WO2016202311A2 - 手持式自主视力测量装置及视力测量方法 - Google Patents

手持式自主视力测量装置及视力测量方法 Download PDF

Info

Publication number
WO2016202311A2
WO2016202311A2 PCT/CN2016/095558 CN2016095558W WO2016202311A2 WO 2016202311 A2 WO2016202311 A2 WO 2016202311A2 CN 2016095558 W CN2016095558 W CN 2016095558W WO 2016202311 A2 WO2016202311 A2 WO 2016202311A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
diopter
image
vision
measuring device
Prior art date
Application number
PCT/CN2016/095558
Other languages
English (en)
French (fr)
Other versions
WO2016202311A3 (zh
Inventor
谢佩
蒋沁
褚仁远
周行涛
王勤美
曾骏文
魏瑞华
沈激
Original Assignee
苏州四海通仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州四海通仪器有限公司 filed Critical 苏州四海通仪器有限公司
Priority to US15/737,562 priority Critical patent/US10694937B2/en
Publication of WO2016202311A2 publication Critical patent/WO2016202311A2/zh
Publication of WO2016202311A3 publication Critical patent/WO2016202311A3/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the invention relates to a hand-held autonomous vision measuring device and a vision measuring method.
  • the measured object looks at the fixed visual target inside (or outside) the instrument, the measuring personnel operate the three-dimensional joystick of the refractometer, and adjusts the three-dimensional distance between the refractometer and the human eye to make the human eye in the optometry system.
  • the working position, then the vision measurement, the chin and forehead of the person being measured must be in close contact with the measuring bracket during the operation.
  • the actual measurement results are not accurate, which directly affects the accuracy of vision correction when glasses are worn.
  • an object of the present invention is to provide a hand-held autonomous vision measuring device and a vision measuring method.
  • a hand-held autonomous vision measuring device comprising a corneal curvature measuring module, the corneal curvature measuring module comprising a first light source for emitting a first light beam and a first image for collecting an image formed by the first light beam reflected by the cornea
  • An image collector the first image collector being movably disposed in a corneal curvature measuring optical path of the corneal curvature measuring module, the corneal curvature measuring module further comprising: driving the first image collector along a corneal curvature The optical path is measured to move the first image collector to the first motor at the imaging location.
  • the first light source comprises a plurality of LED projection modules, and the plurality of LED projection modules are equally arranged in an annular shape.
  • the vision measuring device further comprises a fixation module and a first dichroic mirror, wherein the first dichroic mirror transmits the visible light and the first light beam is totally reflected, and the user passes the first two during the measurement.
  • the fixation module is gazing at the color mirror, and the first dichroic mirror is disposed in an exiting optical path of the first light source.
  • the fixation module includes a first lens group and a second lens group disposed between the first lens group and the first dichroic mirror.
  • the vision measuring device further comprises a diopter measuring module, the diopter measuring module comprising a second light source that emits the second light beam, and a second image collector for collecting an image formed by the second light beam reflected by the retina,
  • the first dichroic mirror totally transmits visible light, and the first light beam and the second light beam are totally reflected.
  • the first dichroic mirror is disposed in an exiting optical path of the first light source and the second light source.
  • the second image collector is movably disposed in a diopter measurement optical path of the diopter measurement module, the diopter measurement module further comprising: driving the second image collector to move along the diopter measurement optical path to enable The second image capturer moves to a second motor at the imaging location.
  • the vision measuring device further includes a second dichroic mirror that totally reflects the first light beam and the second light beam is completely transmitted, and the first dichroic mirror and the second dichroic mirror are sequentially disposed on the cornea
  • the visual acuity measuring device further includes a beam splitter having an elliptical reflecting surface, the beam splitter being disposed in the diopter measuring optical path and located behind the second dichroic mirror.
  • the first light beam has a wavelength of 900 to 1000 nm
  • the second light beam has a wavelength of 790 to 870 nm
  • the first image collector and the second image collector are both photodetectors.
  • the vision measuring device further comprises a data storage module for storing diopter and corneal curvature data, a transmission module for transmitting diopter and corneal curvature data to the cloud server.
  • a method of measuring vision comprising the following steps:
  • the incident angle of the first beam incident on the cornea is ⁇
  • the radius of curvature of the cornea is R 1 .
  • the pixels of the center of the image are obtained, and the obtained center is fitted into a circle to obtain Fitting the radius R 2 of the circle, the total magnification of the third lens group and the fourth lens group is ⁇ 1 , and the radius of curvature of the cornea is as shown in the formula (1).
  • Equation (1) is fitted by polynomial as in equation (2),
  • the corneal curvatures of each of the standard simulated eyes are known and different from each other, and the values of a 0 , a 1 , a 2 , and a 3 are obtained;
  • the image of the cornea reflected by the examiner obtains the radius of curvature R 2 of the corresponding fitted circle, and obtains the radius of curvature R 1 of the subject according to formula (2);
  • S201 diopter measurement calibration the relationship between diopter and each lens group in the imaging path is as shown in equations (3), (4), (5):
  • L 0 is the distance from the third lens group to the cornea
  • D 0 is the diopter of the human eye in the standard position
  • f′ 3 , f′ 5 , and f′ 6 are the third lens group, the fifth lens group, and the sixth, respectively.
  • the focal length of the lens group, l′ 3 , l′ 5 , and l′ 6 are the image distances after the spots on the retina pass through the third lens group, the fifth lens group, and the sixth lens, respectively
  • ⁇ l 35 is the third lens group.
  • the distance from the fifth lens group, ⁇ l 56 is the pitch of the fifth lens group and the sixth lens group; fitting the equations (3), (4), (5) to obtain a fourth-order polynomial, using a plurality of standard simulated eyes Calibrating the vision measuring device, the diopter of each of the standard simulated eyes is known and different from each other, and the values of the coefficients of the fourth-order polynomial are obtained; when measuring, the image distance of the sixth lens group is measured as l' 6 , and further Obtaining the diopter D 0 of the human eye in the standard position according to the fourth-order polynomial described above;
