WO2016202282A1 - 超高强度超高韧性石油套管用钢、石油套管及其制造方法 - Google Patents

超高强度超高韧性石油套管用钢、石油套管及其制造方法 Download PDF

Info

Publication number
WO2016202282A1
WO2016202282A1 PCT/CN2016/086114 CN2016086114W WO2016202282A1 WO 2016202282 A1 WO2016202282 A1 WO 2016202282A1 CN 2016086114 W CN2016086114 W CN 2016086114W WO 2016202282 A1 WO2016202282 A1 WO 2016202282A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
strength
toughness
oil casing
carbonitride
Prior art date
Application number
PCT/CN2016/086114
Other languages
English (en)
French (fr)
Inventor
董晓明
张忠铧
金晓东
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2017565148A priority Critical patent/JP6670858B2/ja
Priority to US15/736,835 priority patent/US10851432B2/en
Priority to DE112016002733.8T priority patent/DE112016002733T5/de
Publication of WO2016202282A1 publication Critical patent/WO2016202282A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings

Definitions

  • the invention relates to a steel material and a manufacturing method thereof, in particular to a petroleum casing and a manufacturing method thereof.
  • the impact toughness of a pressure vessel should reach 10% of its yield strength, which means that the toughness of the 155 steel grade casing material should reach 107J or more.
  • the reality is that the development of steel pipes with high toughness and high strength is extremely difficult.
  • the casing strength capable of industrial application can reach 155 ksi or more, but the impact toughness is only 50-80 J.
  • Japanese Patent Publication No. JP11131189A discloses a steel pipe product which is heated in the range of 750-400 ° C and then rolled in a range of 20% or more of the deformation amount to produce a yield strength of 950 MPa or more. Steel pipe products with good toughness. However, the inventor of the present invention believes that the heating temperature of this process is low, the martensite structure is easily generated, and the rolling temperature is low, and the rolling difficulty is also large.
  • Japanese Patent Publication No. JP04059941A also discloses a steel pipe product which controls the ratio of retained austenite to upper bainite in a steel matrix by a heat treatment process so that the tensile strength reaches 120-160 ksi.
  • the technical solution is characterized by high carbon and high silicon, both of which can significantly increase strength but significantly reduce toughness.
  • the inventor of the present invention believes that the retained austenite will undergo a structural transformation during the use of the petroleum pipe (the use temperature of the deep well oil well pipe is above 120 ° C), which causes the steel pipe to reduce the toughness while increasing the strength.
  • the publication number is CN101250671, and the publication date is August 27, 2008.
  • the name is "has high strength.”
  • the Chinese patent document of "degree and high toughness oil casing and its manufacturing method” also discloses a high strength and high toughness steel whose chemical element ratio is: C: 0.22 to 0.4%, Si: 0.17 to 0.35%, Mn : 0.45 to 0.60%, Cr: 0.95 to 1.10%, Mo: 0.70 to 0.80%, Al: 0.015 to 0.040%, Ni ⁇ 0.20%, Cu ⁇ 0.20%, V: 0.070 to 0.100%, Ca > 0.0015%, P ⁇ 0.010%, S ⁇ 0.003%, the rest is iron, the manufacturing process includes the steps: 1 batch smelting; 2 continuous casting and rolling; 3 tube processing. However, the lateral impact toughness of the sleeve is only 80J.
  • One of the objects of the present invention is to provide a steel for ultra-high strength and ultra-high toughness oil casing, which can reach a strength of more than 155 ksi, and its impact toughness is much greater than 10% of its yield strength value, thereby achieving ultra-high strength and super high Resilience matching.
  • the present invention proposes an ultra-high strength ultra-high toughness petroleum casing steel whose microstructure is tempered sorbite, and the chemical element mass percentage content thereof is: C: 0.1-0.22%, Si: 0.1 -0.4%, Mn: 0.5-1.5%, Cr: 1-1.5%, Mo: 1-1.5%, Nb: 0.01-0.04%, V: 0.2-0.3%, Al: 0.01-0.05%, Ca: 0.0005- 0.005%, the balance is Fe and unavoidable impurities.
  • composition design principle of the ultra high strength ultra high toughness petroleum casing steel according to the present invention is as follows:
  • C is a precipitate forming element, which can increase the strength of steel.
  • the C content is less than 0.10%, the hardenability is lowered, thereby reducing the strength, and the material strength is difficult to reach 155 ksi or more. If the C content is higher than 0.22%, a large amount of coarse is formed with Cr and Mo. The precipitates are markedly aggravated by the segregation of steel, resulting in a significant reduction in toughness and difficulty in achieving high strength and high toughness.
  • Si:Si solid solution in ferrite can increase the yield strength of steel.
  • the Si element should not be too high, and the content is too high to deteriorate the processing and toughness, and the Si element content of less than 0.1% makes the steel susceptible to oxidation.
