WO2016204408A1 - 발광 소자 패키지 - Google Patents

발광 소자 패키지 Download PDF

Info

Publication number
WO2016204408A1
WO2016204408A1 PCT/KR2016/004984 KR2016004984W WO2016204408A1 WO 2016204408 A1 WO2016204408 A1 WO 2016204408A1 KR 2016004984 W KR2016004984 W KR 2016004984W WO 2016204408 A1 WO2016204408 A1 WO 2016204408A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light emitting
emitting device
seating surface
angle
Prior art date
Application number
PCT/KR2016/004984
Other languages
English (en)
French (fr)
Inventor
김기현
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201680032853.0A priority Critical patent/CN107710427B/zh
Priority to US15/577,592 priority patent/US10928015B2/en
Publication of WO2016204408A1 publication Critical patent/WO2016204408A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • Embodiments relate to a light emitting device package.
  • a light emitting diode has an advantage as a light source in terms of output, efficiency and reliability. Accordingly, research is being actively conducted as a high output, high efficiency light source for various lighting devices as well as a backlight of a display device.
  • the LED light source needs high efficiency and high reliability, and exhibits optical characteristics as well as electrical and thermal reliability.
  • LEDs light emitting diodes
  • LEDs are gradually increasing in brightness and are used as light sources for displays, lighting, and automobiles, and emit highly efficient white light by using fluorescent materials or by combining LEDs of various colors. LEDs can also be implemented.
  • a lens may be used to increase the efficiency and adjust the light distribution characteristics.
  • the embodiment provides a light emitting device package including a reflector formed at an inclination angle set at a predetermined angle according to a distance between the lens and the reflector.
  • Embodiments to be solved by the embodiments are not limited to the above-mentioned problems, and other problems not mentioned herein will be clearly understood by those skilled in the art from the following description.
  • An embodiment includes a base having a seating surface; A light emitting device disposed on the seating surface; A lens disposed on the seating surface to cover the light emitting device; A reflection part disposed on the seating surface and spaced apart from the lens and formed at a predetermined inclination angle ⁇ , wherein the inclination angle ⁇ is formed by a light emitting device package set by a distance between the lens and the reflection part Is achieved.
  • the cylinder rate which is the ratio of the separation distances, may be obtained by the following formula.
  • RL distance from the center of the lens to the edge of the lens with respect to the seating surface
  • RC distance from the center of the lens to the edge of the reflector with respect to the seating surface
  • the inclination angle ⁇ may be 40 to 60 °.
  • the inclination angle ⁇ may be 60 to 75 °.
  • the height of the lens based on the seating surface may be smaller than the height of the reflector.
  • the ratio of the height of the lens to the height of the reflector may be 1.1 to 1.5.
  • the lens may be a primary lens.
  • the lens may be formed of a silicon material having a refractive index of 1.4 to 1.5.
  • the light emitting device package according to the embodiment may include a reflector formed at an inclination angle set at a predetermined angle according to the distance between the lens and the reflector to minimize the change of the beam angle and the field angle.
  • the light emitting device package beams using a reflector formed at an inclination angle set at a predetermined angle according to the separation distance between the lens and the reflector irrespective of the shape of the lens, the lens curvature, or the conic value. Minimize the change in angle and field angle.
  • FIG. 1 is a view showing a light emitting device package according to the embodiment
  • FIG. 2 is a cross-sectional view illustrating A-A of FIG. 1 in the light emitting device package according to the embodiment
  • FIG. 3 is a cross-sectional view illustrating A-A of FIG. 1 in a light emitting device package according to another embodiment
  • FIG. 4 is a cross-sectional view illustrating A-A of FIG. 1 in a light emitting device package according to still another embodiment.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • the upper (up) or lower (down) (on or under) includes both the two components are in direct contact with each other (directly) or one or more other components are formed indirectly formed between the two (component).
  • the upper (up) or lower (down) (on or under) includes both the two components are in direct contact with each other (directly) or one or more other components are formed indirectly formed between the two (component).
  • 'on' or 'under' it may include the meaning of the downward direction as well as the upward direction based on one component.
  • the light emitting device package 1 includes a base 100, a light emitting device 200, a lens 300, a reflector 400, and a lead frame 500. can do.
  • the base 100 may include a seating surface 110.
  • the light emitting device 200, the lens 300, and the reflector 400 may be disposed on the seating surface 110.
  • the reflector 400 may be formed to protrude from the base 100 in the light irradiation direction of the light emitting device 200 with respect to the mounting surface 110 of the base 100.
  • the base 100 has a circular shape when viewed from above, but is not limited thereto and may have various shapes such as an ellipse, a square, a polygon, and the like.
  • the base 100 is made of a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), liquid crystal polymer (PSG, photo sensitive glass), polyamide 9T (PA9T) ), Neo geotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), a printed circuit board (PCB, Printed Circuit Board), it may be formed of at least one.
  • a resin material such as polyphthalamide (PPA), silicon (Si), aluminum (Al), aluminum nitride (AlN), liquid crystal polymer (PSG, photo sensitive glass), polyamide 9T (PA9T) ), Neo geotactic polystyrene (SPS), a metal material, sapphire (Al2O3), beryllium oxide (BeO), a printed circuit board (PCB, Printed Circuit Board), it may be formed of at least one.
  • PPA polyphthalamide
  • the base 100 may be formed of a material that reflects light efficiently, or may be formed of a color (eg, white, silver, etc.) that the surface reflects light efficiently.
  • the seating surface 110 of the base 100 may be a material whose surface reflects light efficiently, or may be coated with a color (for example, white, silver, etc.) that reflects light efficiently.
  • the base 100 may be formed by injection molding, etching, or the like, but is not limited thereto.
  • the light emitting device 200 is a light source for irradiating light and may be electrically connected to the base 100.
  • the lead frame 500 may be disposed on the base 100 so that the light emitting device 200 may be electrically connected to a power source (not shown).
  • the lead frame 500 is the first lead frame 510 disposed on the lower side of the light emitting device 200 and the second lead frame 520 disposed on the base 100 to be spaced apart from the first lead frame 510. It may include.
  • the light emitting device 200 and the second lead frame 520 may be electrically connected to each other by the wire W, but are not limited thereto.
  • the light emitting device 200 may be disposed on the mounting surface 110 of the base 100, and may be disposed at the center of the mounting surface 110, for example.
  • the light emitting device 200 may be a light emitting diode (LED) chip that emits light such as red, green, and blue ultraviolet light (UV).
  • the light emitting device 200 may be a horizontal type, a vertical type, or a flip chip type.
  • the lens 300 may be disposed on the mounting surface 110 to cover the light emitting device 200.
  • the lens 300 may change the directing angle of the light emitted from the light emitting device 200.
