WO2016202312A1 - 可测量旁中心离焦的验光装置 - Google Patents

可测量旁中心离焦的验光装置 Download PDF

Info

Publication number
WO2016202312A1
WO2016202312A1 PCT/CN2016/095559 CN2016095559W WO2016202312A1 WO 2016202312 A1 WO2016202312 A1 WO 2016202312A1 CN 2016095559 W CN2016095559 W CN 2016095559W WO 2016202312 A1 WO2016202312 A1 WO 2016202312A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
lens group
module
photodetector
optometry device
Prior art date
Application number
PCT/CN2016/095559
Other languages
English (en)
French (fr)
Inventor
谢佩
褚仁远
蒋百川
周行涛
王勤美
曾骏文
魏瑞华
蒋沁
钟立
沈激
Original Assignee
苏州四海通仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州四海通仪器有限公司 filed Critical 苏州四海通仪器有限公司
Priority to US15/737,672 priority Critical patent/US10478062B2/en
Publication of WO2016202312A1 publication Critical patent/WO2016202312A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea

Definitions

  • the invention relates to the field of optometry, in particular to an optometry device capable of measuring side center defocus.
  • the present invention provides an optometry apparatus for measuring side center defocus.
  • An optometry device capable of measuring a side center defocus, comprising a diopter measurement module, the diopter measurement module comprising a first light source that emits a first light beam, the optometry device further comprising a light spot for adjusting a light beam formed on the retina by the first light beam a scanning module of a position, the scanning module comprising a first mirror and a second mirror which are sequentially and rotatably disposed in an exiting optical path of the first light source, and a rotation axis line of the first mirror Forming a greater than the axis of rotation of the second mirror 0 is less than 180 degrees.
  • the optometry device further comprises a fixation module for relaxing the eyeball of the subject, the fixation module comprising a second dichroic mirror that totally transmits visible light and totally reflects the first light beam, the first A dichroic mirror is disposed in the exiting optical path of the first light source.
  • the optometry apparatus further includes a diaphragm, a first lens group, a beam splitter, a third lens group, a fourth lens group, and a first photodetector, the aperture, the first mirror, and the first lens
  • the group, the second mirror, the beam splitter, and the second dichroic mirror are sequentially disposed in the exiting optical path of the first light source, and the third lens group, the fourth lens group, and the first photodetector are sequentially disposed.
  • the first photodetector is movably disposed relative to the fourth lens group.
  • the optometry device further includes a corneal curvature measuring module, a first dichroic mirror, a fifth lens group and a second photodetector, the corneal curvature measuring module comprising a second light source for emitting the second light beam,
  • the first dichroic mirror transmits the first light beam and the second light beam is totally reflected, and the fifth lens group and the second photodetector are sequentially disposed in the reflected light path of the first dichroic mirror,
  • the second dichroic mirror transmits the visible light completely and the first beam and the second beam are totally reflected.
  • the second dichroic mirror is disposed in an exiting optical path of the first light source and the second light source, the first dichroic mirror is disposed on the second dichroic mirror and the Between the beamsplitters.
  • the optometry apparatus further includes a first photodetector movably disposed in the imaging optical path of the first light beam, and a third photocoupler for detecting a position of the first photodetector.
  • the optometry apparatus further includes a driving module for driving the first photodetector to move and drive the rotation of the first mirror and the second mirror, and a data storage for storing diopter and corneal curvature data.
  • a driving module for driving the first photodetector to move and drive the rotation of the first mirror and the second mirror
  • a data storage for storing diopter and corneal curvature data.
  • transmission module for transmitting diopter and corneal curvature data to a cloud server.
