WO2016202282A1 - 超高强度超高韧性石油套管用钢、石油套管及其制造方法 - Google Patents
超高强度超高韧性石油套管用钢、石油套管及其制造方法 Download PDFInfo
- Publication number
- WO2016202282A1 WO2016202282A1 PCT/CN2016/086114 CN2016086114W WO2016202282A1 WO 2016202282 A1 WO2016202282 A1 WO 2016202282A1 CN 2016086114 W CN2016086114 W CN 2016086114W WO 2016202282 A1 WO2016202282 A1 WO 2016202282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultra
- strength
- toughness
- oil casing
- carbonitride
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 62
- 239000010959 steel Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052729 chemical element Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000002244 precipitate Substances 0.000 claims description 39
- 239000003208 petroleum Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- 230000007704 transition Effects 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- 238000009749 continuous casting Methods 0.000 claims description 4
- 238000004513 sizing Methods 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000011572 manganese Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QFGIVKNKFPCKAW-UHFFFAOYSA-N [Mn].[C] Chemical compound [Mn].[C] QFGIVKNKFPCKAW-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
Definitions
- the invention relates to a steel material and a manufacturing method thereof, in particular to a petroleum casing and a manufacturing method thereof.
- the impact toughness of a pressure vessel should reach 10% of its yield strength, which means that the toughness of the 155 steel grade casing material should reach 107J or more.
- the reality is that the development of steel pipes with high toughness and high strength is extremely difficult.
- the casing strength capable of industrial application can reach 155 ksi or more, but the impact toughness is only 50-80 J.
- Japanese Patent Publication No. JP11131189A discloses a steel pipe product which is heated in the range of 750-400 ° C and then rolled in a range of 20% or more of the deformation amount to produce a yield strength of 950 MPa or more. Steel pipe products with good toughness. However, the inventor of the present invention believes that the heating temperature of this process is low, the martensite structure is easily generated, and the rolling temperature is low, and the rolling difficulty is also large.
- Japanese Patent Publication No. JP04059941A also discloses a steel pipe product which controls the ratio of retained austenite to upper bainite in a steel matrix by a heat treatment process so that the tensile strength reaches 120-160 ksi.
- the technical solution is characterized by high carbon and high silicon, both of which can significantly increase strength but significantly reduce toughness.
- the inventor of the present invention believes that the retained austenite will undergo a structural transformation during the use of the petroleum pipe (the use temperature of the deep well oil well pipe is above 120 ° C), which causes the steel pipe to reduce the toughness while increasing the strength.
- the publication number is CN101250671, and the publication date is August 27, 2008.
- the name is "has high strength.”
- the Chinese patent document of "degree and high toughness oil casing and its manufacturing method” also discloses a high strength and high toughness steel whose chemical element ratio is: C: 0.22 to 0.4%, Si: 0.17 to 0.35%, Mn : 0.45 to 0.60%, Cr: 0.95 to 1.10%, Mo: 0.70 to 0.80%, Al: 0.015 to 0.040%, Ni ⁇ 0.20%, Cu ⁇ 0.20%, V: 0.070 to 0.100%, Ca > 0.0015%, P ⁇ 0.010%, S ⁇ 0.003%, the rest is iron, the manufacturing process includes the steps: 1 batch smelting; 2 continuous casting and rolling; 3 tube processing. However, the lateral impact toughness of the sleeve is only 80J.
- One of the objects of the present invention is to provide a steel for ultra-high strength and ultra-high toughness oil casing, which can reach a strength of more than 155 ksi, and its impact toughness is much greater than 10% of its yield strength value, thereby achieving ultra-high strength and super high Resilience matching.
- the present invention proposes an ultra-high strength ultra-high toughness petroleum casing steel whose microstructure is tempered sorbite, and the chemical element mass percentage content thereof is: C: 0.1-0.22%, Si: 0.1 -0.4%, Mn: 0.5-1.5%, Cr: 1-1.5%, Mo: 1-1.5%, Nb: 0.01-0.04%, V: 0.2-0.3%, Al: 0.01-0.05%, Ca: 0.0005- 0.005%, the balance is Fe and unavoidable impurities.
- composition design principle of the ultra high strength ultra high toughness petroleum casing steel according to the present invention is as follows:
- C is a precipitate forming element, which can increase the strength of steel.