  • the lens 300 may widen the directing angle of the light emitted from the light emitting device 200 to uniformly emit light of the light emitting device package 1, but is not limited thereto.
  • the lens 300 may have various shapes by changing the aspherical coefficient.
  • the lens 300 is formed to have a cylindrical first portion formed in the vertical direction on the seating surface 110 and a convex exit surface on the first portion. It may include two parts.
  • the first portion of the lens 300 may be formed higher or lower than the light emitting device 200, and the emission surface of the second portion may have a different shape.
  • Light distribution of the lens 300 may be controlled by changing the height of the first portion and the curvature of the second portion.
  • the lens 300 may include only the second portion without forming the first portion.
  • it may be formed in a dome shape, but is not limited thereto.
  • the lens 300 may be formed of an epoxy resin, a silicone resin, a urethane resin, or a mixture thereof.
  • the lens 300 may be formed of a silicon material having a refractive index of 1.4 to 1.5.
  • a primary lens having a predetermined beam angle may be used as the lens 300.
  • the primary lens may refer to a lens in which a space such as an air gap does not exist because the light emitting device 200 and the lens 300 are not spaced apart from each other.
  • the reflector 400 may reflect light emitted from the light emitting device 200 in a predetermined direction. This may increase the amount of light directed to the light exit surface.
  • the reflector 400 may be formed to protrude from the base 100 in the light emitting direction of the light emitting device 200.
  • the reflector 400 may be disposed on the seating surface 110 of the base 100.
  • a reflective surface 410 may be formed inside the reflective part 400. Accordingly, as shown in FIGS. 2 and 3, the reflection angle of the light emitted from the light emitting device 200 may vary according to the inclination angle ⁇ of the reflective surface 410. Can be adjusted.
  • the reflector 400 may be formed of a material having high reflectivity.
  • a reflective sheet may be attached to the reflective surface 410 of the reflective part 400, or a material having a high reflectivity may be formed on the reflective surface 410 with a reflective layer, but is not limited thereto.
  • the shape of the reflector 400 viewed from above the light emitting device package 1 may be circular, rectangular, polygonal, elliptical, or the like, for example, may be formed in the same shape as the base 100. It is not limited.
  • the reflector 400 may form a cavity, and the inside of the cavity may be an empty space, but the present invention is not limited thereto, and a separate encapsulant may be disposed.
  • the reflector 400 may be spaced apart from one side of the lens 300.
  • a distance between one side of the lens 300 and one side of the reflector 400 may be represented by a cylinder rate (CR).
  • the cylinder rate CR may be obtained based on Equation 1 based on the center C of the lens 300.
  • the center C of the lens 300 may mean the center of the surface where the lens 300 is in contact with the seating surface 110 of the base 100.
  • R L distance from the center of the lens to the edge of the lens with respect to the seating surface
  • R C distance from the center of the lens to the edge of the reflector with respect to the seating surface
  • the height of the lens 300 may be lower than the height H C of the reflector 400.
  • the height ratio of the lens 300 to the height of the reflector 400 may be expressed as a height rate (HR).
  • the height rate HR based on the center C of the lens 300 may be obtained by Equation 2 below.
  • H L Height of the lens relative to the seating surface.
  • H C Height of the reflector relative to the seating surface.
  • the shape of the lens may be changed by changing an aspherical coefficient, for example, a curvature value or a conic value, but in the present embodiment, a change in the shape of the lens is described by changing the conic value.
  • Table 1 shows changes in beam angle (BA) and field angle (FA) according to the inclination angle ⁇ when the cylinder rate is 1.1 and the height rate is 1.5.
  • an angle having a luminous intensity of 50% of the strongest luminous intensity may be referred to as a beam angle and an angle having a luminous intensity of 10% may be referred to as a field angle.
  • the beam angle may be 120 degrees when 60 degrees is 50%.
  • the change amount of the beam angle may be represented by the difference in the beam angles when the conic values are ⁇ 1, 0, and 1 at each inclination angle ⁇ .
  • the change amount of the field angle may be expressed as a difference between the field angles when the conic values are ⁇ 1, 0 and 1 at each inclination angle ⁇ .
  • the maximum deviation of the beam angle and the maximum angle of the field angle is the difference between the maximum values of (K (-1) -K (0)) and (K (1) -K (0)) of the beam angle and the field angle, respectively. You can get it. (K: conic value)
  • Table 2 shows the change amounts of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.2 and the height rate is 1.5.
  • Table 3 shows the change amounts of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.3 and the height rate is 1.5.
  • Table 4 shows the change amounts of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.4 and the height rate is 1.5.
  • Table 5 shows the change amount of the beam angle and the field angle according to the cylinder rate of 1.5 and the height rate of 1.5 inclination angle ⁇ .
  • Table 6 shows the change amounts of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.3 and the height rate is 1.2.
  • Table 7 shows the change amount of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.3 and the height rate is 1.3.
  • Table 8 shows the change amount of the beam angle and the field angle according to the inclination angle ⁇ when the cylinder rate is 1.3 and the height rate is 1.4.
  • the maximum deviation of the field angle is 1.0 or less and the maximum deviation of the beam angle is 1.5 or less, a uniform beam pattern and light irradiation may be possible even if the shape of the lens is changed by changing the aspheric coefficient.
  • the light emitting device package 1 has the inclination angle ⁇ when the cylinder rate is less than 1.3 at 40 ° to 60 °, and the inclination angle ⁇ when the cylinder rate is 1.3 or more. ),
  • the maximum deviation of the beam and field angles from 60 ° to 75 ° is 1.0 or less and 1.5 or less, respectively, so the amount of change in beam angle and field angle can be minimized.
  • the light emitting device package 1 considers the ratio of the height of the light emitting device 200 and the height of the reflector 400 to the height of the lens 300. In doing so, the lens 300 and the reflector 400 may be disposed within a range of the hatch rate HR of 1.2 to 1.5. If the HR ratio is out of the above range, the maximum deviation of the field angle exceeds 1.0 or the maximum deviation of the beam angle exceeds 1.5, so that uniform beam pattern and light irradiation when changing the shape of the lens by changing the aspherical coefficient Can be difficult.
  • the upper portion of the reflector 400 may be formed to have a predetermined thickness.
  • the thickness may be changed in consideration of the angle of the reflecting surface of the reflector 400, the stiffness of the reflector 400, the bearing capacity for the load, and the like.
  • the light emitting device package 1 may further include a phosphor layer 600 disposed on an upper surface of the light emitting device 200.
  • the phosphor layer 600 may be provided on the upper surface of the light emitting device 200 in a predetermined thickness.
  • the phosphor layer 600 may be formed to have a uniform thickness on the upper surface of the light emitting device 200 by conformal coating.
  • the phosphor layer 600 may be formed of various phosphors such as sulfide, silicate, yttrium-aluminum-garnet (YAG), nitrate, and nitride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Lenses (AREA)