  • S202 diopter compensation calibrating the vision measuring device with a standard simulated eye of known corneal curvature, moving the standard simulated eye, and detecting the imaging position of the first beam when the standard simulated eye is at different positions, obtaining the corneal position Corresponding relationship with the imaging position of the first beam; measuring the curvature of the cornea of the subject, measuring the actual imaging position of the first beam, and obtaining the current corneal position of the subject according to the correspondence between the position of the cornea and the imaging position of the first beam The distance between the current corneal position and the third lens group is compared with L 0 to obtain a displacement difference ⁇ x; the diopter D 0 is compensated, and the compensated diopter is the actual diopter D of the subject, and the actual diopter D and the human eye are The relationship of the diopter D 0 at the standard position is as shown in the formula (6).
  • the corneal curvature measurement module of the invention adopts a motor to drive the first image collector to auto focus, and the subject can complete the vision measurement without using the second person to focus the focus.
  • the vision measuring device of the invention realizes single operation of the subject, and the vision measurement is convenient, and the miniaturization of the optometry system can be effectively realized. And portable.
  • FIG. 1 is a schematic structural view of a vision measuring device of the present invention
  • FIG. 2 is a schematic view showing the arrangement of the first light source and the third lens group of the present invention
  • Figure 3 is a schematic view of an annular diaphragm of the present invention.
  • 4a, 4b are respectively a front view of the beam splitter of the present invention and a projection view of the optical path along the diopter measurement;
  • Fig. 5 is a view showing the relationship between the diopter of the present invention and each lens group in the imaging optical path.
  • the vision measuring apparatus includes a first lens group 1, a second lens group 2, a first dichroic mirror 3, a first light source 4, a third lens group 5, and a second dichroic mirror 6, a four lens group 7, a first image collector 8, a first motor (not shown), a second light source 9, a stop 10, a seventh lens group 11, a beam splitter 12, a fifth lens group 13, A six lens group 14, a second image collector 5, and a second motor (not shown).
  • the first lens group 1 and the second lens group 2 constitute a fixation module for eye gaze, and the fixation module adopts a telephoto system to control the observation direction and the observation position of the human eye, the exit pupil of the fixation module and the human eye.
  • the pupils are consistent.
  • the first light source 4, the first dichroic mirror 3, the third lens group 5, the second dichroic mirror 6, the fourth lens group 7, the first image collector 8, and the first motor constitute a corneal curvature measuring module, For measuring corneal curvature.
  • the lens group 14, the second image collector 5, and the second motor constitute a diopter measurement module for measuring the diopter of the retina.
  • the light source exiting the corneal curvature measurement module and the diopter measurement module is as follows:
  • the first light source 4 emits a first light beam of an infrared wavelength having a wavelength of 900 to 1000 nm.
  • the first light source 4 includes eight LED projection modules, and the eight LED projection modules are arranged in a ring shape around the central axis of the third lens group 5 at equal intervals.
  • Each The LED projection module comprises an LED lamp, a diffusion sheet, a light transmission hole and a first light source 4 lens group.
  • the first beam emitted is a bundle of annular infrared light.
  • the first dichroic mirror 3 transmits the visible light and the first light beam is totally reflected.
  • the first dichroic mirror 3 is disposed in the exiting optical path of the first light source 4 for reflecting the first light beam onto the cornea of the human eye
  • the second lens group 2 is disposed in the first lens group 1 and the first dichroic color
  • the human eye looks at the second lens group 2 and the first lens group 1 through the first dichroic mirror 3, keeping the human eye in a relaxed state.
  • the second light source 9 emits a second light beam of a near-infrared wavelength having a wavelength of 790 to 870 nm.
  • the aperture 10, the seventh lens group 11, the beam splitter 12, the second dichroic mirror 6, the third lens group 5, and the first dichroic mirror 3 are sequentially disposed in the outgoing optical path of the second light source 9.
  • the aperture 10 is an annular aperture 10
  • the second beam passing through the annular aperture 10 is a bundle of near-infrared light.
  • the second dichroic mirror 6 totally transmits the second light beam (near-infrared light having a wavelength of 790 to 870 nm) and the first light beam (infrared light having a wavelength of 900 to 1000 nm).
  • the first dichroic mirror 3 totally reflects near-infrared light (near-infrared light having a wavelength of 790 to 870 nm) and infrared light (infrared light having a wavelength of 900 to 1000 nm) to make visible light (light having a wavelength of 400 to 700 nm). Full transmission.
  • the second light beam is sequentially transmitted from the beam splitter 12, the seventh lens group 11, and the second dichroic mirror 6, and is concentrated by the third lens group 5 and then reflected by the first dichroic mirror 3 to the retina.
  • the image acquisition process of the corneal curvature measurement module and the diopter measurement module is as follows:
  • the first dichroic mirror 3, the third lens group 5, the second dichroic mirror 6, the fourth lens group 7, and the first image collector 8 are sequentially disposed in the imaging optical path of the first light beam.
  • the first light beam reflected by the cornea is then reflected by the first dichroic mirror 3 to change the direction of propagation, is concentrated by the third lens group 5, is reflected by the second dichroic mirror 6 to change the direction of propagation again, and then passes through the fourth lens.
  • the group 7 converges the imaging, and the first motor drives the first image collector 8 to move to autofocus, causing the first image collector 8 to move to the imaging position for image acquisition.
  • the first dichroic mirror 3, the third lens group 5, the second dichroic mirror 6, the beam splitter 12, the fifth lens group 13, the sixth lens group 14, and the second image collector 5 are sequentially disposed in the second
  • the beam is imaged in the optical path.
  • the beam splitter 12 includes a reflective surface formed in the middle of the beam splitter 12, the reflective surface being elliptical, and the orthographic projection of the reflective surface along the imaging optical path of the second beam is circular.
