所述凸轮转轴的滑轮先移动,对应的开关先分断;而后处于最靠近(或最远离)所述凸轮转轴的滑轮后移动,对应的开关再闭合。两个电源开关的闭合、分断是有先后顺序的,确保两个电源开关在有电弧的情况下也不会存在均闭合的情况。
如图1至图4所示,联动结构的输入端均转动连接于滑轮,以及联动结构的输出端均固定连接于电源开关的动触头,通过滑轮的直线运动带动电源开关的闭合、分断。其中本实施例中的电源开关为真空开关。如图1至图4所示,电源开关设置有两个,其中一个为常用侧电源开关11,另一个为备用侧电源开关12,即在图1至图4中,位于图中上方的电源开关为常用侧电源开关11,位于图中下方的电源开关为备用侧电源开关12,且每个电源开关均包括动触头和静触头。
由于电源开关为真空开关,没有灭弧时间,使得真空开关的触头动作快,可将触头的动作时间缩短至10ms内,即可将转换开关的切换时间缩短至20ms以内,可以用于UPS不间断电源中,直接适用于计算机、服务器等严苛负载。
具体地,联动结构摆动设置且设置有两个,分别为常用侧联动结构和备用侧联动结构。如图1至图4所示,本实施例中的常用侧联动结构包括常用侧第一摆动件和常用侧第一连接件32。其中常用侧第一摆动件包括常用侧第一摆动连接臂311和常用侧第二摆动连接臂312,常用侧第一摆动连接臂311的其中一个端部转动连接于常用侧第二支座且另一端部和常用侧第一连接件32转动连接,常用侧第二摆动连接臂312设于常用侧第一摆动连接臂311的侧部,常用侧第二摆动连接臂312的端部形成输入端转动连接于常用侧滑轮81;常用侧第一连接件32远离常用侧第一摆动连接臂311的端部形成输出端固定连接于常用侧电源开关11的动触头。
如图1至图4所示,本实施例中的备用侧联动结构包括备用侧第一摆动件和备用侧第一连接件34。其中备用侧第一摆动件包括备用侧第一摆动连接臂331和备用侧第二摆动连接臂332,备用侧第一摆动连接臂331的其中一个端部转动连接于备用侧第二支座且另一端部和备用侧第一连接件34转动连接,备用侧第二摆动连接臂332设于备用侧第一摆动连接臂331的侧部,备用侧第二摆动连接臂332的端部形成输入端转动连接于备用侧滑轮82;备用侧第一连接件34远离备用侧第一摆动连接臂331的端部形成输出端固定连接于备用侧电源开关12的动触头。
本实施例中的两个限定作用件,分别为常用侧限定作用件91和备用侧限定作用件92,限定对应的滑轮沿凸轮曲面滑动。其中两个限定作用件均可为拉簧。具体参见图1至图4,常用侧限定作用件91的其中一端部固定于第一支座上,常用侧限定作用件91的另一端部固定于常用侧滑轮81上;备用侧限定作用件92的其中一端部固定于第一支座上,备用侧限定作用件92的另一端部固定于备用侧滑轮82上。
本实施例中的驱动结构驱动凸轮2转动、保持静止。如图1至图4所示,驱动结构包括电磁驱动结构和永磁驱动结构,电磁驱动结构驱动凸轮2转动,永磁驱动结构驱动凸轮2保持静止。具体 地,电磁驱动结构包括驱动连接件41、合闸线圈42、合闸铁芯43、分闸线圈44、分闸铁芯45和衔铁;永磁驱动结构包括永磁体46和第一偏压件47。
通过设置有电磁驱动结构,驱动电源开关时,使得电源开关的触头动作快,可快速实现电源开关的闭合、分断。通过设置有永磁驱动结构,其中永磁驱动结构依靠永磁力保持凸轮2静止的状态,而非依靠电磁力,即无需持续接通产生电磁力来保持转换开关的状态,节约能源。
其中合闸线圈42环绕合闸铁芯43设置以使常用侧电源开关闭合;分闸线圈44环绕分闸铁芯45设置以使备用侧电源开关分断的;驱动连接件41可通过焊接或者粘接等固定于凸轮2上;衔铁设于驱动连接件41靠近合闸铁芯43的一侧且与合闸铁芯43和分闸铁芯45对应设置;永磁体46使衔铁和合闸铁芯43其二者保持贴合状态,以使常用侧电源开关11或备用侧电源开关12闭合,或,永磁铁使衔铁和合闸铁芯43其二者保持分离状态,以使常用侧电源开关11或备用侧电源开关12分断;第一偏压件47向驱动连接件41施加使其远离合闸铁芯43方向移动的偏压力,以克服永磁体46的吸引力使衔铁远离合闸铁芯43,其中第一偏压件47可为压缩弹簧。
