WO2016203679A1 - セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体 - Google Patents

セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体 Download PDF

Info

Publication number
WO2016203679A1
WO2016203679A1 PCT/JP2016/001691 JP2016001691W WO2016203679A1 WO 2016203679 A1 WO2016203679 A1 WO 2016203679A1 JP 2016001691 W JP2016001691 W JP 2016001691W WO 2016203679 A1 WO2016203679 A1 WO 2016203679A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
cell
anode
anode catalyst
electrical resistance
Prior art date
Application number
PCT/JP2016/001691
Other languages
English (en)
French (fr)
Inventor
晴彦 新谷
克良 柿沼
内田 誠
渡辺 政廣
Original Assignee
パナソニック株式会社
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 国立大学法人山梨大学 filed Critical パナソニック株式会社
Priority to US15/737,091 priority Critical patent/US20180175397A1/en
Priority to JP2016563221A priority patent/JP6150265B2/ja
Priority to EP16811160.7A priority patent/EP3312921B1/en
Publication of WO2016203679A1 publication Critical patent/WO2016203679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cell, a fuel cell stack, a fuel cell system, and a membrane-electrode assembly.
  • this method requires a tank for storing an inert gas and a device for controlling the supply, which causes an increase in size and cost of the device. For this reason, as a method not using an inert gas, a technique for reducing the oxygen reduction performance of the anode catalyst layer has been proposed.
  • a technique for reducing the oxygen reduction performance of the anode catalyst layer has been proposed.
  • the fuel cell shown in Patent Document 1 at least the oxygen remaining portion of the anode catalyst layer is subjected to corrosion treatment in advance.
  • the Tafel gradient of the oxygen reduction reaction of the catalyst of the anode catalyst layer is set to 73 mV / decade or more.
  • An object of the present invention is to provide a fuel cell system that suppresses a decrease in power generation performance while suppressing an increase in size and cost.
  • a cell according to an aspect of the present invention includes a membrane-electrode assembly and a pair of separators sandwiching the membrane-electrode assembly between each other, wherein the membrane-electrode assembly includes A polymer electrolyte membrane, an anode catalyst layer disposed on the first main surface of the polymer electrolyte membrane, and a cathode catalyst layer disposed on the second main surface of the polymer electrolyte membrane.
  • the anode catalyst layer includes a first catalyst material having an activity with respect to a hydrogen oxidation reaction, and a first conductive material having different electrical resistance in a hydrogen atmosphere and in an oxygen atmosphere.
  • the cathode catalyst layer includes a second catalyst material having an activity for an oxygen reduction reaction and a second conductive material different from the first conductive material, and the anode catalyst layer is in an oxygen atmosphere.
  • the electrical resistance of the cell in Anode catalyst layer is more than 2 times the electrical resistance of the cell under a hydrogen atmosphere.
  • the present invention has an effect that in a cell, a fuel cell stack, a fuel cell system, and a membrane-electrode assembly, it is possible to suppress a decrease in power generation performance while suppressing an increase in size and cost.
  • FIG. 3A is a cross-sectional view schematically showing the MEA
  • the lower diagram in FIG. 3A is a graph schematically showing the electric resistance of the cell
  • FIG. 3B is a platinum / tantalum-doped oxide film in a hydrogen atmosphere
  • FIG. 3C is a diagram schematically showing titanium
  • FIG. 3C is a diagram schematically showing platinum / tantalum-doped titanium oxide in an oxygen atmosphere. It is sectional drawing which shows the cell of an Example roughly.
  • FIG. 6A is a spectrum of measurement results by X-ray analysis (XDR) of tantalum-doped titanium oxide and platinum / tantalum-doped titanium oxide
  • FIG. 6B is a platinum / tantalum-doped oxide image taken using a transmission electron microscope (TEM). It is an image of titanium.
  • XDR X-ray analysis
  • TEM transmission electron microscope
  • FIG. 15A is a cross-sectional view of the cathode of the comparative cell before the gas replacement cycle test
  • FIG. 15B is a cross-sectional view of the cathode of the cell of the example after the gas replacement cycle test
  • a cell according to a first aspect of the present invention is a cell comprising a membrane-electrode assembly and a pair of separators sandwiching the membrane-electrode assembly between each other, wherein the membrane-electrode assembly
  • the body includes a polymer electrolyte membrane, an anode catalyst layer disposed on the first main surface of the polymer electrolyte membrane, and a cathode catalyst layer disposed on the second main surface of the polymer electrolyte membrane.
  • the anode catalyst layer includes a first catalyst material having an activity for a hydrogen oxidation reaction, and a first conductive material having different electric resistance in a hydrogen atmosphere and in an oxygen atmosphere.
  • the cathode catalyst layer includes a second catalyst material having an activity for an oxygen reduction reaction, and a second conductive material different from the first conductive material, and the anode catalyst layer includes an oxygen catalyst layer.
  • the electrical resistance of the cell under atmosphere is the anodic Anode catalyst layer is more than 2 times the electrical resistance of the cell under a hydrogen atmosphere.
  • the anode catalyst layer has an ion conductive binder.
  • the first conductive material is a conductive ceramic having resistance change characteristics
  • the second conductive material is carbon
  • the conductive ceramic having the resistance change characteristic contains titanium.
  • the first conductive material is formed in particles, and the average primary diameter of the particles is 10 nm or more and 1000 nm or less. is there.
  • the first catalyst material contains platinum or a platinum alloy.
  • the first catalyst material is formed in particles, and the average primary diameter of the particles is 1 nm or more and 10 nm or less. .
  • the first catalyst material is supported on the surface of the first conductive material.
  • the electrical resistance of the cell in which the anode catalyst layer is in an oxygen atmosphere is such that the anode catalyst layer is in a hydrogen atmosphere. It is 9 times or more the electric resistance of the cell.
  • the fuel cell stack according to the tenth aspect of the present invention is configured by stacking a plurality of cells according to any one of the first to ninth aspects.
  • a fuel cell system includes a fuel cell stack configured by stacking a plurality of cells according to any one of the first to ninth aspects, and a fuel gas in a flow path of the pair of separators. And a supply device for supplying the oxidant gas.
  • a membrane-electrode assembly is a polymer electrolyte membrane, an anode catalyst layer disposed on the first main surface of the polymer electrolyte membrane, and a second of the polymer electrolyte membrane.
  • a cathode catalyst layer disposed on the main surface, the anode catalyst layer comprising: a first catalyst material that is active against a hydrogen oxidation reaction; an electrical resistance in a hydrogen atmosphere; and an electrical property in an oxygen atmosphere.
  • a first conductive material having a different resistance, and the ratio of the electrical resistance of the anode catalyst layer in an oxygen atmosphere to the electrical resistance of the anode catalyst layer in a hydrogen atmosphere is the cathode catalyst in a hydrogen atmosphere. Greater than the ratio of the electrical resistance of the cathode catalyst layer in an oxygen atmosphere to the electrical resistance of the layer.
  • a membrane-electrode assembly is a polymer electrolyte membrane, an anode catalyst layer disposed on the first main surface of the polymer electrolyte membrane, and a second of the polymer electrolyte membrane.
  • FIG. 1 is a functional block diagram schematically showing the configuration of the fuel cell system 100.
  • the fuel cell system 100 includes a fuel cell stack 10, a fuel gas supply device 30, and an oxidant gas supply device 50.
  • the fuel cell stack 10 is a reactor that generates electricity by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas (hereinafter referred to as a power generation reaction).
  • the fuel cell stack 10 includes a plurality of stacked cells 11.
  • the fuel gas supply device 30 is a device that supplies fuel gas to the flow path of the fuel cell stack 10.
  • the fuel gas supply device 30 is connected to the flow path of the fuel cell stack 10 via the first path 31, and the fuel gas is supplied to the fuel cell stack 10 via the first path 31.
  • the fuel gas supply device 30 has a function of adjusting the flow rate of the fuel gas, and this adjustment is performed by a controller (not shown).
  • the fuel gas is a gas containing hydrogen.
  • Examples of the fuel gas supply device 30 include a reformer, a hydrogen cylinder, and a hydrogen gas infrastructure.
  • the reformer is a reactor that generates fuel gas from a raw material gas by a steam reforming method, a partial oxidation method, or an autothermal method.
  • the oxidant gas supply device 50 is a device that supplies oxidant gas to the flow path of the fuel cell stack 10.
  • the oxidant gas supply unit 50 is connected to the flow path of the fuel cell stack 10 through the second path 51, and the oxidant gas is supplied to the fuel cell stack 10 through the second path 51.
  • the oxidant gas supply device 50 has a function of adjusting the flow rate of sending the oxidant gas, and this adjustment is performed by a controller (not shown).
  • Examples of the oxidant gas include air and oxygen.
  • Examples of the oxidant gas supply device 50 include a blower such as a fan or a blower that blows air, an oxygen cylinder, and the like.
  • FIG. 2 is a cross-sectional view schematically showing a part of the fuel cell stack 10.
  • the fuel cell stack 10 is a stack of polymer electrolyte fuel cells, and generates electricity by causing an oxidation-reduction reaction (hereinafter referred to as a power generation reaction) between fuel gas and oxidant gas.
  • the fuel gas is a gas containing hydrogen.
  • As the oxidant gas for example, air containing oxygen is used.
  • the fuel cell stack 10 includes a plurality of stacked cells 11.
  • the cell 11 is a cell having resistance change characteristics with respect to gas species (oxygen and hydrogen).
  • the resistance change characteristic means that the electric resistance of the cell 11 when the anode 16 is in a hydrogen atmosphere exposed to a fuel gas or the like, and the case where the anode 16 is in an oxygen atmosphere exposed to air containing oxygen or the like.
  • the electric resistance of the cell 11 is different.
  • the cell 11 includes a membrane-electrode assembly (MEA) 12 and a pair of plate-like separators 13 and 14 that sandwich the MEA 12 therebetween.
  • the MEA 12 has a polymer electrolyte membrane 15, an anode 16 and a cathode 17.
  • the polymer electrolyte membrane 15 is formed of a material that exhibits good electrical conductivity in a wet state.
  • a proton (ion) conductive ion exchange membrane formed of a fluororesin is used.
  • the polymer electrolyte membrane 15 has a first main surface and a second main surface opposite to the first main surface.
  • the first main surface and the second main surface are rectangular, and their area is larger than the surface of the polymer electrolyte membrane 15 other than the first main surface and the second main surface.
  • the anode 16 and the cathode 17 are electrodes each having a catalyst supported on a conductive carrier.
  • the anode 16 includes a gas diffusion layer 18 and a catalyst layer (anode catalyst layer) 19, and the cathode 17 includes a gas diffusion layer 18 and a catalyst layer (cathode catalyst layer) 20.
  • the gas diffusion layer 18 has a current collecting action, gas permeability, and water repellency, and includes a base material 21 and a coating layer 22.
  • the base material 21 has a porous structure made of a material excellent in conductivity and gas and liquid permeability, for example, a carbonaceous material. Examples of the carbonaceous material include carbon fibers such as carbon paper, carbon fiber cloth, and carbon fiber felt.
  • the coating layer 22 is a layer for interposing between the base material 21 and the catalyst layers 19 and 20, reducing the contact resistance thereof, and improving the liquid permeability (drainage).
  • the coating layer 22 is formed from, for example, carbon black and a water repellent.
  • the anode catalyst layer 19 has resistance change characteristics with respect to oxygen and hydrogen. That is, the electric resistance of the cell 11 in which the anode catalyst layer 19 is in an oxygen atmosphere is higher than the electric resistance of the cell 11 in which the anode catalyst layer 19 is in a hydrogen atmosphere. For example, the electric resistance of the cell 11 in which the anode catalyst layer 19 is under an oxygen atmosphere exceeds twice the electric resistance of the cell 11 in which the anode catalyst layer 19 is under a hydrogen atmosphere.
  • the electrical resistance ratio of the anode catalyst layer 19 is larger than the electrical resistance ratio of the cathode catalyst layer 20.
  • the ratio of the electrical resistance of the anode catalyst layer 19 is the ratio of the electrical resistance of the anode catalyst layer 19 in an oxygen atmosphere to the electrical resistance of the anode catalyst layer 19 in a hydrogen atmosphere.
  • the ratio of the electrical resistance of the cathode catalyst layer 20 is the ratio of the electrical resistance of the cathode catalyst layer 20 in an oxygen atmosphere to the electrical resistance of the cathode catalyst layer 20 in a hydrogen atmosphere.
  • the anode catalyst layer 19 is provided on the first main surface of the polymer electrolyte membrane 15.
  • the anode catalyst layer 19 includes an ion conductive binder, a first catalyst material, and a first conductive material.
  • the first conductive material is a material having resistance change characteristics, for example, conductive ceramics having resistance change characteristics.
  • a metal oxide is used as the conductive ceramic having resistance change characteristics, and examples thereof include titanium oxide, tin oxide, and indium oxide. Among these, conductive ceramics containing titanium are preferable from the viewpoint of chemical and electrochemical stability.
  • the average primary diameter of the primary particles of the first conductive material is preferably 10 nm or more and 1000 nm or less, for example. If the particle diameter of the first conductive material is smaller than 10 nm, contact resistance between particles tends to occur, and the electric resistance of the anode catalyst layer 19 in a hydrogen atmosphere increases. On the other hand, when the particle diameter of the first conductive material is larger than 1000 nm, the electric resistance of the anode catalyst layer 19 in an oxygen atmosphere is difficult to increase, and the resistance change characteristic is decreased.
  • the electrical resistance of the anode catalyst layer 19 is decreased in a hydrogen atmosphere and increased in an oxygen atmosphere, and the resistance change of the anode catalyst layer 19 is increased. The characteristics can be demonstrated.
  • the shape of the primary particles of the first conductive material is not particularly limited as long as the shape can increase the specific surface area of the carrier.
  • various shapes such as a spherical shape, a polyhedral shape, a plate shape or a spindle shape, or a mixture thereof can be adopted. Among these, a spherical shape is preferable.
  • the first conductive material preferably has a chain-like and / or tuft-like structure in which primary particles are fused and bonded to each other. From the viewpoint of reducing the specific surface area of the support, contact resistance, and forming a conductive path, it is preferable that 80% or more of the primary particle fusion is formed by fusing 5 or more primary particles.
  • the specific surface area of the carrier made of the first conductive material is preferably, for example, from 1 m 2 / g to 100 m 2 / g. Furthermore, from the viewpoint of reducing the particle size of the first catalyst material and effectively utilizing the catalyst, it is more preferable that the particle size be 10 m 2 / g or more and 100 m 2 / g or less.
  • the specific surface area can be generally measured using physical adsorption such as nitrogen gas.
  • the conductive ceramic may be doped with a different metal (dopant).
  • dopant include niobium, tantalum, antimony, chromium, molybdenum, and tungsten.