Abstract

본 발명은 발광소자 패키지에 관한 것으로서, 안착면을 구비하는 베이스; 상기 안착면에 배치되는 발광소자; 상기 발광소자를 덮도록 상기 안착면에 배치되는 렌즈; 상기 안착면에 상기 렌즈와 이격되어 배치되며, 기 설정된 경사각(θ)으로 형성된 반사부를 포함하며, 상기 경사각(θ)은 상기 렌즈와 상기 반사부 사이의 이격거리에 의하여 설정될 수 있다. 이에 따라, 상기 발광소자 패키지는 렌즈와 반사부 사이의 이격거리에 따라 소정의 각도로 설정된 경사각으로 형성된 반사부를 구비하여 빔 앵글과 필드 앵글의 변화를 최소화할 수 있다.

Description

발광 소자 패키지
실시예는 발광 소자 패키지에 관한 것이다.
일반적으로, 발광다이오드(LED, Light Emitting Diode)는 출력 및 효율이나 신뢰성 측면에서 광원으로서 유익한 장점이 있다. 그에 따라, 디스플레이 장치의 백라이트 뿐만 아니라 다양한 조명 장치를 위한 고출력, 고효율 광원으로서 적극적으로 연구 개발되고 있다.
이러한 LED 조명용 광원으로 사용하기 위해서는 원하는 높은 수준의 출력을 제공하면서 광 효율을 높이고 제조비용을 낮출 필요가 있다.
따라서, LED 조명용 광원은 고효율, 고신뢰성이 필요하게 되며, 전기적 및 열적 신뢰성뿐만 아니라 광학적 특성을 발휘해야 한다.
최근 발광 다이오드(Light Emitting Diode; LED)는 휘도가 점차 증가하게 되어 디스플레이용 광원, 조명 및 자동차용 광원으로 사용되고 있으며, 형광 물질을 이용하거나 다양한 색의 LED를 조합함으로써 효율이 우수한 백색 광을 발광하는 LED도 구현이 가능하다.
특히, 상기 LED와 같은 발광소자를 광원으로 이용하는 발광소자 패키지를 제작함에 있어서, 효율을 증대시키고 배광 특성을 조절하기 위해 렌즈가 이용될 수 있다.
그러나, 상기 렌즈로 후배광 특성을 향상시킬 수 있는 프라이머리 렌즈(Primary Lens) 사용시, 렌즈 형상 공차에 따른 빔 앵글(Beam Angle)과 필드 앵글(Field Angle)에 오차가 발생하는 문제가 있다.
실시예는 렌즈와 반사부 사이의 이격거리에 따라 소정의 각도로 설정된 경사각으로 형성된 반사부를 포함하는 발광소자 패키지를 제공한다.
실시예가 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
실시예는, 안착면을 구비하는 베이스; 상기 안착면에 배치되는 발광소자; 상기 발광소자를 덮도록 상기 안착면에 배치되는 렌즈; 상기 안착면에 상기 렌즈와 이격되어 배치되며, 기 설정된 경사각(θ)으로 형성된 반사부를 포함하며, 상기 경사각(θ)은 상기 렌즈와 상기 반사부 사이의 이격거리에 의하여 설정되는 발광소자 패키지에 의하여 달성된다.
상기 이격거리의 비인 실린더 레이트(Cylinder rate)는 하기의 수식에 의하여 구할 수 있다.
Cylinder rate = RC/RL
RL: 안착면을 기준으로 렌즈의 중심으로부터 렌즈의 모서리까지의 거리, RC: 안착면을 기준으로 렌즈의 중심으로부터 반사부의 모서리까지의 거리.
또한, 상기 실린더 레이트가 1.3 미만시 상기 경사각(θ)은 40~60°일 수 있다.
또한, 상기 실린더 레이트가 1.3 이상시 상기 경사각(θ)은 60~75°일 수 있다.
또한, 상기 안착면을 기준으로 상기 렌즈의 높이는 상기 반사부의 높이 보다 작을 수 있다.
여기서, 상기 반사부의 높이에 대한 상기 렌즈의 높이의 비율은 1.1~1.5일 수 있다.
한편, 상기 렌즈는 프라이머리 렌즈일 수 있다.
그리고, 상기 렌즈는 굴절률 1.4~1.5의 실리콘 재질로 형성될 수 있다.
실시예에 따른 발광소자 패키지는 렌즈와 반사부 사이의 이격거리에 따라 소정의 각도로 설정된 경사각으로 형성된 반사부를 구비하여 빔 앵글과 필드 앵글의 변화를 최소화할 수 있다.
즉, 상기 발광소자 패키지는 렌즈의 형상, 렌즈 곡률(Lens Curvature) 또는 코닉(Conic) 값에 상관없이, 렌즈와 반사부 사이의 이격거리에 따라 소정의 각도로 설정된 경사각으로 형성된 반사부를 이용하여 빔 앵글과 필드 앵글의 변화를 최소화할 수 있다.
도 1은 실시예에 따른 발광소자 패키지를 나타내는 도면이고,
도 2는 실시예에 따른 발광소자 패키지에 있어서 도 1의 A-A를 나타내는 단면도이고,
도 3은 다른 실시예에 따른 발광소자 패키지에 있어서 도 1의 A-A를 나타내는 단면도이고,
도 4는 또 다른 실시예에 따른 발광소자 패키지에 있어서 도 1의 A-A를 나타내는 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
실시 예의 설명에 있어서, 어느 한 구성요소가 다른 구성요소의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 구성요소가 서로 직접(directly)접촉되거나 하나 이상의 다른 구성요소가 상기 두 구성요소 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 '상(위) 또는 하(아래)(on or under)'로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지게 된다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 4를 참조하여 살펴보면, 실시예에 따른 발광소자 패키지(1)는 베이스(100), 발광소자(200), 렌즈(300), 반사부(400) 및 리드 프레임(500)을 포함할 수 있다.
베이스(100)는 안착면(110)을 포함할 수 있다.
안착면(110)에는, 도 2에 도시된 바와 같이, 발광소자(200), 렌즈(300) 및 반사부(400)가 배치될 수 있다. 여기서, 반사부(400)는 베이스(100)의 안착면(110)을 기준으로 베이스(100)로부터 발광소자(200)의 광 조사방향으로 돌출되게 형성될 수도 있다.
도 1에 도시된 바와 같이, 베이스(100)는 위에서 볼 때 원 형상을 갖지만, 이에 한정되지 않고 타원형, 사각형, 다각형 등 다양한 형태를 가질 수 있다.
베이스(100)는 폴리프탈아미드(PPA:Polyphthalamide)와 같은 수지 재질, 실리콘(Si), 알루미늄(Al), 알루미늄 나이트라이드(AlN), 액정폴리머(PSG, photo sensitive glass), 폴리아미드9T(PA9T), 신지오택틱폴리스티렌(SPS), 금속 재질, 사파이어(Al2O3), 베릴륨 옥사이드(BeO), 인쇄회로기판(PCB, Printed Circuit Board), 세라믹 중 적어도 하나로 형성될 수 있다.
또한, 베이스(100)는 광을 효율적으로 반사하는 재질로 형성되거나, 표면이 광을 효율적으로 반사하는 컬러(예를 들어, 백색, 은색 등)로 형성될 수도 있다.
그리고, 베이스(100)의 안착면(110)은 표면이 빛을 효율적으로 반사하는 재질이거나, 빛이 효율적으로 반사되는 컬러(예를 들어, 백색, 은색 등)로 코팅될 수 있다.
또한, 베이스(100)는 사출 성형, 에칭 공정 등에 의해 형성될 수 있으나 이에 대해 한정되지 않는다.
발광소자(200)는 광을 조사하는 광원으로써, 베이스(100)에 전기적으로 연결될 수 있다. 예를 들어, 도 2 내지 도 4에 도시된 바와 같이, 베이스(100)에 리드 프레임(500)을 배치하여 발광소자(200)는 전원(미도시)에 전기적으로 연결될 수 있다.
여기서, 리드 프레임(500)은 발광소자(200) 하부측에 배치되는 제1 리드 프레임(510)과 제1 리드 프레임(510)에서 이격되게 베이스(100)에 배치되는 제2 리드 프레임(520)을 포함할 수 있다. 그리고, 발광소자(200)와 제2 리드 프레임(520)은 와이어(W)에 의하여 전기적으로 연결될 수 있으나 이에 한정하지 않는다.
발광소자(200)는 베이스(100)의 안착면(110) 상에 배치될 수 있으며, 예를 들어 안착면(110)의 중앙에 배치될 수 있다.
여기서, 발광소자(200)는 적색(Red), 녹색(Green), 청색(Blue) UV(Ultra Violet) 등의 광을 방출하는 발광 다이오드(LED) 칩일 수 있다. 발광소자(200)은 수평형 타입, 수직형 타입 또는 플립칩(Flip chip)타입 등일 수 있다.
렌즈(300)는, 도 2 및 도 3에 도시된 바와 같이, 발광소자(200)를 덮도록 안착면(110) 상에 배치될 수 있다.