- the C content is less than 0.10%, the hardenability is lowered, thereby reducing the strength, and the material strength is difficult to reach 155 ksi or more. If the C content is higher than 0.22%, a large amount of coarse is formed with Cr and Mo. The precipitates are markedly aggravated by the segregation of steel, resulting in a significant reduction in toughness and difficulty in achieving high strength and high toughness.
- Si:Si solid solution in ferrite can increase the yield strength of steel.
- the Si element should not be too high, and the content is too high to deteriorate the processing and toughness, and the Si element content of less than 0.1% makes the steel susceptible to oxidation.
- Mn is an austenite forming element and can improve the hardenability of steel.
- the content of Mn element is less than 5%, the hardenability of the steel is significantly lowered, the proportion of martensite is lowered to reduce the toughness; when the content is more than 1.5%, the segregation of the structure in the steel is significantly increased, and the heat is affected. Uniformity and impact properties of the rolled structure.
- Cr Cr is an element that strongly enhances hardenability, and is a strong precipitate forming element. When tempering, it precipitates precipitates to increase the strength of steel. In the present technical solution, it is easy to crystallize when the content is higher than 1.5%. The precipitate of coarse M23C6 precipitates and reduces the toughness, but if its content is less than 1%, it will lead to hardenability. foot.
- Mo:Mo mainly improves the strength and tempering stability of steel through precipitates and solid solution strengthening forms.
- carbon content since the carbon content is low, it is difficult to increase the strength if the added Mo exceeds 1.5%. Significant impact, but will cause alloy waste, in addition, if the Mo element content is less than 1%, the strength can not be guaranteed to reach 155ksi or more.
- Nb is a fine crystal and precipitation strengthening element, which can compensate for the decrease in strength due to carbon reduction.
- the Nb content is less than 0.01%, the effect is not exhibited.
- Nb is more than 0.04%, coarse Nb (CN) is easily formed, resulting in a decrease in toughness.
- V is a typical precipitation strengthening element that compensates for the decrease in strength due to carbon reduction.
- the strengthening effect is difficult to achieve a material of 155 ksi or more, and if the V content is more than 0.3%, coarse V (CN) is easily formed, thereby lowering the toughness.
- Al acts as a deoxidizing and grain refining in the steel, and also improves the stability and corrosion resistance of the surface film. When the amount added is less than 0.01%, the effect is not obvious, and the addition amount exceeds 0.05%, and the mechanical properties are deteriorated.
- Ca:Ca can purify the molten steel and promote the spheroidization of MnS, thereby improving the impact toughness.
- the Ca content is too high, coarse non-metallic inclusions are easily formed, which is disadvantageous to the technical solution.
- the precipitate on the tempered sorbite includes at least one of carbonitrides of Nb and carbonitrides of V.
- the carbonitride of the Nb has a size of 100 nm or less
- the carbonitride of the V has a size of 100 nm or less.
- the ultra-high strength ultra-high toughness oil casing steel according to the present invention also satisfies 1 ⁇ (V + Nb) / C ⁇ 2.3, so as to cause harmful Cr precipitates on the tempered sorbite and / Or there are very few precipitates of Mo.
- the ultra high strength ultra high toughness petroleum casing steel according to the present invention further has 0 ⁇ Ti ⁇ 0.04%.
- the Ti element is a strong carbonitride forming element, which can refine the austenite grains remarkably, thereby compensating for the decrease in strength due to carbon reduction. However, if the content is too high above 0.04%, coarse TiN is easily formed, thereby lowering the toughness of the material.
- the precipitate on the tempered sorbite includes at least one of carbonitrides of Nb, carbonitrides of V, and carbonitrides of Ti.
- Conventional high-strength steels with a strength of 155 ksi or higher are generally low-alloy steels, that is, alloying elements such as Cr, Mo, V, and Nb are added to carbon-manganese steel, and precipitates formed between carbon and alloy elements are used.
- the precipitation strengthening effect is increased to increase the strength of the steel.
- the C content is generally about 0.3%, but the precipitate of the alloying element is a brittle phase. When the alloy content is too high, the precipitate is likely to aggregate and precipitate and coarse, which will drastically reduce the material. toughness.