  • the content of the dopant contained in the conductive ceramic is preferably, for example, 0.1 mol% or more and 40 mol% or less, and within this range, the conductivity of the first conductive material can be maintained high. Moreover, it is preferable that the content rate of a dopant shall be 0.5 mol% or more and 30 mol% or less from a viewpoint of raising the electroconductivity of a 1st electroconductive material further, and making a specific surface area high enough.
  • the dopant content can be calculated by analyzing the solution in which the anode catalyst layer 19 is dissolved by ICP emission analysis or fluorescent X-ray (XRF) analysis, and measuring the concentration of conductive ceramics and the concentration of dopant.
  • the first catalyst material is a material having activity with respect to the hydrogen oxidation reaction in the power generation reaction.
  • the first catalyst material there are noble metals and / or alloys thereof.
  • the noble metal include platinum (Pt), ruthenium (Ru), palladium (Pd), iridium (Ir), silver (Ag), and gold (Au).
  • platinum and its alloys are preferred.
  • platinum and platinum alloys have activity for hydrogen oxidation reaction and also have the property of increasing the responsiveness of resistance change. Therefore, when platinum or a platinum alloy is supported on the surface of the conductive ceramic of the anode catalyst layer 19, the anode catalyst layer 19 not only functions as a catalyst for the anode 16 of the fuel cell but also exhibits excellent resistance change characteristics.
  • the first catalyst material is formed in the form of particles, and the average primary diameter of the particles is, for example, preferably 1 nm to 20 nm, and more preferably 1 nm to 10 nm.
  • the first catalyst material is supported on the surface of the first conductive material.
  • Various methods can be used as a method for supporting the first catalyst material on the surface of the first conductive material.
  • a reducing agent is added to a liquid containing a colloidal precursor containing the first catalyst material to reduce the precursor, thereby producing a colloid containing the first catalyst material.
  • the first conductive material was dispersed in the colloidal solution thus obtained, and the first catalyst material was adsorbed on the surface of the first conductive material. Thereafter, the first conductive material adsorbing the first catalyst material was separated from the liquid, dried, and heat-treated in a reducing atmosphere. Thereby, the first catalyst material can be supported on the surface of the first conductive material.
  • heat processing temperature at this time it is preferable that it is 150 to 1500 degreeC, for example.
  • a heat treatment temperature of 150 ° C. or higher is preferable because impurities adhering to the surface of the first catalyst material are effectively removed and high catalytic activity can be obtained.
  • the heat processing temperature is 1500 degrees C or less, since aggregation of a 1st catalyst material is suppressed and a big surface area is obtained, it is preferable.
  • the heat treatment temperature is preferably 800 ° C. or higher and 1500 ° C. or lower.
  • a heat treatment temperature of 800 ° C. or higher is preferable because a part of the first catalyst material and the first conductive material are alloyed and the electron conductivity between the first catalyst material and the first conductive material is improved. .
  • the cathode catalyst layer 20 is provided on the second main surface of the polymer electrolyte membrane 15.
  • the cathode catalyst layer 20 includes a second catalyst material and a second conductive material.
  • the second catalyst material is a catalyst having activity for the oxygen reduction reaction, and for example, platinum or a platinum alloy is used.
  • the second conductive material does not have a resistance change characteristic or has a resistance change characteristic lower than that of the first conductive material. For example, carbon black is used.
  • the pair of separators 13 and 14 are arranged so that the MEA 12 is sandwiched between them.
  • One separator (anode separator) 13 is provided in contact with the anode side gas diffusion layer 18 of the MEA 12.
  • the other separator (cathode side separator) 14 is provided in contact with the cathode side gas diffusion layer 18 of the MEA 12.
  • Each separator 13, 14 is formed of a material having conductivity, gas impermeability, thermal conductivity, durability, and the like, for example, a metal material such as compressed carbon or stainless steel.
  • the anode-side separator 13 is provided with a groove-shaped first recess on one main surface facing the anode-side gas diffusion layer 18.
  • a space surrounded by the first recess and the anode side gas diffusion layer 18 functions as a flow path (anode side flow path) 23 through which a gas such as fuel gas flows.
  • a fuel gas supply device 30 (FIG. 1) is connected to the anode side flow path 23 through a first path 31, and fuel gas is supplied from the fuel gas supply device 30.
  • a groove-shaped second recess is provided on the other main surface opposite to the one main surface of the anode-side separator 13.
  • a space surrounded by the cathode-side separator 14 adjacent to the other main surface of the anode-side separator 13 and the second recess is a flow path (cooling water flow path) 25 through which water (cooling water) for cooling the MEA 12 flows. Function.
  • the cathode-side separator 14 is provided with a groove-shaped third recess on one main surface facing the gas diffusion layer 18.
  • a space surrounded by the third recess and the cathode side gas diffusion layer 18 functions as a flow path (cathode side flow path) 24 through which a gas such as an oxidant gas flows.
  • An oxidant gas supply device 50 (FIG. 1) is connected to the cathode side flow path 24 through the second path 51, and the oxidant gas is supplied from the oxidant gas supply device 50.
  • the plurality of cells 11 are stacked so that adjacent cells 11 and 111 are electrically connected in series.
  • the plurality of stacked 11 and 111 are fastened at a predetermined pressure by a fastening member 26 such as a bolt.
  • a fastening member 26 such as a bolt.
  • a gasket 27 is disposed between the anode side separator 13 and the cathode side separator 14 so as to cover the side surfaces of the anode 16 and the cathode 17. Thereby, leakage of fuel gas and oxidant gas is prevented.
  • FIG. 3A is a diagram showing a chemical reaction in MEA 12.
  • the lower diagram of FIG. 3A is a graph schematically showing the electric resistance of the cell 11 using platinum / tantalum-doped titanium oxide (Pt / Ti 0.9 Ta 0.1 O 2- ⁇ ) for the anode catalyst layer 19.
  • a region A in FIG. 3A is a region of a hydrogen atmosphere where fuel gas exists in the anode 16.
  • Region B in FIG. 3A is an oxygen atmosphere region where air remains in the anode 16.
  • FIG. 3B is a schematic view of platinum / tantalum-doped titanium oxide carrying a platinum catalyst under a hydrogen atmosphere.
  • FIG. 3C is a schematic diagram of platinum / tantalum-doped titanium oxide carrying a platinum catalyst in an oxygen atmosphere.
  • the anode catalyst layer that does not have resistance change characteristics is made of a conductive material that does not have resistance change characteristics such as carbon.
  • the reaction of H 2 ⁇ 2H + + 2e ⁇ occurs at the anode 16, and protons H + and electrons e ⁇ are generated.
  • This proton H + moves to the cathode 17 through the electrolyte membrane 15.
  • a reaction of O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O occurs due to proton H + from the anode 16 and electrons e ⁇ from the cathode 17 in the region B, thereby generating water.
  • the electron e ⁇ moves to the region B.
  • the electric resistance of the cell 11 in the region B is higher than that in the region A as shown in the lower diagram of FIG. This is due to the adsorbed oxygen species on the surface of the platinum / tantalum doped titanium oxide as shown in FIG. 3C.
  • the platinum catalyst is supported on the surface of the platinum / tantalum-doped titanium oxide in a hydrogen atmosphere, but other things are not adsorbed.
  • oxygen is reduced on the surface of platinum / tantalum-doped titanium oxide in an oxygen atmosphere, and chemisorbed molecules such as charged oxygen species (O 2 ⁇ , O ⁇ , O 2 ⁇ ). Will occur.
  • This is adsorbed on the surface of platinum / tantalum-doped titanium oxide, and a depletion layer having band bending is formed on the surface. This band bending prevents the movement of electrons between the grain boundaries and the grains, and increases the electrical resistance of the anode 16.
  • the catalytic activity of the anode 16 in the region B is lowered, and the reaction of O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O hardly occurs. Accordingly, the movement of the proton H + in the region B and the reaction of Pt ⁇ Pt 2+ + 2e ⁇ and C + 2H 2 O ⁇ CO 2 + 4H + + 4e ⁇ in the cathode 17 are suppressed, and the second catalyst material and the second catalyst in the region B are suppressed. 2 Corrosion of the conductive material is suppressed.
  • the electric resistance of the cell 11 in which the anode catalyst layer 19 is in an oxygen atmosphere exceeds twice the electric resistance of the cell 11 in which the anode catalyst layer 19 is in a hydrogen atmosphere.
  • the electrical resistance of the anode catalyst layer 19 is selectively increased in an oxygen atmosphere while keeping the electrical resistance of the anode catalyst layer 19 low in a hydrogen atmosphere.
  • the anode catalyst layer 19 of the present invention since the anode catalyst layer 19 of the present invention has both hydrogen oxidation performance and resistance change characteristics and has both functions as a single layer, the electrical resistance in a hydrogen atmosphere does not increase beyond the conventional configuration.
  • the anode catalyst layer 19 has an ion conductive binder. Thereby, ion (proton) conduction in the anode catalyst layer 19 is improved, and the catalyst can be used effectively.
  • the first conductive material is a conductive ceramic having resistance change characteristics
  • the second conductive material is carbon.
  • Carbon is excellent in electrical conductivity and its surface is hydrophobic. Therefore, by using carbon for the second conductive material, the cathode catalyst layer 20 including the second conductive material is excellent in current collecting action and is not easily affected by flooding due to generated water during power generation.
  • carbon has almost no change in electrical resistance due to gas species, when an oxygen reduction reaction occurs in the anode catalyst layer 19, the cathode catalyst layer 20 deteriorates.
  • the oxygen reduction reaction is reduced in the anode catalyst layer 19 by using the first conductive material having resistance change characteristics, the deterioration of the cathode catalyst layer 20 can be suppressed.
  • durability of the anode catalyst layer 19 can be improved by using conductive ceramics for the first conductive material.
  • the conductive ceramic having resistance change characteristics contains titanium.
  • Conductive ceramics containing titanium are chemically stable even in the operating environment of the fuel cell system, in addition to the fact that the electrical resistance between the hydrogen atmosphere and the oxygen atmosphere is likely to change.
  • the first conductive material is formed in the form of particles, and the average primary diameter (particle diameter) of the particles is, for example, not less than 10 nm and not more than 1000 nm. If the particle diameter of the first conductive material is smaller than 10 nm, contact resistance between particles tends to occur, and the electric resistance of the anode catalyst layer 19 in a hydrogen atmosphere increases. On the other hand, when the particle diameter of the first conductive material is larger than 1000 nm, the electric resistance of the anode catalyst layer 19 in an oxygen atmosphere is difficult to increase, and the resistance change characteristic is decreased.
  • the electrical resistance of the anode catalyst layer 19 is decreased in a hydrogen atmosphere and increased in an oxygen atmosphere, and the resistance change of the anode catalyst layer 19 is increased. The characteristics can be demonstrated.
  • the first catalyst material contains platinum or a platinum alloy. Platinum and platinum alloys are used as a hydrogen oxidation catalyst and have the property of increasing the responsiveness of changes in electrical resistance. Therefore, by including platinum or a platinum alloy in the first catalyst material, the power generation performance and resistance change characteristics are excellent.
  • the first catalyst material is formed in the form of particles, and the average primary diameter (particle diameter) of the particles is 1 nm or more and 10 nm or less.
  • the surface area of the first catalyst material can be increased, and high performance can be obtained with a small amount of catalyst.
  • the first catalyst material is supported on the surface of the first conductive material having resistance change characteristics.
  • the 1st catalyst material with a small particle diameter can exist stably.
  • the ratio of the electrical resistance of the anode catalyst layer 19 in the oxygen atmosphere to the electrical resistance of the anode catalyst layer 19 in the hydrogen atmosphere is such that the cathode catalyst layer 20 in the oxygen atmosphere with respect to the electrical resistance of the cathode catalyst layer 20 in the hydrogen atmosphere. Greater than electrical resistance ratio.
  • the electrical resistance of the cathode catalyst layer 20 does not change or hardly changes depending on the gas type.
  • the electrical resistance of the anode catalyst layer 19 with respect to oxygen is larger than the electrical resistance of the anode catalyst layer 19 with respect to hydrogen.
  • the electrical resistance of the anode catalyst layer 19 is lower than that in the range in which air is mixed into the anode side flow path 23, and the hydrogen oxidation performance is hardly lowered. do not do. Further, even if an oxidant gas such as air is supplied to the cathode side flow path 24, the electrical resistance of the cathode catalyst layer 20 does not increase or hardly increases. Thereby, the power generation reaction is not hindered, and a decrease in power generation performance can be suppressed.
  • all the cells of the fuel cell stack 10 are configured by the cells 11 having resistance change characteristics.
  • at least one cell of the cells of the fuel cell stack 10 may be the cell 11 having resistance change characteristics. That is, the fuel cell stack 10 may include a cell that does not have a resistance change characteristic or has a resistance change characteristic smaller than that of the cell 11.
  • FIG. 4 is a cross-sectional view schematically showing the cell 11 of the embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a cell 111 of a comparative example.
  • the 1st electroconductive material of the anode catalyst layer 19 of MEA12 of the cell 11 of an Example it produced as follows. First, titanium octylate and tantalum octylate were mixed so that the ratio of titanium: tantalum was 10: 1. This mixture was dissolved with a terpen to prepare a precursor solution. And the precursor solution was sprayed with the spray atomizer in the flame at the speed
  • tantalum-doped titanium oxide Ti 0.9 Ta 0.1 O 2- ⁇ containing 10% tantalum in atomic ratio was synthesized and used as the first conductive material.
  • a material for the anode catalyst layer 19 was produced as follows using the first conductive material.
  • 15.6 g of sodium hydrogen sulfite was dissolved in 300 mL of ultrapure water.
  • 5 ml of a chloroplatinic acid solution having a platinum concentration of 200.34 g / L was added and sufficiently stirred.
  • ultrapure water was added thereto to dilute the total amount to 1400 mL.
  • 5% aqueous sodium chloride solution was added dropwise to adjust the pH of the solution to always be 5, while 120 mL of 31% aqueous hydrogen peroxide solution was added dropwise at a rate of 2 mL / min. A solution was made.
  • the first conductive material tantalum-doped titanium oxide (Ti 0.9 Ta 0.1 O 2- ⁇ ) prepared earlier was added to 300 mL of ultrapure water and dispersed by ultrasonic waves.
  • This solution was mixed with a platinum colloid solution, and dispersed and stirred by ultrasonic waves.
  • the platinum colloid solution in which Ti 0.9 Ta 0.1 O 2- ⁇ was dispersed was stirred for 1 hour while being kept at 80 ° C. on a hot stirrer. Thereafter, the stirred solution was cooled to room temperature and then stirred overnight.
  • This solution was filtered with a membrane filter, filtered with flowing ultrapure water and ethanol, and this washing was repeated 4 times.