렌즈(300)는 발광소자(200)에서 나오는 광의 지향각을 변경할 수 있다. 예를 들어 렌즈(300)은 발광소자(200)에서 나오는 광의 지향각을 넓혀 발광소자 패키지(1)의 발광을 균일하게 할 수 있으며 이에 한정하지 않는다.
렌즈(300)는 비구면 계수의 변경을 통해 다양한 형상을 가질 수 있다. 예를 들어, 도 2 및 도 3을 참조하여 살펴보면, 렌즈(300)는 안착면(110)에서 연직방향으로 형성된 원통 형상의 제1 부분과 상기 제1 부분상에 볼록한 출사면을 가지도록 형성된 제2 부분을 포함할 수 있다.
도 2 및 도 3에 도시된 바와 같이, 렌즈(300)의 상기 제1 부분은 발광소자(200) 보다 높거나 낮게 형성될 수 있으며 상기 제2 부분의 출사면의 형상도 다르게 형성될 수 있다. 상기 제1 부분의 높이와 제2 부분의 곡률 변경을 통해 렌즈(300)의 배광 조절이 가능할 수 있다.
또한, 도 4에 도시된 바와 같이, 렌즈(300)는 상기 제1 부분을 형성하지 않고 제2 부분만을 포함하여 형성할 수 있다. 예를 들어 돔 형상으로 형성될 수 있으나 이에 한정되는 것은 아니다.
그리고, 렌즈(300)는 에폭시 수지, 실리콘수지, 우레탄계 수지 또는 그 혼합물로 형성될 수 있다. 예를 들어, 렌즈(300)는 굴절률 1.4~1.5의 실리콘 재질로 형성될 수 있다.
여기서, 렌즈(300)로는 소정의 빔 각도를 갖는 프라이머리(Primary) 렌즈가 이용될 수 있다. 여기서 프라이머리(Primary) 렌즈는 발광소자(200)와 렌즈(300) 사이가 서로 이격되어 있지 않아서 에어갭(air gap)과 같은 공간이 존재하지 않는 렌즈를 의미할 수 있다.
반사부(400)는 발광소자(200)에서 방출된 광을 소정의 방향으로 반사할 수 있다. 이를 통해 광 출사면으로 향하는 광량을 증가시킬 수 있다.
도 2 및 도 3을 참조하여 살펴보면, 반사부(400)는 발광소자(200)의 광 출사방향으로 베이스(100)에서 돌출되게 형성될 수 있다.
예를 들어, 반사부(400)는 베이스(100)의 안착면(110)상에 배치될 수 있다. 그리고, 반사부(400)의 내측에는 반사면(410)이 형성될 수 있다. 따라서, 도 2 및 도 3에 도시된 바와 같이, 반사면(410)의 경사각(θ)에 따라 발광소자(200)에서 방출되는 광의 반사각이 달라질 수 있으며, 이에 따라 외부로 방출되는 광의 지향각은 조절될 수 있다.
반사부(400)는 반사도가 높은 물질로 형성될 수 있다. 또한, 반사부(400)의 반사면(410)에 반사시트를 부착하거나 또는 반사도가 높은 물질이 반사층 등으로 반사면(410)에 배치되게 형성될 수도 있으나 이에 한정되지 않는다.
그리고, 상기 발광소자 패키지(1)를 위에서 바라본 반사부(400)의 형상은 원형, 사각형, 다각형, 타원형 등의 형상일 수 있으며, 예를 들어 베이스(100)와 동일한 형상으로 형성될 수 있으나 이에 한정되는 것은 아니다.
반사부(400)는 캐비티(cavity)를 형성할 수 있으며 상기 캐비티 내부는 빈 공간일 수 있으나 이에 한정하지 않으며 별도의 봉지재가 배치될 수도 있다.
한편, 반사부(400)는 렌즈(300)의 일측과 이격되어 배치될 수 있다.
렌즈(300)의 일측과 반사부(400)의 일측의 이격거리는 실린더 레이트(Cylinder Rate, CR)로 나타낼 수 있다.
도 2 및 도 3을 참조하여 살펴보면, 렌즈(300)의 중심(C)를 기준으로 상기 실린더 레이트(Cylinder rate, CR)는 하기의 수학식 1에 의하여 구해질 수 있다. 여기서, 렌즈(300)의 중심(C)은 렌즈(300)가 베이스(100)의 안착면(110)에 접하는 면의 중심을 의미할 수 있다.
[수학식 1]
CR = RC/RL
RL: 안착면을 기준으로 렌즈의 중심으로부터 렌즈의 모서리까지의 거리, RC: 안착면을 기준으로 렌즈의 중심으로부터 반사부의 모서리까지의 거리.
도 2 및 도 3에 도시된 바와 같이, 렌즈(300)의 높이는 반사부(400)의 높이(HC)보다 낮게 형성될 수 있다.
여기서, 반사부(400)의 높이에 대한 렌즈(300)의 높이 비율은 헤이트 레이트(Height Rate, HR)로 나타낼 수 있다.
도 2 및 도 3을 참조하여 살펴보면, 렌즈(300)의 중심(C)을 기준으로 상기 헤이트 레이트(HR)는 하기의 수학식 2에 의하여 구해질 수 있다.
[수학식 2]
HR = HL/HC
HL: 안착면을 기준으로 렌즈의 높이, HC: 안착면을 기준으로 반사부의 높이.
이하에서는, 렌즈(300)의 형상 및 경사각의 변화에 따른 빔 앵글(Beam Angle)과 필드앵글(Field Angle)의 변화 및 최대 편차에 대해 설명한다. 렌즈의 형상은 비구면계수, 예를 들어 곡률 값이나 코닉 값 등의 변경을 통해 바꿀 수 있으나 본 실시예에서는 코닉 값 변경을 통해 렌즈의 형상의 변경을 설명한다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 163.405 163.688 163.835 139.706 143.712 146.841 0.283 4.006
25 159.906 159.927 160.025 139.077 141.625 143.523 0.098 2.548
30 158.76 158.819 159.015 136.337 139.387 140.827 0.196 3.05
35 157.791 157.982 158.024 134.289 135.929 136.791 0.191 1.64
40 157.1 157.38 157.467 133.301 134.446 134.949 0.28 1.145
45 156.951 157.208 157.248 132.713 133.55 133.595 0.257 0.837
50 156.791 157.394 157.551 132.086 133.227 133.301 0.603 1.141
55 156.699 157.193 157.681 130.826 132.135 132.171 0.494 1.309
60 156.948 157.504 158.177 130.121 131.028 131.129 0.673 0.907
65 157.335 158.566 158.583 129.039 130.498 130.17 1.231 1.459
70 157.898 159.269 159.754 128.501 129.969 129.967 1.371 1.468
75 159.262 159.984 160.784 128.034 129.563 129.373 0.8 1.529
80 160.484 161.23 161.75 127.17 128.902 128.787 0.746 1.732
85 161.074 162.152 162.78 126.428 128.371 127.752 1.078 1.943
90 161.963 163.131 163.389 125.152 126.435 126.119 1.168 1.283
상기 표 1은 실린더 레이트가 1.1, 헤이트 레이트가 1.5일 때, 경사각(θ)에 따른 빔 앵글(Beam Angle, BA)과 필드 앵글(Field Angle, FA)의 변화량을 나타낸다.
발광소자(200)의 발광면에 수직 된 방향으로 나오는 빛이 가장 강하므로 그 가장 강한 광도의 50% 되는 광도를 갖는 각도를 빔 앵글, 10% 되는 광도를 갖는 각도를 필드 앵글이라 할 수 있다. 예를 들어, -90~90도 중 0도가 가장 강한 방향일 때 60도가 50%영역이면 빔 앵글을 120도라 할 수 있다.
여기서, 빔 앵글의 변화량은 각 경사각(θ)에서 코닉 값이 -1, 0 및 1일 때 빔 앵글의 차이로 나타낼 수 있다. 또한, 필드 앵글의 변화량은 각 경사각(θ)에서 코닉 값이 -1,0 및 1일 때 필드 앵글의 차이로 나타낼 수 있다.
그리고, 빔 앵글의 최대편차 및 필드 앵글의 최대 편차는 빔 앵글과 필드 앵글 각각의 (K(-1)-K(0))과 (K(1)-K(0)) 중 최대값 차이로 구할 수 있다. (K:코닉 값)
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 164.283 164.514 164.671 139.831 144.517 148.56 0.231 4.686
25 161.53 161.595 161.816 139.635 142.354 144.686 0.221 2.719
30 159.487 159.601 159.66 137.984 140.838 142.38 0.114 2.854