  • the second light beam reflected by the retina is reflected by the first dichroic mirror 3 to change the direction of propagation, is concentrated by the third lens group 5, transmitted by the second dichroic mirror 6, and then reflected by the reflecting surface of the beam splitter 12 Changing the direction of propagation, then converge through the fifth lens group 13, imaging the sixth lens group 14, the second motor drives the second image collector 5 to move to autofocus, and moves the second image collector 5 to the imaging position for image acquisition. .
  • the vision measuring device of the present invention further includes a data storage module and a wireless transmission module.
  • the data storage module is used to store diopter and corneal curvature data.
  • the wireless transmission module is used to transmit diopter and corneal curvature data to the cloud server for long-term storage for subsequent viewing and physician analysis.
  • the first image collector 8 and the second image collector 5 are photodetectors.
  • the vision measurement method of the present invention includes S1 corneal curvature measurement and S2 diopter measurement.
  • the S1 corneal curvature measurement comprises the following steps: the incident angle of the first light beam incident on the cornea is ⁇ , and the radius of curvature of the cornea is R 1 , according to the circular image acquired by the first image collector 8, the pixel of the center of the circular circle is obtained. The obtained center is fitted into a circle to obtain a radius R 2 of the fitted circle, the total magnification of the third lens group 5 and the fourth lens group 7 is ⁇ 1 , and the radius of curvature of the cornea is as shown in the formula (1).
  • Equation (1) is fitted by polynomial as in equation (2),
  • the above-mentioned visual acuity measuring device is calibrated by a plurality of (for example, ten) standard simulated eyes having different radii of curvature and having a known radius of curvature, and the values of a 0 , a 1 , a 2 , and a 3 are obtained; a ring-shaped image frame grabber subject 8 collected reflected by the cornea, to obtain the corresponding fitting circle radius of curvature R 2, according to formula (2) obtained subject corneal radius of curvature R 1.
  • the S2 diopter measurement includes the following steps: S201 diopter measurement calibration, S202 diopter compensation.
  • L 0 is the distance from the third lens group 5 to the cornea
  • D 0 is the diopter of the human eye at the standard position (the standard position is the measured reference position)
  • f′ 3 , f′ 5 , and f′ 6 are respectively the third
  • the focal lengths of the lens group 5, the fifth lens group 13, and the sixth lens group 14, l' 3 , l' 5 , and l' 6 are the apertures on the retina passing through the third lens group 5, the fifth lens group 13, and the sixth
  • the image distance after imaging of the lens group 14 is ⁇ l 35 is the pitch of the third lens group 5 and the fifth lens group 13, and ⁇ l 56 is the pitch of the fifth lens group 13 and the sixth lens group 14;
  • the equations (3), (4), and (5) are fitted to obtain a fourth-order polynomial, and the above-mentioned vision measuring devices are calibrated by using a plurality of standard simulated eyes, and the diopter of each standard simulated eye is known and different from each other. And the diopter of the standard simulated eye ranges from -20D to 20D, and the values of the coefficients of the fourth-order polynomial are obtained;
  • S202 diopter compensation the position of the human eye is changed before and after the measurement, and the imaging position is changed.
  • the present invention calibrates the visual acuity measuring device by using a standard simulated eye with a known corneal curvature, moves the standard simulated eye, and detects when The standard simulates an imaging position of the first beam when the eye is at different positions, obtains a correspondence relationship between the position of the cornea and the imaging position of the first beam; measures the curvature of the cornea of the subject, and measures the actual imaging position of the first beam, according to the position of the cornea Corresponding relationship with the imaging position of the first beam, the current corneal position of the subject is obtained, and the distance between the current corneal position and the third lens group is compared with L 0 to obtain a displacement difference ⁇ x; the diopter D 0 is compensated and compensated The subsequent diopter is the actual diopter D of the subject, and the relationship between the actual diopter D and the diopter D 0 of the human eye at the standard position is as shown in the formula (6).
  • the corneal curvature measuring module and the diopter measuring module of the present invention respectively drive the first image collector 8 and the second image collector 5 to automatically focus by using the first motor and the second motor, respectively, without using the second person to focus, and are inspected.
  • the vision measuring device can complete the vision measurement by itself, and the vision measuring device of the invention realizes single operation of the subject, and the vision measurement is convenient, and the miniaturization and portability of the optometry system can be effectively realized.
  • the first dichroic mirror 3 is used in the present invention, and the visible band (400-700 nm) is completely transmitted, and the infrared band (780-1000 nm) is totally reflected. Compared with the conventional optometry system, the first light source 4 can be effectively prevented.
  • the stimulation of the human eye eliminates the influence of human eye adjustment on the measurement of diopter, and the high transmittance of the visible portion of the fixation module enables the human eye to be relaxed for proper observation.
  • the fixation module of the present invention adopts a telephoto system consisting of a first lens group 1 and a second lens group 2, the pupil size of the fixation module is matched with the pupil of the human eye, the angle of view is only a few degrees, and the existing optometry Compared with the instrument fixation system, the eye can effectively make the human eye in the correct viewing position and the human eye is in a relaxed state, and the object is observed at a correct angle.
  • the present invention includes a wireless transmission module that can upload the final vision data of the test device to the cloud server.
  • the conventional vision measurement system usually performs discrete and irregular vision measurement on the subject, and the present invention can effectively collect and receive
  • the visual data of the examiner at different times facilitates the future modeling of the visual acuity of the test subject's vision and the analysis of the future development trend of the visual acuity, and the vision tracking prediction of the subject.