  • the paste-like material thus obtained was dried at 80 ° C. to obtain an aggregate of Ti 0.9 Ta 0.1 O 2- ⁇ carrying platinum fine particles.
  • the aggregate was ground with a mortar to obtain a powder.
  • This powder was heat-treated for 2 hours in an electric furnace at 900 ° C. in which argon gas containing 4% of hydrogen was passed.
  • argon gas containing 4% of hydrogen was passed.
  • tantalum-doped titanium oxide (Pt / Ti 0.9 Ta 0.1 O 2- ⁇ ) carrying platinum was obtained as a material for the anode catalyst layer 19.
  • the platinum loading (wt%) in Pt / Ti 0.9 Ta 0.1 O 2- ⁇ was 19.8 wt% as a result of analysis by ICP.
  • an MEA was produced as follows using the material of the anode catalyst layer 19 (Pt / Ti 0.9 Ta 0.1 O 2- ⁇ ).
  • a polymer electrolyte membrane 15 manufactured by Nippon Gore Co., Ltd., Gore Select III, Gore Select is a registered trademark of W. El Gore and Associates, Inc. was prepared.
  • the obtained dispersion slurry was applied to the first main surface of the polymer electrolyte membrane 15 on a hot plate maintained at 60 ° C. to form the anode catalyst layer 19. At this time, the coating amount of the dispersion slurry was adjusted so that the amount of platinum contained in the anode catalyst layer 19 was 0.1 mg / cm 2 .
  • the obtained dispersion slurry was applied to the second main surface of the polymer electrolyte membrane 15 on a hot plate maintained at 60 ° C., and the cathode catalyst layer 20 was formed. At this time, the coating amount of the dispersion slurry was adjusted so that the amount of platinum contained in the cathode catalyst layer 20 was 0.3 mg / cm 2 .
  • a gas diffusion layer 18 (SDL Carbon Japan, GDL25BC) was disposed on each of the anode catalyst layer 19 and the cathode catalyst layer 20.
  • the MEA 12 of the cell 11 of the example was manufactured by applying a pressure of 7 kgf / cm 2 at a high temperature of 120 ° C. for 30 minutes.
  • MEA12 was attached to the jig
  • the jig is provided with an anode separator 13 and a cathode separator 14.
  • a serpentine-shaped anode-side channel 23 is formed in the anode-side separator 13, and a serpentine-shaped cathode-side channel 24 is formed in the cathode-side separator 14.
  • the anode catalyst layer 119 of the comparative example is the same as the cathode catalyst layer 20 of the example except for the amount of platinum contained in the catalyst layer.
  • the obtained dispersion slurry was applied to the first main surface of the polymer electrolyte membrane 15 on a hot plate maintained at 60 ° C. to form an anode catalyst layer 119. At this time, the coating amount of the dispersion slurry was adjusted so that the amount of platinum contained in the anode catalyst layer 119 was 0.1 mg / cm 2 .
  • FIG. 6A is a spectrum of measurement results by X-ray analysis (XDR) of tantalum-doped titanium oxide and platinum / tantalum-doped titanium oxide.
  • the upper spectrum of FIG. 6A represents the diffraction intensity of platinum / tantalum doped titanium oxide
  • the lower spectrum of FIG. 6A represents the diffraction intensity of tantalum doped titanium oxide.
  • FIG. 6B is an image of platinum / tantalum doped titanium oxide taken using a transmission electron microscope (TEM).
  • the large diffraction peaks at 28 °, 36 °, and 55 ° in the upper spectrum and lower spectrum in FIG. 6A were identified as the (110), (101), and (211) planes of rutile titanium oxide.
  • platinum is uniformly dispersed on the surface of the tantalum-doped titanium oxide.
  • the average diameter and particle size distribution of platinum were 6.2 ⁇ 1.9 nm.
  • the amount of platinum supported by an inductively coupled plasma mass spectrometer (ICP-MS) was 19.8% by mass.
  • FIG. 7 is a diagram schematically showing a measurement system for an electrical resistance evaluation test under various gas atmospheres.
  • FIG. 8 is a graph showing changes in electrical resistance of the cell 11 of the example and the cell 111 of the comparative example under various gas atmospheres. The vertical axis of this graph represents electric resistance, and the horizontal axis represents time.
  • the temperature of the cell 11 of the example and the cell 111 of the comparative example is maintained at 65 ° C., and the same gas having a dew point of 75 ° C. is supplied to the anodes 16, 166 and cathode 17 at a flow rate of 2 L / min. Supplied. Three types of gases, hydrogen, nitrogen, and air, were used. The electric resistance of the cells 11 and 111 under each gas atmosphere was measured with a low resistance meter having a fixed frequency of 1 kHz.
  • the electrical resistance of the cell 11 of the example showed a low value when hydrogen was supplied.
  • the electric resistance of the cell 11 increased rapidly, and was about nine times that when hydrogen was supplied.
  • the electric resistance of the cell 11 in which the anode catalyst layer 19 is in an oxygen atmosphere is 9 times or more the electric resistance of the cell 11 in which the anode catalyst layer 19 is in a hydrogen atmosphere.
  • the electrical resistance when air was supplied was about twice that when hydrogen was supplied, and the difference in electrical resistance due to the difference in gas atmosphere was small.
  • the electric resistance in the oxygen atmosphere of the cell 11 including the anode catalyst layer 19 is higher than the electric resistance in the hydrogen atmosphere as compared with the cell 111 including the anode catalyst layer 119. That is, the electric resistance of the cell 11 in which the anode catalyst layer 19 is in an oxygen atmosphere exceeds twice the electric resistance of the cell 11 in which the anode catalyst layer 19 is in a hydrogen atmosphere.
  • FIG. 7 is a diagram schematically showing a measurement system for a hydrogen pump test.
  • FIG. 9 is a graph showing voltage-current characteristics in the hydrogen pump test of the cell 11 of the example and the cell 111 of the comparative example. The vertical axis of this graph represents voltage (V), and the horizontal axis represents current (A / cm 2 ).
  • the temperature of the cell 11 of the example and the cell 111 of the comparative example was kept at 65 ° C., and hydrogen having a dew point of 75 ° C. was supplied to the anodes 16, 117 and cathode 17 at a flow rate of 2 L / min. .
  • each voltage of the cells 11 and 111 during constant current operation using an electronic load device (PLZ-664WA, manufactured by Kikusui Electronics Co., Ltd.) and a DC stabilized power supply (PS20-60A, manufactured by Techio Technology Co., Ltd.) was measured.
  • the electric resistance of the cells 11 and 111 was measured in-situ with a low resistance meter having a fixed frequency of 1 kHz.
  • the voltage of each cell 11, 111 is proportional to the current, so the voltage of each cell 11, 111 depends on the electrical resistance. For this reason, even if platinum / tantalum-doped titanium oxide is used for the anode 16 of the cell 11, the voltage-current characteristics of the cell 11 are not affected by factors other than electrical resistance.
  • the electric resistance (electric resistance obtained by a hydrogen pump test) of each cell 11 and 111 in the steady state was obtained from the voltage-current characteristic graph shown in FIG.
  • the electric resistance of the cell 11 was 0.125 ⁇ cm 2
  • the electric resistance of the cell 111 was 0.094 ⁇ cm 2 .
  • This electrical resistance includes the resistance of charge transfer to hydrogen oxidation and reduction at the anodes 16, 116 and the cathode 17, as well as the polymer electrolyte membrane 15, the catalyst layers 19, 119 and 20 (FIGS. 4 and 5), the gas diffusion layer. 18 and the electrical resistances of the separators 13 and 14 are included.
  • the conductive materials of the anode catalyst layers 19 and 119 of the anodes 16 and 116 are different between the cell 11 and the cell 111.
  • the electrical resistance of the cell 11 was in-situ measurement of low resistance meter with a 1kHz fixed frequency is 0.123Omucm 2
  • the electrical resistance of the cell 111 was 0.092 ⁇ cm 2.
  • the electrical resistance measured in this way mainly corresponds to the electrical resistance of the polymer electrolyte membrane 15, the catalyst layers 19, 119 and 20 (FIGS. 4 and 5), the gas diffusion layer 18 and the separators 13 and 14.
  • the difference between the electrical resistance determined by the hydrogen pump test and the electrical resistance measured in-situ with a low resistance meter having a fixed frequency of 1 kHz was 2 m ⁇ cm 2 .
  • This difference corresponds to the resistance of charge transfer to hydrogen oxidation and reduction at the anodes 16 and 116 and the cathode 17, and is the same for each cell 11 and 111. Since each cell 11, 111 has the same cathode 17, the charge transfer resistance caused by the reduction of hydrogen at the cathode 17 is the same. Therefore, the oxidation activity of hydrogen at the anode 16 and the anode 116 is also the same, and both overvoltages can be ignored.
  • FIG. 10 is a diagram schematically showing a measurement system for a gas replacement cycle test.
  • FIG. 11 is a table showing test conditions for the gas replacement cycle test.
  • FIG. 12 is a graph showing the relationship between the number of gas replacement cycles of the cell 11 of the example and the cell 111 of the comparative example and the electrochemically active surface area of Pt at the cathode 17.
  • the vertical axis of this graph indicates the electrochemically active surface area (ECSA) of the cathode Pt, and the horizontal axis indicates the number of cycles in the first to third modes.
  • ECSA electrochemically active surface area
  • the temperature of the cell 11 of the example and the cell 111 of the comparative example were kept at a temperature of 45 ° C.
  • the processing in the first mode shown in FIG. 12 is executed, and dry air that has not been humidified is supplied to the anode-side channel 23 of each cell 11, 111 for 90 seconds, and 45 ° C. is supplied to the cathode-side channel 24. Humidified air with a dew point of.
  • the processing in the second mode is performed after the first mode, and humidified hydrogen having a dew point of 45 ° C.
  • the cathode-side channel 24 was supplied with humid air having a dew point of 45 ° C. Further, after the second mode, the third mode process is performed, and dry nitrogen that has not been humidified is supplied to the anode-side channel 23 of each cell 11, 111 for 60 seconds, and the cathode-side channel 24 is humidified. Not supplied dry nitrogen.
  • This series of processing in the first to third modes was repeated as one cycle.
  • ECSA m 2 g ⁇ 1
  • platinum (Pt) in each cathode catalyst layer 20 of the cell 11 of the example and the cell 111 of the comparative example was measured.
  • the ECSA of this Pt was calculated by dividing the amount of electricity resulting from hydrogen adsorption of Pt by the theoretical value (0.21 mC / cm 2 ) of the amount of hydrogen adsorption per unit surface area of Pt.
  • the amount of electricity resulting from Pt hydrogen adsorption was obtained by measuring cyclic voltammetry using the cathode separator 14 as a working electrode and the anode separator 13 as a counter electrode and a reference electrode.
  • the cells 11 and 111 are placed in a temperature environment of 45 ° C., humidified hydrogen gas having a dew point of 45 ° C. is supplied to the anode side channel 23, and the cathode side channel 24 has a dew point of 45 ° C. Humidified nitrogen gas was supplied.
  • the ECSA of Pt decreases as the number of repeated processing cycles increases.
  • the rate of the decrease is larger in the cell 111 of the comparative example than in the cell 11 of the example as the number of cycles increases.
  • the ECSA maintenance rate after 1000 cycles was 64.7% for cell 11 and 42.4% for cell 111.
  • the decrease in the platinum activity of the cathode catalyst layer 20 in the cell 11 of the example is suppressed compared to the cell 111 of the comparative example.
  • FIG. 13 is a diagram schematically showing a measurement system for a power generation performance evaluation test.
  • FIG. 14 is a graph showing voltage-current characteristics (IR free) in the power generation performance evaluation test of the cell 11 of the example and the cell 111 of the comparative example.
  • the vertical axis of this graph represents the IR free voltage (V), and the horizontal axis represents the current (A / cm 2 ).
  • the temperature of the cell 11 of the example and the cell 111 of the comparative example was kept at 65 ° C. Then, hydrogen having a dew point of 65 ° C. was flowed to the anodes 16 and 116 at a flow rate at which the hydrogen utilization rate was 70%, and air having a dew point of 65 ° C. was flowed to the cathode 17 at a flow rate at which the oxygen utilization rate was 40%. .
  • each voltage of the cells 11 and 111 was measured during constant current operation using an electronic load device (PLZ-664WA, manufactured by Kikusui Electronics Co., Ltd.). During the measurement, the electric resistance of the cell was measured in-situ with a low resistance meter having a fixed frequency of 1 kHz.
  • the measurement results will be described with reference to FIG.
  • the voltage-current characteristics of the cells 11 and 111 before and after the test in which the series of processes in the first to third modes shown in FIG. 11 are repeated 1000 times are shown.
  • the voltage before the gas replacement cycle test is referred to as a pre-voltage
  • the voltage after the gas replacement cycle test is referred to as a post-voltage.
  • cell 11 was slightly smaller than cell 111 for the pre-voltage. In spite of this, the cell 11 shows almost the same value as that of the cell 111, and the cell 11 shows almost the same performance as that of the cell 111. Further, the retention rate per unit mass at 0.9 V calculated from FIG. 14 was 51.4% for the cell 11 and 39.1% for the cell 111. These values are equivalent to the ECSA retention rate obtained in FIG. For this reason, the performance degradation of the cell 11 at a low current density is considered to be due to the ECSA degradation.
  • the after voltage of the cell 11 is higher than the after voltage of the cell 111, and the cell 11 shows higher performance than the cell 111.
  • the difference between the post voltage of the cell 11 and the post voltage of the cell 111 increases as the current density increases. This is considered to be caused by corrosion of the cathode 17 of each cell 11, 111.
  • FIG. 15A is a cross-sectional view of the cathode catalyst layer 20 and the polymer electrolyte membrane 15 of the cell 111 before the gas replacement cycle test.
  • FIG. 15B is a cross-sectional view of the cathode catalyst layer 20 and the polymer electrolyte membrane 15 of the cell 11 after the gas replacement cycle test.
  • FIG. 15C is a cross-sectional view of the cathode catalyst layer 20 and the polymer electrolyte membrane 15 of the cell 111 after the gas replacement cycle test. These sectional views were obtained using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the cell 11 before the gas replacement cycle test is referred to as a front cell 11, and the cell 11 after the gas replacement cycle test is referred to as a rear cell 11.
  • the cell 111 before the gas replacement cycle test is referred to as a front cell 111, and the cell 111 after the gas replacement cycle test is referred to as a rear cell 111.
  • the thickness of the cathode catalyst layer 20 of the rear cell 11 was almost the same as that of the front cell 111.
  • the thickness of the cathode catalyst layer 20 of the rear cell 111 was reduced by about 40% of that of the front cell 111.
  • the cathode catalyst layer in the rear cell 111 was easily peeled off from the polymer electrolyte membrane 15. The separation of the cathode catalyst layer 20 from the polymer electrolyte membrane 15 was not observed in the rear cell 11.
  • the carbon of the cathode catalyst layer 20 of the cell 111 is corroded more than the carbon of the cathode catalyst layer 20 of the cell 11. Corrosion of the cathode catalyst layer 20 causes a significant decrease in mass transfer. Therefore, the difference in performance at high current density between the cell 11 and the cell 111 is due to the difference in the degree of carbon corrosion of the cathode catalyst layer 20 in the gas replacement cycle test.
  • the cell, fuel cell stack, fuel cell system, and membrane-electrode assembly of the present invention are capable of suppressing a decrease in power generation performance while suppressing an increase in size and cost, a fuel cell stack, a fuel cell system, and a membrane. -Useful as an electrode assembly or the like.
  • Fuel cell stack 11 Cell 12: MEA (membrane-electrode assembly) 13: Anode side separator (separator) 14: Cathode side separator (separator) 15: Polymer electrolyte membrane 19: Anode catalyst layer 20: Cathode catalyst layer 23: Anode-side flow path (flow path) 24: cathode side channel (channel) 100: Fuel cell system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

