WO2016202226A1 - 具有自动火力标定功能的燃气式烹调系统 - Google Patents

具有自动火力标定功能的燃气式烹调系统 Download PDF

Info

Publication number
WO2016202226A1
WO2016202226A1 PCT/CN2016/085596 CN2016085596W WO2016202226A1 WO 2016202226 A1 WO2016202226 A1 WO 2016202226A1 CN 2016085596 W CN2016085596 W CN 2016085596W WO 2016202226 A1 WO2016202226 A1 WO 2016202226A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
ambient temperature
gas pressure
measured
Prior art date
Application number
PCT/CN2016/085596
Other languages
English (en)
French (fr)
Inventor
袁灿
梁洪权
Original Assignee
深圳市爱可机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510337049.0A external-priority patent/CN106322447B/zh
Priority claimed from CN201510337645.9A external-priority patent/CN106257143B/zh
Priority claimed from CN201510337212.3A external-priority patent/CN106257142B/zh
Application filed by 深圳市爱可机器人技术有限公司 filed Critical 深圳市爱可机器人技术有限公司
Publication of WO2016202226A1 publication Critical patent/WO2016202226A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to the field of cooking appliances; more particularly, the present invention relates to a gas cooking system having an automatic fire calibration function.
  • Cooking is the process of heating and seasoning various processed cooking ingredients into a dish of color, aroma, taste, shape and nutrition.
  • the variety of dishes is varied, and the cooking techniques vary widely.
  • the cooking techniques are particularly varied, such as frying, frying, cooking, frying, slipping, blasting, simmering, steaming, roasting, boiling, and the like.
  • the mastery of the fire is one of the key factors.
  • techniques such as frying, blasting, cooking, and frying are often used in a fast-paced manner.
  • Techniques such as burning, stewing, boiling, and braising are often cooked over a small fire for a long time.
  • the so-called mastery of heat is to adjust and control the intensity and time of heating in accordance with the cooking methods, the characteristics of the dishes and the different specific requirements of consumption, and to prepare the food ingredients to meet the edible requirements and meet the prescribed quality standards.
  • the heat source of the heat source, the temperature of the heat transfer medium, and the heating time are the three main components that constitute the heat.
  • the firepower can be measured by the heat load of the cookware used.
  • the heat load is the amount of heat released per unit of time when the gas is burned in the cookware.
  • Cooking especially when cooking in a standardized manner using a semi-automatic or automatic cooking system, if there is an error in the setting or adjustment of the heat load or firepower, when the error value reaches a level sufficient to affect the quality of the dish, the process parameters related to the fire It is necessary to make corresponding corrections or adjustments, otherwise the quality and consistency of the dishes will be affected by the incorrect fire.
  • Studies by the inventors have shown that when the deviation between the actual firepower and the set standard firepower exceeds 2%, it will have a relatively large adverse effect on the quality of some dishes, especially fire-sensitive dishes.
  • Chinese Patent No. CN03154580.1 discloses an adjustable firearm cooker with a sensor and a cooking system thereof, the adjustable firearm cooker comprising at least one sensor for measuring a fire condition for detecting a pass including a cooking container
  • the physical quantity and/or chemical quantity of the heat medium and/or the food being cooked and/or its amount of change, and the measured data is transmitted to the control processor such that the control processor dynamically determines and controls the cooking heat in a timely manner.
  • the heat transfer process between the heat transfer medium and the object to be cooked is complicated and irregular, and the heat transfer medium located in different regions is cooked.
  • the temperature of the objects is usually not the same.
  • the above existing cooking system only applies to the heat transfer medium and The local measurement of the cooking is difficult because the data obtained by such local measurement is difficult to be representative, and thus the measurement data cannot accurately reflect the fire intensity and the actual condition of the cooking heat, and the fire control based on these measurement data is of course It is not precise enough.
  • Chinese patent CN200910107623.8 discloses a fire control system for a machine vision-based cooking system, which is used in conjunction with a main processor of a cooking device and a firepower adjustment device, the fire control system including a motion module, an image imaging module, and a thermal infrared transmission.
  • the sensing module, the visual processing module and the communication module, the image imaging module receives the command or information of the main processor, and after the image is sampled, the image information is sent to the visual processing module through the communication module, and the visual processing module pairs the image information.