  • Mn is an austenite forming element and can improve the hardenability of steel.
  • the content of Mn element is less than 5%, the hardenability of the steel is significantly lowered, the proportion of martensite is lowered to reduce the toughness; when the content is more than 1.5%, the segregation of the structure in the steel is significantly increased, and the heat is affected. Uniformity and impact properties of the rolled structure.
  • Cr Cr is an element that strongly enhances hardenability, and is a strong precipitate forming element. When tempering, it precipitates precipitates to increase the strength of steel. In the present technical solution, it is easy to crystallize when the content is higher than 1.5%. The precipitate of coarse M23C6 precipitates and reduces the toughness, but if its content is less than 1%, it will lead to hardenability. foot.
  • Mo:Mo mainly improves the strength and tempering stability of steel through precipitates and solid solution strengthening forms.
  • carbon content since the carbon content is low, it is difficult to increase the strength if the added Mo exceeds 1.5%. Significant impact, but will cause alloy waste, in addition, if the Mo element content is less than 1%, the strength can not be guaranteed to reach 155ksi or more.
  • Nb is a fine crystal and precipitation strengthening element, which can compensate for the decrease in strength due to carbon reduction.
  • the Nb content is less than 0.01%, the effect is not exhibited.
  • Nb is more than 0.04%, coarse Nb (CN) is easily formed, resulting in a decrease in toughness.
  • V is a typical precipitation strengthening element that compensates for the decrease in strength due to carbon reduction.
  • the strengthening effect is difficult to achieve a material of 155 ksi or more, and if the V content is more than 0.3%, coarse V (CN) is easily formed, thereby lowering the toughness.
  • Al acts as a deoxidizing and grain refining in the steel, and also improves the stability and corrosion resistance of the surface film. When the amount added is less than 0.01%, the effect is not obvious, and the addition amount exceeds 0.05%, and the mechanical properties are deteriorated.
  • Ca:Ca can purify the molten steel and promote the spheroidization of MnS, thereby improving the impact toughness.
  • the Ca content is too high, coarse non-metallic inclusions are easily formed, which is disadvantageous to the technical solution.
  • the precipitate on the tempered sorbite includes at least one of carbonitrides of Nb and carbonitrides of V.
  • the carbonitride of the Nb has a size of 100 nm or less
  • the carbonitride of the V has a size of 100 nm or less.
  • the ultra-high strength ultra-high toughness oil casing steel according to the present invention also satisfies 1 ⁇ (V + Nb) / C ⁇ 2.3, so as to cause harmful Cr precipitates on the tempered sorbite and / Or there are very few precipitates of Mo.
  • the ultra high strength ultra high toughness petroleum casing steel according to the present invention further has 0 ⁇ Ti ⁇ 0.04%.
  • the Ti element is a strong carbonitride forming element, which can refine the austenite grains remarkably, thereby compensating for the decrease in strength due to carbon reduction. However, if the content is too high above 0.04%, coarse TiN is easily formed, thereby lowering the toughness of the material.
  • the precipitate on the tempered sorbite includes at least one of carbonitrides of Nb, carbonitrides of V, and carbonitrides of Ti.
  • Conventional high-strength steels with a strength of 155 ksi or higher are generally low-alloy steels, that is, alloying elements such as Cr, Mo, V, and Nb are added to carbon-manganese steel, and precipitates formed between carbon and alloy elements are used.
  • the precipitation strengthening effect is increased to increase the strength of the steel.
  • the C content is generally about 0.3%, but the precipitate of the alloying element is a brittle phase. When the alloy content is too high, the precipitate is likely to aggregate and precipitate and coarse, which will drastically reduce the material. toughness.
  • the idea of the invention is to break through the current method of mainly relying on Cr and Mo alloy elements to improve the strength, and the solid solution strengthening of Mn, Cr and Mo is mainly used, and the precipitation strengthening of V, Nb (in some embodiments, Ti) is A complementary method to increase the strength of the material.
  • the present invention employs a low carbon component design that preferentially forms V, Nb using the precipitated stability characteristics of V, Nb (and in some embodiments Ti) (in some embodiments, The fine and evenly distributed precipitates of Ti) enable the steel to increase the strength without reducing the toughness, so that the alloying elements such as Cr and Mo are mainly present in the solid solution form in the matrix, and are eliminated while obtaining a good solid solution strengthening effect.
  • the coarse Cr and Mo precipitates deteriorate the toughness and further obtain a good toughness match.