セル(11)は、膜-電極接合体(12)と、膜-電極接合体を互いの間に挟む一対のセパレータ(13、14)と、を備えているセルであって、膜-電極接合体は、高分子電解質膜と、高分子電解質膜の第1主面上に配置されたアノード触媒層と、高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、アノード触媒層が、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、カソード触媒層が、酸素還元反応に対して活性を持つ第2触媒材料と、第1導電性材料とは異なる第2導電性材料とを含んでおり、アノード触媒層が酸素雰囲気下にあるセルの電気抵抗は、アノード触媒層が水素雰囲気下にあるセルの電気抵抗の2倍を超える。

Description

セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体
 本発明は、セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体に関する。
 従来、固体高分子形燃料電池において燃料ガスの供給を停止した際、燃料ガス流路内に残存していた燃料ガスが、燃料ガス流路から漏出したり、高分子電解質膜を通過したりすると、それに代わり燃料ガス流路に空気が浸入する。このような状態で燃料電池を再起動させた場合、アノードで酸素還元反応が生じ、それに伴いカソードに用いた触媒が劣化してしまう。このような劣化を回避するため、燃料電池の再起動時に、燃料ガス流路に残留している空気を不活性ガスで追い出してから、燃料ガス流路に燃料ガスを供給している。
 ただし、この方法では、不活性ガスを貯留しておくタンクおよび供給を制御する装置などが必要になり、装置の大型化およびコストアップの原因となる。このため、不活性ガスを使用しない方法として、アノード触媒層の酸素還元性能を低下させる技術が提案されている。たとえば、特許文献1に示す燃料電池では、アノード触媒層の少なくとも酸素残存部位に予め腐食処理を施している。また、特許文献2に示す燃料電池では、アノード触媒層の触媒の酸素還元反応のターフェル勾配を73mV/decade以上としている。
特開2009-283369号公報 特開2011-82187号公報
 しかしながら、特許文献1および2に示す燃料電池では、発電性能の観点から、未だ改善の余地があった。本発明は、サイズおよびコストの上昇を抑えつつ、発電性能の低下の抑制を図った燃料電池システムの提供を目的とする。
 本発明のある態様に係るセルは、膜-電極接合体と、前記膜-電極接合体を互いの間に挟む一対のセパレータと、を備えているセルであって、前記膜-電極接合体は、高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、前記アノード触媒層が、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、前記カソード触媒層が、酸素還元反応に対して活性を持つ第2触媒材料と、前記第1導電性材料とは異なる第2導電性材料とを含んでおり、前記アノード触媒層が酸素雰囲気下にある前記セルの電気抵抗は、前記アノード触媒層が水素雰囲気下にある前記セルの電気抵抗の2倍を超える。
 本発明は、セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体において、サイズおよびコストの上昇を抑えつつ、発電性能の低下の抑制が可能であるという効果を奏する。
 本発明の上記目的、他の目的、特徴および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の実施の形態1に係る燃料電池システムの構成を概略的に示す機能ブロック図である。 図1のセルを含む燃料電池スタックの一部を模式的に示す断面図である。 図3Aの上図は、MEAを模式的に示した断面図であり、図3Aの下図は、セルの電気抵抗を概略的に示すグラフであり、図3Bは水素雰囲気下における白金/タンタルドープ酸化チタンを模式的に示す図であり、図3Cは酸素雰囲気下における白金/タンタルドープ酸化チタンを模式的に示す図である。 実施例のセルを概略的に示す断面図である。 比較例のセルを概略的に示す断面図である。 図6Aは、タンタルドープ酸化チタンおよび白金/タンタルドープ酸化チタンのX線解析(XDR)による測定結果のスペクトルであり、図6Bは、透過電子顕微鏡(TEM)を用いて撮影した白金/タンタルドープ酸化チタンの画像である。 は、各種ガス雰囲気下における電気抵抗評価試験および水素ポンプ試験の測定システムを概略的に示す図である。 実施例のセルおよび比較例のセルの電気抵抗を示すグラフである。 実施例のセルおよび比較例のセルの水素ポンプ試験における電圧-電流特性を示すグラフである。 ガス置換サイクル試験の測定システムを概略的に示す図である。 ガス置換サイクル試験の条件を示す表である。 ガス置換サイクル回数と、実施例のセルおよび比較例のセルのカソードにおけるPtの電気化学活性表面積との関係を示すグラフである。 燃料電池の発電性能評価試験の測定システムを概略的に示す図である。 実施例のセルおよび比較例のセルの発電性能評価試験における電圧-電流特性(IRフリー)を示すグラフである。 図15Aは、ガス置換サイクル試験前の比較例のセルのカソードの断面図であり、図15Bは、ガス置換サイクル試験後の実施例のセルのカソードの断面図であり、図15Cは、ガス置換サイクル試験後の比較例のセルのカソードの断面図である。
 (本発明の基礎となる知見)
 本発明者等は、セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体において、サイズおよびコストの上昇を抑えつつ、発電性能の低下の抑制することについて検討を重ねた。その結果、本発明者らは従来技術には下記のような問題があることを見出した。
 燃料ガス流路に空気が混入した状態で燃料ガス流路に燃料ガスを供給すると、燃料ガス流路の上流側から燃料ガスが充填されるため、燃料ガス流路の下流部では空気が残ることがある。このような状態で燃料電池を起動すれば、燃料ガスが満たされている燃料ガスの上流部では、発電反応が生じる。この発電反応では、アノードでH→2H+2eの水素酸化反応が起こり、カソードで2H+1/2O+2e→HOの反応が起こる。
 一方、空気が残留した燃料ガス流路の下流部では、カソードのカーボンの腐食反応が生じる。この腐食反応では、アノードで2H+1/2O+2e→HOの酸素還元反応が起こり、カソードで1/2C+HO→1/2CO+2H+2eの反応が起こる。これにより、カソード触媒層が劣化し、燃料電池の発電性能が低下してしまう。
 これに対して、特許文献1および2の燃料電池では、アノード触媒層の酸素還元性能を低下させて、腐食反応を抑制している。しかしながら、これと同時に、アノード触媒層の本来の機能である水素酸化性能も低下させてしまい、燃料電池の発電性能を損なうという課題があった。
 そこで、鋭意検討した結果、酸素雰囲気下におけるアノードの電気抵抗を水素雰囲気下におけるアノードの電気抵抗より大きくすることで、燃料電池の発電性能の低下を抑制することを見出した。本発明は、上記知見に基づいてなされたものである。
 (実施の形態)
 本発明の第1の態様に係るセルは、膜-電極接合体と、前記膜-電極接合体を互いの間に挟む一対のセパレータと、を備えているセルであって、前記膜-電極接合体は、高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、前記アノード触媒層が、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、前記カソード触媒層が、酸素還元反応に対して活性を持つ第2触媒材料と、前記第1導電性材料とは異なる第2導電性材料とを含んでおり、前記アノード触媒層が酸素雰囲気下にある前記セルの電気抵抗は、前記アノード触媒層が水素雰囲気下にある前記セルの電気抵抗の2倍を超える。
 本発明の第2の態様に係るセルでは、第1の態様において、前記アノード触媒層は、イオン伝導性のバインダーを有している。
 本発明の第3の態様に係るセルは、第1または2の態様において、前記第1導電性材料は、抵抗変化特性を持つ導電性セラミックスであり、前記第2導電性材料がカーボンである。
 本発明の第4の態様に係るセルでは、第3の態様において、前記抵抗変化特性を持つ導電性セラミックスは、チタンを含んでいる。
 本発明の第5の態様に係るセルでは、第1~4のいずれかの態様において、前記第1導電性材料が粒子状に形成されており、前記粒子の平均一次径が10nm以上1000nm以下である。
 本発明の第6の態様に係るセルでは、第1~5のいずれかの態様において、前記第1触媒材料が、白金または白金合金を含んでいる。
 本発明の第7の態様に係るセルでは、第1~6のいずれかの態様において、前記第1触媒材料が粒子状に形成されており、前記粒子の平均一次径が1nm以上10nm以下である。
 本発明の第8の態様に係るセルでは、第1~7のいずれかの態様において、前記第1触媒材料が、前記第1導電性材料の表面に担持されている。
 本発明の第9の態様に係るセルでは、第1~8のいずれかの態様において、前記アノード触媒層が酸素雰囲気下にある前記セルの電気抵抗は、前記アノード触媒層が水素雰囲気下にある前記セルの電気抵抗の9倍以上である。
 本発明の第10の態様に係る燃料電池スタックは、第1~第9のいずれかの態様のセルが複数、積層して構成されている。
 本発明の第11の態様に係る燃料電池システムは、第1~第9のいずれかの態様のセルが複数、積層して構成される燃料電池スタックと、前記一対のセパレータの流路に燃料ガスおよび酸化剤ガスをそれぞれ供給する供給装置と、を備えている。
 本発明の第12の態様に係る膜-電極接合体は、高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、前記アノード触媒層は、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、水素雰囲気下における前記アノード触媒層の電気抵抗に対する酸素雰囲気下における前記アノード触媒層の電気抵抗の比は、水素雰囲気下における前記カソード触媒層の電気抵抗に対する酸素雰囲気下における前記カソード触媒層の電気抵抗の比より大きい。
 本発明の第13の態様に係る膜-電極接合体は、高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、前記アノード触媒層が、白金/タンタルドープ酸化チタンである。
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。なお、以下では全ての図面を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (実施の形態1)
 実施の形態1に係る燃料電池システム100の構成について、図1を参照して説明する。図1は、燃料電池システム100の構成を概略的に示す機能ブロック図である。燃料電池システム100は、燃料電池スタック10、燃料ガス供給器30、および酸化剤ガス供給器50を備えている。
 燃料電池スタック10は、水素を含有する燃料ガスと酸化剤ガスとを電気化学的に反応(以下、発電反応という)させて発電する反応器である。燃料電池スタック10は、積層された複数のセル11により構成されている。
 燃料ガス供給器30は、燃料電池スタック10の流路に燃料ガスを供給する機器である。燃料ガス供給器30は第1経路31により燃料電池スタック10の流路に接続され、燃料ガスは第1経路31を介して燃料電池スタック10に供給される。燃料ガス供給器30は、燃料ガスの流量を調整する機能を有し、この調整は制御器(図示せず)により行われる。燃料ガスは、水素を含有するガスである。燃料ガス供給器30としては、たとえば、改質器、水素ボンベ、水素ガスインフラストラクチャなどが例示される。改質器は、蒸気改質方式、部分酸化方式、または、オートサーマル方式などの方式により原料ガスから燃料ガスを生成する反応器である。
 酸化剤ガス供給器50は、燃料電池スタック10の流路に酸化剤ガスを供給する機器である。酸化剤ガス供給器50は第2経路51により燃料電池スタック10の流路に接続され、酸化剤ガスは第2経路51を介して燃料電池スタック10に供給される。酸化剤ガス供給器50は、酸化剤ガスを送出する流量を調整する機能を有し、この調整は制御器(図示せず)により行われる。酸化剤ガスとしては、たとえば、空気や酸素などが挙げられる。酸化剤ガス供給器50としては、たとえば、空気を送風するファンやブロアなどの送風機、酸素ボンベなどが例示される。
 次に、セル11を含む燃料電池スタック10の構成について、図2を参照して説明する。図2は、燃料電池スタック10の一部を模式的に示す断面図である。
 燃料電池スタック10は、固体高分子形燃料電池のスタックであって、燃料ガスと酸化剤ガスとを酸化還元反応(以下、発電反応という)させることにより発電する。燃料ガスは、水素を含有するガスである。酸化剤ガスは、たとえば、酸素を含む空気などが用いられる。燃料電池スタック10は、積層された複数のセル11により構成されている。