  • Real-time processing is performed to obtain position information of a typical heating object.
  • the motion module drives the thermal infrared sensing module to temperature sample the typical heating object, and sends the temperature information to the main processor of the cooking device through the communication module or Fire control device.
  • the fire control system described above can theoretically obtain representative temperature measurement data and achieve accurate control of cooking heat, but it is not only complicated in structure, but also for some cooking processes, especially for frying, frying, frying, and blasting.
  • cooking techniques such as slipping
  • the soot will interfere with the image of the dish obtained by the image forming module, which makes it difficult to accurately obtain it.
  • the correct typical heating object, the heat control based on these incorrect measurement data is of course not accurate enough.
  • an object of the present invention is to provide a gas-fired cooking system and an automatic firepower calibration method of the gas-fired cooking system, which can automatically calibrate its firepower according to changes in the working environment, thereby Achieve stable fire output in different working environments, with precise control of cooking heat and cooking of stable quality dishes and other cooking foods.
  • the present invention provides a gas-fired cooking system having an automatic fire calibration function, comprising a gas regulating device and a gas heating device, the gas regulating device being used at least for regulating gas in the gas heating device pressure.
  • the gas cooking system further includes: a gas pressure detecting unit configured to measure a gas pressure in a gas pipeline downstream of the gas regulating device in a gas flow direction, and generate a gas pressure detecting signal based on the measured gas pressure; An environmental parameter detecting unit for measuring an ambient temperature and an atmospheric pressure, and generating an ambient temperature detecting signal and an atmospheric pressure detecting signal respectively based on the measured ambient temperature and atmospheric pressure; and a control processor for receiving the gas pressure detecting signal and the environment The temperature detection signal and the atmospheric pressure detection signal process the measured ambient temperature and atmospheric pressure to obtain a target gas pressure, and output a gas pressure control signal to the gas regulating device based on the measured gas pressure and the target gas pressure.
  • a gas pressure detecting unit configured to measure a gas pressure in a gas pipeline downstream of the gas regulating device in a gas flow direction, and generate a gas pressure detecting signal based on the measured gas pressure
  • An environmental parameter detecting unit for measuring an ambient temperature and an atmospheric pressure, and generating an ambient temperature detecting signal and an atmospheric pressure detecting
  • V measured gas flow, m 3 /h
  • V measured gas flow in cubic per hour (m 3 /h);
  • p amb atmospheric pressure at the time of the test, in kilopascals (kPa);
  • p s rated gas supply pressure for use in design, in kilopascals (kPa);
  • P m the relative static pressure of the gas in the gas flow meter, measured in kilopascals (kPa);
  • T 1 and T 2 the gas temperature at state 1 and state 2, respectively, K;
  • ⁇ 1 and ⁇ 2 the thermal load for state 1 and state 2, respectively;
  • T 1 and T 2 the gas temperature at state 1 and state 2, respectively, K;
  • P is the gas pressure
  • is the gas density
  • V is the gas flow rate
  • C is the Bernoulli constant.
  • C 1 and C 2 - are the Bernoulli constants of the respective gases for states 1 and 2, respectively.
  • the heat load of the gas heating device changes.
  • the firepower output may vary due to atmospheric pressure and ambient temperature; and even for a cooking system with a defined position, the working environment may be Changes in climate change and/or other causes, for example, when the cooking system is running for a certain period of time, its ambient temperature may be higher than the ambient temperature at the start of operation, because the cooking system is released to the surrounding environment during operation. The reason for the heat.
  • the gas pressure P should be changed accordingly.
  • the ambient temperature T 2 , the atmospheric pressure P amb2 , and the gas pressure P 2 be known values in a certain state, and measure the ambient temperature T 1 and the atmospheric pressure P amb1 in another state, and introduce a reaction such as gas white
  • the correction factor K affected by other factors, such as number, can be derived by formula (6):
  • the gas cooking system of the present invention uses a standardized cooking program for cooking, wherein a standardized fire strength (fire gear position) and heating time are set in the cooking program to obtain quality. Stable dishes and other cooking foods. Therefore, for the gas cooking system of the present invention, especially the semi-automatic or automatic gas cooking system, the initial firepower calibration is performed in an initial calibration environment, so that each firepower gear has a standardized fire strength, and the initial calibration environment is obtained. The corresponding gas pressure for each fire position.