  • the carbonitride of the Nb has a size of 100 nm or less
  • the carbonitride of the V has a size of 100 nm or less
  • the carbonitride of Ti has a size of 100 nm or less.
  • the chemical element of the ultra-high strength ultra-high toughness oil casing steel according to the present invention satisfies 1 ⁇ (V + Nb) / C ⁇ 2.3, so that the precipitation of harmful Cr on the tempered sorbite is precipitated. There are very few precipitates of matter and/or Mo.
  • the precipitates of Cr, Mo, V, Nb, etc. which mainly play the strengthening role, are different in size and morphology.
  • the main form of Cr is Cr 23 C 6 .
  • the precipitates are easy to aggregate at the grain boundaries, and the size is large, generally about 150-250 nm;
  • the main form of Mo is Mo 2 C, and such precipitates are also easy to aggregate at the grain boundaries, of course, they are also precipitated in the crystal.
  • Medium generally around 100-150nm; V, Nb and Ti elements mainly exist in the form of (V, Nb, Ti) (C, N), such precipitates are uniformly precipitated in the crystal, and the size is small.
  • the thickness or diameter of precipitates on the grain boundary increases, and the cleavage crack is easy to form and easy to expand, so the brittleness is increased.
  • the coarse precipitates of Cr and Mo distributed in the matrix may form micropores due to their own cracking or detachment from the interface of the substrate, and the microporous joints grow to form cracks, and finally cause fracture. Therefore, in order to obtain a higher toughness index, the size of the precipitated Nb carbonitride and/or V carbonitride should be controlled to be less than 100 nm, and it is preferable to minimize the occurrence of precipitates of Cr and Mo of 150 to 250 nm.
  • the inevitable impurities are mainly P, S and N, so it should be ensured that the content of these impurity elements is as low as possible.
  • Another object of the present invention is to provide a petroleum casing capable of achieving a strength level of 155 ksi or more while also having an ultra high toughness matched with ultra high strength.
  • the present invention provides a petroleum casing which is produced by using the above-described steel for ultra high strength and ultra high toughness oil casing.
  • the oil casing is a 155ksi oil casing with a yield strength of 1069-1276 MPa, a tensile strength ⁇ 1138 MPa, an elongation of 20%-25%, and a 0 degree lateral Charpy impact energy ⁇ 130J. , ductile-brittle transition temperature ⁇ -60 ° C.
  • the oil casing is a 170 ksi oil casing with a yield strength of 1172-1379 MPa, a tensile strength ⁇ 1241 MPa, an elongation of 18% to 25%, and a 0 degree lateral Charpy impact energy ⁇ 120 J. , ductile-brittle transition temperature ⁇ -50 ° C.
  • the present invention provides a method of manufacturing the above oil casing, comprising the steps of:
  • the austenitizing temperature is 920-950 ° C, after quenching for 30-60 min, then quenching, then tempering at 600-650 ° C, holding time 50-80 min, then at 500-550 °C heat sizing.
  • the continuous casting slab obtained through the step (1) is heated and soaked, the soaking temperature is 1200-1240 ° C, the controlled perforation temperature is 1180-1240 ° C, and the finishing rolling temperature is controlled. It is from 900 ° C to 950 ° C.
  • the present invention has the following beneficial effects:
  • the steel for oil casing according to the present invention which can be used for manufacturing a petroleum casing having excellent toughness fit and low temperature impact toughness of a steel grade of 155 ksi or more;
  • Figure 1 shows the microstructure of Example 5 of the present invention.
  • Figure 2 shows the morphology of the precipitated phase in Example 5 of the present invention.
  • Figure 3 shows the morphology of the precipitate phase in Comparative Example 2.
  • Figure 4 shows the morphology of the precipitate phase in Comparative Example 3.
  • the oil cannula of Examples 1-5 of the present invention and the oil cannula of Comparative Examples 1-3 were produced according to the following procedures (the elements in the respective examples and comparative examples are shown in Table 1, each example and comparative examples) The specific process parameters in the table are shown in Table 2):
  • Table 1 lists the chemical element mass distribution ratios of the respective oil casings of Examples 1-5 and Comparative Examples 1-3 in the present case.
  • Table 2 lists the specific process parameters of Examples 1-5 and Comparative Examples 1-3 of the present case.
  • Table 3 lists the performance parameters of Examples 1-5 and Comparative Examples 1-3 of the present case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种超高强度超高韧性石油套管用钢,其微观组织为回火索氏体,其化学元素质量百分比含量为:C:0.1-0.22%,Si:0.1-0.4%,Mn:0.5-1.5%,Cr:1-1.5%,Mo:1-1.5%,Nb:0.01-0.04%,V:0.2-0.3%,Al:0.01-0.05%,Ca:0.0005-0.005%,余量为Fe和不可避免的杂质。相应地,还公开了采用该超高强度超高韧性石油套管用钢制得的石油套管及其制造方法。上述超高强度超高韧性石油套管用钢和石油套管的强度可以到达155ksi以上,且冲击韧性大于其屈服强度数值的10%,因此能够实现超高强度与超高韧性的匹配。