Abstract

本发明公开了一种手持式自主视力测量装置及视力测量方法。它包括角膜曲率测量模块,所述角膜曲率测量模块包括用于出射第一光束的第一光源以及用于采集第一光束经角膜反射后所形成的图像的第一图像采集器,所述第一图像采集器可移动地设置在所述角膜曲率测量模块的角膜曲率测量光路中,所述角膜曲率测量模块还包括用于驱动所述第一图像采集器沿角膜曲率测量光路移动以使第一图像采集器移动到成像位置处的第一电机。采用第一电机驱动第一图像采集器自动对焦,无需借助第二人调焦对焦,受检者自己可完成视力测量,本发明实现受检者单人操作,视力测量方便,可以有效实现验光系统的小型化和便携。

Description

手持式自主视力测量装置及视力测量方法 技术领域
本发明涉及一种手持式自主视力测量装置及视力测量方法。
背景技术
目前,传统验光仪器体积较大,不方便携带。而且对使用者的专业知识有一定要求,需要专业验光人员来对被测量者进行视力测量,被测量者不能独立完成视力测量。传统验光仪器工作原理是:被测量者注视仪器内部(或者外部)的固定视标,测量人员操作验光仪的三维操纵杆,通过调节验光仪和人眼的三维距离,使人眼处于验光系统的工作位置,然后进行视力测量,操作过程中被测量者下巴和额头必须紧贴着测量托架。对于不配合的被测量者,或者专业技能不足的测量者,造成实际的测量结果不准,直接影响配眼镜时视力矫正的准确性。
发明内容
针对上述问题,本发明的目的是提供一种手持式自主视力测量装置及视力测量方法。
为达到上述目的,本发明采用的一种技术方案为:
一种手持式自主视力测量装置,包括角膜曲率测量模块,所述角膜曲率测量模块包括用于出射第一光束的第一光源以及用于采集第一光束经角膜反射后所形成的图像的第一图像采集器,所述第一图像采集器可移动地设置在所述角膜曲率测量模块的角膜曲率测量光路中,所述角膜曲率测量模块还包括用于驱动所述第一图像采集器沿角膜曲率测量光路移动以使第一图像采集器移动到成像位置处的第一电机。
优选地,所述第一光源包括多个LED投射模组,多个所述LED投射模组等间隔排列呈圆环状。
优选地,该视力测量装置还包括固视模块及第一二向色镜,所述第一二向色镜使可见光全透射、第一光束全反射,测量时使用者透过所述第一二向色镜注视所述固视模块,且所述第一二向色镜设置在所述第一光源的出射光路中。
更优选地,所述固视模块包括第一透镜组及设置于所述第一透镜组和所述第一二向色镜之间的第二透镜组。
更优选地,该视力测量装置还包括屈光度测量模块,所述屈光度测量模块包括出射第二光束的第二光源、用于采集第二光束经视网膜反射后所形成的图像的第二图像采集器,所述第一二向色镜使可见光全透射、第一光束及第二光束全反射,所述第一二向色镜设置在所述第一光源和第二光源的出射光路中。
进一步地,所述第二图像采集器可移动地设置在所述屈光度测量模块的屈光度测量光路中,所述屈光度测量模块还包括用于驱动所述第二图像采集器沿屈光度测量光路移动以使第二图像采集器移动到成像位置处的第二电机。
进一步地,该视力测量装置还包括使第一光束全反射、第二光束全透射的第二二向色镜,所述第一二向色镜、所述第二二向色镜依次设置在角膜曲率测量光路、屈光度测量光路中,该视力测量装置还包括具有椭圆形反射面的分束器,所述分束器设置在屈光度测量光路中且位于所述第二二向色镜之后。
优选地,所述第一光束的波长为900~1000nm,所述第二光束的波长为790~870nm,所述第一图像采集器和第二图像采集器均为光电探测器。
优选地,该视力测量装置还包括用于存储屈光度和角膜曲率数据的数据存储模块、用于将屈光度和角膜曲率数据传输至云服务器的传输模块。
本发明采用的又一种技术方案是:
一种视力测量方法,包括如下步骤:
S1角膜曲率测量:第一光束入射到角膜上的入射角度为θ,角膜的曲率半径为R1,根据采集到的图像,获得该图像的圆心的像素,将获得的圆心拟合成圆,获得拟合圆的半径R2,第三透镜组和第四透镜组的总放大倍率为β1,角膜曲率半径如式(1),
Figure PCTCN2016095558-appb-000001
式(1)经多项式拟合后如式(2),
Figure PCTCN2016095558-appb-000002
用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的角膜曲率均已知且互不相同,获取a0、a1、a2、a3的数值;根据采集到的受检者眼角膜反射的图像,获得相应的拟合圆的曲率半径R2,根据式(2)得出受检者角膜曲率半径R1
S2屈光度测量,包括
S201屈光度测量标定:屈光度与成像光路中的各透镜组的关系如式(3)、(4)、(5):
Figure PCTCN2016095558-appb-000003
Figure PCTCN2016095558-appb-000004
Figure PCTCN2016095558-appb-000005
其中,L0为第三透镜组到角膜的距离,D0为人眼在标准位置时的屈光度,f′3、f′5、f′6分别为第三透镜组、第五透镜组、第六透镜组的焦距,l′3、l′5、l′6分别为视网膜上的光斑经过第三透镜组、第五透镜组、第六透镜组成像后的像距,Δl35为第三透镜组和第五透镜组的间距,Δl56为第五透镜组和第六透镜组的间距;对式(3)、(4)、(5)进行拟合得到四阶多项式,采用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的屈光度均已知且互不相同,获取上述四阶多项式各系数的数值;测量时,测得第六透镜组的像距l′6,进而根据上述四阶多项式获得人眼在标准位置时的屈光度D0