当分闸线圈44得电产生与永磁体46反向磁通量抵消永磁体46对衔铁的吸力,驱动连接件41在第一偏压件47作用下顺时针转动,带动凸轮2围绕第一支座顺时针转动,常用侧滑轮81从第二凸轮曲面22运动至第一凸轮曲面21,常用侧滑轮81带动常用侧第一摆动连接臂311绕常用侧第二支座顺时针转动,常用侧第一摆动连接臂311带动常用侧第一连接件32朝向远离动触头的方向运动,使得动触头远离静触头,从而实现常用侧电源开关11分断;与此同时,备用侧滑轮82在凸轮2上的第一凸轮曲面21上运动,所以相对于第一支座保持静止,备用侧电源保持分断;
随后驱动连接件41继续绕第一支座顺时针转动,常用侧滑轮81在凸轮2上的第一凸轮曲面21上运动,相对于第一支座保持静止,常用侧电源开关11保持分断;与此同时,备用侧滑轮82在凸轮2上的第一凸轮曲面21运动至第二凸轮曲面22,带动备用侧第一摆动连接臂331绕备用侧第二支座顺时针转动,备用侧第一摆动连接臂331推动备用侧第一连接件34朝向靠近静触头的方向运动,使得动触头靠近静触头,从而实现备用侧电源开关12闭合,运动结束,驱动连接件41在第一偏压件47的作用下保持静止,凸轮2保持状态不变,使得常用侧电源开关11、备用侧电源开关12状态保持不变。
当合闸线圈42得电,驱动连接件41上衔铁在合闸铁芯43的电磁力和永磁体46的永磁力的合力下,克服第一偏压件47的弹力向下运动,带动凸轮2绕第一支座逆时针转动,通过常用侧滑轮81、备用侧滑轮82在凸轮2上的运动带动常用侧第一摆动连接臂311、备用侧第一摆动连接臂331分别绕常用侧第二支座、备用侧第二支座逆时针转动,备用侧第一连接件34远离静触头运动而常用侧第一连接件3232靠近静触头运动,从而实现备用侧电源开关12先分断,然后常用侧电源开关11再闭合的运动顺序,运动结束后,合闸线圈42失电,衔铁在永磁体46和第一偏压件47的合力作用下保持静止,使得常用侧电源开关11与备用侧电源开关12的状态保持不变。
本实施例中的一种双电源转换机构的工作过程:
在图1时,常用侧电源开关11闭合,备用侧电源开关12分断。驱动连接件41在衔铁和永磁体46作用下克服第一偏压件47的弹力保持静止。
从图1至图2、图2至图3的过程中,分闸线圈44闭合产生磁通量,减弱永磁体46磁通量,磁力小于第一偏压件47的弹力,衔铁连同驱动连接件41向远离分闸铁芯45方向移动,凸轮2绕第一支座顺时针转动,常用侧滑轮81由第二凸轮曲面22运动至第一凸轮曲面21,常用侧第一摆动连接臂311绕常用侧第二支座顺时针转动,常用侧第一连接件32带动动触头远离静触头,使得常用侧电源开关11分断,备用侧滑轮82相对第一支座保持静止,备用侧电源开关12保持分断。
在图2、图3时,常用侧电源开关11已分断,备用侧电源开关12还未闭合,是运动过程中的暂态。
从图3至图4的过程中,驱动连接件41在第一偏压力的弹力作用下继续远离分闸铁芯45运动,凸轮2继续绕第一支座顺时针转动,常用侧滑轮81相对第一支座静止,常用侧电源开关11保持分断,备用侧滑轮82由第一凸轮曲面21运动至第二凸轮曲面22,备用侧第一摆动连接臂331绕备用侧第二支座顺时针转动,动触头在备用侧第一连接件34的作用下靠近静触头运动,使得备用侧电源开关12闭合。
在图4时,常用侧电源开关11分断而备用侧电源开关12闭合,驱动连接件41在第一偏压件47的作用下保持静止。
从图4至图3的过程中,合闸线圈42闭合产生磁通量,永磁体46的磁通量增强,磁力大于第一偏压件47的弹力,衔铁连同驱动板件向靠近分闸铁芯45的方向移动,凸轮2绕第一支座逆时针转动,备用侧滑轮82从第二凸轮曲面22运动至第一凸轮曲面21,备用侧第一摆动连接臂331绕备用侧第二支座逆时针转动,备用侧第一连接件34带动动触头远离静触头,使得备用侧电源开关12分断,常用侧滑轮81相对第一支座保持静止,常用侧电源开关11保持分断。