 セル11は、ガス種(酸素および水素)に対する抵抗変化特性を有するセルである。この抵抗変化特性とは、アノード16が燃料ガスなどにさらされた水素雰囲気下にある場合のセル11の電気抵抗と、アノード16が酸素を含む空気などにさらされた酸素雰囲気下にある場合のセル11の電気抵抗が異なる性質である。
 セル11は、膜-電極接合体(Membrane Electrode Assembly, MEA)12と、MEA12を互いの間に挟む一対の板状のセパレータ13、14と、を備えている。MEA12は、高分子電解質膜15、アノード16およびカソード17を有している。
 高分子電解質膜15は、湿潤状態で良好な電気伝導性を示す材料で形成されており、たとえば、フッ素系樹脂により形成されたプロトン(イオン)伝導性のイオン交換膜が用いられる。高分子電解質膜15は、第1主面とこれに対向する第2主面とを有している。たとえば、第1主面および第2主面は長方形状であって、これらの面積は第1主面および第2主面以外の高分子電解質膜15の面より大きい。
 アノード16およびカソード17は、それぞれ、導電性を有する担体上に触媒を担持させた電極である。アノード16はガス拡散層18および触媒層(アノード触媒層)19を備え、カソード17はガス拡散層18および触媒層(カソード触媒層)20を備えている。
 ガス拡散層18は、集電作用とガス透過性と撥水性とを併せ持ち、基材21およびコーティング層22を備えている。基材21は、導電性、ならびに、気体および液体の透過性に優れた材料、たとえば、炭素質材料からなる多孔質構造である。この炭素質材料としては、たとえば、カーボンペーパー、炭素繊維クロス、炭素繊維フェルトなどの炭素繊維が例示される。コーティング層22は、基材21と触媒層19、20との間に介在し、これらの接触抵抗を下げ、液体の透過性(排水性)を向上するための層である。コーティング層22としては、たとえば、カーボンブラックおよび撥水剤から形成される。
 アノード触媒層19は、酸素および水素に対する抵抗変化特性を有する。つまり、アノード触媒層19が酸素雰囲気下にあるセル11の電気抵抗が、アノード触媒層19が水素雰囲気下にあるセル11の電気抵抗より高い。たとえば、アノード触媒層19が酸素雰囲気下にあるセル11の電気抵抗は、アノード触媒層19が水素雰囲気下にあるセル11の電気抵抗の2倍を超える。
 また、アノード触媒層19の電気抵抗の比は、カソード触媒層20の電気抵抗の比より大きい。このアノード触媒層19の電気抵抗の比は、水素雰囲気下におけるアノード触媒層19の電気抵抗に対する酸素雰囲気下におけるアノード触媒層19の電気抵抗の割合である。カソード触媒層20の電気抵抗の比は、水素雰囲気下におけるカソード触媒層20の電気抵抗に対する酸素雰囲気下におけるカソード触媒層20の電気抵抗の割合である。
 アノード触媒層19は高分子電解質膜15の第1の主面上に設けられている。アノード触媒層19は、イオン伝導性のバインダー、第1触媒材料および第1導電性材料を含んでいる。
 第1導電性材料は、抵抗変化特性を持つ材料であって、たとえば、抵抗変化特性を持つ導電性セラミックスである。抵抗変化特性を持つ導電性セラミックスとしては、金属酸化物が用いられ、たとえば、酸化チタン、酸化スズおよび酸化インジウムが例示される。この中でも、化学的・電気化学的安定性の観点から、チタンを含む導電性セラミックスが好ましい。
 第1導電性材料の一次粒子の平均一次径は、たとえば、10nm以上1000nm以下が好ましい。第1導電性材料の粒子径が10nmより小さいと、粒子間の接触抵抗が生じ易く、水素雰囲気下におけるアノード触媒層19の電気抵抗が大きくなってしまう。一方、第1導電性材料の粒子径が1000nmより大きいと、酸素雰囲気下におけるアノード触媒層19の電気抵抗が高くなりにくく、抵抗変化特性が小さくなってしまう。したがって、第1導電性材料の粒子径を10nm以上1000nm以下とすることで、アノード触媒層19の電気抵抗を水素雰囲気下で小さく、かつ、酸素雰囲気下で大きくし、アノード触媒層19の抵抗変化特性を発揮させられる。
 第1導電性材料の一次粒子の形状は、担体の比表面積を大きくし得る形状であれば、特に制限はない。たとえば、球状、多面体状、板状若しくは紡錘状、またはこれらの混合など、種々の形状を採用することができる。この中でも、球状であることが好ましい。
 また、第1導電性材料は一次粒子が相互に融着結合して、連鎖状および/または房状構造を持つことが好ましい。担体の比表面積、接触抵抗の低減および導電パス形成の観点から、一次粒子融合体の80%以上は、5個以上の一次粒子が融着して形成されていることが好ましい。
 第1導電性材料からなる担体の比表面積は、たとえば、1m/g以上100m/g以下が好ましい。さらに、第1触媒材料の粒子径を小さくし、触媒を有効に活用する観点から、10m/g以上100m/g以下とすることがより好ましい。なお、比表面積は一般的に窒素ガスなどの物理吸着を用いて測定できる。
 さらに、第1導電性材料の導電性を高める目的で、導電性セラミックスに異種金属(ドーパント)がドープされていてもよい。このドーパントとしては、たとえば、ニオブ、タンタル、アンチモン、クロム、モリブデンおよびタングステンが例示される。
 導電性セラミックスに含まれるドーパントの含有率は、たとえば、0.1mol%以上40mol%以下が好ましく、この範囲であれば、第1導電性材料の導電性を高く維持できる。また、第1導電性材料の導電性を一層高め、かつ比表面積を十分に高くする観点から、ドーパントの含有率は、0.5mol%以上30mol%以下とすることが好ましい。なお、ドーパントの含有率は、アノード触媒層19を溶解した溶液をICP発光分析や蛍光X線(XRF)分析で分析し、導電性セラミックスの濃度およびドーパントの濃度を測定することにより算出できる。
 第1触媒材料は、発電反応における水素酸化反応に対して活性を持つ材料である。第1触媒材料として、貴金属および/またはこの合金がある。貴金属としては、たとえば、白金(Pt)、ルテニウム(Ru)、パラジウム(Pd)、イリジウム(Ir)、銀(Ag)および金(Au)が例示される。この中でも白金およびその合金が好ましい。たとえば、白金および白金合金は、水素酸化反応に対して活性を有すると共に、抵抗変化の応答性を高める性質も有している。よって、アノード触媒層19の導電性セラミックスの表面に白金あるいは白金合金を担持すると、アノード触媒層19は、燃料電池のアノード16の触媒として機能するだけでなく、優れた抵抗変化特性を発揮する。
 第1触媒材料は、粒子状に形成されており、この粒子の平均一次径が、たとえば、1nm以上20nm以下が好ましく、1nm以上10nm以下がさらに好ましい。
 第1触媒材料は、第1導電性材料の表面に担持されていることが好ましい。第1導電性材料の表面に第1触媒材料を担持させる方法としては、種々の方法を用いることができる。たとえば、第1触媒材料を含むコロイドの前駆体を含む液に還元剤を添加して、前駆体を還元し、第1触媒材料を含むコロイドを生成する。このようにして得られたコロイド溶液に、第1導電性材料を分散し、第1導電性材料の表面に第1触媒材料を吸着させた。その後、この液から第1触媒材料を吸着した第1導電性材料を分離して乾燥し、還元性雰囲気下において熱処理した。これによって、第1導電性材料の表面に第1触媒材料を担持させることができる。このときの、熱処理温度としては、たとえば、150℃以上1500℃以下であることが好ましい。熱処理温度が150℃以上であれば、第1触媒材料表面に付着している不純物が効果的に除去され、高い触媒活性を得られるため好ましい。また、熱処理温度が1500℃以下であれば、第1触媒材料の凝集が抑えられ、大きな表面積を得られるため好ましい。さらに、熱処理温度は800℃以上1500℃以下であることが好ましい。熱処理温度を800℃以上にすることにより、第1触媒材料と第1導電性材料の一部が合金化し、第1触媒材料と第1導電性材料との間の電子伝導性が向上するため好ましい。
 カソード触媒層20は、高分子電解質膜15の第2主面上に設けられている。カソード触媒層20は、第2触媒材料および第2導電性材料を含んでいる。第2触媒材料は、酸素還元反応に対して活性を持つ触媒であって、たとえば、白金または白金合金が用いられる。第2導電性材料は、抵抗変化特性を持たない、または、抵抗変化特性が第1導電性材料より低い材料であって、たとえば、カーボンブラックが用いられる。
 一対のセパレータ13、14は、MEA12を互いの間に挟むように配置されている。一方のセパレータ(アノード側セパレータ)13は、MEA12のアノード側ガス拡散層18に接触するように設けられている。また、他方のセパレータ(カソード側セパレータ)14は、MEA12のカソード側ガス拡散層18に接触するように設けられている。各セパレータ13、14は、導電性、ガス不透過性、熱伝導性および耐久性などを有する材料、たとえば、圧縮カーボン、または、ステンレス鋼などの金属材料によって形成されている。
 アノード側セパレータ13には、アノード側ガス拡散層18に対向する一方主面に溝状の第1凹部が設けられている。この第1凹部とアノード側ガス拡散層18とにより囲まれた空間は、燃料ガスなどのガスが流通する流路(アノード側流路)23として機能する。アノード側流路23には、第1経路31により燃料ガス供給器30(図1)が接続され、燃料ガス供給器30から燃料ガスが供給される。
 また、アノード側セパレータ13の一方主面と反対側の他方主面に、溝状の第2凹部が設けられている。このアノード側セパレータ13の他方主面に隣接するカソード側セパレータ14と、第2凹部とにより囲まれた空間が、MEA12を冷却する水(冷却水)が流通する流路(冷却水流路)25として機能する。
 カソード側セパレータ14には、ガス拡散層18に対向する一方主面に溝状の第3凹部が設けられている。この第3凹部とカソード側ガス拡散層18とにより囲まれた空間は、酸化剤ガスなどのガスが流通する流路(カソード側流路)24として機能する。カソード側流路24には、第2経路51により酸化剤ガス供給器50(図1)が接続され、酸化剤ガス供給器50から酸化剤ガスが供給される。
 複数のセル11は、積層され、それにより互いに隣接するセル11、111が電気的に直列に接続されている。そして、積層された複数の11、111は、ボルトなどの締結部材26により所定の圧力にて締結されている。この加圧締結により、燃料ガスおよび酸化剤ガスのリークが防止されると共に、接触抵抗が低減されている。また、アノード側セパレータ13とカソード側セパレータ14との間には、アノード16およびカソード17の各側面を覆うようにガスケット27が配置されている。これにより、燃料ガスおよび酸化剤ガスの漏洩が防がれる。
 次に、MEA12における化学反応およびアノード16の電気抵抗の変化について、図3A、図3Bおよび図3Cを参照して説明する。図3Aの上図は、MEA12における化学反応を示した図である。図3Aの下図は、白金/タンタルドープ酸化チタン(Pt/Ti0.9Ta0.12-δ)をアノード触媒層19に用いたセル11の電気抵抗を概略的に示すグラフである。また、図3Aの領域Aは、アノード16に燃料ガスが存在する水素雰囲気の領域である。図3Aの領域Bは、アノード16に空気が残存する酸素雰囲気の領域である。図3Bは水素雰囲気下における白金触媒を担持した白金/タンタルドープ酸化チタンの模式図である。図3Cは酸素雰囲気下における白金触媒を担持した白金/タンタルドープ酸化チタンの模式図である。
 まず、抵抗変化特性を有さないアノードを備えたMEAにおける化学反応について説明する。なお、抵抗変化特性を有さないアノード触媒層では、カーボンなど抵抗変化特性を有さない導電性材料により構成されている。
 図3Aの上図に示すように、領域Aにおいては、アノード16で、H→2H+2eの反応が生じ、プロトンHおよび電子eが生成する。このプロトンHが電解質膜15を介してカソード17へ移動する。カソード17で、アノード16からのプロトンHおよび領域Bのカソード17からの電子eにより、O+4H+4e→2HOの反応が生じ、水が生成する。また、電子eが領域Bに移動する。
 一方、領域Bにおいては、カソード17で、Pt→Pt2++2eの反応、および、C+2HO→CO+4H+4eの反応が生じ、プロトンHおよび電子eが生成する。この電子eが領域Aに移動する。また、プロトンHが電解質膜15を介してカソード17へ移動する。アノード16で、カソード17からのプロトンHおよび領域Aからの電子eにより、O+4H+4e→2HOの反応により水が生成する。抵抗変化特性を有さないMEAでは、このような反応が進行することで、カソード17の第2触媒材料の白金(Pt)および第2導電性材料のカーボン(C)が腐食する。
 これに対し、抵抗変化特性を有するアノード16を備えたMEA12では、図3Aの下図のように、領域Bにおけるセル11の電気抵抗が領域Aより高い。これは、図3Cに示すように、白金/タンタルドープ酸化チタンの表面における吸着酸素種による。