  • the present invention adopts the above technical solution, and has the following advantages compared with the prior art: changing the propagation path of the first light beam by rotating the first mirror and the second mirror, thereby changing the position of the spot formed by the first light beam on the retina,
  • the two-dimensional scanning of the retina can obtain images reflected from various regions of the retina, thereby realizing the diopter measurement of the macular area outside the macular area and the area outside the macular area, and realizing the diopter measurement of the side center defocus.
  • Fig. 1 shows an optical optometry apparatus for measuring side center defocusing according to the present invention.
  • the optometry device includes a first light source 1 Annular aperture 2, first mirror 3, first lens group 4, second mirror 5, beam splitter 6, first dichroic mirror 7, second lens group 8, second dichroic mirror 9, the second light source 10, a fifth lens group 11, a second photodetector 12, a third lens group 13, a fourth lens group 14, and a first photodetector 15.
  • the first light source 1, the annular diaphragm 2, the first lens group 4, the beam splitter 6, the third lens group 13, and the fourth lens group 14 and the first photodetector 15 constitutes a diopter measurement module for measuring the diopter of a plurality of different regions of the retina, including areas other than the macula region and the macula region;
  • First mirror 3 and second mirror 5 Forming a scanning module for adjusting the position of the spot formed by the diopter measuring module on the retina to perform two-dimensional scanning on the retina so that the spot is formed on different regions of the retina;
  • a second light source 10 a first dichroic mirror 7, a fifth lens group 11, and a second photodetector 12 Forming a corneal curvature measuring module for measuring corneal curvature;
  • the second dichroic mirror 9 constitutes a fixation module for relaxing the human eye 16.
  • the first light source 1 is used to emit the first light beam.
  • the first light source 1 adopts a near-infrared LED lamp, and the first light beam emitted is at a wavelength of Near-infrared beam from 780 to 890 nm.
  • the annular diaphragm 2, the first mirror 3, the first lens group 4, the second mirror 5, and the beam splitter 6 are sequentially disposed on the first light source 1 Out of the light path.
  • the first mirror 3 and the second mirror 5 are driven to rotate by the motor, and a relationship between the rotation axis of the first mirror 3 and the rotation axis of the second mirror 5 is greater than 0.
  • One of the rotation axis lines is horizontally set, and the other of the rotation axis lines is vertically set. Passing the first mirror 3 and the second mirror 5 The angle is changed to achieve the purpose of adjusting the propagation path of the first beam, and the retina can be scanned two-dimensionally as the motor continuously drives the rotation of the first mirror 3 and the second mirror 5.
  • the mirror surface of the first mirror 3 is not parallel to the mirror surface of the second mirror 5.
  • the second light source 10 is configured to emit a circular second light beam.
  • the second light source 10 adopts a set of infrared LEDs arranged in a circular shape.
  • the projection module emits a second beam of infrared light having a wavelength of 900 to 1000 nm.
  • the first dichroic mirror 7 is disposed between the lens group and the beam splitter 6, the third lens group 13, the fourth lens group 14, and the first photodetector 15 Set in the reflected light path of the beam splitter 6 in order to capture the near-infrared image of the retina reflection.
  • the optometry device also includes a drive module.
  • the driving module includes driving the first mirror 3 and the second mirror 5 respectively The rotating first motor and second motor, a third motor for driving the movement of the first photodetector 15.
  • the first mirror 3, the second mirror 5, and the first photodetector 15 It can also be driven simultaneously by one or two motors.