从图3至图2、图2至图1的过程中,凸轮2继续绕第一支座逆时针转动,备用侧滑轮82相对于第一支座静止,备用侧电源开关12保持分断,常用侧滑轮81从第一凸轮曲面21运动至第二凸轮曲面22,常用侧第一摆动连接臂311绕常用侧第二支座逆时针转动,动触头在常用侧第一连接件32作用下靠近静触头,使得常用侧电源开关11闭合。
本申请的一种双电源转换机构,电源开关的闭合、分断是通过凸轮2转动、滑轮直线移动、联 动结构摆动来驱动实现的,由于凸轮曲面具有不同转动半径,滑轮在不同转动半径处对应于直线运动中的不同位置,即滑轮在转动半径小的凸轮曲面上时对应于直线运动中靠近凸轮转轴的位置,而在转动半径大的凸轮曲面上时对应于直线运动中远离凸轮转轴的位置,通过滑轮位于直线运动中的不同位置带动联动结构运动实现电源开关的闭合、分断,以及由于一个滑轮做靠近凸轮转轴的直线运动时而另一个滑轮做远离凸轮转轴的直线运动,从而确保两个滑轮进行不同方向的直线运动,不同方向的直线运动对应于电源开关的不同状态,即一个电源开关闭合且另一个电源开关分断,两者不会出现均闭合的情况,从而避免了两路电源短接、损坏转换开关、存在安全隐患的情况出现,以确保了转换开关的可靠性。
实施例2
本实施例提供一种如图5至图8所示的双电源转换机构,其和实施例1存在的区别在于:联动结构、驱动结构均不同。
如图5至图8所示,本实施例中的常用侧联动结构包括常用侧第二摆动件51、常用侧第二连接件52和常用侧第三连接件53,常用侧第二摆动件51转动连接于常用侧第三支座,常用侧第二连接件52靠近第二凸轮曲面22的端部形成输入部转动连接于滑轮,常用侧第三连接件53上具有输出部固定连接于常用侧电源开关11的动触头,常用侧第二连接件52、常用侧第三连接件53转动连接于常用侧第二摆动件51的摆动支点的不同端部,其中常用侧第二摆动件51的摆动支点为常用侧第二摆动件51和第三支座的转动连接处。
如图5至图8所示,本实施例中的备用侧联动结构包括备用侧第二摆动件55、备用侧第二连接件和备用侧第三连接件56,备用侧第二摆动件55转动连接于备用侧第三支座,备用侧第二连接件靠近第二凸轮曲面22的端部形成输入部转动连接于滑轮,备用侧第三连接件56上具有输出部固定连接于备用侧电源开关12的动触头,备用侧第二连接件、备用侧第三连接件56转动连接于备用侧第二摆动件55的摆动支点的不同端部,其中备用侧第二摆动件55的摆动支点为备用侧第二摆动件55和第三支座的转动连接处。
第二摆动件、第二连接件和第三连接件形成杠杆结构,根据杠杆原理,可通过第二摆动件的摆动支点靠近输出端设置,来实现较小的力带动电源开关的闭合、分断。
如图5至图8所示,本实施例中的驱动结构包括电磁驱动结构和凸轮闭锁结构,电磁驱动结构驱动凸轮2保持静止,凸轮闭锁结构驱动凸轮2保持静止。其中电磁驱动结构包括电磁线圈62、电磁铁芯64和联动杆65,凸轮闭锁结构包括抵接壁61和第二偏压件63。具体地,例如弹簧的第二偏压件63位于抵接壁61和电磁铁芯64之间,电磁线圈62环绕于电磁铁芯64设置,联动杆65的两个端部分别转动连接于电磁铁芯64和凸轮2上。当然,实施例1中的驱动结构和实施例2中的驱动结构可互换,也可以不设置,而是通过人工驱动凸轮2转动。
本实施例中的双电源转换机构的工作过程:
(1)如图5所示,正常状态下电磁线圈62失电,电源开关依靠第二偏压件63的弹力及其他传动结构保持电源开关的状态,负载输出由常用侧电源开关11的闭合进行供电;