  • the ambient temperature T 2 in the initial calibration environment, the atmospheric pressure P amb2 , the gas pressure P 2 corresponding to each heat load, and The saturated water vapor pressure s 2 is determined. Therefore, the gas cooking system of the present invention is based on the measured ambient temperature T 1 and atmospheric pressure P amb1 in the current working environment, and the saturated water vapor pressure s 1 in the current working environment, based on the above formula (8).
  • the relationship can automatically determine the target gas pressure required to obtain a thermal load equal to or substantially equal to the initial calibrated thermal load in the current working environment, and can be compared to the measured gas pressure and the measured gas pressure. As a result, the gas pressure is automatically controlled or adjusted to achieve a stable fire output in different working environments.
  • the present invention it is possible to create various working environments in the laboratory and to measure the gas pressure when the measured thermal load of the cooking system at each ambient temperature and atmospheric pressure is equal or substantially equal to the initial calibrated thermal load.
  • the target gas pressure a table of ambient temperature, atmospheric pressure-target gas pressure is obtained.
  • the gas-fired cooking system of the present invention can perform initial firepower calibration in an initial calibration environment before leaving the factory, or can perform initial firepower calibration in an initial calibration environment.
  • the correction coefficient K may have a value of 1.
  • the correction coefficient K may have a value of 1 when the initial firepower calibration is performed at the place of use.
  • a control processor includes a processing unit and a storage unit, wherein the storage unit stores an ambient temperature, an atmospheric pressure-target gas pressure relationship table indicating a correspondence relationship between an ambient temperature, an atmospheric pressure, and a target gas pressure.
  • the processing unit queries the relationship table based on the measured ambient temperature and atmospheric pressure to obtain a target gas pressure.
  • various working environments can be created in the laboratory, and the measured gas pressure is equal or substantially equal to the initial measured thermal load of the cooking system at each ambient temperature and atmospheric pressure.
  • the target gas pressure thereby obtaining a relationship table of ambient temperature, atmospheric pressure-target gas pressure; or determining, according to the above formula (8), that the thermal load corresponding to the initial calibration is equal or substantially equal at each predetermined ambient temperature and atmospheric pressure.
  • the target gas pressure required for the heat load thereby obtaining a table of relationship between ambient temperature, atmospheric pressure and target gas pressure.
  • the ambient temperature, atmospheric pressure-target gas pressure relationship table may be obtained by running the corresponding program of the gas cooking system, or may be input externally.
  • control processor has an algorithm for determining a target gas pressure based on the measured ambient temperature and atmospheric pressure, and obtains a target gas pressure based on the algorithm.
  • control processor is further configured to process the measured ambient temperature to obtain a saturated water vapor pressure, and to process the saturated water vapor pressure and the measured ambient temperature and atmospheric pressure. To get the target gas pressure.
  • control processor can obtain the saturated water vapor pressure by querying the relationship between the ambient temperature and the saturated water vapor pressure, or can calculate the measured ambient temperature according to an empirical formula of the relationship between the saturated water vapor pressure and the ambient temperature. To get saturated water vapor pressure.
  • the gas cooking system further includes a gas flow rate detecting unit for measuring a gas flow rate in the gas pipe, and transmitting a gas flow rate detecting signal to the control processor based on the measured gas flow rate;
  • the control processor is further configured to process the measured gas flow rate and gas pressure to obtain a Bernoulli constant of the gas, and process the Bernoulli constant of the gas and the measured ambient temperature and atmospheric pressure to obtain a correction.
  • the target gas pressure is thereafter, and a gas pressure control signal is output to the gas regulating device based on the measured gas pressure and the corrected target gas pressure.
  • the Bernoulli constant C of the gas in the corresponding state can be obtained.
  • the corrected target gas pressure can be obtained by the following formula (9):
  • P 2 is the gas pressure in the initial calibration environment
  • T 1 and T 2 are the measured ambient temperature and the ambient temperature in the initial calibration environment, respectively;
  • P amb1 and P amb2 are the measured atmospheric pressure and the atmospheric pressure in the initial calibration environment
  • s 1 and s 2 are the saturated water vapor pressures in the current working environment and the initial calibration environment, respectively;
  • C 1 and C 2 are the Bernoulli constants of the gas in the gas pipeline in the current working environment and the initial calibration environment, respectively.