  • the scanning module further includes first and second optocouplers for detecting the rotational angles of the output shafts of the first motor and the second motor, respectively.
  • the diopter measurement module further includes means for detecting the first photodetector The third optocoupler at the 15 position.
  • the first mirror 3 and the second mirror 5 are mutually conjugated surfaces and are mutually conjugated with the pupil of the human eye, and the first motor and the second motor drive the first mirror 3 and the second mirror 5
  • the first beam rotates around the pupil, and the first beam can all pass through the through hole to form a spot at the retina to scan the retina.
  • the rotation of the first motor and the second motor is controlled according to the rotation angle data detected by the first optocoupler and the second optocoupler to ensure that both the macular area and the macular area of the retina can be scanned.
  • the imaging position of the near-infrared image is also different, so the fourth lens group is 14
  • the formed near-infrared image is also different from the fourth lens group 14 in that the third motor drives the first photodetector 15 to move relative to the fourth lens group 14 through a transmission mechanism such as a lead screw until the first photodetector 15
  • the above near infrared image is acquired.
  • the photocoupler can obtain the first photodetector by recording the moving distance of the lead screw.
  • the position of the near-infrared image is the imaging position, and the different near-infrared image imaging positions correspond to different diopter values.
  • the corneal curvature measurement module uses a set of infrared LEDs arranged in a ring shape
  • the projection module projects an infrared circular spot, which is reflected by the cornea of the human eye, and then formed into an image by the lens in the second photodetector 12 to collect an infrared image.
  • the diopter measurement module uses a near-infrared LED lamp with a circular aperture 2 Generating a circular near-infrared aperture, projecting a near-infrared aperture onto the retina, reflecting on the retina, reflecting light from the human eye, forming a lens through the lens in the first photodetector 15, according to the detected first photoelectric detector
  • the position of 15 is the imaging position to obtain the diopter of the human eye through a calibration algorithm.
  • the optometry device further includes a data storage module and a wireless transmission module.
  • the data storage module is used to store diopter and corneal curvature data.
  • the wireless transmission module is used to transmit diopter and corneal curvature data to the cloud server for long-term storage for subsequent viewing and physician analysis.
  • the present invention has the following features:
  • the open window design that is, the dichroic mirror with total reflection of visible light, infrared light and near-infrared light, makes the human eye relax, and the infrared light and near-infrared light reflection of the diopter measurement module and the corneal curvature measurement module The rate is high, improving comfort and energy efficiency.
  • a scanning module is arranged in the exiting optical path of the diopter measuring module, and the two sets of scanning mirrors of the scanning module are driven to realize two-dimensional scanning of the retinal spot, thereby realizing diopter measurement outside the macular area and the macular area, and solving the side center.
  • the problem of measurement of defocus diopter is not correct, and the diopter measurement of the off-center defocus is realized, providing more scientific guidance data for the glasses.
  • the two scanning mirrors of the scanning module are located at two different positions conjugate with the pupil of the human eye, so that the light rotates around the pupil when the scanning module scans, ensuring that the light passes through the pupil and performs two-dimensional scanning on the retina.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种测量旁中心离焦的验光装置,包括屈光度测量模块。屈光度测量模块包括出射第一光束的第一光源(1)。验光装置还包括用于调节第一光束在视网膜上所形成光斑的位置的扫描模块。扫描模块包括依次且可转动地设置在第一光源(1)的出射光路中的第一反射镜(3)和第二反射镜(5)。第一反射镜(3)的转动轴心线与第二反射镜(5)的转动轴心线之间构成一大于0小于180度的夹角。