 つまり、図3Bに示すように、水素雰囲気下では白金/タンタルドープ酸化チタンの表面に白金触媒は担持されているが、それ以外の物は吸着されていない。これに対し、図3Cに示すように、酸素雰囲気下では、酸素が白金/タンタルドープ酸化チタンの表面で還元され、荷電酸素種(O 、O、O2-)などの化学吸着分子が発生する。これが、白金/タンタルドープ酸化チタンの表面に吸着し、表面に、バンドベンディングを有する空乏層が形成される。このバンドベンディングによって結晶粒界および粒子間における電子の移動が妨げられ、アノード16の電気抵抗が増加する。これにより、領域Bにおけるアノード16の触媒活性が低下し、O+4H+4e→2HOの反応が起こりにくくなる。これに伴い、領域BにおけるプロトンHの移動、および、カソード17におけるPt→Pt2++2e、C+2HO→CO+4H+4eの反応が抑制され、領域Bにおける第2触媒材料および第2導電性材料の腐食が抑制される。
 上記構成によれば、アノード触媒層19が酸素雰囲気下にあるセル11の電気抵抗は、アノード触媒層19が水素雰囲気下にあるセル11の電気抵抗の2倍を超える。このように、水素雰囲気下ではアノード触媒層19の電気抵抗を低く抑えつつ、酸素雰囲気下において選択的にアノード触媒層19の電気抵抗を高めている。さらに、本発明のアノード触媒層19は水素酸化性能と抵抗変化特性を兼ね備えており、単層で両方の機能を有するため、水素雰囲気下における電気抵抗を、従来の構成以上に高めるものではない。よって、燃料電池スタック10の発電効率を左右する、アノード触媒層19の水素酸化性能を高めつつ、アノード触媒層19の酸素還元性能に伴うカソード触媒層20の劣化を防止することができる。
 さらに、アノード触媒層19は、イオン伝導性のバインダーを有している。これにより、アノード触媒層19中のイオン(プロトン)伝導が良好になり、触媒を有効に利用することができる。
 さらに、第1導電性材料は、抵抗変化特性を持つ導電性セラミックスであり、第2導電性材料がカーボンである。カーボンは電気伝導性に優れ、その表面が疎水性である。よって、カーボンを第2導電性材料に用いることにより、第2導電性材料を含むカソード触媒層20は、集電作用に優れると共に、発電時の生成水によるフラッディングの影響を受けにくい。しかしながら、カーボンは、ガス種による電気抵抗の変化がほとんどないため、アノード触媒層19で酸素還元反応が起こると、カソード触媒層20が劣化する。これに対しては、抵抗変化特性を持つ第1導電性材料に用いることにより、アノード触媒層19で酸素還元反応を低下させているため、カソード触媒層20の劣化を抑制することができる。また、導電性セラミックスを第1導電性材料に用いることにより、アノード触媒層19の耐久性を向上させることができる。
 また、抵抗変化特性を持つ導電性セラミックスは、チタンを含んでいる。チタンを含む導電性セラミックスは、水素雰囲気下と酸素雰囲気下との電気抵抗が変化し易いのに加え、燃料電池システムの運転環境下においても化学的に安定である。
 さらに、第1導電性材料が粒子状に形成されており、その粒子の平均一次径(粒子径)が、たとえば、10nm以上1000nm以下である。第1導電性材料の粒子径が10nmより小さいと、粒子間の接触抵抗が生じ易く、水素雰囲気下におけるアノード触媒層19の電気抵抗が大きくなってしまう。一方、第1導電性材料の粒子径が1000nmより大きいと、酸素雰囲気下におけるアノード触媒層19の電気抵抗が高くなりにくく、抵抗変化特性が小さくなってしまう。したがって、第1導電性材料の粒子径を10nm以上1000nm以下とすることで、アノード触媒層19の電気抵抗を水素雰囲気下で小さく、かつ、酸素雰囲気下で大きくし、アノード触媒層19の抵抗変化特性を発揮させられる。
 また、第1触媒材料が、白金または白金合金を含んでいる。白金および白金合金は、水素酸化触媒として利用されると共に、電気抵抗の変化の応答性を高める性質を有している。よって、白金または白金合金を第1触媒材料に含めることにより、発電性能および抵抗変化特性に優れる。
 さらに、第1触媒材料が粒子状に形成されており、その粒子の平均一次径(粒子径)が1nm以上10nm以下である。これにより、第1触媒材料の表面積を大きくすることができ、少ない触媒量で高い性能を得ることができる。
 さらに、第1触媒材料が、抵抗変化特性を持つ第1導電性材料の表面に担持されている。これにより、粒子径が小さい第1触媒材料を安定的に存在させることができる。
 また、水素雰囲気下におけるアノード触媒層19の電気抵抗に対する酸素雰囲気下におけるアノード触媒層19の電気抵抗の比は、水素雰囲気下におけるカソード触媒層20の電気抵抗に対する酸素雰囲気下におけるカソード触媒層20の電気抵抗の比より大きい。このように、カソード触媒層20の電気抵抗はガス種に応じて変化しないまたはほとんどしない。これに対し、酸素に対するアノード触媒層19の電気抵抗は水素に対するアノード触媒層19の電気抵抗より大きい。
 このため、空気が混入しているアノード側流路23の範囲では、空気中の酸素によりアノード触媒層19の電気抵抗が高くなる。このため、アノード触媒層19で酸素還元反応が生じにくく、カソード触媒層20の劣化を抑制することができる。よって、カソード触媒層20の劣化による発電性能の低下を防止することができる。また、この際に、不活性ガスを用いる必要がなく、カソード触媒層20の劣化抑制に対するコストおよびサイズの増加を防ぐことができる。
 一方、燃料ガスが満たされているアノード側流路23の範囲では、アノード側流路23に空気が混入した範囲に比べてアノード触媒層19の電気抵抗が低く、水素酸化性能が低下しないまたはほとんどしない。また、カソード側流路24に空気などの酸化剤ガスを供給しても、カソード触媒層20の電気抵抗は上昇しないまたはほとんど上昇しない。これにより、発電反応が妨げられず、発電性能の低下を抑制することができる。
 なお、上記構成では、燃料電池スタック10のセルは、全て、抵抗変化特性を有するセル11で構成されていた。これに対し、燃料電池スタック10のセルのうち、少なくとも1つのセルが、抵抗変化特性を有するセル11であればよい。つまり、燃料電池スタック10は、抵抗変化特性を有さない、または、セル11より抵抗変化特性が小さいセルを含んでいてもよい。
 (実施例)
 実施例のセル11および比較例のセル111について、電気抵抗評価試験、水素ポンプ試験、発電性能評価試験およびガス置換サイクル試験を行った。まず、この評価に用いた実施例のセル11および比較例のセル111の作成方法について、以下に説明する。図4は、実施例のセル11を概略的に示す断面図である。図5は、比較例のセル111を概略的に示す断面図である。
 実施例のセル11のMEA12のアノード触媒層19の第1導電性材料については、次のとおり作製した。まず、オクチル酸チタンおよびオクチル酸タンタルを、チタン:タンタルの比が10:1になるように、混合した。この混合物をターペンで溶解し、前駆体溶液を調整した。そして、前駆体溶液を3g/分の速度で火炎中にスプレー噴霧器により噴霧した。このとき、プロパンを1L/分で、空気を5L/分で、酸素を9L/分で流して、1000~1600℃の火炎を発生させた。これにより、前駆体溶液中の溶媒を瞬時に蒸発させ、微粒子を作製した。作製した微粒子はHEPAフィルターを用いて回収した。この微粒子を、水素を4%含むアルゴンガスを流した850℃の電気炉中で2時間、熱処理した。これにより、原子比で10%のタンタルを含む、タンタルドープ酸化チタン(Ti0.9Ta0.12-δ)を合成し、第1導電性材料として用いた。
 続いて、この第1導電性材料を用いてアノード触媒層19の材料を、次のとおり作製した。まず、亜硫酸水素ナトリウム15.6gを300mLの超純水に溶解した。これに、白金濃度が200.34g/Lの塩化白金酸溶液5mlを加え、十分に撹拌した。この後、これに、超純水を加えて、全量が1400mLとなるように希釈した。この希釈物に、5%の塩化ナトリウム水溶液を滴下して、溶液のpHが常に5となるように調整しながら、31%の過酸化水素水溶液120mLを2mL/分の速度で滴下し、白金コロイド溶液を作製した。
 そして、超純水300mLに、先に作製した第1導電性材料のタンタルドープ酸化チタン(Ti0.9Ta0.12-δ)4gを加え、超音波により分散した。この溶液に、白金コロイド溶液を混ぜ合わせ、超音波による分散および撹拌を行った。そして、Ti0.9Ta0.12-δを分散させた白金コロイド溶液を、ホットスターラー上で80℃に保ちながら1時間、撹拌した。その後、攪拌した溶液を、常温まで冷却してから、一晩攪拌した。この溶液をメンブレンフィルターで濾過し、これに超純水およびエタノールを流して濾過して、この洗浄を4回繰り返した。これで得られたペースト状物を80℃で乾燥させ、白金微粒子が担持されたTi0.9Ta0.12-δの凝集体を得た。
 この凝集体を乳鉢ですり潰して粉末状とした。この粉末を、水素を4%含むアルゴンガスを流した900℃の電気炉中で2時間、熱処理した。これにより、白金が担持されたタンタルドープ酸化チタン(Pt/Ti0.9Ta0.12-δ)をアノード触媒層19の材料として得た。なお、Pt/Ti0.9Ta0.12-δにおける白金の担持率(重量%)は、ICPによる分析の結果、19.8wt%であった。
 続いて、このアノード触媒層19の材料(Pt/Ti0.9Ta0.12-δ)を用いてMEAを、次のとおり作製した。まず、高分子電解質膜15(日本ゴア株式会社製、ゴア・セレクトIII、なお、ゴアセレクトは、ダブリュー.エル.ゴア アンド アソシエーツ、インコーポレイテッドの登録商標である。)を用意した。
 そして、水34.2gおよびエタノール34.1gの混合溶媒に、先に作成したアノード触媒層19の材料(Pt/Ti0.9Ta0.12-δ)、1.0g、および、27.4wt%のPFSAバインダー溶液0.69gを加えた。この混合液から、湿式ジェットミルを用いてアノード触媒層19用の分散スラリーを作製した。
 得られた分散スラリーを、60℃に保ったホットプレート上で、高分子電解質膜15の第1主面に塗布し、アノード触媒層19を形成した。このとき、アノード触媒層19に含まれる白金の量が0.1mg/cmとなるように、分散スラリーの塗布量を調整した。
 また、水42.4gおよびエタノール41.3gの混合溶媒に、白金が担持されたグラファイト化ケッチェンブラック(田中貴金属工業株式会社製、TEC10EA50E)5.0g、および、27.4wt%のPFSAバインダー溶液7.9gを加えた。この混合液から、湿式ジェットミルを用いてカソード触媒層20用の分散スラリーを作製した。
 得られた分散スラリーを、60℃に保ったホットプレート上で、高分子電解質膜15の第2主面に塗布し、カソード触媒層20を形成した。このとき、カソード触媒層20に含まれる白金の量が0.3mg/cmとなるように、分散スラリーの塗布量を調整した。
 このようにして膜-触媒層接合体を作製した。そして、このアノード触媒層19およびカソード触媒層20の各層上にガス拡散層18(SGLカーボンジャパン株式会社製、GDL25BC)を配置した。これに、120℃の高温下において7kgf/cmの圧力を30分間、加えることにより、実施例のセル11のMEA12を作製した。
 そして、図4に示すように、MEA12を治具に装着して、実施例のセル11を作製した。この治具には、アノード側セパレータ13およびカソード側セパレータ14が設けられている。アノード側セパレータ13にサーペンタイン形状のアノード側流路23が形成されており、カソード側セパレータ14にサーペンタイン形状のカソード側流路24が形成されている。
 図5に示す比較例のセル111のMEA112の作成方法は、アノード116のアノード触媒層119の作成方法を除けば、実施例のセル11のMEA12の作成方法と同様である。このため、比較例のアノード触媒層119以外の作成方法については省略する。比較例のアノード触媒層119は、触媒層に含まれる白金の量を除けば、実施例のカソード触媒層20と同様である。
 つまり、水42.4gおよびエタノール41.3gの混合溶媒に、白金が担持されたグラファイト化ケッチェンブラック(田中貴金属工業株式会社製、TEC10EA50E)5.0g、および、27.4wt%のPFSAバインダー溶液7.9gを加えた。この混合液から、湿式ジェットミルを用いてアノード触媒層119用の分散スラリーを作製した。
 得られた分散スラリーを、60℃に保ったホットプレート上で、高分子電解質膜15の第1主面に塗布し、アノード触媒層119を形成した。このとき、アノード触媒層119に含まれる白金の量が0.1mg/cmとなるように、分散スラリーの塗布量を調整した。
 次に、作成したタンタルドープ酸化チタン(Ti0.9Ta0.12-δ)および白金/タンタルドープ酸化チタン(Pt/Ti0.9Ta0.12-δ)の結晶構造について、図6Aおよび図6Bを参照して説明する。図6Aは、タンタルドープ酸化チタンおよび白金/タンタルドープ酸化チタンのX線解析(XDR)による測定結果のスペクトルである。図6Aの上側スペクトルは白金/タンタルドープ酸化チタンの回折強度を表し、図6Aの下側スペクトルはタンタルドープ酸化チタンの回折強度を表している。図6Bは、透過電子顕微鏡(TEM)を用いて撮影した白金/タンタルドープ酸化チタンの画像である。
 図6Aの上側スペクトルおよび下側スペクトルにおける、28°、36°および55°の強度の大きな回折ピークは、ルチル型酸化チタンの(110)、(101)および(211)面と特定された。