  • the gas cooking system of the present invention can more accurately control and adjust the fire intensity of the gas by correcting the target gas pressure. Moreover, considering that the Bernoulli constant C of the gas during the operation of the cooking system changes dynamically, the correction of the target gas pressure can also be performed dynamically.
  • the gas cooking system further includes a gas flow detecting unit for measuring a gas flow rate in the gas pipe, and transmitting a gas flow detecting signal to the control processor based on the measured gas flow rate;
  • the control processor is further configured to obtain a target gas flow rate according to a conversion formula or a table, and output a gas flow control signal to the gas regulating device based on the measured gas flow rate and the target gas flow rate.
  • the gas flow rate can be directly measured, or can be measured indirectly by measuring the gas flow rate and converting the gas flow rate into a gas flow rate.
  • control processor can obtain the target gas flow rate required when the heat load of the gas cooking system and the initial calibration heat load are equal or substantially equal in each working environment by calculating the following conversion formula (10):
  • V target gas flow, m 3 /h
  • t g the ambient temperature measured in the current working environment, °C;
  • P amb the atmospheric pressure measured in the current working environment, kPa
  • a conversion table indicating the correspondence between the relative static pressure of the gas at each fire intensity, the ambient temperature, and the atmospheric pressure and the target gas flow rate may be obtained in advance according to the above formula (10), and the control processor obtains the target by querying the conversion table. Gas flow.
  • Controlling the strength of the fire by adjusting the gas pressure has the advantage of being fast, which is particularly suitable for the rapid adjustment of the fire strength by the gas cooking system.
  • Controlling the fire intensity by adjusting the gas flow has the advantage of higher control accuracy, but it requires a longer adjustment time.
  • the gas pressure and the gas flow rate are simultaneously adjusted to control the fire intensity, and the invention has the advantages of high adjustment speed and high precision.
  • the environmental parameter detecting unit includes an ambient temperature detecting unit and an atmospheric pressure detecting unit, and the ambient temperature detecting unit is configured to measure the ambient temperature and generate an ambient temperature detecting signal based on the measured ambient temperature, the atmospheric pressure The detection unit is configured to measure atmospheric pressure and generate an atmospheric pressure detection signal based on the measured atmospheric pressure.
  • the environmental parameter detecting unit includes an ambient temperature and atmospheric pressure detecting unit that measures the ambient temperature and the atmospheric pressure and generates an ambient temperature detecting signal and based on the measured ambient temperature and atmospheric pressure, respectively. Atmospheric pressure detection signal. This is in consideration of the fact that the atmospheric pressure detecting unit needs to measure the ambient temperature to automatically correct the static drift of the sensor when measuring atmospheric pressure; and, compared with the ambient temperature detecting unit and the atmospheric pressure detecting unit, the ambient temperature and atmospheric pressure are used. The cost of the detection unit is lower.
  • the gas regulating device comprises a gas regulating valve that is driven directly and/or indirectly by a motor and/or electrical signal and/or other drive means for multi-stage and/or stepless continuous regulation.
  • the signal between the environmental parameter detecting unit and the control processor, between the gas pressure detecting unit and the control processor, between the control processor and the gas regulating device may be performed by wire or wirelessly. transmission.
  • the gas pressure detecting unit comprises a pressure sensor, such as a differential pressure sensor, which is disposed on the gas line between the gas regulating device and the gas nozzle.
  • a pressure sensor such as a differential pressure sensor
  • Another implementation manner is to provide a gas detection bypass on the gas pipeline, and a pressure sensor is disposed on the gas detection bypass.
  • the gas cooking system is automatic or semi-automatic gas Cooking system.
  • the present invention provides such an automatic firepower calibration method for a gas-fired cooking system, the gas-fired cooking system comprising a gas regulating device and a gas heating device, the gas regulating device being used at least Adjusting the gas pressure in the gas heating device.
  • the automatic firepower calibration method comprises the following steps: (1) initial calibration of each firepower intensity of the gas cooking system in an initial calibration environment; (2) determining each firepower strength to be initially calibrated at each predetermined ambient temperature and atmospheric pressure.