Description

可测量旁中心离焦的验光装置
技术领域
本发明涉及验光领域,特别涉及一种可测量旁中心离焦的验光装置。
背景技术
目前,传统验光仪等验光装置在对人眼进行验光时,将光斑投影到视网膜的黄斑区域,只对视网膜的黄斑区域进行屈光度的检测,而不对视网膜黄斑区域以外的区域进行验光。正常眼球的视网膜基本呈球面状,物体成像在视网膜上时,视网膜的黄斑区域和黄斑外围都正好处于人眼光学系统的焦弧面上。而当眼球非正常时,视网膜形成的弧面和人眼光学系统的焦弧面不重合或曲率不同。由于传统验光仪只对黄斑区域进行验光,通过配镜使得物体成像在黄斑区域。如果视网膜黄斑区域外曲率和人眼光学系统的焦弧面不重合,采用传统验光仪验光配镜虽然使得黄斑区域的屈光度得到了矫正,但黄斑区域外的视网膜的屈光度并未矫正。这样就形成了旁中心离焦,旁中心离焦得不到矫正将刺激人眼,使人眼屈光度不正进一步加深,黄斑区域也将看不清物体,需要重新进行验光重新配镜。
发明内容
针对上述问题,本发明提供一种测量旁中心离焦的验光装置。
为达到上述目的,本发明采用的技术方案为:
一种可测量旁中心离焦的验光装置,包括屈光度测量模块,所述屈光度测量模块包括出射第一光束的第一光源,该验光装置还包括用于调节第一光束在视网膜上所形成光斑的位置的扫描模块,所述扫描模块包括依次且可转动地设置在所述第一光源的出射光路中的第一反射镜和第二反射镜,所述第一反射镜的转动轴心线与所述第二反射镜的转动轴心线之间构成一大于 0 小于 180 度的夹角。
优选地,该验光装置还包括用于使受检者眼球处于放松状态的固视模块,所述固视模块包括使可见光全透射、第一光束全反射的第二二向色镜,所述第二二向色镜设置在所述第一光源的出射光路中。
更优选地,该验光装置还包括光阑、第一透镜组、分束器、第三透镜组、第四透镜组及第一光电探测器,所述光阑、第一反射镜、第一透镜组、第二反射镜、分束器、第二二向色镜依次设置在所述第一光源的出射光路中,所述第三透镜组、第四透镜组、第一光电探测器依次设置在所述分束器的反射光路中,且所述第一光电探测器可相对所述第四透镜组移动地设置。
进一步地,该验光装置还包括角膜曲率测量模块、第一二向色镜、第五透镜组及第二光电探测器,所述角膜曲率测量模块包括用于出射第二光束的第二光源,所述第一二向色镜使第一光束全透射且第二光束全反射,所述第五透镜组及第二光电探测器依次设置在所述第一二向色镜的反射光路中,所述第二二向色镜使可见光全透射且第一光束和第二光束全反射。
更进一步地,所述第二二向色镜设置在所述第一光源及第二光源的出射光路中,所述第一二向色镜设置在所述第二二向色镜和所述分束器之间。
更进一步地,该验光装置包括设置在所述第一二向色镜和第二二向色镜之间的第二透镜组。
优选地,所述第一光束的波长为 780~890nm ,所述第二光束的波长为 900~1000nm 。
优选地,该验光装置还包括可移动地设置在所述第一光束的成像光路中的第一光电探测器、用于检测所述第一光电探测器的位置的第三光耦。
更优选地,该验光装置还包括用于驱动所述第一光电探测器移动及驱动所述第一反射镜和第二反射镜转动的驱动模块、用于存储屈光度和角膜曲率数据的数据存数模块、用于将屈光度和角膜曲率数据传输至云服务器的传输模块。
优选地,所述第一反射镜的转动轴心线与所述第二反射镜的转动轴心线相互垂直。
本发明采用上述技术方案,相比现有技术具有如下优点:通过转动第一反射镜和第二反射镜改变第一光束的传播路径,进而改变第一光束在视网膜上所形成光斑的位置,对视网膜进行二维扫描,可获得视网膜各个区域反射的图像,从而实现视网膜黄斑区域及黄斑区域外的区域的屈光度测量,实现旁中心离焦的屈光度测量。
附图说明
图 1 为本发明的验光装置的结构示意图。
其中, 1 、第一光源; 2 、光阑; 3 、第一反射镜; 4 、第一透镜组; 5 、第二反射镜; 6 、分束器; 7 、第一二向色镜; 8 、第二透镜组; 9 、第二二向色镜; 10 、第二光源; 11 、第五透镜组; 12 、第二光电探测器; 13 、第三透镜组; 14 、第四透镜组; 15 、第一光电探测器; 16 、人眼。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
图 1 所示为本发明的一种测量旁中心离焦的验光装置。结合图 1 所示,该验光装置包括第一光源 1 、环形的光阑 2 、第一反射镜 3 、第一透镜组 4 、第二反射镜 5 、分束器 6 、第一二向色镜 7 、第二透镜组 8 、第二二向色镜 9 、第二光源 10 、第五透镜组 11 、第二光电探测器 12 第三透镜组 13 、第四透镜组 14 及第一光电探测器 15 。