- the idea of the invention is to break through the current method of mainly relying on Cr and Mo alloy elements to improve the strength, and the solid solution strengthening of Mn, Cr and Mo is mainly used, and the precipitation strengthening of V, Nb (in some embodiments, Ti) is A complementary method to increase the strength of the material.
- the present invention employs a low carbon component design that preferentially forms V, Nb using the precipitated stability characteristics of V, Nb (and in some embodiments Ti) (in some embodiments, The fine and evenly distributed precipitates of Ti) enable the steel to increase the strength without reducing the toughness, so that the alloying elements such as Cr and Mo are mainly present in the solid solution form in the matrix, and are eliminated while obtaining a good solid solution strengthening effect.
- the coarse Cr and Mo precipitates deteriorate the toughness and further obtain a good toughness match.
- the carbonitride of the Nb has a size of 100 nm or less
- the carbonitride of the V has a size of 100 nm or less
- the carbonitride of Ti has a size of 100 nm or less.
- the chemical element of the ultra-high strength ultra-high toughness oil casing steel according to the present invention satisfies 1 ⁇ (V + Nb) / C ⁇ 2.3, so that the precipitation of harmful Cr on the tempered sorbite is precipitated. There are very few precipitates of matter and/or Mo.
- the precipitates of Cr, Mo, V, Nb, etc. which mainly play the strengthening role, are different in size and morphology.
- the main form of Cr is Cr 23 C 6 .
- the precipitates are easy to aggregate at the grain boundaries, and the size is large, generally about 150-250 nm;
- the main form of Mo is Mo 2 C, and such precipitates are also easy to aggregate at the grain boundaries, of course, they are also precipitated in the crystal.
- Medium generally around 100-150nm; V, Nb and Ti elements mainly exist in the form of (V, Nb, Ti) (C, N), such precipitates are uniformly precipitated in the crystal, and the size is small.
- the thickness or diameter of precipitates on the grain boundary increases, and the cleavage crack is easy to form and easy to expand, so the brittleness is increased.
- the coarse precipitates of Cr and Mo distributed in the matrix may form micropores due to their own cracking or detachment from the interface of the substrate, and the microporous joints grow to form cracks, and finally cause fracture. Therefore, in order to obtain a higher toughness index, the size of the precipitated Nb carbonitride and/or V carbonitride should be controlled to be less than 100 nm, and it is preferable to minimize the occurrence of precipitates of Cr and Mo of 150 to 250 nm.
- the inevitable impurities are mainly P, S and N, so it should be ensured that the content of these impurity elements is as low as possible.
- Another object of the present invention is to provide a petroleum casing capable of achieving a strength level of 155 ksi or more while also having an ultra high toughness matched with ultra high strength.
- the present invention provides a petroleum casing which is produced by using the above-described steel for ultra high strength and ultra high toughness oil casing.
- the oil casing is a 155ksi oil casing with a yield strength of 1069-1276 MPa, a tensile strength ⁇ 1138 MPa, an elongation of 20%-25%, and a 0 degree lateral Charpy impact energy ⁇ 130J. , ductile-brittle transition temperature ⁇ -60 ° C.
- the oil casing is a 170 ksi oil casing with a yield strength of 1172-1379 MPa, a tensile strength ⁇ 1241 MPa, an elongation of 18% to 25%, and a 0 degree lateral Charpy impact energy ⁇ 120 J. , ductile-brittle transition temperature ⁇ -50 ° C.
- the present invention provides a method of manufacturing the above oil casing, comprising the steps of:
- the austenitizing temperature is 920-950 ° C, after quenching for 30-60 min, then quenching, then tempering at 600-650 ° C, holding time 50-80 min, then at 500-550 °C heat sizing.
- the continuous casting slab obtained through the step (1) is heated and soaked, the soaking temperature is 1200-1240 ° C, the controlled perforation temperature is 1180-1240 ° C, and the finishing rolling temperature is controlled. It is from 900 ° C to 950 ° C.
- the present invention has the following beneficial effects:
- the steel for oil casing according to the present invention which can be used for manufacturing a petroleum casing having excellent toughness fit and low temperature impact toughness of a steel grade of 155 ksi or more;
- Figure 1 shows the microstructure of Example 5 of the present invention.
- Figure 2 shows the morphology of the precipitated phase in Example 5 of the present invention.