  • the required target gas pressure is obtained to obtain the ambient temperature, atmospheric pressure-target gas pressure relationship table; (3) measuring the gas pressure in the gas pipeline downstream of the gas regulating device in the gas flow direction in the current working environment; (4) measuring the gas cooking The ambient temperature and atmospheric pressure of the system under the current working environment; (5) Query the ambient temperature, atmospheric pressure-target gas pressure relationship table to obtain the target gas pressure required to reach the initial calibrated fire intensity under the current working environment; (6) The gas pressure is controlled or adjusted as a result of the measured gas pressure being compared with the target gas pressure.
  • the gas cooking system of the present invention can be obtained by querying the ambient temperature, atmospheric pressure-target gas pressure relationship table according to the measured ambient temperature T 1 and atmospheric pressure P amb1 in the current working environment.
  • the target gas pressure is automatically controlled or adjusted according to the comparison between the target gas pressure and the measured gas pressure to achieve stable fire output in different working environments.
  • the saturated water vapor pressure can be obtained by querying the relationship between the ambient temperature and the saturated water vapor pressure, or the measured ambient temperature can be calculated according to an empirical formula of the relationship between the saturated water vapor pressure and the ambient temperature to obtain saturation. Water vapor pressure.
  • the automatic fire calibration method further includes correcting the target gas pressure after the step (6), and further searching for the gas according to the comparison between the measured gas pressure and the corrected target gas pressure.
  • the automatic firepower calibration method of the present invention further comprises the steps of: determining a target gas flow rate required to achieve an initially calibrated firepower intensity in a current working environment by converting a formula or a table; The gas flow rate in the working environment; the gas flow rate is controlled or adjusted according to the comparison between the measured gas flow rate and the target gas flow rate.
  • the gas flow rate can be directly measured, or can be measured indirectly by measuring the gas flow rate and converting the gas flow rate into a gas flow rate.
  • the target gas flow rate required when the heat load of the gas cooking system in each working environment is equal to or substantially equal to the initial rated heat load can be obtained by calculating the above-described conversion formula (10).
  • a conversion table indicating the correspondence between the relative static pressure of the gas at each fire intensity, the ambient temperature, and the atmospheric pressure and the target gas flow rate may be obtained in advance according to the above formula (10), and the target gas flow rate is obtained by querying the conversion table. .
  • Controlling the strength of the fire by adjusting the gas pressure has the advantage of being fast, which is particularly suitable for the rapid adjustment of the fire strength by the gas cooking system.
  • Controlling the fire intensity by adjusting the gas flow has the advantage of higher control accuracy, but it requires a longer adjustment time.
  • the gas pressure and the gas flow rate are simultaneously adjusted to control the fire intensity, and the invention has the advantages of high adjustment speed and high precision.
  • the present invention also provides such an automatic firepower calibration method for a gas cooking system, the gas cooking system comprising a gas regulating device and a gas heating device, the gas regulating device being used for Adjust the gas pressure in the gas heating unit.
  • the automatic firepower calibration method comprises the following steps: (1) initially calibrating each firepower intensity of the gas cooking system in an initial calibration environment; and (2) measuring a gas pipeline located downstream of the gas regulating device in a gas flow direction under the current working environment.
  • the automatic fire calibration method further includes correcting the target gas pressure after the step (5), and further searching for the gas according to the comparison between the measured gas pressure and the corrected target gas pressure.
  • the gas-fired cooking system of the present invention can dynamically and automatically calibrate the firepower intensity according to changes in its working environment to output a heat load that is the same or substantially the same as the initial calibration value under various working environments, thereby achieving a stable output of the firepower. Therefore, the gas cooking system of the present invention can achieve precise control of cooking heat and cook stable quality dishes and other cooking foods.
  • the automatic fire calibration method of the present invention can dynamically and automatically calibrate the fire strength according to the change of the working environment of the gas cooking system, so that the gas cooking system outputs the same or substantially the same heat as the initial calibration value under various working environments. Load, thus achieving a stable output of firepower. Therefore, with the automatic fire calibration method of the present invention, the gas cooking system can achieve precise control of cooking heat, thereby cooking stable quality dishes and other cooked foods.