S202屈光度补偿:采用一个已知角膜曲率的标准模拟眼对视力测量装置进行标定,移动所述标准模拟眼,并检测当所述标准模拟眼处于不同位置时第一光束的成像位置,获得角膜位置和第一光束成像位置的对应关系;测量受检者角膜曲率,测得第一光束实际成像位置,根据所述角膜位置和第一光束成像位置的对应关系,得出受检者当前的角膜位置,将当前角膜位置到第三透镜组的距离与L0比较得出位移差值Δx;对屈光度D0进行补偿,补偿后的屈光度为受检者的实际屈光度D,实际屈光度D和人眼在标准位置时的屈光度D0的关系如式(6)所示。
Figure PCTCN2016095558-appb-000006
本发明采用上述技术方案,相比现有技术具有如下优点:本发明角膜曲率测量模块采用电机驱动第一图像采集器自动对焦,无需借助第二人调焦对焦,受检者自己可完成视力测量,本发明的视力测量装置实现受检者单人操作,视力测量方便,可以有效实现验光系统的小型化 和便携。
附图说明
图1为本发明的视力测量装置的结构示意图;
图2为本发明的第一光源和第三透镜组的排布示意图;
图3为本发明的环形光阑的示意图;
图4a、4b分别为本发明的分束器的正面视图和沿屈光度测量光路的投影示意图;
图5为本发明的屈光度与其成像光路中的各透镜组的关系示意图。
其中,1、第一透镜组;2、第二透镜组;3、第一二向色镜;4、第一光源;5、第三透镜组;6、第二二向色镜;7、第四透镜组;8、第一图像采集器;9第二光源;10、光阑;11、第七透镜组;12、分束器;13、第五透镜组;14、第六透镜组;15、第二图像采集器。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
图1所示为本发明的一种手持式自主视力测量装置。结合图1所示,视力测量装置包括第一透镜组1、第二透镜组2、第一二向色镜3、第一光源4、第三透镜组5、第二二向色镜6、第四透镜组7、第一图像采集器8、第一电机(图中未示出)、第二光源9、光阑10、第七透镜组11、分束器12、第五透镜组13、第六透镜组14、第二图像采集器5、第二电机(图中未示出)。
第一透镜组1、第二透镜组2构成固视模块,用于供人眼注视,固视模块采用望远系统,控制人眼的观察方向和观察位置,固视模块的出瞳和人眼瞳孔相一致。第一光源4、第一二向色镜3、第三透镜组5、第二二向色镜6、第四透镜组7、第一图像采集器8及第一电机构成角膜曲率测量模块,用于测量角膜曲率。第二光源9、光阑10、第七透镜组11、分束器12、第二二向色镜6、第三透镜组5、第一二向色镜3、第五透镜组13、第六透镜组14、第二图像采集器5及第二电机构成屈光度测量模块,用于测量视网膜的屈光度。
角膜曲率测量模块和屈光度测量模块的光源出射光路如下:
第一光源4出射波长为900~1000nm的红外波段的第一光束。结合图2所示,第一光源4包括八个LED投射模组,八个LED投射模组等间隔绕第三透镜组5的中心轴排列呈环状。每个 LED投射模组包括LED灯、扩散片、透光孔及第一光源4透镜组构成。所出射的第一光束为一束环形的红外光。第一二向色镜3使可见光全透过、第一光束全反射。第一二向色镜3设置在第一光源4的出射光路中用于将第一光束反射至人眼角膜上,且第二透镜组2设置在第一透镜组1和第一二向色镜3之间,人眼透过第一二向色镜3注视第二透镜组2和第一透镜组1,保持人眼处于放松状态。
第二光源9出射波长为790~870nm的近红外波段的第二光束。光阑10、第七透镜组11、分束器12、第二二向色镜6、第三透镜组5、第一二向色镜3依次设置在第二光源9的出射光路中。结合图3所示,光阑10为环形光阑10,经过环形光阑10后的第二光束为一束环形的近红外光。第二二向色镜6使第二光束(波长为790~870nm的近红外光)全透过、第一光束(波长为900~1000nm的红外光)全反射。第一二向色镜3使近红外光(波长为790~870nm的近红外光)和红外光(波长为900~1000nm的红外光)全反射、使可见光(波长为400~700nm波段的光)全透射。第二光束依次自分束器12、第七透镜组11、第二二向色镜6透射,经第三透镜组5汇聚后再经第一二向色镜3反射至视网膜处。
角膜曲率测量模块和屈光度测量模块的图像采集过程如下:
第一二向色镜3、第三透镜组5、第二二向色镜6、第四透镜组7、第一图像采集器8依次设置在第一光束的成像光路中。经角膜反射的第一光束再经第一二向色镜3反射以改变传播方向,经第三透镜组5汇聚后经由第二二向色镜6反射以再次改变传播方向,然后经第四透镜组7汇聚成像,第一电机驱动第一图像采集器8移动以自动对焦,使第一图像采集器8移动到成像位置处进行图像采集。