35 158.6 158.632 158.707 135.693 137.953 139.029 0.075 2.26
40 157.921 158.11 158.237 134.653 136.111 136.868 0.189 1.458
45 157.754 157.978 157.987 134.486 135.729 136.097 0.224 1.243
50 157.539 158.04 158.225 134.055 135.38 135.524 0.501 1.325
55 157.33 157.867 158.327 133.11 134.403 134.618 0.537 1.293
60 157.444 157.988 158.466 132.476 133.36 133.6 0.544 0.884
65 157.678 158.781 158.902 131.448 132.755 132.632 1.103 1.307
70 158.034 159.193 159.651 130.968 132.362 132.39 1.159 1.394
75 159.018 159.605 160.784 130.184 131.656 131.828 1.179 1.472
80 159.924 161.178 161.581 129.802 131.359 131.299 1.254 1.557
85 160.36 161.698 162.438 129.209 130.855 130.437 1.338 1.646
90 161.275 162.717 163.113 127.716 128.007 129.844 1.442 1.837
상기 표 2는 실린더 레이트가 1.2, 헤이트 레이트가 1.5일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 164.958 165.225 165.347 140.021 145.403 150.223 0.267 5.382
25 162.749 162.947 163.153 139.829 143.069 145.774 0.206 3.24
30 160.432 160.675 160.904 138.921 141.697 143.716 0.243 2.776
35 159.327 159.383 159.388 137.288 140.171 140.997 0.056 2.883
40 158.636 158.79 158.86 136.225 138.156 139.029 0.154 1.931
45 158.514 158.673 158.731 136.116 137.595 138.117 0.159 1.479
50 158.187 158.582 158.803 135.527 137.184 137.526 0.395 1.657
55 158.013 158.457 158.79 134.889 136.459 136.756 0.444 1.57
60 158.093 158.524 158.826 134.609 135.556 135.81 0.431 0.947
65 158.256 159.023 159.277 133.767 135.055 135.042 0.767 1.288
70 158.275 159.195 159.514 133.299 134.57 134.579 0.92 1.271
75 158.821 159.451 159.987 132.712 134.081 134.091 0.63 1.369
80 159.469 160.777 160.916 132.124 133.718 133.694 1.308 1.594
85 159.865 161.112 162.172 131.585 132.982 132.864 1.247 1.397
90 160.618 162.138 162.812 130.288 131.565 131.765 1.52 1.277
상기 표 3은 실린더 레이트가 1.3, 헤이트 레이트가 1.5일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 165.552 165.797 165.877 140.214 146.169 150.935 0.245 5.955
25 163.78 164.011 164.21 140.224 143.742 147.2 0.231 3.518
30 161.973 162.133 162.54 139.414 142.388 144.865 0.407 2.974
35 160.005 160.172 160.119 138.767 141.117 142.362 0.167 2.35
40 159.36 159.461 159.55 138.004 140.378 141.135 0.101 2.374
45 159.206 159.294 159.336 138.047 139.916 140.468 0.088 1.869
50 158.811 159.222 159.418 137.141 139.184 139.435 0.411 2.043
55 158.655 158.98 159.292 136.549 138.325 138.776 0.325 1.776
60 158.578 158.967 159.255 136.154 137.422 137.975 0.389 1.268
65 158.622 159.403 159.539 135.764 137.06 137.169 0.781 1.296
70 158.695 159.41 159.723 135.65 136.983 136.597 0.715 1.333
75 159.042 159.467 159.805 134.804 136.127 136.339 0.425 1.323
80 159.166 160.17 160.519 134.417 135.721 135.842 1.004 1.304
85 159.509 160.784 161.865 133.841 135.146 135.046 1.275 1.305
90 159.847 161.317 162.589 132.488 133.951 133.896 1.47 1.463
상기 표 4는 실린더 레이트가 1.4, 헤이트 레이트가 1.5일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 166.063 166.263 166.355 140.427 146.976 151.53 0.2 6.549
25 164.591 164.774 164.997 140.246 144.608 148.962 0.223 4.362
30 163.088 163.332 163.713 139.566 143.092 146.021 0.381 3.526
35 161.545 161.677 161.81 139.466 141.812 143.534 0.133 2.346
40 160.038 160.371 160.405 139.709 141.512 142.648 0.333 1.803
45 159.851 159.925 160.065 140.027 141.303 142.279 0.14 1.276
50 159.456 159.745 159.902 139.462 141.029 141.397 0.289 1.567
55 159.305 159.553 159.767 138.922 140.428 140.703 0.248 1.506
60 159.171 159.491 159.65 137.969 139.453 139.933 0.32 1.484
65 159.117 159.684 159.787 137.575 139.022 139.207 0.567 1.447
70 159.05 159.697 159.968 136.938 138.351 138.636 0.647 1.413
75 159.209 159.694 160.094 136.596 138.079 138.412 0.485 1.483
80 159.299 160.381 160.524 136.203 137.697 137.918 1.082 1.494
85 159.425 160.544 161.657 135.756 137.009 137.169 1.119 1.253
90 159.576 160.917 162.344 134.609 135.952 136.163 1.427 1.343
상기 표 5는 실린더 레이트가 1.5, 헤이트 레이트가 1.5 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 169.412 169.403 169.377 141.026 148.877 154.395 0.026 7.851
25 168.38 168.385 168.394 140.361 148.33 152.812 0.009 7.969
30 167.596 167.609 167.688 140.812 147.023 151.311 0.079 6.211
35 166.948 167.022 167.052 140.253 145.027 149.546 0.074 4.774