其中,第一光源 1 、环形的光阑 2 、第一透镜组 4 、分束器 6 、第三透镜组 13 、第四透镜组 14 及第一光电探测器 15 构成屈光度测量模块,用于测量视网膜的多个不同区域的屈光度,包括黄斑区域及黄斑区域之外的区域;
第一反射镜 3 和第二反射镜 5 构成扫描模块,用于调节屈光度测量模块在视网膜上所形成光斑的位置,以对视网膜进行二维扫描,使上述光斑形成在视网膜的不同区域上;
第二光源 10 、第一二向色镜 7 、第五透镜组 11 及第二光电探测器 12 构成角膜曲率测量模块,用于测量角膜曲率;
第二二向色镜 9 构成固视模块,用于使人眼 16 处于放松状态。
第一光源 1 用于出射第一光束,本实施例中,第一光源 1 采用近红外 LED 灯,所出射的第一光束为波长为 780~890nm 的近红外光束。环形的光阑 2 、第一反射镜 3 、第一透镜组 4 、第二反射镜 5 、分束器 6 依次设置在第一光源 1 的出射光路中。其中,第一反射镜 3 和第二反射镜 5 由电机驱动转动,且第一反射镜 3 的转动轴心线与第二反射镜 5 的转动轴心线之间构成一个大于 0 小于 180 度的夹角,优选为 90 度,即两者的转动轴心线相互垂直,第一反射镜 3 、第二反射镜 5 其中一个的转动轴心线水平设置、另一个的转动轴心线竖直设置。通过第一反射镜 3 和第二反射镜 5 的角度改变,达到调节第一光束的传播路径的目的,随着电机持续驱动第一反射镜 3 和第二反射镜 5 旋转,可对视网膜进行二维扫描。在第一反射镜 3 和第二反射镜 5 转动的过程中,第一反射镜 3 的镜面与第二反射镜 5 的镜面不相平行。
第二光源 10 用于出射圆环形的第二光束,本实施例中,第二光源 10 采用呈圆环形排列的一组红外 LED 投射模组,所出射的第二光束为波长为 900~1000nm 的红外圆环形光束。
第二二向色镜 9 设置在第一光源 1 和第二光源 10 的出射光路中,用于将第一光源 1 出射的近红外光和第二光源 10 出射的红外光反射到人眼 16 。第二二向色镜 9 使可见光全透射、红外及近红外光全反射,验光装置在检测时,受检者透过第二二向色镜 9 注视远处物体以使受检者眼睛处于放松状态。
第二透镜组 8 设置在第二二向色镜 9 和第一二向色镜 7 之间。第一二向色镜 7 使近红外光全透射、红外光全反射,第五透镜组 11 和第二光电探测器 12 依次设置在第一二向色镜 7 的反射光路中以采集角膜反射的红外图像。
第一二向色镜 7 设置在透镜组和分束器 6 之间,第三透镜组 13 、第四透镜组 14 、第一光电探测器 15 依次设置在分束器 6 的反射光路中以采集视网膜反射的近红外图像。
该验光装置还包括驱动模块。驱动模块包括用于分别驱动第一反射镜 3 和第二反射镜 5 转动的第一电机和第二电机、用于驱动第一光电探测器 15 移动的第三电机。在其它的实施方式中,第一反射镜 3 、第二反射镜 5 、第一光电探测器 15 也可由一个或两个电机同时驱动。扫描模块还包括用于分别检测第一电机和第二电机的输出轴转动角度的第一光耦和第二光耦。屈光度测量模块还包括用于检测第一光电探测器 15 位置的第三光耦。第一反射镜 3 和第二反射镜 5 互为共轭面且均与人眼瞳孔互为共轭面,第一电机、第二电机驱动第一反射镜 3 、第二反射镜 5 转动时,第一光束绕瞳孔转动,第一光束能够全部通过通孔达到视网膜处形成光斑,对视网膜进行扫描。根据第一光耦和第二光耦检测到的转动角度数据,控制第一电机和第二电机转动,保证视网膜的黄斑区域和黄斑区域外均能够被扫描。由于视网膜不同区域的屈光度数值可能不同,近红外图像的成像位置也不同,因此经第四透镜组 14 形成的近红外图像与第四透镜组 14 的间距也不同,第三电机通过丝杠等传动机构驱动第一光电探测器 15 相对第四透镜组 14 移动,直至第一光电探测器 15 采集到上述近红外图像。光耦通过记录丝杠的移动距离即可获得第一光电探测器 15 的位置即近红外图像的成像位置,不同的近红外图像成像位置对应不同的屈光度数值。
角膜曲率测量模块采用呈圆环状排列的一组红外 LED 投射模组投影红外圆环形光斑,经人眼角膜镜面反射后,再经透镜组成像在第二光电探测器 12 ,采集红外图像。屈光度测量模块采用近红外 LED 灯,经环形的光阑 2 生成圆环形的近红外光圈,将近红外光圈投影到视网膜上,在视网膜上发生反射,反射的光线从人眼射出,经透镜组成像在第一光电探测器 15 ,根据检测得的第一光电探测器 15 的位置即成像位置通过标定算法获得人眼的屈光度。