- Figure 3 shows the morphology of the precipitate phase in Comparative Example 2.
- Figure 4 shows the morphology of the precipitate phase in Comparative Example 3.
- the oil cannula of Examples 1-5 of the present invention and the oil cannula of Comparative Examples 1-3 were produced according to the following procedures (the elements in the respective examples and comparative examples are shown in Table 1, each example and comparative examples) The specific process parameters in the table are shown in Table 2):
- Table 1 lists the chemical element mass distribution ratios of the respective oil casings of Examples 1-5 and Comparative Examples 1-3 in the present case.
- Table 2 lists the specific process parameters of Examples 1-5 and Comparative Examples 1-3 of the present case.
- Table 3 lists the performance parameters of Examples 1-5 and Comparative Examples 1-3 of the present case.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Claims (15)
- 一种超高强度超高韧性石油套管用钢,其特征在于,其微观组织为回火索氏体,其化学元素质量百分比含量为:C:0.1-0.22%,Si:0.1-0.4%,Mn:0.5-1.5%,Cr:1-1.5%,Mo:1-1.5%,Nb:0.01-0.04%,V:0.2-0.3%,Al:0.01-0.05%,Ca:0.0005-0.005%,余量为Fe和不可避免的杂质。
- 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,所述回火索氏体上的析出物包括Nb的碳氮化物和V的碳氮化物的至少其中之一。
- 如权利要求2所述的超高强度超高韧性石油套管用钢,其特征在于,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下。
- 如权利要求3所述的超高强度超高韧性石油套管用钢,其特征在于,还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
- 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,还具有0<Ti≤0.04%。
- 如权利要求5所述的超高强度超高韧性石油套管用钢,其特征在于,所述回火索氏体上的析出物包括Nb的碳氮化物、V的碳氮化物和Ti的碳氮化物的至少其中之一。
- 如权利要求6所述的超高强度超高韧性石油套管用钢,其特征在于,所述Nb的碳氮化物的尺寸在100nm以下,所述V的碳氮化物的尺寸在100nm以下,所述Ti的碳氮化物的尺寸在100nm以下。
- 如权利要求7所述的超高强度超高韧性石油套管用钢,其特征在于,还满足1≤(V+Nb)/C≤2.3,以使回火索氏体上有害的Cr的析出物和/或Mo的析出物极少。
- 如权利要求1所述的超高强度超高韧性石油套管用钢,其特征在于,所述不可避免的杂质中的P≤0.015%,S≤0.003%,N≤0.008%。
- 一种石油套管,其特征在于,其采用如权利要求1-9中任意一项所述的超高强度超高韧性石油套管用钢制得。
- 如权利要求10所述的石油套管,其特征在于,其为155ksi级石油套管,其屈服强度为1069-1276MPa,抗拉强度≥1138MPa,延伸率为20%-25%,0度横向夏比冲击功≥130J,韧脆转变温度≤-60℃。
- 如权利要求10所述的石油套管,其特征在于,其为170ksi级石油套管,其屈服强度为1172-1379MPa,抗拉强度≥1241MPa,延伸率为18%-25%,0度横向夏比冲击功≥120J,韧脆转变温度≤-50℃。
- 如权利要求10-12所述的石油套管的制造方法,其包括步骤:(1)冶炼和铸造;(2)穿孔和连轧;(3)热处理。
- 如权利要求13所述的制造方法,其特征在于,在所述步骤(3)中,奥氏体化温度为920-950℃,保温30-60min后淬火,然后在600-650℃回火,保温时间50-80min,然后在500-550℃热定径。
- 如权利要求13所述的制造方法,其特征在于,在所述步骤(2)中,将经过步骤(1)得到的连铸坯加热并均热,均热温度为1200-1240℃,控制穿孔温度为1180-1240℃,控制终轧温度为900℃-950℃。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017565148A JP6670858B2 (ja) | 2015-06-18 | 2016-06-17 | 超高強度超高靱性ケーシング鋼、オイルケーシング及びその製造方法 |
US15/736,835 US10851432B2 (en) | 2015-06-18 | 2016-06-17 | Ultra-high strength and ultra-high toughness casing steel, oil casing, and manufacturing method thereof |