40 166.372 166.488 166.433 139.972 143.589 146.285 0.116 3.617
45 165.981 166.113 166.084 140.787 143.532 145.264 0.132 2.745
50θ 165.681 165.893 165.881 141.49 143.772 145.077 0.212 2.282
55 165.549 165.763 165.77 141.706 143.582 144.58 0.214 1.876
60 165.263 165.554 165.755 141.531 142.976 143.92 0.291 1.445
65 165.178 165.379 165.619 141.323 142.756 143.245 0.24 1.433
70 165.099 165.399 165.472 141.007 142.469 142.583 0.3 1.462
75 164.886 165.475 165.549 140.449 141.932 142.156 0.589 1.483
80 164.871 165.353 165.414 140.511 142.073 141.827 0.482 1.562
85 164.902 165.477 165.628 139.615 142.301 141.397 0.575 2.686
90 164.891 165.358 165.655 138.503 142.325 140.328 0.467 3.822
상기 표 6은 실린더 레이트가 1.3, 헤이트 레이트가 1.2일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 167.905 167.994 167.992 140.782 148.591 152.871 0.089 7.809
25 166.73 166.883 166.963 140.148 146.381 151.167 0.153 6.233
30 165.783 166.011 166.072 140.14 144.753 148.424 0.228 4.613
35 165.009 165.192 165.39 139.791 143.29 146.004 0.198 3.499
40 164.304 164.405 164.455 140.099 142.119 143.8 0.101 2.02
45 163.721 163.838 164.048 140.39 141.979 143.171 0.21 1.589
50 163.478 163.615 163.649 140.683 141.888 142.727 0.137 1.205
55 162.726 163.388 163.541 139.758 141.301 141.889 0.662 1.543
60 162.437 163.015 163.296 139.422 140.845 141.111 0.578 1.423
65 162.2 162.527 162.978 138.749 140.162 140.371 0.451 1.413
70 162.284 162.838 162.944 138.346 139.795 139.833 0.554 1.449
75 162.067 162.672 162.994 137.857 139.329 139.315 0.605 1.472
80 162.01 162.785 163.061 137.585 139.148 139.116 0.775 1.563
85 162.132 162.887 163.338 136.904 138.463 138.497 0.755 1.559
90 162.16 162.995 163.596 135.882 137.282 137.293 0.835 1.4
상기 표 7은 실린더 레이트가 1.3, 헤이트 레이트가 1.3일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
경사각(θ) FA(코닉 값 -1) FA(코닉 값 0) FA(코닉 값 1) BA(코닉 값 -1) BA(코닉 값 0) BA(코닉 값 1) FA 최대편차 BA최대편차
20 166.527 166.7 166.739 140.444 146.95 151.651 0.173 6.506
25 165.073 165.276 165.442 140.335 144.598 148.724 0.203 4.263
30 163.746 163.943 164.17 139.615 142.98 145.599 0.227 3.365
35 162.397 162.415 162.714 139.292 141.592 143.335 0.299 2.3
40 161 161.215 161.153 138.201 140.726 141.526 0.215 2.525
45 160.213 160.549 160.031 138.415 140.517 140.805 0.518 2.102
50 159.747 159.969 159.891 137.717 139.546 139.982 0.222 1.829
55 159.459 159.744 160.101 136.975 138.864 139.103 0.357 1.889
60 159.392 159.703 159.774 136.604 138.099 138.299 0.311 1.495
65 159.274 159.685 159.866 136.047 137.505 137.58 0.411 1.458
70 159.358 159.785 160.116 135.798 136.922 136.899 0.427 1.124
75 159.543 159.812 160.315 135.259 136.587 136.788 0.503 1.328
80 159.613 160.585 161.223 134.888 136.402 136.235 0.972 1.514
85 160 160.695 161.917 134.254 135.863 135.479 1.222 1.609
90 160.19 161.525 162.575 132.973 134.583 134.336 1.335 1.61
상기 표 8은 실린더 레이트가 1.3, 헤이트 레이트가 1.4일 때, 경사각(θ)에 따른 빔 앵글과 필드 앵글의 변화량을 나타낸다.
필드 앵글의 최대편차가 1.0 이하이고 빔 앵글의 최대편차가 1.5 이하일 경우 비구면 계수의 변경에 의해 렌즈의 형상이 변경되더라도 균일한 빔 패턴 및 광 조사가 가능할 수 있다.
상기 표 1 내지 표 5를 참조하여 살펴보면, 상기 발광소자 패키지(1)는 상기 실린더 레이트가 1.3 미만시 상기 경사각(θ)은 40°~60°에서, 상기 실린더 레이트가 1.3 이상시 상기 경사각(θ)은 60°~75°에서 빔 앵글과 필드 앵글의 최대편차가 각각 1.0 이하 및 1.5 이하이므로 빔 앵글과 필드 앵글의 변화량은 최소화될 수 있다.
또한, 표 3 및 표 6 내지 표 8을 참조하여 살펴보면, 상기 발광소자 패키지(1)는 발광소자(200)의 높이, 렌즈(300)의 높이에 대한 반사부(400)의 높이의 비율을 고려해볼 때, 헤이트 레이트(HR)가 1.2~1.5인 범위 내로 렌즈(300)와 반사부(400)는 배치될 수 있다. 헤이트 레이트(HR)이 상기 범위를 벗어날 경우 필드 앵글의 최대 편차가 1.0을 초과하거나 빔 앵글의 최대편차가 1.5를 초과하게 되어 비구면 계수의 변경에 의한 렌즈의 형상 변경 시 균일한 빔 패턴 및 광 조사가 어려울 수 있다.
도 2 내지 도 4를 참조하여 살펴보면, 반사부(400)의 상부는 소정의 두께를 갖도록 형성될 수 있다. 상기 두께는 반사부(400)의 반사면 각도 및 설계상 반사부(400)의 강성, 하중에 대한 지지력 등을 고려하여 변경될 수 있다.
한편, 상기 발광소자 패키지(1)는 발광소자(200)의 상부면에 배치되는 형광체층(600)을 더 포함할 수 있다. 여기서, 형광체층(600)은 발광소자(200)의 상부면에 일정 두께로 제공될 수 있다. 또한, 형광체층(600)은 발광소자(200)의 상부면에 컨포멀 코팅(conformal coating)에 의하여 균일한 두께로 형성될 수 있다.
여기서, 형광체층(600)은 설파이드계, 실리케이트계, 이트륨-알루미늄-가네트(YAG)계, 질산화물계, 질화물계 등의 다양한 형광물질로 형성될 수 있다.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 그리고, 이러한 수정과 변경에 관계된 차이점들을 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
1: 발광소자 패키지, 100: 베이스, 200: 발광소자, 300: 렌즈, 400: 반사부, 500: 리드 프레임, 600: 형광체층