 図6Bに示す、TEMによる白金/タンタルドープ酸化チタンの画像によれば、タンタルドープ酸化チタンの表面に白金が均一に分散している。この画像を含む複数の画像から500個の白金粒子のサイズを測定した結果、白金の平均直径および粒度分布は、6.2±1.9nmであった。また、誘導結合プラズマ質量分析計(ICP-MS)による白金の担持量は、19.8質量%であった。
 次に、電気抵抗評価試験について図7および図8を参照しながら説明する。図7は各種ガス雰囲気下における電気抵抗評価試験の測定システムを概略的に示す図である。図8は、実施例のセル11および比較例のセル111の各種ガス雰囲気下における電気抵抗の変化を示すグラフである。このグラフの縦軸は電気抵抗を示し、横軸は時間を示している。
 図7に示すように、実施例のセル11および比較例のセル111の温度を65℃に保ち、アノード16、166、カソード17ともに75℃の露点を持つ同一のガスを2L/minの流量で供給した。ガス種としては、水素、窒素、空気の3種類を用いた。この各ガス雰囲気の下におけるセル11、111の電気抵抗を、1kHzの固定周波数を持つ低抵抗計で測定した。
 図8に示すように、実施例のセル11の電気抵抗は、水素を供給した場合には低い値を示した。空気を供給すると、セル11の電気抵抗は、急激に上昇し、水素を供給したときの約9倍の値となった。このように、アノード触媒層19が酸素雰囲気下にあるセル11の電気抵抗は、アノード触媒層19が水素雰囲気下にあるセル11の電気抵抗の9倍以上であった。
 一方、比較例のセル111においては、空気を供給した場合の電気抵抗は、水素を供給した場合の電気抵抗の約2倍であり、ガス雰囲気の違いによる電気抵抗の差は小さかった。このように、アノード触媒層119を含むセル111に比べて、アノード触媒層19を含むセル11の酸素雰囲気下の電気抵抗は水素雰囲気下の電気抵抗より大きく上昇していることがわかる。つまり、アノード触媒層19が酸素雰囲気下にあるセル11の電気抵抗は、アノード触媒層19が水素雰囲気下にあるセル11の電気抵抗の2倍を超えている。
 これは、実施例のセル11ではアノード触媒層19の担体に用いたタンタルドープ酸化チタン(Ti0.9Ta0.12-δ)に空気中の酸素が吸着し、その電気抵抗が高まったためと考えられる。一方、比較例のセル111ではアノード触媒層119の担体に用いたグラファイト化ケッチェンブラック(カーボンブラック)には酸素などの吸着がほとんどなく、よって、その電気抵抗もほとんど変化しなかったと考えられる。
 次に、水素ポンプ試験法を用いたアノード触媒層の水素酸化活性評価について、図7および図9を用いて説明する。図7は水素ポンプ試験の測定システムを概略的に示す図である。図9は実施例のセル11および比較例のセル111の水素ポンプ試験における電圧-電流特性を示すグラフである。このグラフの縦軸は電圧(V)を示し、横軸は電流(A/cm)を示している。
 図7に示すように、実施例のセル11および比較例のセル111の温度を65℃に保ち、アノード16、117、カソード17ともに75℃の露点を持つ水素を2L/minの流量で供給した。このとき、電子負荷装置(PLZ-664WA、菊水電子工業株式会社製)および直流安定化電源(PS20-60A、株式会社テクシオ・テクノロジー製)を用いて定電流動作中にセル11、111の各電圧を測定した。また、この水素ポンプ試験による測定の間、セル11、111の電気抵抗を1kHzの固定周波数を持つ低抵抗計でin-situ測定した。
 水素ポンプ試験による測定の結果、図9に示すように、各セル11、111の電圧は電流にそれぞれ比例しているため、各セル11、111の電圧は電気抵抗に依存している。このため、セル11のアノード16に白金/タンタルドープ酸化チタンを用いても、電気抵抗以外の要因によりセル11の電圧-電流特性が影響を受けることはない。
 また、図9に示す電圧-電流特性のグラフから定常状態における各セル11、111の電気抵抗(水素ポンプ試験により求めた電気抵抗)を得た。セル11の電気抵抗は0.125Ωcmであり、セル111の電気抵抗は0.094Ωcmであった。この電気抵抗は、アノード16、116およびカソード17における水素の酸化および還元に対する電荷の移動抵抗、ならびに、高分子電解質膜15、触媒層19、119、20(図4、図5)、ガス拡散層18およびセパレータ13、14の電気抵抗を含んでいる。この内、アノード16、116のアノード触媒層19、119の導電性材料がセル11とセル111とで異なる。
 また、1.5mAcmにおいて、1kHzの固定周波数を持つ低抵抗計でin-situ測定したセル11の電気抵抗は0.123Ωcmであり、セル111の電気抵抗は0.092Ωcmであった。このようにして測定した電気抵抗は、高分子電解質膜15、触媒層19、119、20(図4、図5)、ガス拡散層18およびセパレータ13、14の電気抵抗に主に相当する。
 この各セル11、111において、水素ポンプ試験により求めた電気抵抗と、1kHzの固定周波数を持つ低抵抗計でin-situ測定した電気抵抗との差は、共に2mΩcmであった。この差は、アノード16、116およびカソード17における水素の酸化および還元に対する電荷の移動抵抗に相当し、各セル11、111で同じである。各セル11、111は同じカソード17を有しているため、カソード17における水素の還元に起因する電荷の移動抵抗は同じである。したがって、アノード16およびアノード116における水素の酸化活性も同じ程度であり、ともに過電圧を無視できる程度である。
 次に、ガス置換サイクルを用いた耐久性評価試験について、図10、図11および図12を用いて説明する。図10はガス置換サイクル試験の測定システムを概略的に示す図である。図11はガス置換サイクル試験の試験条件を示す表である。図12は実施例のセル11および比較例のセル111のガス置換サイクル回数とカソード17におけるPtの電気化学活性表面積の関係を示すグラフである。このグラフの縦軸はカソードのPtの電気化学活性表面積(ECSA)を示し、横軸は第1~第3モードのサイクル数を示している。
 図10に示すように、実施例のセル11および比較例のセル111の温度を45℃の温度に保った。そして、図12に示す第1モードの処理を実行し、90秒の間、各セル11、111のアノード側流路23に加湿していない乾燥空気を供給し、カソード側流路24に45℃の露点を持つ加湿空気を供給した。続いて、第1モードの後に第2モードの処理を実行し、90秒の間、各セル11、111のアノード側流路23に45℃の露点を持つ加湿水素を供給し、カソード側流路24に45℃の露点を持つ加湿空気を供給した。さらに、第2モードの後に第3モードの処理を実行し、60秒の間、各セル11、111のアノード側流路23に加湿していない乾燥窒素を供給し、カソード側流路24に加湿していない乾燥窒素を供給した。
 この第1~第3モードの一連の処理を1サイクルとして繰り返した。そして、200サイクル繰り返す毎に、実施例のセル11および比較例のセル111の各カソード触媒層20における白金(Pt)のECSA(m-1)を測定した。このPtのECSAは、Ptの水素吸着に起因する電気量を、Pt単位表面積あたりの水素吸着電気量の理論値(0.21mC/cm)で割ることにより算出した。Ptの水素吸着に起因する電気量は、カソード側セパレータ14を作用極とし、アノード側セパレータ13を対極および参照極として、サイクリックボルタンメトリーを測定することにより得た。この測定時には、各セル11、111を45℃の温度環境下に置き、アノード側流路23に45℃の露点を持つ加湿水素ガスを供給し、カソード側流路24に45℃の露点を持つ加湿窒素ガスを供給した。
 図12に示すように、実施例のセル11および比較例のセル111のいずれも、処理の繰り返しサイクル数が増えるに伴って、PtのECSAは低下している。この低下する割合は、サイクル数が大きくなるほど、実施例のセル11より比較例のセル111の方が大きくなっている。また、1000サイクル実施後におけるECSAの維持率は、セル11が64.7%であるのに対し、セル111が42.4%であった。この結果、実施例のセル11におけるカソード触媒層20の白金の活性の低下は、比較例のセル111より抑制されている。
 次に、発電性能評価試験について、図13および図14を用いて説明する。図13は発電性能評価試験の測定システムを概略的に示す図である。図14は実施例のセル11および比較例のセル111の発電性能評価試験における電圧―電流特性(IRフリー)を示すグラフである。このグラフの縦軸はIRフリー電圧(V)を示し、横軸は電流(A/cm)を示している。
 図13に示すように、実施例のセル11および比較例のセル111の温度を65℃に保った。そして、アノード16、116に65℃の露点を持つ水素を水素利用率が70%となる流量で流し、カソード17に65℃の露点を持つ空気を酸素利用率が40%となる流量で流した。このとき、電子負荷装置(PLZ-664WA、菊水電子工業株式会社製)を用いて定電流動作中にセル11、111の各電圧を測定した。また、測定の間、セルの電気抵抗を1kHzの固定周波数を持つ低抵抗計でin-situ測定した。
 測定結果を、図14を参照しながら説明する。ここでは、図11に示す上記第1~第3モードの一連の処理を1000回繰り返す試験(ガス置換サイクル試験)前および後のセル11、111の電圧-電流特性を示している。このガス置換サイクル試験前の電圧を前電圧と称し、ガス置換サイクル試験後の電圧を後電圧と称する。
 0.4A/cm未満の低い電流密度では、前電圧については、セル11がセル111よりわずかに小さかった。これにも関わらず、後電圧についてはセル11がセル111とほぼ同等の値を示し、セル11はセル111とほぼ同等の性能を示している。また、図14から計算した0.9Vにおける単位質量当たりの保有率は、セル11が51.4%であるのに対し、セル111は39.1%であった。これらの値は、図12で得たECSAの保有率と同等である。このため、低い電流密度におけるセル11の性能低下はECSAの低下によるものと思われる。
 0.4A/cm以上の高い電流密度では、セル11の後電圧がセル111の後電圧より高く、セル11はセル111より高い性能を示している。このセル11の後電圧とセル111の後電圧との差は、電流密度が増加するに伴い大きくなっている。これは、各セル11、111のカソード17の腐食に起因すると考えられる。
 この腐食について、図15A、図15Bおよび図15Cを参照しながら説明する。図15Aは、ガス置換サイクル試験前のセル111のカソード触媒層20および高分子電解質膜15の断面図である。図15Bは、ガス置換サイクル試験後のセル11のカソード触媒層20および高分子電解質膜15の断面図である。図15Cはガス置換サイクル試験後のセル111のカソード触媒層20および高分子電解質膜15の断面図である。これらの断面図は、走査型電子顕微鏡(SEM)を用いて得た。なお、ガス置換サイクル試験前のセル11を前セル11と称し、ガス置換サイクル試験後のセル11を後セル11と称する。ガス置換サイクル試験前のセル111を前セル111と称し、ガス置換サイクル試験後のセル111を後セル111と称する。
 図15Bおよび図15Cに示すように、白金粒子のバンドが観察された。白金イオンが、カソード触媒層20からかい離し、高分子電解質膜15に入り、クロスオーバー水素により金属の白金に変換されたことにより、このバンドが形成された。これは、セル111だけでなくセル11においてもECSAの低下が観察されたことに一致する。なお、白金のかい離はセル11のカソード17でさえ生じることを示唆している。
 後セル11のカソード触媒層20の厚みには、前セル111とほぼ同等であった。これに対し、後セル111のカソード触媒層20の厚みは、前セル111の約40%減少していた。さらに、後セル111にけるカソード触媒層は、高分子電解質膜15から容易に剥離した。この高分子電解質膜15からのカソード触媒層20の剥離は後セル11には見られなかった。
 この結果、セル111のカソード触媒層20のカーボンが、セル11のカソード触媒層20のカーボンより腐食していることがわかる。カソード触媒層20の腐食は物質移動の大幅な低下を招く。よって、セル11およびセル111における高電流密度における性能の差は、ガス置換サイクル試験におけるカソード触媒層20のカーボンの腐食の程度の差による。
 なお、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。また、上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 本発明のセル、燃料電池スタック、燃料電池システムおよび膜-電極接合体は、サイズおよびコストの上昇を抑えつつ、発電性能の低下の抑制が可能であるセル、燃料電池スタック、燃料電池システムおよび膜-電極接合体等として有用である。
10  :燃料電池スタック
11  :セル
12  :MEA(膜-電極接合体)
13  :アノード側セパレータ(セパレータ)
14  :カソード側セパレータ(セパレータ)
15  :高分子電解質膜
19  :アノード触媒層
20  :カソード触媒層
23  :アノード側流路(流路)
24  :カソード側流路(流路)
100 :燃料電池システム