该验光装置还包括数据存储模块和无线传输模块。数据存储模块用于存储屈光度和角膜曲率数据。无线传输模块用于将屈光度和角膜曲率数据传输到云服务器中,进行长期存数以方便后续查看和医生分析。
综上所述,本发明具有如下特点:
采用开放视窗设计,即采用可见光全透射、红外光及近红外光全反射的二向色镜,使人眼处于放松状态,而且对屈光度测量模块和角膜曲率测量模块的红外光及近红外光反射率很高,提升使用舒适度和能量利用率。
屈光度测量模块的出射光路中设置扫描模块,通过电机驱动扫描模块的两组扫描反射镜转动,实现对视网膜光斑的二维扫描,从而实现视网膜黄斑区域和黄斑区域外的屈光度测量,解决旁中心离焦屈光度测量不正的问题,实现旁中心离焦的屈光度测量,提供更科学的配镜指导数据。
扫描模块的两个扫描反射镜位于和人眼瞳孔共轭的两个不同位置,保证扫描模块进行扫描时光线绕瞳孔旋转,确保光线全部通过瞳孔,对视网膜上进行二维扫描。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种可测量旁中心离焦的验光装置,包括屈光度测量模块,所述屈光度测量模块包括用于出射第一光束的第一光源,其特征在于:该验光装置还包括用于改变第一光束在视网膜上所形成光斑的位置的扫描模块,所述扫描模块包括依次且可转动地设置在所述第一光源的出射光路中的第一反射镜和第二反射镜,所述第一反射镜的转动轴心线与所述第二反射镜的转动轴心线之间构成一大于 0 小于 180 度的夹角。
  2. 根据权利要求 1 所述的验光装置,其特征在于:该验光装置包括用于使受检者眼球处于放松状态的固视模块,所述固视模块包括用于使可见光全透射、第一光束全反射的第二二向色镜,所述第二二向色镜设置在所述第一光源的出射光路中。
  3. 根据权利要求 2 所述的验光装置,其特征在于:该验光装置还包括光阑、第一透镜组、分束器、第三透镜组、第四透镜组及第一光电探测器,所述光阑、第一反射镜、第一透镜组、第二反射镜、分束器、第二二向色镜依次设置在所述第一光源的出射光路中,所述第三透镜组、第四透镜组、第一光电探测器依次设置在所述分束器的反射光路中,且所述第一光电探测器可相对所述第四透镜组移动地设置在光路中。
  4. 根据权利要求 3 所述的验光装置,其特征在于:该验光装置还包括角膜曲率测量模块、第一二向色镜、第五透镜组及第二光电探测器,所述角膜曲率测量模块包括用于出射第二光束的第二光源,所述第一二向色镜使第一光束全透射且第二光束全反射,所述第五透镜组及第二光电探测器依次设置在所述第一二向色镜的反射光路中,所述第二二向色镜使可见光全透射且第一光束和第二光束全反射。
  5. 根据权利要求 4 所述的验光装置,其特征在于:所述第二二向色镜设置在所述第一光源及第二光源的出射光路中,所述第一二向色镜设置在所述第二二向色镜和所述分束器之间。
  6. 根据权利要求 5 所述的验光装置,其特征在于:该验光装置包括设置在所述第一二向色镜和第二二向色镜之间的第二透镜组。
  7. 根据权利要求 4 至 6 任一项所述的验光装置,其特征在于:所述第一光束的波长为 780~890nm ,所述第二光束的波长为 900~1000nm 。
  8. 根据权利要求 1 所述的验光装置,其特征在于:该验光装置还包括可移动地设置在所述第一光束的成像光路中的第一光电探测器、用于检测所述第一光电探测器的位置的第三光耦。
  9. 根据权利要求 8 所述的验光装置,其特征在于:该验光装置还包括用于驱动所述第一光电探测器移动及驱动所述第一反射镜和第二反射镜转动的驱动模块、用于存储屈光度和角膜曲率数据的数据存数模块、用于将屈光度和角膜曲率数据传输至云服务器的传输模块。
  10. 根据权利要求 1 所述的验光装置,其特征在于:所述第一反射镜的转动轴心线与所述第二反射镜的转动轴心线相互垂直。
PCT/CN2016/095559 2015-06-18 2016-08-16 可测量旁中心离焦的验光装置 WO2016202312A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,672 US10478062B2 (en) 2015-06-18 2016-08-16 Optometry apparatus capable of measuring para-central defocus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510341685.0 2015-06-18
CN201510341685.0A CN104905763B (zh) 2015-06-18 2015-06-18 可测量旁中心离焦的验光装置