Claims (8)

  1. 안착면을 구비하는 베이스;
    상기 안착면에 배치되는 발광소자;
    상기 발광소자를 덮도록 상기 안착면에 배치되는 렌즈;
    상기 안착면에 상기 렌즈와 이격되어 배치되며, 기 설정된 경사각(θ)으로 형성된 반사부를 포함하며,
    상기 경사각(θ)은 상기 렌즈와 상기 반사부 사이의 이격거리에 의하여 설정되는 발광소자 패키지.
  2. 제1항에 있어서,
    상기 이격거리의 비인 실린더 레이트(Cylinder rate)는 하기의 수식에 의하여 구하여지는 발광소자 패키지.
    Cylinder rate = RC/RL
    RL: 안착면을 기준으로 렌즈의 중심으로부터 렌즈의 모서리까지의 거리, RC: 안착면을 기준으로 렌즈의 중심으로부터 반사부의 모서리까지의 거리.
  3. 제2항에 있어서,
    상기 실린더 레이트가 1.3 미만시 상기 경사각(θ)은 40~60°인 발광소자 패키지.
  4. 제2항에 있어서,
    상기 실린더 레이트가 1.3 이상시 상기 경사각(θ)은 60~75°인 발광소자 패키지.
  5. 제1항에 있어서,
    상기 안착면을 기준으로 상기 렌즈의 높이는 상기 반사부의 높이 보다 작은 발광소자 패키지.
  6. 제5항에 있어서,
    상기 반사부의 높이에 대한 상기 렌즈의 높이의 비율은 1.2~1.5인 발광소자 패키지.
  7. 제1항에 있어서,
    상기 렌즈는 프라이머리 렌즈인 발광소자 패키지.
  8. 제7항에 있어서,
    상기 렌즈는 굴절률 1.4~1.5의 실리콘 재질로 형성되는 발광소자 패키지.
PCT/KR2016/004984 2015-06-15 2016-05-12 발광 소자 패키지 WO2016204408A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680032853.0A CN107710427B (zh) 2015-06-15 2016-05-12 发光二极管封装
US15/577,592 US10928015B2 (en) 2015-06-15 2016-05-12 Light-emitting diode package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0084513 2015-06-15
KR1020150084513A KR102385941B1 (ko) 2015-06-15 2015-06-15 발광 소자 패키지

Publications (1)

Publication Number Publication Date
WO2016204408A1 true WO2016204408A1 (ko) 2016-12-22