Claims (13)

  1.  膜-電極接合体と、
     前記膜-電極接合体を互いの間に挟む一対のセパレータと、を備えているセルであって、
     前記膜-電極接合体は、高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、
     前記アノード触媒層が、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、
     前記カソード触媒層が、酸素還元反応に対して活性を持つ第2触媒材料と、前記第1導電性材料とは異なる第2導電性材料とを含んでおり、
     前記アノード触媒層が酸素雰囲気下にある前記セルの電気抵抗は、前記アノード触媒層が水素雰囲気下にある前記セルの電気抵抗の2倍を超える、セル。
  2.  前記アノード触媒層は、イオン伝導性のバインダーを有している、請求項1に記載のセル。
  3.  前記第1導電性材料は、抵抗変化特性を持つ導電性セラミックスであり、前記第2導電性材料がカーボンである、請求項1または2に記載のセル。
  4.  前記抵抗変化特性を持つ導電性セラミックスは、チタンを含んでいる、請求項3に記載のセル。
  5.  前記第1導電性材料が粒子状に形成されており、前記粒子の平均一次径が10nm以上1000nm以下である、請求項1~4のいずれか一項に記載のセル。
  6.  前記第1触媒材料が、白金または白金合金を含んでいる、請求項1~5のいずれか一項に記載のセル。
  7.  前記第1触媒材料が粒子状に形成されており、前記粒子の平均一次径が1nm以上10nm以下である、請求項1~6のいずれか一項に記載のセル。
  8.  前記第1触媒材料が、前記第1導電性材料の表面に担持されている、請求項1~7のいずれか一項に記載のセル。
  9.  前記アノード触媒層が酸素雰囲気下にある前記セルの電気抵抗は、前記アノード触媒層が水素雰囲気下にある前記セルの電気抵抗の9倍以上である、請求項1~8のいずれか一項に記載のセル。
  10.  請求項1~9のいずれか一項に記載のセルが複数、積層して構成されている、燃料電池スタック。
  11.  請求項1~9のいずれか一項に記載のセルが複数、積層して構成される燃料電池スタックと、
     前記一対のセパレータの流路に燃料ガスおよび酸化剤ガスをそれぞれ供給する供給装置と、を備えている、燃料電池システム。
  12.  高分子電解質膜と、前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、
     前記アノード触媒層は、水素酸化反応に対して活性を持つ第1触媒材料と、水素雰囲気下における電気抵抗と酸素雰囲気下における電気抵抗とが異なる第1導電性材料と、を含んでおり、
     水素雰囲気下における前記アノード触媒層の電気抵抗に対する酸素雰囲気下における前記アノード触媒層の電気抵抗の比は、水素雰囲気下における前記カソード触媒層の電気抵抗に対する酸素雰囲気下における前記カソード触媒層の電気抵抗の比より大きい、膜-電極接合体。
  13.  高分子電解質膜と、
     前記高分子電解質膜の第1主面上に配置されたアノード触媒層と、
     前記高分子電解質膜の第2主面上に配置されたカソード触媒層と、を備えており、
     前記アノード触媒層が、白金/タンタルドープ酸化チタンである、膜-電極接合体。
PCT/JP2016/001691 2015-06-16 2016-03-23 セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体 WO2016203679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/737,091 US20180175397A1 (en) 2015-06-16 2016-03-23 Cell, fuel cell stack, fuel cell system, and membrane electrode assembly
JP2016563221A JP6150265B2 (ja) 2015-06-16 2016-03-23 セル、燃料電池スタック、燃料電池システムおよび膜−電極接合体
EP16811160.7A EP3312921B1 (en) 2015-06-16 2016-03-23 Cell, fuel cell stack, fuel cell system and membrane-electrode joined body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121434 2015-06-16
JP2015-121434 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016203679A1 true WO2016203679A1 (ja) 2016-12-22

Family

ID=57545714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001691 WO2016203679A1 (ja) 2015-06-16 2016-03-23 セル、燃料電池スタック、燃料電池システムおよび膜-電極接合体

Country Status (4)

Country Link
US (1) US20180175397A1 (ja)
EP (1) EP3312921B1 (ja)
JP (1) JP6150265B2 (ja)
WO (1) WO2016203679A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021904A1 (ja) * 2017-07-25 2019-01-31 国立大学法人山梨大学 担体粉末及びその製造方法、担持金属触媒及びその製造方法
WO2021117812A1 (ja) 2019-12-13 2021-06-17 国立大学法人山梨大学 担持金属触媒、電気化学セル
US11502309B2 (en) 2019-01-30 2022-11-15 University Of Yamanashi Carrier metal catalyst, manufacturing method thereof, and fuel cell
WO2023120094A1 (ja) * 2021-12-21 2023-06-29 株式会社キャタラー 触媒貴金属担持導電性酸化物粒子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422079B (zh) * 2021-05-21 2022-09-09 深圳航天科技创新研究院 一种燃料电池催化剂的热处理控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192873A (ja) * 1992-12-25 1994-07-12 Permelec Electrode Ltd ガス電極とその製造方法
JP2002280002A (ja) * 2001-03-16 2002-09-27 Mitsubishi Heavy Ind Ltd 固体高分子型燃料電池及びその損傷防止方法
JP2006019133A (ja) * 2004-07-01 2006-01-19 Nitto Denko Corp 燃料電池用アノード電極
JP2009026501A (ja) * 2007-07-17 2009-02-05 Nissan Motor Co Ltd 電解質膜−電極接合体
WO2009060582A1 (ja) * 2007-11-09 2009-05-14 Kyusyu University, National University Corporation 燃料電池用電極材料の製造方法及び燃料電池用電極材料並びに該燃料電池電極材料を用いた燃料電池
WO2015002287A1 (ja) * 2013-07-05 2015-01-08 国立大学法人九州大学 燃料電池用電極及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池
JP2015195193A (ja) * 2014-03-20 2015-11-05 国立大学法人九州大学 燃料電池用アノード電極材料およびその製造方法、並びに燃料電池用電極、膜電極接合体及び固体高分子形燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883674B2 (en) * 2008-06-11 2014-11-11 GM Global Technology Operations LLC Mesoporous electrically conductive metal oxide catalyst supports
US20140004444A1 (en) * 2010-09-28 2014-01-02 Isotta Cerri Fuel cell electrocatalyst
GB2509916A (en) * 2013-01-16 2014-07-23 Ilika Technologies Ltd A mixed metal oxide material of tantalum and titanium
JP6748953B2 (ja) * 2015-08-11 2020-09-02 国立大学法人山梨大学 燃料電池システム及びその運用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192873A (ja) * 1992-12-25 1994-07-12 Permelec Electrode Ltd ガス電極とその製造方法
JP2002280002A (ja) * 2001-03-16 2002-09-27 Mitsubishi Heavy Ind Ltd 固体高分子型燃料電池及びその損傷防止方法
JP2006019133A (ja) * 2004-07-01 2006-01-19 Nitto Denko Corp 燃料電池用アノード電極
JP2009026501A (ja) * 2007-07-17 2009-02-05 Nissan Motor Co Ltd 電解質膜−電極接合体
WO2009060582A1 (ja) * 2007-11-09 2009-05-14 Kyusyu University, National University Corporation 燃料電池用電極材料の製造方法及び燃料電池用電極材料並びに該燃料電池電極材料を用いた燃料電池
WO2015002287A1 (ja) * 2013-07-05 2015-01-08 国立大学法人九州大学 燃料電池用電極及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池
JP2015195193A (ja) * 2014-03-20 2015-11-05 国立大学法人九州大学 燃料電池用アノード電極材料およびその製造方法、並びに燃料電池用電極、膜電極接合体及び固体高分子形燃料電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021904A1 (ja) * 2017-07-25 2019-01-31 国立大学法人山梨大学 担体粉末及びその製造方法、担持金属触媒及びその製造方法
JPWO2019021904A1 (ja) * 2017-07-25 2020-06-11 国立大学法人山梨大学 担体粉末及びその製造方法、担持金属触媒及びその製造方法
JP7086338B2 (ja) 2017-07-25 2022-06-20 国立大学法人山梨大学 担体粉末及びその製造方法、担持金属触媒及びその製造方法
US11563219B2 (en) 2017-07-25 2023-01-24 University Of Yamanashi Carrier powder, method for producing same, carrier metal catalyst, and method for producing same
US11502309B2 (en) 2019-01-30 2022-11-15 University Of Yamanashi Carrier metal catalyst, manufacturing method thereof, and fuel cell
US11990627B2 (en) 2019-01-30 2024-05-21 University Of Yamanashi Carrier metal catalyst, manufacturing method thereof, and fuel cell
WO2021117812A1 (ja) 2019-12-13 2021-06-17 国立大学法人山梨大学 担持金属触媒、電気化学セル
WO2023120094A1 (ja) * 2021-12-21 2023-06-29 株式会社キャタラー 触媒貴金属担持導電性酸化物粒子の製造方法

Also Published As

Publication number Publication date
JP6150265B2 (ja) 2017-06-21
EP3312921A4 (en) 2018-05-16
JPWO2016203679A1 (ja) 2017-06-29
EP3312921A1 (en) 2018-04-25
EP3312921B1 (en) 2023-10-25
US20180175397A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6430969B2 (ja) 電気化学装置中のバリア層、当該バリア層を含む電気化学装置、膜電極接合体、触媒被覆膜、ガス拡散電極、および炭素系ガス拡散層、ならびに、バリア層、膜電極接合体、触媒被覆膜、ガス拡散電極、またはガス拡散層の使用
JP4197683B2 (ja) 燃料電池電極用触媒、燃料電池電極、膜電極接合体および燃料電池
US8398884B2 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
JP6150265B2 (ja) セル、燃料電池スタック、燃料電池システムおよび膜−電極接合体
CA2758432C (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for polymer electrolyte fuel cell
US10243218B2 (en) Method for producing fine catalyst particles, method for producing carbon-supported fine catalyst particles, method for producing catalyst mix and method for producing electrode
Shintani et al. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide
JP7340831B2 (ja) 水素欠乏耐性燃料電池用アノード触媒
JP6727266B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP5432443B2 (ja) 膜電極接合体および燃料電池
WO2020059503A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP5219571B2 (ja) 膜電極接合体および燃料電池
WO2020059502A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
US20220293966A1 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP5298303B2 (ja) 膜電極接合体および燃料電池
JP6727265B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP5597281B2 (ja) 膜電極接合体および燃料電池
JP2020077496A (ja) 膜電極接合体
JP2017010620A (ja) 燃料電池システムおよびその運転方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563221

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811160

Country of ref document: EP