第一二向色镜3、第三透镜组5、第二二向色镜6、分束器12、第五透镜组13、第六透镜组14、第二图像采集器5依次设置在第二光束的成像光路中。结合图4a、4b所示,分束器12包括形成于分束器12中部的反射面,反射面呈椭圆形,且反射面沿第二光束的成像光路的正投影为圆形。经视网膜反射的第二光束再经第一二向色镜3反射以改变传播方向,经第三透镜组5汇聚、第二二向色镜6透射后再经分束器12的反射面反射以改变传播方向,然后经第五透镜组13汇聚、第六透镜组14成像,第二电机驱动第二图像采集器5移动以自动对焦,使第二图像采集器5移动到成像位置出进行图像采集。
本发明的视力测量装置还包括数据存储模块和无线传输模块。数据存储模块用于存储屈光度和角膜曲率数据。无线传输模块用于将屈光度和角膜曲率数据传输到云服务器中,进行长期存数以方便后续查看和医生分析。
本实施例中第一图像采集器8及第二图像采集器5均为光电探测器。
本发明的视力测量方法包括S1角膜曲率测量和S2屈光度测量。
S1角膜曲率测量包括如下步骤:第一光束入射到角膜上的入射角度为θ,角膜的曲率半径为R1,根据第一图像采集器8采集到的环形图像,获得该环形的圆心的像素,对获得的圆心拟合成圆,获得拟合圆的半径R2,第三透镜组5和第四透镜组7的总放大倍率为β1,角膜曲率半径如式(1),
Figure PCTCN2016095558-appb-000007
式(1)经多项式拟合后如式(2),
Figure PCTCN2016095558-appb-000008
用多个(如十个)具有不同的曲率半径且曲率半径已知的标准模拟眼对上述视力测量装置进行标定,获取a0、a1、a2、a3的数值;测量时,根据第一图像采集器8采集到的受检者眼角膜反射的环形图像,获得相应的拟合圆的曲率半径R2,根据式(2)得出受检者角膜曲率半径R1
S2屈光度测量包括如下步骤:S201屈光度测量标定、S202屈光度补偿。
S201屈光度测量标定:结合图5所示,屈光度与成像光路中的各透镜组的关系如式(3)、(4)、(5):
Figure PCTCN2016095558-appb-000009
Figure PCTCN2016095558-appb-000010
Figure PCTCN2016095558-appb-000011
其中,L0为第三透镜组5到角膜的距离,D0为人眼在标准位置时的屈光度(标准位置即测量的基准位置),f′3、f′5、f′6分别为第三透镜组5、第五透镜组13、第六透镜组14的焦距,l′3、l′5、l′6分别为视网膜上的光圈经过第三透镜组5、第五透镜组13、第六透镜组14成像后的像 距,Δl35为第三透镜组5和第五透镜组13的间距,Δl56为第五透镜组13和第六透镜组14的间距;
对式(3)、(4)、(5)进行拟合得到四阶多项式,采用多个标准模拟眼对上述上述视力测量装置进行标定,各标准模拟眼的屈光度均为已知且互不相同,且标准模拟眼的屈光度范围为-20D~20D,获取上述四阶多项式各系数的数值;
测量时,取丝杠上的一点作为检测点,当第二电机通过丝杠等驱动第二图像采集器5移动到第二光束的成像位置(在此位置采集的图像像质最清晰)时,记录检测点的位置(或电机输出轴转动的角度、第二图像采集器5移动的距离),从而得出第六透镜组14的像距l′6,根据上述四阶多项式获得人眼在标准位置时的屈光度D0
S202屈光度补偿:测量时人眼位置出现前后偏差,则成像位置都发生改变,本发明采用采用一个已知角膜曲率的标准模拟眼对视力测量装置进行标定,移动所述标准模拟眼,并检测当所述标准模拟眼处于不同位置时第一光束的成像位置,获得角膜位置和第一光束成像位置的对应关系;测量受检者角膜曲率,测得第一光束实际成像位置,根据所述角膜位置和第一光束成像位置的对应关系,得出受检者当前的角膜位置,将当前角膜位置到第三透镜组的距离与L0比较得出位移差值Δx;对屈光度D0进行补偿,补偿后的屈光度为受检者的实际屈光度D,实际屈光度D和人眼在标准位置时的屈光度D0的关系如式(6)所示。
Figure PCTCN2016095558-appb-000012
与现有技术相比,本发明的技术方案具有以下优势:
1、本发明角膜曲率测量模块、屈光度测量模块分别采用第一电机、第二电机分别驱动第一图像采集器8、第二图像采集器5自动对焦,无需借助第二人调焦对焦,受检者自己可完成视力测量,本发明的视力测量装置实现受检者单人操作,视力测量方便,可以有效实现验光系统的小型化和便携化。
2、本发明采用第一二向色镜3,可见波段(400~700nm)全部透过,红外波段(780~1000nm)全部反射,和传统验光系统相比,可以有效的防止第一光源4对人眼的刺激,消除人眼调节对屈光度测量的影响,同时固视模块可见光部分的高透过率又能使人眼处于放松状态以便于正确观察。
3、本发明固视模块采用由第一透镜组1和第二透镜组2构成的望远系统,固视模块的出瞳大小和人眼瞳孔匹配,视场角度只有几度,和现有验光仪器固视系统相比,可以有效的使人眼在正确的观察位置并使人眼处于放松状态,正确的角度观察物体。
4、本发明包括无线传输模块,该模块能将测试装置最终的视力数据上传到云服务器,传统视力测量系统通常是离散、无规律的对被测者进行视力测量,本发明能有效的采集受检者不同时间的视力数据,方便以后对被测试者视力进行大数据建模和分析视力的未来发展趋势,对受检者进行视力跟踪预测。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (15)