DE112016002733.8T DE112016002733T5 (de) | 2015-06-18 | 2016-06-17 | Ultrahochfester und ultrahochzäher Verrohrungsstahl, Ölverrohrung und Herstellungsverfahren davon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510340874.6 | 2015-06-18 | ||
CN201510340874.6A CN105002425B (zh) | 2015-06-18 | 2015-06-18 | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016202282A1 true WO2016202282A1 (zh) | 2016-12-22 |
Family
ID=54375281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086114 WO2016202282A1 (zh) | 2015-06-18 | 2016-06-17 | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10851432B2 (zh) |
JP (1) | JP6670858B2 (zh) |
CN (1) | CN105002425B (zh) |
DE (1) | DE112016002733T5 (zh) |
WO (1) | WO2016202282A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116083816A (zh) * | 2023-01-09 | 2023-05-09 | 江苏沙钢集团淮钢特钢股份有限公司 | 一种高淬透性超大规格石油装备用钢及其生产工艺 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105002425B (zh) * | 2015-06-18 | 2017-12-22 | 宝山钢铁股份有限公司 | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 |
CN108004462B (zh) * | 2016-10-31 | 2020-05-22 | 宝山钢铁股份有限公司 | 一种抗硫化氢应力腐蚀开裂的油套管及其制造方法 |
CN109207839A (zh) * | 2017-06-29 | 2019-01-15 | 宝山钢铁股份有限公司 | 一种高强高韧射孔枪管及其制造方法 |
EA202091011A1 (ru) | 2017-12-04 | 2020-09-04 | Монаш Юниверсити | Высокопрочный алюминиевый сплав для производственных процессов высокоскоростной кристаллизации |
CN110295313B (zh) * | 2018-03-21 | 2021-09-17 | 宝山钢铁股份有限公司 | 一种耐低温高强高韧油套管及其制造方法 |
CN110616365B (zh) * | 2018-06-20 | 2021-08-13 | 宝山钢铁股份有限公司 | 一种高强度膨胀套管及其制造方法 |
CN111607744B (zh) * | 2019-02-22 | 2021-11-16 | 宝山钢铁股份有限公司 | 一种厚壁高强高韧石油套管及其制造方法 |
CN112708730B (zh) * | 2019-10-24 | 2022-10-21 | 宝山钢铁股份有限公司 | 一种超高抗挤毁石油套管及其制造方法 |
CN113637892B (zh) | 2020-05-11 | 2022-12-16 | 宝山钢铁股份有限公司 | 一种高强度抗挤毁石油套管及其制造方法 |
CN114318129B (zh) * | 2020-10-10 | 2022-12-16 | 宝山钢铁股份有限公司 | 一种890MPa级易焊接无缝钢管及其制造方法 |
CN115261716B (zh) * | 2021-04-30 | 2023-06-16 | 宝山钢铁股份有限公司 | 一种稠油开发用高强度耐热套管及其制造方法 |
CN114561593B (zh) * | 2022-03-04 | 2022-11-08 | 马鞍山钢铁股份有限公司 | 一种长寿命高强韧耐腐蚀水下采油树阀体用钢及其热处理方法和生产方法 |
CN117660848A (zh) * | 2022-08-30 | 2024-03-08 | 宝山钢铁股份有限公司 | 一种抗co2及微生物腐蚀的高强度油套管及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4933008A (en) * | 1988-02-05 | 1990-06-12 | Nissan Motor Co., Ltd. | Heat resistant and wear resistant iron-based sintered alloy |
JPH0512616A (ja) * | 1991-07-04 | 1993-01-22 | Sharp Corp | 磁気ヘツドの製造方法 |
CN103045964A (zh) * | 2013-01-05 | 2013-04-17 | 莱芜钢铁集团有限公司 | 钢板及其制造方法 |
CN103938095A (zh) * | 2014-04-29 | 2014-07-23 | 宝山钢铁股份有限公司 | 一种165ksi钢级高强高韧钻杆及其制造方法 |
CN104233107A (zh) * | 2014-10-11 | 2014-12-24 | 马钢(集团)控股有限公司 | 一种含钒钛高速列车车轴用钢 |
CN105002425A (zh) * | 2015-06-18 | 2015-10-28 | 宝山钢铁股份有限公司 | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148124A (en) * | 1978-05-12 | 1979-11-20 | Nippon Steel Corp | Manufacture of high strength rall of excellent weldability |