Description

超高强度超高韧性石油套管用钢、石油套管及其制造方法 技术领域
本发明涉及一种钢材料及其制造方法,尤其涉及一种石油套管及其制造方法。
背景技术
深井、超深井是近年来石油勘探开发领域开发越来越多的井况,为了保证高温高压开采开发的安全性,需要对管柱材料的强度提出更高的要求。然而,一般来说,随着钢材强度的提升,韧性会下降,而钢管减薄后韧性不足极易引发早期裂纹及断裂,因此,高强度套管钢必须匹配高韧性,才能保证管柱的安全。
根据英国能源部指导标准,压力容器的冲击韧性应该达到其屈服强度数值的10%,也就是说155钢级套管材料要求的韧性要达到107J以上。然而,现实情况是,兼具高韧性和高强度的钢管开发难度极大,目前能够进行工业应用的套管强度能够达到155ksi以上,但是冲击韧性只有50-80J。
文献号为JP11131189A的日本专利文献公开了一种钢管产品,其在750-400℃范围内加热,然后在20%或60%变形量以上的范围内进行轧制,从而生产出屈服强度950Mpa以上、具有良好韧性的钢管产品。然而,本案发明人认为这种工艺的加热温度较低,易产生马氏体组织,另外轧制温度低,轧制难度也较大。
文献号为JP04059941A的日本专利文献也公开了一种钢管产品,其通过热处理工艺来控制钢基体中残余奥氏体和上贝氏体的比例,从而使得抗拉强度达到120-160ksi。该技术方案的特点是高碳和高硅,此两种成分可以显著提高强度但会显著降低韧性。此外,本案发明人认为残余奥氏体会在石油管使用过程中发生组织发生转变(深井油井管使用温度120℃以上),这会导致钢管在提高强度的同时降低韧性。
公开号为CN101250671,公开日为2008年8月27日,名称为“具有高强 度和高韧性的石油套管及其制造方法”的中国专利文献也公开了一种高强度高韧性钢,其化学元素配比为:C:0.22~0.4%、Si:0.17~0.35%、Mn:0.45~0.60%、Cr:0.95~1.10%、Mo:0.70~0.80%、Al:0.015~0.040%、Ni<0.20%、Cu<0.20%、V:0.070~0.100%、Ca>0.0015%、P<0.010%、S<0.003%,其余为铁,其制造工艺包括步骤:①配料冶炼;②连铸连轧;③管加工。然而该套管的横向冲击韧性只有80J。
发明内容
本发明的目的之一在于提供一种超高强度超高韧性石油套管用钢,其强度可以到达155ksi以上,其冲击韧性远大于其屈服强度数值的10%,因此能够实现超高强度与超高韧性的匹配。
为了实现上述目的,本发明提出了一种超高强度超高韧性石油套管用钢,其微观组织为回火索氏体,其化学元素质量百分比含量为:C:0.1-0.22%,Si:0.1-0.4%,Mn:0.5-1.5%,Cr:1-1.5%,Mo:1-1.5%,Nb:0.01-0.04%,V:0.2-0.3%,Al:0.01-0.05%,Ca:0.0005-0.005%,余量为Fe和不可避免的杂质。
本发明所述的超高强度超高韧性石油套管用钢的成分设计原理为:
C:C为析出物形成元素,可以提高钢的强度。在本技术方案中,当C含量低于0.10%时,会使淬透性降低,从而降低强度,材料强度难以达到155ksi以上,若C含量高于0.22%,则会与Cr、Mo形成大量粗化的析出物,并显著加重钢的偏析,造成韧性显著降低,难以达到高强度高韧性的要求。
Si:Si固溶于铁素体可以提高钢的屈服强度。然而,Si元素不宜过高,含量太高会使加工和韧性恶化,Si元素含量低于0.1%会使钢容易氧化。
Mn:Mn为奥氏体形成元素,可以提高钢的淬透性。在本技术方案中,Mn元素含量小于5%时显著降低钢的淬透性,降低马氏体比例从而降低韧性;当其含量大于1.5%时,又会显著增加钢中的组织偏析,影响热轧组织的均匀性和冲击性能。
Cr:Cr是强烈提高淬透性的元素,是一种强析出物形成元素,回火时其析出析出物以提高钢的强度,在本技术方案中,其含量高于1.5%时容易在晶界析出粗大M23C6析出物,降低韧性,但是若其含量低于1%,又会导致淬透性不 足。
Mo:Mo主要是通过析出物及固溶强化形式来提高钢的强度及回火稳定性,在本技术方案中,由于碳含量较低,因此添加的Mo若超过1.5%也难以对强度提高有显著影响,反而会造成合金浪费,另外,如果Mo元素含量低于1%,则无法保证强度达到155ksi以上。
Nb:Nb是细晶和析出强化元素,其可弥补因碳降低而引起的强度的下降。在本技术方案中,Nb含量小于0.01%时无法发挥其作用,若Nb高于0.04%,则容易形成粗大的Nb(CN),从而导致韧性的降低。
V:V是典型的析出强化元素,可弥补因碳降低而引起的强度的下降。在本技术方案中,若V含量小于0.2%,则强化效果难以使材料达到155ksi以上,若V含量高于0.3%,则容易形成粗大的V(CN),从而降低韧性。
Al:Al在钢中起到了脱氧作用和细化晶粒的作用,另外还提高了表面膜层的稳定性和耐蚀性。当加入量低于0.01%时,效果不明显,加入量超过0.05%,力学性能变差。
Ca:Ca可以净化钢液,促使MnS球化,从而提高冲击韧性,但Ca含量过高时,易形成粗大的非金属夹杂物,这对本技术方案是不利的。
进一步地,在本发明所述的超高强度超高韧性石油套管用钢中,所述回火索氏体上的析出物包括Nb的碳氮化物和V的碳氮化物的至少其中之一。
更进一步地,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下。
更为优选地,本发明所述的超高强度超高韧性石油套管用钢还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
优选地,本发明所述的超高强度超高韧性石油套管用钢还具有0<Ti≤0.04%。
Ti元素是强碳氮化物形成元素,其可以显著细化奥氏体晶粒,从而弥补因碳降低而引起的强度的下降。但是若其含量高于0.04%太高,则易形成粗大的TiN,从而降低材料韧性。
基于上述技术方案,更进一步地,所述回火索氏体上的析出物包括Nb的碳氮化物、V的碳氮化物和Ti的碳氮化物的至少其中之一。
现有技术中常规的155ksi强度以上高强度钢一般都采用低合金钢,即在碳锰钢的基础上加入Cr、Mo、V、Nb等合金元素,依靠碳和合金元素之间形成的析出物所产生的析出强化效果来提高钢的强度,C含量一般在0.3%左右,但是合金元素的析出物是脆性相,合金含量过高时,析出物易于聚集析出并粗大,这会急剧降低材料的韧性。
本发明的思路是突破目前主要依靠Cr、Mo合金元素提高强度的方法,采用Mn、Cr、Mo的固溶强化为主,V、Nb(在某些实施方式下还有Ti)的析出强化为辅的方法来提高材料的强度。在技术方案上,本发明采用了低碳的成分设计,利用V、Nb(在某些实施方式下还有Ti)的析出物稳定的特性优先形成V、Nb(在某些实施方式下还有Ti)的细小均匀分布的析出物,使得钢种在提高强度的同时不降低韧性,从而使Cr、Mo等合金元素主要以固溶形态存在于基体中,在获得良好固溶强化效果的同时消除粗大的Cr、Mo析出物对韧性的恶化,进而获得良好的强韧性搭配。