  1. 一种手持式自主视力测量装置,包括角膜曲率测量模块,其特征在于:所述角膜曲率测量模块包括用于出射第一光束的第一光源以及用于采集第一光束经角膜反射后所形成的图像的第一图像采集器,所述第一图像采集器可移动地设置在所述角膜曲率测量模块的角膜曲率测量光路中,所述角膜曲率测量模块还包括用于驱动所述第一图像采集器沿角膜曲率测量光路移动以使第一图像采集器移动到成像位置处的第一电机。
  2. 根据权利要求1所述的视力测量装置,其特征在于:所述第一光源包括多个LED投射模组,多个所述LED投射模组等间隔排列呈圆环状。
  3. 根据权利要求1所述的视力测量装置,其特征在于:该视力测量装置还包括固视模块及第一二向色镜,所述第一二向色镜使可见光全透射、第一光束全反射用于在测量时使用者透过所述第一二向色镜注视所述固视模块,且所述第一二向色镜设置在所述第一光源的出射光路中。
  4. 根据权利要求3所述的视力测量装置,其特征在于:所述固视模块包括第一透镜组及设置于所述第一透镜组和所述第一二向色镜之间的第二透镜组。
  5. 根据权利要求3所述的视力测量装置,其特征在于:该视力测量装置还包括屈光度测量模块,所述屈光度测量模块包括出射第二光束的第二光源、用于采集第二光束经视网膜反射后所形成的图像的第二图像采集器,所述第一二向色镜使可见光全透射、第一光束及第二光束全反射,所述第一二向色镜设置在所述第一光源和第二光源的出射光路中。
  6. 根据权利要求5所述的视力测量装置,其特征在于:所述第二图像采集器可移动地设置在所述屈光度测量模块的屈光度测量光路中,所述屈光度测量模块还包括用于驱动所述第二图像采集器沿屈光度测量光路移动以使第二图像采集器移动到成像位置处的第二电机。
  7. 根据权利要求5所述的视力测量装置,其特征在于:该视力测量装置还包括使第一光束全反射、第二光束全透射的第二二向色镜,该视力测量装置还包括具有椭圆形反射面的分束器,所述分束器设置在屈光度测量光路中且位于所述第二二向色镜和所述第二图像采集器之间。
  8. 根据权利要求1所述的视力测量装置,其特征在于:所述视力测量装置包括第一二向色镜、所述第一光源、第三透镜组、第二二向色镜、第四透镜组、第一图像采集器、所述第一电机、第二光源、光阑、第七透镜组、分束器、第五透镜组、第六透镜组、第二图像采集器、第二电机;
    所述第一光源、第一二向色镜、所述第三透镜组、所述第二二向色镜、所述第四透镜组、 所述第一图像采集器及所述第一电机依构成所述角膜曲率测量模块;
    所述第二光源、光阑、第七透镜组、分束器、第二二向色镜、第三透镜组、第一二向色镜、第五透镜组、第六透镜组、第二图像传感器及所述第二电机构成屈光度测量模块,所述第二图像采集器由所述电机驱动并可移动地设置在所述屈光度测量模块的屈光度测量光路中。
  9. 根据权利要求4-8任一项所述的视力测量装置,其特征在于:所述第一光束的波长为900~1000nm,所述第二光束的波长为790~870nm。
  10. 根据权利要求4-8任一项所述的视力测量装置,其特征在于:所述第一图像采集器和第二图像采集器均为光电探测器。
  11. 根据权利要求4-8任一项所述的视力测量装置,其特征在于:该视力测量装置还包括用于存储屈光度和角膜曲率数据的数据存储模块、以及用于将屈光度和角膜曲率数据传输至云服务器的传输模块。
  12. 一种手持式自主视力测量装置,包括屈光度测量模块,其特征在于,所述屈光度测量模块包括出射第二光束的第二光源、用于采集第二光束经视网膜反射后所形成的图像的第二图像采集器,所述第二图像采集器可移动地设置在所述屈光度测量模块的屈光度测量光路中,所述屈光度测量模块还包括用于驱动所述第二图像采集器沿屈光度测量光路移动以使第二图像采集器移动到成像位置处的第二电机。
  13. 一种视力测量方法,其特征在于,包括如下步骤:
    S1角膜曲率测量:第一光束入射到角膜上的入射角度为θ,角膜的曲率半径为R1,根据采集到的图像,获得该图像的圆心的像素,将获得的圆心拟合成圆,获得拟合圆的半径R2,透镜组的总放大倍率为β1,角膜曲率半径如式(1),
    Figure PCTCN2016095558-appb-100001
    式(1)经多项式拟合后如式(2),
    Figure PCTCN2016095558-appb-100002
    用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的角膜曲率均已知且互不相同,获取a0、a1、a2、a3的数值;根据采集到的受检者眼角膜反射的图像,获得相应的拟合圆的曲率半径R2,根据式(2)得出受检者角膜曲率半径R1
  14. 一种视力测量方法,其特征在于,包括如下步骤:
    S2屈光度测量,包括
    S201屈光度测量标定:屈光度与成像光路中的各透镜组的关系如式(3)、(4)、(5):
    Figure PCTCN2016095558-appb-100003
    Figure PCTCN2016095558-appb-100004
    Figure PCTCN2016095558-appb-100005
    其中,L0为第三透镜组到角膜的距离,D0为人眼在标准位置时的屈光度,f′3、f′5、f′6分别为第三透镜组、第五透镜组、第六透镜组的焦距,l′3、l′5、l′6分别为视网膜上的光斑经过第三透镜组、第五透镜组、第六透镜组成像后的像距,Δl35为第三透镜组和第五透镜组的间距,Δl56为第五透镜组和第六透镜组的间距;对式(3)、(4)、(5)进行拟合得到四阶多项式,采用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的屈光度均已知且互不相同,获取上述四阶多项式各系数的数值;测量时,测得第六透镜组的像距l′6,进而根据上述四阶多项式获得人眼在标准位置时的屈光度D0
    S202屈光度补偿:采用一个已知角膜曲率的标准模拟眼对视力测量装置进行标定,移动所述标准模拟眼,并检测当所述标准模拟眼处于不同位置时第一光束的成像位置,获得角膜位置和第一光束成像位置的对应关系;测量受检者角膜曲率,测得第一光束实际成像位置,根据所述角膜位置和第一光束成像位置的对应关系,得出受检者当前的角膜位置,将当前角膜位置到第三透镜组的距离与L0比较得出位移差值Δx;对屈光度D0进行补偿,补偿后的屈光度为受检者的实际屈光度D,实际屈光度D和人眼在标准位置时的屈光度D0的关系如式(6)所示。
    Figure PCTCN2016095558-appb-100006
  15. 一种视力测量方法,其特征在于,包括如下步骤:
    S1角膜曲率测量:第一光束入射到角膜上的入射角度为θ,角膜的曲率半径为R1,根据采集 到的图像,获得该图像的圆心的像素,将获得的圆心拟合成圆,获得拟合圆的半径R2,第三透镜组和第四透镜组的总放大倍率为β1,角膜曲率半径如式(1),
    Figure PCTCN2016095558-appb-100007
    式(1)经多项式拟合后如式(2),
    Figure PCTCN2016095558-appb-100008
    用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的角膜曲率均已知且互不相同,获取a0、a1、a2、a3的数值;根据采集到的受检者眼角膜反射的图像,获得相应的拟合圆的曲率半径R2,根据式(2)得出受检者角膜曲率半径R1
    S2屈光度测量,包括
    S201屈光度测量标定:屈光度与成像光路中的各透镜组的关系如式(3)、(4)、(5):
    Figure PCTCN2016095558-appb-100009
    Figure PCTCN2016095558-appb-100010
    Figure PCTCN2016095558-appb-100011
    其中,L0为第三透镜组到角膜的距离,D0为人眼在标准位置时的屈光度,f′3、f′5、f′6分别为第三透镜组、第五透镜组、第六透镜组的焦距,l′3、l′3、l′6分别为视网膜上的光斑经过第三透镜组、第五透镜组、第六透镜组成像后的像距,Δl35为第三透镜组和第五透镜组的间距,Δl56为第五透镜组和第六透镜组的间距;对式(3)、(4)、(5)进行拟合得到四阶多项式,采用多个标准模拟眼对视力测量装置进行标定,各所述标准模拟眼的屈光度均已知且互不相同,获取上述四阶多项式各系数的数值;测量时,测得第六透镜组的像距l′6,进而根据上述四阶多项式获得人眼在标准位置时的屈光度D0
    S202屈光度补偿:采用一个已知角膜曲率的标准模拟眼对视力测量装置进行标定,移动所述 标准模拟眼,并检测当所述标准模拟眼处于不同位置时第一光束的成像位置,获得角膜位置和第一光束成像位置的对应关系;测量受检者角膜曲率,测得第一光束实际成像位置,根据所述角膜位置和第一光束成像位置的对应关系,得出受检者当前的角膜位置,将当前角膜位置到第三透镜组的距离与L0比较得出位移差值Δx;对屈光度D0进行补偿,补偿后的屈光度为受检者的实际屈光度D,实际屈光度D和人眼在标准位置时的屈光度D0的关系如式(6)所示。
    Figure PCTCN2016095558-appb-100012
PCT/CN2016/095558 2015-06-18 2016-08-16 手持式自主视力测量装置及视力测量方法 WO2016202311A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,562 US10694937B2 (en) 2015-06-18 2016-08-16 Hand-held autonomous visual acuity measurement apparatus and visual acuity measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340549.X 2015-06-18
CN201510340549.XA CN104887176B (zh) 2015-06-18 2015-06-18 手持式自主视力测量装置及视力测量方法