  • Figure 1 is a block diagram showing the structure of a gas cooking system according to a first embodiment of the present invention
  • Embodiment 1 of the gas cooking system of the present invention
  • Embodiment 3 is a flow chart for correcting the fire strength of Embodiment 1 of the gas cooking system of the present invention based on the corrected target gas pressure;
  • Figure 5 is a block diagram showing the structure of a gas cooking system according to a second embodiment of the present invention.
  • Fig. 6 is a flow chart showing the automatic firepower calibration of the second embodiment of the gas cooking system of the present invention.
  • FIG. 1 is a block diagram showing the structure of a first embodiment of a gas-fired cooking system having an automatic firepower calibration function according to the present invention.
  • 1 denotes a gas pressure detecting unit
  • 2 denotes an atmospheric pressure detecting unit
  • 3 denotes an ambient temperature detecting unit
  • 4 denotes a control processor
  • 41 denotes a storage unit
  • 42 denotes a processing unit
  • 5 denotes a gas regulating device
  • 6 denotes a gas heating device 7 denotes a gas pipeline
  • 8 denotes a gas flow meter
  • 9 denotes a gas flow rate detecting unit.
  • the gas pressure detecting unit 1 includes a gas pressure sensor and a gas pressure detecting and converting circuit.
  • the atmospheric pressure detecting unit 2 includes an atmospheric pressure sensor and an atmospheric pressure detecting and converting circuit.
  • the ambient temperature detecting unit 3 includes an ambient temperature sensor and an ambient temperature detecting and converting circuit.
  • the gas regulating device 5 includes a proportional valve and a valve driving mechanism, and the gas flow detecting unit 9 includes a gas flow rate sensor and a gas flow rate detecting and converting circuit.
  • the ambient temperature sensor and the atmospheric pressure sensor are installed on the outer casing of the cooking system, and are easy to contact with the environment and avoid the interference of the heat source; the gas pressure sensor is installed on the gas pipeline between the proportional valve and the gas nozzle of the gas heating device.
  • the gas flow rate sensor is installed on the gas pipeline between the gas flow meter 8 and the proportional valve; the gas pressure detection and conversion circuit, the atmospheric pressure detection and conversion circuit, the ambient temperature detection and conversion circuit, the gas flow rate detection and the conversion circuit are integrated in the control The control circuit board of the processor 4.
  • the gas pressure detecting unit 1 is configured to measure a gas pressure in a gas pipe between a proportional valve and a gas nozzle, and generate a gas pressure detecting signal based on the measured gas pressure;
  • the atmospheric pressure detecting unit 2 is used for Measuring atmospheric pressure and generating an atmospheric pressure detection signal based on the measured atmospheric pressure;
  • ambient temperature detecting unit 3 is for measuring ambient temperature and based on the measured ambient temperature The ambient temperature detecting signal is generated by the gas flow rate detecting unit 9 for measuring the gas flow rate in the gas pipe between the proportional valve and the gas flow meter 8, and generating a gas flow rate detecting signal based on the measured gas flow rate.
  • the gas pressure detection signal, the atmospheric pressure detection signal, the ambient temperature detection signal, and the gas flow rate detection signal are input and stored in the storage unit 41. Meanwhile, the storage unit 41 further stores an ambient temperature and an atmospheric pressure and a target gas under each heat load. The relationship between the ambient temperature, the atmospheric pressure-target gas pressure relationship, the relationship between the ambient temperature and the saturated water vapor pressure, and the cooking program data.
  • the processing unit 42 reads the corresponding data in the storage unit 41 and outputs a gas pressure and gas flow control signal to the gas regulating device 5 as needed.
  • the target gas pressure has a functional relationship with ambient temperature and atmospheric pressure as shown by the following formula (8):
  • p 1 ' is the target gas pressure, kPa
  • K is a correction factor used to correct the influence of other factors such as the gas white number on the target gas pressure
  • P 2 is the gas pressure in the initial calibration environment, kPa
  • T 1 and T 2 respectively, the predetermined working environment and the ambient temperature in the initial calibration environment, K;
  • P amb1 and P amb2 respectively, the atmospheric pressure in the predetermined working environment and the initial calibration environment, kPa;
  • s 1 and s 2 - are saturated water vapor pressures, kPa, respectively, corresponding to a predetermined working ambient temperature and an initial nominal ambient temperature. Saturated water vapor pressure is obtained by querying the relationship between ambient temperature and saturated water vapor pressure.