Publications (1)

Publication Number Publication Date
WO2016202312A1 true WO2016202312A1 (zh) 2016-12-22

Family

ID=54075529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095559 WO2016202312A1 (zh) 2015-06-18 2016-08-16 可测量旁中心离焦的验光装置

Country Status (3)

Country Link
US (1) US10478062B2 (zh)
CN (1) CN104905763B (zh)
WO (1) WO2016202312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104905763B (zh) * 2015-06-18 2017-12-19 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194131A (zh) * 1998-03-30 1998-09-30 华北工学院 一种客观验光仪的光学系统
US20030011745A1 (en) * 1998-10-07 2003-01-16 Tracey Technologies, Llc Device for measuring aberration refraction of the eye
WO2004086962A1 (ja) * 2003-03-31 2004-10-14 Kabushiki Kaisha Topcon 屈折測定装置
CN103142210A (zh) * 2013-02-26 2013-06-12 温州医学院 一种基于oct技术的周边屈光测量方法
CN103989453A (zh) * 2014-06-03 2014-08-20 深圳市莫廷影像技术有限公司 一种多功能眼科测量装置及测试人眼不同部位的方法
CN104905763A (zh) * 2015-06-18 2015-09-16 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置
CN204765562U (zh) * 2015-06-18 2015-11-18 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60239278D1 (de) * 2001-09-07 2011-04-07 Topcon Corp Instrument zur messung von optischen merkmalen der augen
EP2114238A1 (en) * 2007-02-14 2009-11-11 The Institute For Eye Research Limited Characterization of optical systems
ES2380469B2 (es) * 2010-10-15 2013-04-10 Universidad De Murcia Instrumento para la medida rápida de las propiedades ópticas del ojo en todo el campo visual.
US8894207B2 (en) * 2012-03-07 2014-11-25 Optovue, Inc. Enhanced biometry using optical coherence tomography
US9370300B2 (en) * 2012-04-24 2016-06-21 Shenzhen Certainn Technology Co., Ltd. Ophthalmic optical coherence tomography system and method for quick switching to realize anterior and posterior eye segments imaging
US9474481B2 (en) * 2013-10-22 2016-10-25 Mindstrong, LLC Method and system for assessment of cognitive function based on electronic device usage
CN104095610B (zh) * 2014-07-25 2017-01-11 上海展志光学仪器有限公司 一种测量人眼屈光度和角膜曲率半径的光学系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194131A (zh) * 1998-03-30 1998-09-30 华北工学院 一种客观验光仪的光学系统
US20030011745A1 (en) * 1998-10-07 2003-01-16 Tracey Technologies, Llc Device for measuring aberration refraction of the eye
WO2004086962A1 (ja) * 2003-03-31 2004-10-14 Kabushiki Kaisha Topcon 屈折測定装置
CN103142210A (zh) * 2013-02-26 2013-06-12 温州医学院 一种基于oct技术的周边屈光测量方法
CN103989453A (zh) * 2014-06-03 2014-08-20 深圳市莫廷影像技术有限公司 一种多功能眼科测量装置及测试人眼不同部位的方法
CN104905763A (zh) * 2015-06-18 2015-09-16 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置
CN204765562U (zh) * 2015-06-18 2015-11-18 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置

Also Published As

Publication number Publication date
CN104905763B (zh) 2017-12-19
CN104905763A (zh) 2015-09-16
US20180153400A1 (en) 2018-06-07
US10478062B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6532064B2 (ja) 眼科における改良または眼科に関する改良
TWI520711B (zh) 用於操作即時大屈光度範圍之連續波前感測器之裝置及方法
JP4287290B2 (ja) 光学的特性の測定
JP3629304B2 (ja) 眼底を照明および検査する装置
WO2016202311A2 (zh) 手持式自主视力测量装置及视力测量方法
JP6116571B2 (ja) 眼科測定システム
WO2012145882A1 (zh) 一种眼科oct系统和眼科oct成像方法
TWI629045B (zh) 透鏡模組及眼底相機
JP2006522653A (ja) 強膜経由の眼の照明方法及びシステム
TWI676459B (zh) 眼底相機
CN108324240A (zh) 眼底相机
WO2016202312A1 (zh) 可测量旁中心离焦的验光装置
CN204765562U (zh) 可测量旁中心离焦的验光装置
JP2017064407A (ja) 眼底撮影装置
US20220211265A1 (en) Ophthalmic optical system and ophthalmic device
TW202141102A (zh) 掃描裝置以及光學同調斷層掃描系統
WO2021066045A1 (ja) 眼科装置
TWI584778B (zh) 光學檢測裝置及其系統
CN106999039B (zh) 用于眼睛检查的透镜系统
JP2023550704A (ja) 眼の網膜の画像を捕捉するためのアダプタおよび方法
CN117761950A (zh) 眼底照相机
JP2020089410A (ja) 眼科装置
WO2020073187A1 (zh) 眼底图像检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737672

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811053

Country of ref document: EP

Kind code of ref document: A1