JP3253068B2 (ja) | 1990-06-28 | 2002-02-04 | 日新製鋼株式会社 | 強靭な高強度trip鋼 |
JPH09111343A (ja) * | 1995-10-18 | 1997-04-28 | Nippon Steel Corp | 高強度低降伏比シームレス鋼管の製造法 |
JP3622499B2 (ja) | 1997-05-15 | 2005-02-23 | Jfeスチール株式会社 | 鋼管の製造方法 |
JP3514182B2 (ja) * | 1999-08-31 | 2004-03-31 | 住友金属工業株式会社 | 高温強度と靱性に優れた低Crフェライト系耐熱鋼およびその製造方法 |
JP4367588B2 (ja) * | 1999-10-28 | 2009-11-18 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた鋼管 |
JP3885615B2 (ja) * | 2001-03-09 | 2007-02-21 | 住友金属工業株式会社 | 埋設拡管用鋼管および油井用鋼管の埋設方法 |
CN1329546C (zh) * | 2004-04-28 | 2007-08-01 | 宝山钢铁股份有限公司 | 高强度石油钻杆及其制造方法 |
CN102206789B (zh) * | 2005-06-10 | 2015-03-25 | 新日铁住金株式会社 | 扩管后的韧性优良的膨胀管用油井管及其制造方法 |
WO2007138752A1 (ja) * | 2006-06-01 | 2007-12-06 | Honda Motor Co., Ltd. | 高強度鋼板およびその製造方法 |
BRPI0802628A2 (pt) * | 2007-03-30 | 2011-08-30 | Sumitomo Metal Ind | aço de baixa liga para produtos tubulares para paìses produtores de petróleo e tubulação em aço sem costura |
CN101328559B (zh) * | 2007-06-22 | 2011-07-13 | 宝山钢铁股份有限公司 | 低屈强比石油套管用钢、石油套管及其制法 |
CN100595309C (zh) | 2008-03-26 | 2010-03-24 | 天津钢管集团股份有限公司 | 具有高强度和高韧性的石油套管及其制造方法 |
CN101928889A (zh) * | 2009-06-23 | 2010-12-29 | 宝山钢铁股份有限公司 | 一种抗硫化物腐蚀用钢及其制造方法 |
CN101929313A (zh) * | 2009-06-24 | 2010-12-29 | 宝山钢铁股份有限公司 | 高强度耐硫化氢环境腐蚀的无缝石油套管及其制造方法 |
CN102725428B (zh) * | 2010-01-27 | 2014-01-15 | 新日铁住金株式会社 | 管线管用无缝钢管的制造方法及管线管用无缝钢管 |
JP2011246774A (ja) * | 2010-05-27 | 2011-12-08 | Honda Motor Co Ltd | 高強度鋼板およびその製造方法 |
CN102242321A (zh) * | 2011-06-30 | 2011-11-16 | 天津钢管集团股份有限公司 | 耐硫化物应力开裂腐蚀的c110钢级石油专用管具钢及其制造方法 |
CN102899573B (zh) * | 2011-07-25 | 2015-12-02 | 宝山钢铁股份有限公司 | 一种高强度耐磨套管用钢及其制造方法 |
US10196726B2 (en) * | 2013-02-26 | 2019-02-05 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-rolled steel sheet having excellent baking hardenability and low temperature toughness with maximum tensile strength of 980 MPa or more |
CN105102657B (zh) * | 2013-03-29 | 2017-03-15 | 杰富意钢铁株式会社 | 钢材及氢用容器、以及它们的制造方法 |
JP6048580B2 (ja) * | 2013-05-21 | 2016-12-21 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
JP6267618B2 (ja) * | 2014-09-30 | 2018-01-24 | 株式会社神戸製鋼所 | ボルト用鋼およびボルト |
EP3575428A4 (en) * | 2017-01-24 | 2020-07-22 | Nippon Steel Corporation | STEEL MATERIAL AND ITS MANUFACTURING PROCESS |
-
2015
- 2015-06-18 CN CN201510340874.6A patent/CN105002425B/zh active Active
-
2016
- 2016-06-17 DE DE112016002733.8T patent/DE112016002733T5/de active Pending
- 2016-06-17 WO PCT/CN2016/086114 patent/WO2016202282A1/zh active Application Filing
- 2016-06-17 JP JP2017565148A patent/JP6670858B2/ja active Active