更进一步地,在本发明所述的超高强度超高韧性石油套管用钢中,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下,所述Ti的碳氮化物的尺寸在100nm以下。
更为优选地,本发明所述的超高强度超高韧性石油套管用钢的化学元素还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
根据对不同析出物透射电镜分析结果来看,钢中主要起强化作用的Cr、Mo、V、Nb等的析出物在尺寸和形态上不同,Cr元素主要存在形态为Cr23C6,此种析出物易于在晶界聚集,尺寸较大,一般在150-250nm左右;Mo元素的主要存在形态为Mo2C,此种析出物也易于在晶界聚集,当然其在晶内也有析出,尺寸中等,一般在100-150nm左右;V、Nb和Ti元素主要存在形态为(V,Nb,Ti)(C,N),此种析出物在晶内均匀析出,尺寸细小。按史密斯解理裂纹成核模型,晶界上析出物厚度或直径增加,解理裂纹既易于形成又易于扩展,故使脆性增加。分布于基体中的Cr和Mo粗大析出物,可因本身开裂或其与基体界面上脱离形成微孔,微孔连接长大形成裂纹,最后导致断裂。因此要获得较高的韧性指标,析出的Nb的碳氮化物和/或V的碳氮化物的尺寸要控制在100nm以下,同时最好尽量减少出现150-250nm的Cr和Mo的析出物。
进一步地,在本发明所述的超高强度超高韧性石油套管用钢中,所述不可避免的杂质中的P≤0.015%,S≤0.003%,N≤0.008%。
在本技术方案中,不可避免的杂质主要是P、S和N,因此应保证这些杂质元素的含量越低越好。
本发明的另一目的在于提供一种石油套管,其能够达到155ksi以上的强度级别,同时还具有与超高强度匹配的超高韧性。
基于上述发明目的,本发明提供了一种石油套管,其采用上述超高强度超高韧性石油套管用钢制得。
在某些实施方式下,上述石油套管为155ksi级石油套管,其屈服强度为1069-1276MPa,抗拉强度≥1138MPa,延伸率为20%-25%,0度横向夏比冲击功≥130J,韧脆转变温度≤-60℃。
在另外一些实施方式中,上述石油套管为170ksi级石油套管,其屈服强度为1172-1379MPa,抗拉强度≥1241MPa,延伸率为18%-25%,0度横向夏比冲击功≥120J,韧脆转变温度≤-50℃。
本发明的又一目的在于提供一种上述石油套管的制造方法,采用该方法制得的石油套管能够达到155ksi以上的强度,且其具有与超高强度匹配的超高韧性。
基于上述发明目的,本发明提供了上述石油套管的制造方法,其包括步骤:
(1)冶炼和铸造;
(2)穿孔和连轧;
(3)热处理。
进一步地,在所述步骤(3)中,奥氏体化温度为920-950℃,保温30-60min后淬火,然后在600-650℃回火,保温时间50-80min,然后在500-550℃热定径。
进一步地,在所述步骤(2)中,将经过步骤(1)得到的连铸坯加热并均热,均热温度为1200-1240℃,控制穿孔温度为1180-1240℃,控制终轧温度为900℃-950℃。
与现有技术相比,本发明具有以下有益效果:
(1)本发明所述的石油套管用钢,其能够用于制造155ksi以上钢级的具有优良强韧性配合和低温冲击韧性的石油套管;
(2)本发明所述的石油套管能实现下述性能指标:
对于155ksi钢级的石油套管:屈服强度1069-1276MPa,抗拉强度≥1138MPa,延伸率20%-25%,0度横向夏比冲击功不小于≥130J(155ksi钢级屈服强度的10%为107J),韧脆转变温度≤-60℃。
对于170ksi钢级的石油套管:屈服强度1172-1379MPa,抗拉强度≥1241MPa,延伸率18%-25%,0度横向夏比冲击功不小于≥120J(170ksi钢级屈服强度的10%为120J),韧脆转变温度≤-50℃。
(3)本发明所述的石油套管制造方法中的热处理工艺简单,易于生产实施。
附图说明
图1显示了本发明实施例5的微观组织。
图2显示了本发明实施例5中的析出相形貌。
图3显示了对比例2中的析出相形貌。
图4显示了对比例3中的析出相形貌。
具体实施方式
下面将结合附图说明和具体的实施例对本发明所述超高强度超高韧性石油套管用钢、石油套管及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-5和对比例1-3
按照下列步骤制造本发明实施例1-5中的石油套管以及对比例1-3中的石油套管(各实施例和对比例中的元素配比如表1所示,各实施例和对比例中的具体工艺参数如表2所示):
(1)冶炼:钢水经电炉冶炼,通过炉外精炼、真空脱气和氩气搅拌后,经过Ca处理进行夹杂物变性,降低O、H含量;
(2)铸造管坯:浇铸过程中控制钢水过热度低于30℃;
(3)钢管的穿孔和连轧:将连铸坯冷却后在环形加热炉内加热,并在1200-1240℃均热,穿孔温度1180-1240℃,终轧温度900℃-950℃;
(4)热处理:控制奥氏体化温度为920-950℃,保温30-60min后淬火,然 后于600-650℃高温回火,保温时间50-80min,然后在500-550℃热定径。
表1列出了本案实施例1-5以及对比例1-3中的各石油套管的化学元素质量百分配比。
表1.(余量为Fe和除了S、P、N以外的其他杂质,wt.%)
Figure PCTCN2016086114-appb-000001
表2列出了本案实施例1-5和对比例1-3的具体工艺参数。
表2
Figure PCTCN2016086114-appb-000002
表3列出了本案实施例1-5和对比例1-3的性能参数。
表3.
Figure PCTCN2016086114-appb-000003
结合表1、表2和表3可以看出,对比例1的成分不满足本案的要求,其中C 和V含量低,因此淬透性低,热处理之后套管强度不足。对比例2中的C含量较高,导致形成了大量的粗大析出物(如图3所示),从而使得冲击功显著降低。对比例3的(V+Nb)/C比值不满足本发明的要求,热处理后形成较多的Cr、Mo的析出物(如图4所示),因此冲击功也有明显降低,不能达到屈服强度值的10%的要求。
另外,从表1、表2和表3还可以看出,本发明所述的石油套管强度级别达到了155ksi钢级以上,横向0度冲击韧性超过了120J,延伸率≥19%,韧脆转变温度≤-55℃。
从图1可以看出,实施例5的金相组织上未发现因成分偏析导致的带状组织。高倍扫描电镜观测到的实施例5的析出物形貌显示于图2,从图2可以看出,其析出物细小且分布均匀。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (15)