(2)当电磁线圈62得电时产生磁场,电磁力吸引电磁铁芯64向电磁线圈62中心方向移动,联动杆65随之移动,并带动凸轮2逆时针方向转动,常用侧滑轮81、备用侧滑轮82在常用侧限定作用件91、备用侧限定作用件92的拉簧力的作用下分别向着靠近、远离第一支座的方向移动,即分别朝向第二凸轮曲面22、第一凸轮曲面21运动,再通过常用侧联动结构、备用侧联动结构的带动下,使得常用侧电源开关11朝向分断运动、备用侧电源开关12朝向闭合运动;
(3)如图6、图7所示,同在第二凸轮曲面22上时提供一个常用侧电源开关11、备用侧电源开关12均分断的时刻;
(4)当电磁铁芯64移动到距凸轮2最远端时,联动杆65限定了电磁铁芯64的继续向远离凸轮2的方向移动的位置,凸轮2在惯性作用下会偏移过对称位置;
(5)如图8所示,当电磁线圈62失电,失去电磁力,被压缩的第二偏压件63释放能量,推动电磁铁芯64向靠近凸轮2的方向移动,联动杆65继续推动凸轮2逆时针方向转动,再通过常用侧联动结构、备用侧联动结构分别带动常用侧电源开关11分断、备用侧电源开关12闭合,负载输出由备用侧电源开关12的闭合进行供电;
(6)通过第二偏压件63的弹力保持电源开关的状态;
(7)当电磁线圈62再次得电时,再次经历上述(1)至(6)过程,但凸轮2为顺时针转动,使得常用侧电源开关11闭合、备用侧电源开关12分断,负载输出由常用侧电源开关11闭合进行供电。
实施例3
本实施例提供一种如图9至图11所示的双电源转换机构,其和实施例1存在的区别在于:联动结构、电源开关均不同,以及未设置有驱动结构。其中可通过实施例1或实施例2中的驱动结构驱动,或者人工驱动电源开关闭合或者分断。
如图9至图11所示,本实施例中的电源开关为空气开关,开关触头连接可为桥接式或者指针式。
如图9至图10所示,本实施例中的常用侧联动结构包括常用侧第四连接件71和常用侧限位套筒72,常用侧第四连接件71的其中一端部形成输入端转动连接于常用侧滑轮81,且另一端部形成输出端固定连接于常用侧开关的动触头。
如图9至图10所示,本实施例中的备用侧联动结构包括备用侧第四连接件73和备用侧限位套筒74,备用侧第四连接件73的其中一端部形成输入端转动连接于备用侧滑轮82,且另一端部形成输出端固定连接于备用侧开关的动触头。
本实施例中的双电源转换机构的工作过程:
在图9中,常用侧电源开关11闭合,备用侧电源开关12分断。
从图9至图10的过程中,凸轮2绕第一支座顺时针转动,常用侧滑轮81由第一凸轮曲面21运动至第二凸轮曲面22,常用侧第四连接件71带动动触头远离静触头,使得常用侧电源开关11分断,备用侧滑轮82相对第一支座保持静止,备用侧电源开关12保持分断。
在图10中,常用侧电源开关11已分断,备用侧电源开关12还未闭合,是运动过程中的暂态;
从图10至图11的过程中,凸轮2继续绕第一支座顺时针转动,常用侧滑轮81相对第一支座静止,常用侧电源开关11保持分断,备用侧滑轮82由第二凸轮曲面22运动至第一凸轮曲面21,动触头在备用侧第四连接件73的作用下靠近静触头运动,使得备用侧电源开关12闭合。
在图11中,常用侧电源开关11分断,备用侧电源开关12闭合。
从图11至图10的过程中,凸轮2绕第一支座逆时针转动,备用侧滑轮82从第一凸轮曲面21运动至第二凸轮曲面22,备用侧第四连接件73带动动触头远离静触头,使得备用侧电源开关12分断,常用侧滑轮81相对第一支座保持静止,常用侧电源开关11保持分断。
从图10至图9的过程中,凸轮2继续绕第一支座逆时针转动,备用侧滑轮82相对于第一支座静止,备用侧电源开关12保持分断,常用侧滑轮81从第二凸轮曲面22运动至第一凸轮曲面21,动触头在常用侧第四连接件71作用下靠近静触头,使得常用侧电源开关11闭合。
实施例4
本实施例提供一种转换开关,包括如实施例1至实施例3中任意一个提供的一种双电源转换机构。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍本申请的保护范围之中。