Family

ID=57545923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004984 WO2016204408A1 (ko) 2015-06-15 2016-05-12 발광 소자 패키지

Country Status (4)

Country Link
US (1) US10928015B2 (ko)
KR (1) KR102385941B1 (ko)
CN (1) CN107710427B (ko)
WO (1) WO2016204408A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139334A1 (ko) * 2018-01-09 2019-07-18 서울바이오시스주식회사 발광 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457293B1 (ko) * 2015-10-13 2022-10-24 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 렌즈 및 이를 포함하는 조명 장치
KR102613886B1 (ko) * 2018-08-06 2023-12-15 서울바이오시스 주식회사 발광 장치, 및 이를 포함하는 광 조사기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281605A (ja) * 2003-03-14 2004-10-07 Toyoda Gosei Co Ltd Ledパッケージ
KR20130007275A (ko) * 2011-06-30 2013-01-18 엘지이노텍 주식회사 발광 소자 패키지
KR20130070722A (ko) * 2011-12-20 2013-06-28 서울반도체 주식회사 발광모듈
JP2014212329A (ja) * 2008-09-02 2014-11-13 ブリッジラックス インコーポレイテッド 蛍光体変換led
KR20150042161A (ko) * 2015-03-26 2015-04-20 엘지이노텍 주식회사 발광소자 패키지 및 조명 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048360A1 (ja) * 2003-11-14 2005-05-26 Harison Toshiba Lighting Corporation 発光素子の外囲器およびその製造方法
JP4744178B2 (ja) * 2005-04-08 2011-08-10 シャープ株式会社 発光ダイオード
TWI297784B (en) 2005-09-22 2008-06-11 Lite On Technology Corp Optical module having a lens formed without contacting a reflector and method of manufacturing the same
EP2218113B1 (en) * 2007-11-01 2016-04-27 Insiava (Pty) Limited Optoelectronic device with light directing arrangement and method of forming the arrangement
WO2010002226A2 (ko) * 2008-07-03 2010-01-07 삼성엘이디 주식회사 Led 패키지 및 그 led 패키지를 포함하는 백라이트 유닛
US20100181582A1 (en) * 2009-01-22 2010-07-22 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of manufacture thereof
JP4638949B2 (ja) 2009-04-20 2011-02-23 シャープ株式会社 半導体発光装置およびその製造方法
KR101134409B1 (ko) * 2010-03-29 2012-04-09 엘지이노텍 주식회사 발광 다이오드 패키지
KR101813166B1 (ko) * 2011-06-30 2018-01-30 엘지이노텍 주식회사 발광소자 모듈 및 이를 포함하는 조명시스템
KR101850431B1 (ko) * 2011-07-07 2018-05-31 엘지이노텍 주식회사 발광 모듈 및 이를 포함하는 조명 시스템
JP5721668B2 (ja) * 2012-06-29 2015-05-20 シャープ株式会社 発光装置、照明装置および表示装置用バックライト
US20140312371A1 (en) 2013-04-22 2014-10-23 Avago Technologies General IP (Singapore) Pte. Ltd . Hybrid reflector cup
KR102018267B1 (ko) * 2013-05-03 2019-09-04 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
KR20160067533A (ko) * 2014-12-04 2016-06-14 인텍엘앤이 주식회사 소형광원이 구비된 엘이디 패키지 및 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281605A (ja) * 2003-03-14 2004-10-07 Toyoda Gosei Co Ltd Ledパッケージ
JP2014212329A (ja) * 2008-09-02 2014-11-13 ブリッジラックス インコーポレイテッド 蛍光体変換led
KR20130007275A (ko) * 2011-06-30 2013-01-18 엘지이노텍 주식회사 발광 소자 패키지
KR20130070722A (ko) * 2011-12-20 2013-06-28 서울반도체 주식회사 발광모듈
KR20150042161A (ko) * 2015-03-26 2015-04-20 엘지이노텍 주식회사 발광소자 패키지 및 조명 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139334A1 (ko) * 2018-01-09 2019-07-18 서울바이오시스주식회사 발광 장치
CN110249438A (zh) * 2018-01-09 2019-09-17 首尔伟傲世有限公司 发光装置
CN111048647A (zh) * 2018-01-09 2020-04-21 首尔伟傲世有限公司 发光装置
CN110249438B (zh) * 2018-01-09 2024-04-02 首尔伟傲世有限公司 发光装置
CN111048647B (zh) * 2018-01-09 2024-04-26 首尔伟傲世有限公司 发光装置

Also Published As

Publication number Publication date
US10928015B2 (en) 2021-02-23
US20180163933A1 (en) 2018-06-14
KR102385941B1 (ko) 2022-04-13
CN107710427B (zh) 2020-05-22
CN107710427A (zh) 2018-02-16
KR20160147576A (ko) 2016-12-23

Similar Documents

Publication Publication Date Title
US8405110B2 (en) Light emitting device package including a current regulator and different inclination angles
WO2016190644A1 (ko) 발광 장치 및 이를 포함하는 차량용 램프
EP2337072B1 (en) Light emitting device and light unit using the same
EP2323183B1 (en) Light emitting device package
WO2009157664A2 (ko) 반도체 소자 패키지
WO2013137657A1 (en) Led illumination module
CN102130109B (zh) 发光器件和使用发光器件的灯单元
WO2013168949A1 (ko) 조명 장치
EP2528122A1 (en) Light emitting device
WO2018106052A1 (ko) 조명장치 및 이를 포함하는 차량용 램프
WO2010044548A2 (ko) 발광 소자 패키지 및 그 제조방법, 발광 장치
WO2013141649A1 (en) Light emitting unit array and light diffusing lens suitable for the same
WO2016108570A1 (ko) 램프 유닛 및 그를 이용한 차량 램프 장치
WO2016204408A1 (ko) 발광 소자 패키지
WO2011049373A2 (ko) 발광소자 패키지 및 이를 구비한 조명 시스템
WO2011078506A2 (en) Light emitting diode package and method for fabricating the same
WO2016122179A1 (ko) 조명 장치
CN106887507B (zh) 发光装置及其制造方法
US10982815B2 (en) Lighting device and LED circuit board with a center opening with a protrusion
KR20140095913A (ko) 발광 모듈 및 이를 구비한 조명 장치
KR100575431B1 (ko) 발광 다이오드 표시장치 및 그 제조방법
US9831221B2 (en) Light emitting device package and lighting apparatus including the same
WO2013122330A1 (ko) 조명 장치
WO2018155875A1 (ko) 발광모듈
WO2020197174A1 (ko) 조명 모듈 및 이를 구비한 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811821

Country of ref document: EP

Kind code of ref document: A1