Publications (2)

Publication Number Publication Date
WO2016202311A2 true WO2016202311A2 (zh) 2016-12-22
WO2016202311A3 WO2016202311A3 (zh) 2017-02-09

Family

ID=54020462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095558 WO2016202311A2 (zh) 2015-06-18 2016-08-16 手持式自主视力测量装置及视力测量方法

Country Status (3)

Country Link
US (1) US10694937B2 (zh)
CN (1) CN104887176B (zh)
WO (1) WO2016202311A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104887176B (zh) * 2015-06-18 2018-02-06 苏州四海通仪器有限公司 手持式自主视力测量装置及视力测量方法
CN106491075B (zh) * 2016-11-29 2017-12-08 珠海格力电器股份有限公司 一种视力检测装置和视力检测器
CN106646882A (zh) * 2016-12-30 2017-05-10 北京七鑫易维信息技术有限公司 一种头戴式显示装置及其调节参数确定方法
CN106980748B (zh) * 2017-02-20 2019-04-19 武汉目明乐视健康科技有限公司 基于大数据拟合的青少儿屈光发育监测方法及系统
EP3592204B1 (en) * 2017-03-05 2024-05-08 Virtuoptica Ltd. Eye examination method and apparatus therefor
CN107361738B (zh) * 2017-08-16 2023-11-21 苏州四海通仪器有限公司 一种用于眼科设备的光阑系统及眼科设备
CN108042103B (zh) * 2017-11-30 2020-02-18 武汉琉明光电科技有限公司 一种检测散光的方法、装置及相关系统
CN108294725A (zh) * 2018-03-14 2018-07-20 苏州兆乘四海通科技有限公司 一种可测量晶状体调节力的验光仪
CN110025288A (zh) * 2019-05-17 2019-07-19 上海新眼光医疗器械股份有限公司 一种便携式自动对焦眼底成像系统
CN110287797B (zh) * 2019-05-24 2020-06-12 北京爱诺斯科技有限公司 一种基于手机的屈光筛选方法
US11043015B2 (en) * 2019-08-12 2021-06-22 Adobe Inc. Generating reflections within images
CN111281331B (zh) * 2020-04-02 2023-02-07 京东方科技集团股份有限公司 视力检测方法、装置及可穿戴显示设备
CN113440098A (zh) * 2021-06-07 2021-09-28 天津市索维电子技术有限公司 一种全自动人眼视光检查装置和方法
CN116831516B (zh) * 2023-07-20 2024-02-06 广州视景医疗软件有限公司 一种角膜曲率的生成方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500697A (en) * 1993-07-30 1996-03-19 Nidek Co., Ltd. Ophthalmic apparatus for measuring refractive characteristic of eye to be measured
JP2002360516A (ja) * 2001-06-05 2002-12-17 Canon Inc 眼科装置
CN103340596A (zh) * 2013-07-20 2013-10-09 太原中北新缘科技中心 一种测量角膜曲率的装置和方法
CN104095610A (zh) * 2014-07-25 2014-10-15 上海展志光学仪器有限公司 一种测量人眼屈光度和角膜曲率半径的光学系统
CN104398236A (zh) * 2014-12-17 2015-03-11 天津市索维电子技术有限公司 一种大视场眼底成像装置
CN104887176A (zh) * 2015-06-18 2015-09-09 苏州四海通仪器有限公司 手持式自主视力测量装置及视力测量方法
CN204744101U (zh) * 2015-06-18 2015-11-11 苏州四海通仪器有限公司 手持式自主视力测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337268B2 (ja) * 1993-04-30 2002-10-21 株式会社ニデック 角膜形状測定装置
KR101056960B1 (ko) * 2008-11-25 2011-08-16 주식회사 휴비츠 측정 위치 오차를 보상하는 각막 곡률 측정방법 및 이를 이용한 검안기
CN102525402A (zh) * 2012-03-01 2012-07-04 浙江工业大学 一种电脑验光仪的光学系统及验光方法
CN102715886B (zh) * 2012-06-21 2014-08-06 宁波明星科技发展有限公司 一种电脑验光仪的角膜曲率计算方法
CN103767675A (zh) * 2014-02-24 2014-05-07 南开大学 成像角膜曲率计光学系统
JP2016007433A (ja) * 2014-06-25 2016-01-18 株式会社ニデック 眼科装置
JP6518132B2 (ja) * 2015-05-26 2019-05-22 株式会社トプコン 眼科撮影装置
JP6619202B2 (ja) * 2015-10-29 2019-12-11 株式会社トプコン 眼科撮影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500697A (en) * 1993-07-30 1996-03-19 Nidek Co., Ltd. Ophthalmic apparatus for measuring refractive characteristic of eye to be measured
JP2002360516A (ja) * 2001-06-05 2002-12-17 Canon Inc 眼科装置
CN103340596A (zh) * 2013-07-20 2013-10-09 太原中北新缘科技中心 一种测量角膜曲率的装置和方法
CN104095610A (zh) * 2014-07-25 2014-10-15 上海展志光学仪器有限公司 一种测量人眼屈光度和角膜曲率半径的光学系统
CN104398236A (zh) * 2014-12-17 2015-03-11 天津市索维电子技术有限公司 一种大视场眼底成像装置
CN104887176A (zh) * 2015-06-18 2015-09-09 苏州四海通仪器有限公司 手持式自主视力测量装置及视力测量方法
CN204744101U (zh) * 2015-06-18 2015-11-11 苏州四海通仪器有限公司 手持式自主视力测量装置

Also Published As

Publication number Publication date
CN104887176A (zh) 2015-09-09
US20180177392A1 (en) 2018-06-28
CN104887176B (zh) 2018-02-06
WO2016202311A3 (zh) 2017-02-09
US10694937B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2016202311A2 (zh) 手持式自主视力测量装置及视力测量方法
CN103976707B (zh) 一种测量眼轴光程值的oct系统及方法
FI125445B (fi) Katseenohjausjärjestely
CN103989453B (zh) 一种多功能眼科测量装置及测试人眼不同部位的方法
WO2007113975A1 (ja) 視点検出装置
EP3285636B1 (en) Phoropter system and method of use
WO2004086962A1 (ja) 屈折測定装置
JP7261240B2 (ja) モバイル通信デバイスベースの角膜形状解析システム
US20130271727A1 (en) Ophthalmic apparatus
US20190125183A1 (en) Visual acuity examination
US10470658B2 (en) Optometry apparatus and optometry program
WO2023005252A1 (zh) 测量眼睛的光学质量的眼科仪器
US10264967B2 (en) Subjective optometry apparatus and subjective optometry program
CN110680273A (zh) 眼科检测系统及方法
CN204744101U (zh) 手持式自主视力测量装置
JP7098880B2 (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP6841091B2 (ja) 自覚式検眼装置
TW202015613A (zh) 眼底相機以及自行拍攝眼底之方法
JP6686380B2 (ja) 自覚式検眼装置及び自覚式検眼プログラム
FI129790B (en) MEASURING DEVICES AND METHODS OF USING MEASURING DEVICES
JP7078187B2 (ja) 自覚式検眼装置及び自覚式検眼プログラム
US8967803B2 (en) Image capturing apparatus and auto-focusing method thereof
TWI834759B (zh) 自動化個人視覺追蹤器的系統及其方法
US20220151486A1 (en) Ophthalmologic device and ophthalmologic system
US20210106225A1 (en) Multifunctional ophthalmic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811052

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15737562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811052

Country of ref document: EP

Kind code of ref document: A2