Claims (10)

  1. 一种双电源转换机构,其特征在于,包括:
    凸轮,其上设有至少两种不同转动半径的凸轮曲面;
    两个滑轮,均支撑于所述凸轮曲面上,所述凸轮转动时,随所述凸轮曲面的不同,其中一个所述滑轮做靠近所述凸轮转轴的直线运动,另一个所述滑轮做远离所述凸轮转轴的直线运动;
    两个联动结构,所述联动结构的输入端均分别连接于所述滑轮,以及所述联动结构的输出端均分别连接于电源开关,通过所述滑轮的直线运动带动所述电源开关的闭合、分断;
    两个限定作用件,其限定所述滑轮沿所述凸轮曲面滑动。
  2. 根据权利要求1所述的一种双电源转换机构,其特征在于,所述凸轮静止时,所述滑轮分别被不同转动半径的所述凸轮曲面所支撑。
  3. 根据权利要求2所述的一种双电源转换机构,其特征在于,所述凸轮转动时,两个所述滑轮不同时做远离/靠近所述凸轮转轴的直线运动。
  4. 根据权利要求1所述的一种双电源转换机构,其特征在于,所述联动结构摆动设置。
  5. 根据权利要求1至4中任意一项所述的一种双电源转换机构,其特征在于,还包括驱动结构,所述驱动结构驱动所述凸轮转动、保持静止。
  6. 根据权利要求5所述的一种双电源转换机构,其特征在于,所述驱动结构包括电磁驱动结构,所述电磁驱动结构驱动所述凸轮转动。
  7. 根据权利要求6所述的一种双电源转换机构,其特征在于,所述驱动结构还包括永磁驱动结构或凸轮闭锁结构,所述永磁驱动结构或所述凸轮闭锁结构驱动所述凸轮保持静止。
  8. 根据权利要求1至4中任意一项所述的一种双电源转换机构,其特征在于,所述电源开关为真空开关。
  9. 根据权利要求1至4中任意一项所述的一种双电源转换机构,其特征在于,所述电源开关为空气开关。
  10. 一种转换开关,其特征在于,包括如权利要求1至9中任意一项所述的双电源转换机构。
PCT/CN2021/073015 2020-07-07 2021-01-21 一种双电源转换机构和转换开关 WO2022007386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010647337.7 2020-07-07
CN202010647337.7A CN111668036A (zh) 2020-07-07 2020-07-07 一种双电源转换机构和转换开关