  1. 一种超高强度超高韧性石油套管用钢,其特征在于,其微观组织为回火索氏体,其化学元素质量百分比含量为:C:0.1-0.22%,Si:0.1-0.4%,Mn:0.5-1.5%,Cr:1-1.5%,Mo:1-1.5%,Nb:0.01-0.04%,V:0.2-0.3%,Al:0.01-0.05%,Ca:0.0005-0.005%,余量为Fe和不可避免的杂质。
  2. 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,所述回火索氏体上的析出物包括Nb的碳氮化物和V的碳氮化物的至少其中之一。
  3. 如权利要求2所述的超高强度超高韧性石油套管用钢,其特征在于,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下。
  4. 如权利要求3所述的超高强度超高韧性石油套管用钢,其特征在于,还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
  5. 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,还具有0<Ti≤0.04%。
  6. 如权利要求5所述的超高强度超高韧性石油套管用钢,其特征在于,所述回火索氏体上的析出物包括Nb的碳氮化物、V的碳氮化物和Ti的碳氮化物的至少其中之一。
  7. 如权利要求6所述的超高强度超高韧性石油套管用钢,其特征在于,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下,所述Ti的碳氮化物的尺寸在100nm以下。
  8. 如权利要求7所述的超高强度超高韧性石油套管用钢,其特征在于,还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
  9. 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,所述不可避免的杂质中的P≤0.015%,S≤0.003%,N≤0.008%。
  10. 一种石油套管,其特征在于,其采用如权利要求1-9中任意一项所述的超高强度超高韧性石油套管用钢制得。
  11. 如权利要求10所述的石油套管,其特征在于,其为155ksi级石油套管,其屈服强度为1069-1276MPa,抗拉强度≥1138MPa,延伸率为20%-25%,0度横向夏比冲击功≥130J,韧脆转变温度≤-60℃。
  12. 如权利要求10所述的石油套管,其特征在于,其为170ksi级石油套管,其屈服强度为1172-1379MPa,抗拉强度≥1241MPa,延伸率为18%-25%,0度横向夏比冲击功≥120J,韧脆转变温度≤-50℃。
  13. 如权利要求10-12所述的石油套管的制造方法,其包括步骤:
    (1)冶炼和铸造;
    (2)穿孔和连轧;
    (3)热处理。
  14. 如权利要求13所述的制造方法,其特征在于,在所述步骤(3)中,奥氏体化温度为920-950℃,保温30-60min后淬火,然后在600-650℃回火,保温时间50-80min,然后在500-550℃热定径。
  15. 如权利要求13所述的制造方法,其特征在于,在所述步骤(2)中,将经过步骤(1)得到的连铸坯加热并均热,均热温度为1200-1240℃,控制穿孔温度为1180-1240℃,控制终轧温度为900℃-950℃。
PCT/CN2016/086114 2015-06-18 2016-06-17 超高强度超高韧性石油套管用钢、石油套管及其制造方法 WO2016202282A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017565148A JP6670858B2 (ja) 2015-06-18 2016-06-17 超高強度超高靱性ケーシング鋼、オイルケーシング及びその製造方法
US15/736,835 US10851432B2 (en) 2015-06-18 2016-06-17 Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof
DE112016002733.8T DE112016002733T5 (de) 2015-06-18 2016-06-17 Ultrahochfester und ultrahochzäher Verrohrungsstahl, Ölverrohrung und Herstellungsverfahren davon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340874.6 2015-06-18
CN201510340874.6A CN105002425B (zh) 2015-06-18 2015-06-18 超高强度超高韧性石油套管用钢、石油套管及其制造方法