- 2016-06-17 US US15/736,835 patent/US10851432B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4933008A (en) * | 1988-02-05 | 1990-06-12 | Nissan Motor Co., Ltd. | Heat resistant and wear resistant iron-based sintered alloy |
JPH0512616A (ja) * | 1991-07-04 | 1993-01-22 | Sharp Corp | 磁気ヘツドの製造方法 |
CN103045964A (zh) * | 2013-01-05 | 2013-04-17 | 莱芜钢铁集团有限公司 | 钢板及其制造方法 |
CN103938095A (zh) * | 2014-04-29 | 2014-07-23 | 宝山钢铁股份有限公司 | 一种165ksi钢级高强高韧钻杆及其制造方法 |
CN104233107A (zh) * | 2014-10-11 | 2014-12-24 | 马钢(集团)控股有限公司 | 一种含钒钛高速列车车轴用钢 |
CN105002425A (zh) * | 2015-06-18 | 2015-10-28 | 宝山钢铁股份有限公司 | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116083816A (zh) * | 2023-01-09 | 2023-05-09 | 江苏沙钢集团淮钢特钢股份有限公司 | 一种高淬透性超大规格石油装备用钢及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
US20180291475A1 (en) | 2018-10-11 |
JP6670858B2 (ja) | 2020-03-25 |
JP2018523012A (ja) | 2018-08-16 |
CN105002425B (zh) | 2017-12-22 |
DE112016002733T5 (de) | 2018-04-19 |
US10851432B2 (en) | 2020-12-01 |
CN105002425A (zh) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016202282A1 (zh) | 超高强度超高韧性石油套管用钢、石油套管及其制造方法 | |
US11053563B2 (en) | X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same | |
WO2019128286A1 (zh) | 一种耐磨钢低成本短生产周期制备方法 | |
CN105441801B (zh) | 一种超高强度超高韧性石油套管及其tmcp制造方法 | |
MX2008016193A (es) | Productos tubulares para campo petrolero de acero sin costura, con acero de baja aleacion y metodo para producir un tubo de acero sin costura. | |
JP2013227611A (ja) | 耐ssc性に優れた高強度鋼材およびその製造方法 | |
CN108368591A (zh) | 具有优异的焊后热处理耐性的压力容器钢板及其制造方法 | |
JP6456986B2 (ja) | 超高強度・超高靱性油井管およびその製造方法 | |
JP6684353B2 (ja) | 低温靭性と耐水素誘起割れ性に優れた厚板鋼材、及びその製造方法 | |
CN101871081B (zh) | 一种低钢级连续油管用钢及其制造方法 | |
CN108624810B (zh) | 一种低成本高强度高抗硫油井管及其制造方法 | |
CA3032502C (en) | Sucker rod steel and manufacturing method thereof | |
CN111607744B (zh) | 一种厚壁高强高韧石油套管及其制造方法 | |
CN105200320A (zh) | 一种小规格圆环链用钢 | |
WO2021078255A1 (zh) | 一种抗挤毁石油套管及其制造方法 | |
WO2019179354A1 (zh) | 一种耐低温高强高韧油套管及其制造方法 | |
JP2010132998A (ja) | 高強度及び冷鍛性に優れた高耐食フェライト系ステンレス鋼の製造方法 | |
WO2018099381A1 (zh) | 一种高强高韧射孔枪管及其制造方法 | |
CN114134387A (zh) | 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法 | |
WO2021227921A1 (zh) | 一种高强度抗挤毁石油套管及其制造方法 | |
KR20120087611A (ko) | 라인파이프용 고강도 강판 및 그 제조 방법 | |
WO2022228524A1 (zh) | 一种稠油开发用高强度耐热套管及其制造方法 | |
CN114752858B (zh) | 一种不含马氏体组织的合金手工具钢盘条及制备方法和手工具钢 | |
CN112143965B (zh) | 一种非调质油套管及其制造方法 | |
CN117210761A (zh) | 一种2100MPa级低合金高强高韧钢及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811023 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017565148 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15736835 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016002733 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16811023 Country of ref document: EP Kind code of ref document: A1 |