Publications (1)

Publication Number Publication Date
WO2022007386A1 true WO2022007386A1 (zh) 2022-01-13

Family

ID=72391843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073015 WO2022007386A1 (zh) 2020-07-07 2021-01-21 一种双电源转换机构和转换开关

Country Status (2)

Country Link
CN (1) CN111668036A (zh)
WO (1) WO2022007386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668036A (zh) * 2020-07-07 2020-09-15 陕西铭拓机电技术有限公司 一种双电源转换机构和转换开关

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760278A (en) * 1987-07-23 1988-07-26 Thomson Robert G Transfer switch
CN2891241Y (zh) * 2005-12-21 2007-04-18 宁波奇乐电器实业总公司 自动转换开关电器三位式手动操作机构
US7402766B1 (en) * 2007-04-10 2008-07-22 Jonas Jeffrey J Panel transfer switch
CN203859013U (zh) * 2014-05-28 2014-10-01 温州勃裕电气有限公司 双电源自动切换开关的传动机构
CN105098969A (zh) * 2015-09-14 2015-11-25 北京明日电器设备有限责任公司 一种可调整双电源自动转换开关
CN208861909U (zh) * 2018-10-01 2019-05-14 无锡新宏泰电器科技股份有限公司 双断点断路器n极单元的分合闸辅助机构及双断点断路器
CN111668036A (zh) * 2020-07-07 2020-09-15 陕西铭拓机电技术有限公司 一种双电源转换机构和转换开关

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760278A (en) * 1987-07-23 1988-07-26 Thomson Robert G Transfer switch
CN2891241Y (zh) * 2005-12-21 2007-04-18 宁波奇乐电器实业总公司 自动转换开关电器三位式手动操作机构
US7402766B1 (en) * 2007-04-10 2008-07-22 Jonas Jeffrey J Panel transfer switch
CN203859013U (zh) * 2014-05-28 2014-10-01 温州勃裕电气有限公司 双电源自动切换开关的传动机构
CN105098969A (zh) * 2015-09-14 2015-11-25 北京明日电器设备有限责任公司 一种可调整双电源自动转换开关
CN208861909U (zh) * 2018-10-01 2019-05-14 无锡新宏泰电器科技股份有限公司 双断点断路器n极单元的分合闸辅助机构及双断点断路器
CN111668036A (zh) * 2020-07-07 2020-09-15 陕西铭拓机电技术有限公司 一种双电源转换机构和转换开关

Also Published As

Publication number Publication date
CN111668036A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
TWI329881B (zh)
CN108695112B (zh) 电磁继电器
WO2022007386A1 (zh) 一种双电源转换机构和转换开关
JP4578433B2 (ja) 遮断器
US6831535B1 (en) Bistable electromagnetic relay
CN108010768B (zh) 一种转换开关的操作机构
JP4956141B2 (ja) 真空遮断器
MX2013004396A (es) Mecanismo interruptor electrico motorizado.
WO2023029387A1 (zh) 一种可快速切断的旋转开关
CN212209258U (zh) 一种双电源转换机构和转换开关
CN111613487A (zh) 磁保持继电器及其工作方法
CN111415838A (zh) 一种新型双驱动双线圈单相接触器
CN114639560B (zh) 自动转换开关电器
CN101223619B (zh) 断路器
WO2016206068A1 (zh) 自动转换开关和传动子系统
WO2019052549A1 (zh) 开关装置
CN210200590U (zh) 双电源转换机构及具有该双电源转换机构的开关设备
CN212625404U (zh) 磁保持继电器
CN110379656B (zh) 双电源转换机构及具有该双电源转换机构的配电系统
CN209947761U (zh) 一种接触器
CN215644171U (zh) 用于双电源开关的中性线重叠转换系统和双电源开关
CN110473723B (zh) 双电源转换机构及具有该双电源转换机构的开关设备
CN216435820U (zh) 一种电磁脱扣器
CN216793569U (zh) 接触器和电气控制柜
CN105765682A (zh) 电气开关设备和具有接合突耳的用于电气开关设备的断开组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837126

Country of ref document: EP

Kind code of ref document: A1