Publications (1)

Publication Number Publication Date
WO2016202282A1 true WO2016202282A1 (zh) 2016-12-22

Family

ID=54375281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086114 WO2016202282A1 (zh) 2015-06-18 2016-06-17 超高强度超高韧性石油套管用钢、石油套管及其制造方法

Country Status (5)

Country Link
US (1) US10851432B2 (zh)
JP (1) JP6670858B2 (zh)
CN (1) CN105002425B (zh)
DE (1) DE112016002733T5 (zh)
WO (1) WO2016202282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083816A (zh) * 2023-01-09 2023-05-09 江苏沙钢集团淮钢特钢股份有限公司 一种高淬透性超大规格石油装备用钢及其生产工艺

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002425B (zh) * 2015-06-18 2017-12-22 宝山钢铁股份有限公司 超高强度超高韧性石油套管用钢、石油套管及其制造方法
CN108004462B (zh) * 2016-10-31 2020-05-22 宝山钢铁股份有限公司 一种抗硫化氢应力腐蚀开裂的油套管及其制造方法
CN109207839A (zh) * 2017-06-29 2019-01-15 宝山钢铁股份有限公司 一种高强高韧射孔枪管及其制造方法
EA202091011A1 (ru) 2017-12-04 2020-09-04 Монаш Юниверсити Высокопрочный алюминиевый сплав для производственных процессов высокоскоростной кристаллизации
CN110295313B (zh) * 2018-03-21 2021-09-17 宝山钢铁股份有限公司 一种耐低温高强高韧油套管及其制造方法
CN110616365B (zh) * 2018-06-20 2021-08-13 宝山钢铁股份有限公司 一种高强度膨胀套管及其制造方法
CN111607744B (zh) * 2019-02-22 2021-11-16 宝山钢铁股份有限公司 一种厚壁高强高韧石油套管及其制造方法
CN112708730B (zh) * 2019-10-24 2022-10-21 宝山钢铁股份有限公司 一种超高抗挤毁石油套管及其制造方法
CN113637892B (zh) 2020-05-11 2022-12-16 宝山钢铁股份有限公司 一种高强度抗挤毁石油套管及其制造方法
CN114318129B (zh) * 2020-10-10 2022-12-16 宝山钢铁股份有限公司 一种890MPa级易焊接无缝钢管及其制造方法
CN115261716B (zh) * 2021-04-30 2023-06-16 宝山钢铁股份有限公司 一种稠油开发用高强度耐热套管及其制造方法
CN114561593B (zh) * 2022-03-04 2022-11-08 马鞍山钢铁股份有限公司 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法
CN117660848A (zh) * 2022-08-30 2024-03-08 宝山钢铁股份有限公司 一种抗co2及微生物腐蚀的高强度油套管及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933008A (en) * 1988-02-05 1990-06-12 Nissan Motor Co., Ltd. Heat resistant and wear resistant iron-based sintered alloy
JPH0512616A (ja) * 1991-07-04 1993-01-22 Sharp Corp 磁気ヘツドの製造方法
CN103045964A (zh) * 2013-01-05 2013-04-17 莱芜钢铁集团有限公司 钢板及其制造方法
CN103938095A (zh) * 2014-04-29 2014-07-23 宝山钢铁股份有限公司 一种165ksi钢级高强高韧钻杆及其制造方法
CN104233107A (zh) * 2014-10-11 2014-12-24 马钢(集团)控股有限公司 一种含钒钛高速列车车轴用钢
CN105002425A (zh) * 2015-06-18 2015-10-28 宝山钢铁股份有限公司 超高强度超高韧性石油套管用钢、石油套管及其制造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148124A (en) * 1978-05-12 1979-11-20 Nippon Steel Corp Manufacture of high strength rall of excellent weldability
JP3253068B2 (ja) 1990-06-28 2002-02-04 日新製鋼株式会社 強靭な高強度trip鋼
JPH09111343A (ja) * 1995-10-18 1997-04-28 Nippon Steel Corp 高強度低降伏比シームレス鋼管の製造法
JP3622499B2 (ja) 1997-05-15 2005-02-23 Jfeスチール株式会社 鋼管の製造方法
JP3514182B2 (ja) * 1999-08-31 2004-03-31 住友金属工業株式会社 高温強度と靱性に優れた低Crフェライト系耐熱鋼およびその製造方法
JP4367588B2 (ja) * 1999-10-28 2009-11-18 住友金属工業株式会社 耐硫化物応力割れ性に優れた鋼管
JP3885615B2 (ja) * 2001-03-09 2007-02-21 住友金属工業株式会社 埋設拡管用鋼管および油井用鋼管の埋設方法
CN1329546C (zh) * 2004-04-28 2007-08-01 宝山钢铁股份有限公司 高强度石油钻杆及其制造方法
CN102206789B (zh) * 2005-06-10 2015-03-25 新日铁住金株式会社 扩管后的韧性优良的膨胀管用油井管及其制造方法
WO2007138752A1 (ja) * 2006-06-01 2007-12-06 Honda Motor Co., Ltd. 高強度鋼板およびその製造方法
BRPI0802628A2 (pt) * 2007-03-30 2011-08-30 Sumitomo Metal Ind aço de baixa liga para produtos tubulares para paìses produtores de petróleo e tubulação em aço sem costura
CN101328559B (zh) * 2007-06-22 2011-07-13 宝山钢铁股份有限公司 低屈强比石油套管用钢、石油套管及其制法
CN100595309C (zh) 2008-03-26 2010-03-24 天津钢管集团股份有限公司 具有高强度和高韧性的石油套管及其制造方法
CN101928889A (zh) * 2009-06-23 2010-12-29 宝山钢铁股份有限公司 一种抗硫化物腐蚀用钢及其制造方法
CN101929313A (zh) * 2009-06-24 2010-12-29 宝山钢铁股份有限公司 高强度耐硫化氢环境腐蚀的无缝石油套管及其制造方法
CN102725428B (zh) * 2010-01-27 2014-01-15 新日铁住金株式会社 管线管用无缝钢管的制造方法及管线管用无缝钢管
JP2011246774A (ja) * 2010-05-27 2011-12-08 Honda Motor Co Ltd 高強度鋼板およびその製造方法
CN102242321A (zh) * 2011-06-30 2011-11-16 天津钢管集团股份有限公司 耐硫化物应力开裂腐蚀的c110钢级石油专用管具钢及其制造方法
CN102899573B (zh) * 2011-07-25 2015-12-02 宝山钢铁股份有限公司 一种高强度耐磨套管用钢及其制造方法
US10196726B2 (en) * 2013-02-26 2019-02-05 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet having excellent baking hardenability and low temperature toughness with maximum tensile strength of 980 MPa or more
CN105102657B (zh) * 2013-03-29 2017-03-15 杰富意钢铁株式会社 钢材及氢用容器、以及它们的制造方法
JP6048580B2 (ja) * 2013-05-21 2016-12-21 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP6267618B2 (ja) * 2014-09-30 2018-01-24 株式会社神戸製鋼所 ボルト用鋼およびボルト
EP3575428A4 (en) * 2017-01-24 2020-07-22 Nippon Steel Corporation STEEL MATERIAL AND ITS MANUFACTURING PROCESS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933008A (en) * 1988-02-05 1990-06-12 Nissan Motor Co., Ltd. Heat resistant and wear resistant iron-based sintered alloy
JPH0512616A (ja) * 1991-07-04 1993-01-22 Sharp Corp 磁気ヘツドの製造方法
CN103045964A (zh) * 2013-01-05 2013-04-17 莱芜钢铁集团有限公司 钢板及其制造方法
CN103938095A (zh) * 2014-04-29 2014-07-23 宝山钢铁股份有限公司 一种165ksi钢级高强高韧钻杆及其制造方法
CN104233107A (zh) * 2014-10-11 2014-12-24 马钢(集团)控股有限公司 一种含钒钛高速列车车轴用钢
CN105002425A (zh) * 2015-06-18 2015-10-28 宝山钢铁股份有限公司 超高强度超高韧性石油套管用钢、石油套管及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116083816A (zh) * 2023-01-09 2023-05-09 江苏沙钢集团淮钢特钢股份有限公司 一种高淬透性超大规格石油装备用钢及其生产工艺

Also Published As

Publication number Publication date
US20180291475A1 (en) 2018-10-11
JP6670858B2 (ja) 2020-03-25
JP2018523012A (ja) 2018-08-16
CN105002425B (zh) 2017-12-22
DE112016002733T5 (de) 2018-04-19
US10851432B2 (en) 2020-12-01
CN105002425A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2016202282A1 (zh) 超高强度超高韧性石油套管用钢、石油套管及其制造方法
US11053563B2 (en) X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
WO2019128286A1 (zh) 一种耐磨钢低成本短生产周期制备方法
CN105441801B (zh) 一种超高强度超高韧性石油套管及其tmcp制造方法
MX2008016193A (es) Productos tubulares para campo petrolero de acero sin costura, con acero de baja aleacion y metodo para producir un tubo de acero sin costura.
JP2013227611A (ja) 耐ssc性に優れた高強度鋼材およびその製造方法
CN108368591A (zh) 具有优异的焊后热处理耐性的压力容器钢板及其制造方法
JP6456986B2 (ja) 超高強度・超高靱性油井管およびその製造方法
JP6684353B2 (ja) 低温靭性と耐水素誘起割れ性に優れた厚板鋼材、及びその製造方法
CN101871081B (zh) 一种低钢级连续油管用钢及其制造方法
CN108624810B (zh) 一种低成本高强度高抗硫油井管及其制造方法
CA3032502C (en) Sucker rod steel and manufacturing method thereof
CN111607744B (zh) 一种厚壁高强高韧石油套管及其制造方法
CN105200320A (zh) 一种小规格圆环链用钢
WO2021078255A1 (zh) 一种抗挤毁石油套管及其制造方法
WO2019179354A1 (zh) 一种耐低温高强高韧油套管及其制造方法
JP2010132998A (ja) 高強度及び冷鍛性に優れた高耐食フェライト系ステンレス鋼の製造方法
WO2018099381A1 (zh) 一种高强高韧射孔枪管及其制造方法
CN114134387A (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
WO2021227921A1 (zh) 一种高强度抗挤毁石油套管及其制造方法
KR20120087611A (ko) 라인파이프용 고강도 강판 및 그 제조 방법
WO2022228524A1 (zh) 一种稠油开发用高强度耐热套管及其制造方法
CN114752858B (zh) 一种不含马氏体组织的合金手工具钢盘条及制备方法和手工具钢
CN112143965B (zh) 一种非调质油套管及其制造方法
CN117210761A (zh) 一种2100MPa级低合金高强高韧钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565148

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15736835

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002733

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811023

Country of ref document: EP

Kind code of ref document: A1