  • the initial calibration environment and the gas pressure corresponding to each of the initial calibration heat loads are uniquely determined, and according to the above formula (8), the initial and the initial working environment can be calculated and obtained.
  • the target gas pressure required for the calibrated thermal load equal or substantially equal thermal load, and then the ambient temperature, atmospheric pressure-target gas pressure relationship table indicating the relationship between the ambient temperature and the atmospheric pressure and the target gas pressure is obtained.
  • Fig. 2 is a flow chart showing the automatic firepower calibration of the gas cooking system of the embodiment.
  • the initial firepower calibration is performed on the cooking system under the initial calibration environment, and according to the above formula (8), it is determined that each firepower intensity to be initially calibrated at each predetermined ambient temperature and atmospheric pressure is required.
  • the target gas pressure is obtained to obtain an ambient temperature, atmospheric pressure-target gas pressure relationship table and stored to the storage unit 41.
  • a stable fire output for which the atmospheric pressure detecting unit 2 measures the current atmospheric pressure, the ambient temperature detecting unit 3 measures the current ambient temperature, and the current gas pressure measured by the gas pressure detecting unit 1; the control processor 4 queries the ambient temperature and the atmospheric pressure - the target gas pressure relationship table determines the atmospheric pressure and the ambient temperature which are the same as or closest to the measured atmospheric pressure and the ambient temperature, thereby obtaining the target gas pressure corresponding thereto, and measuring the target gas pressure and the gas pressure detecting unit 1 The gas pressure is compared.
  • the gas pressure control signal is output to the gas adjusting device 5; the gas adjusting device 5 automatically adjusts the opening degree of the proportional valve according to the control signal, so that the gas pressure reaches or approaches the target gas pressure.
  • the control processor 4 further corrects the target gas pressure after the automatic firepower calibration is completed to obtain the corrected target gas pressure, and measures the corrected target gas pressure and the gas pressure detecting unit 1 according to the corrected target gas pressure.
  • the gas pressure control signal is output to the gas regulating device 5; the gas adjusting device 5 automatically adjusts the opening degree of the proportional valve according to the control signal, so that the gas pressure reaches or approaches the corrected target gas pressure.
  • control processor 4 has a corresponding software program or logic operation circuit to obtain the corrected target gas pressure according to the algorithm represented by the following formula (9):
  • K is a correction factor used to correct the influence of other factors such as the gas white number on the target gas pressure
  • P 2 is the gas pressure in the initial calibration environment
  • T 1 and T 2 are the measured ambient temperature and the ambient temperature in the initial calibration environment, respectively;
  • P amb1 and P amb2 are the measured atmospheric pressure and the atmospheric pressure in the initial calibration environment
  • s 1 and s 2 are the saturated water vapor pressures in the current working environment and the initial calibration environment, respectively;
  • C 1 and C 2 are the Bernoulli constants of the gas in the gas pipeline in the current working environment and the initial calibration environment, respectively, which are obtained by the control processor by processing the measured gas flow rate and gas pressure.
  • the gas cooking system of the embodiment further controls the fire intensity by adjusting the gas flow rate to achieve a stable output of the fire power.
  • the adjustment of the gas flow rate is usually performed after the adjustment of the gas pressure. In order to achieve the adjustment of the gas flow rate, as shown in FIG.
  • the control processor 4 first, the control processor 4 Obtaining the target gas flow rate, and processing the gas flow rate measured by the gas flow rate detecting unit 9 (also referred to as the gas flow detecting unit at this time) to obtain the actual gas flow rate; then, the control processor 4 according to the target gas flow rate and the actual gas flow rate As a result of the comparison, the gas pressure control signal is output to the gas regulating device 5, and the gas adjusting device 5 automatically adjusts the opening degree of the proportional valve according to the control signal, so that the gas flow rate reaches or approaches the target gas flow rate.
  • the gas flow rate detecting unit 9 also referred to as the gas flow detecting unit at this time
  • control processor 4 has a corresponding software program or logic operation circuit to obtain the target gas flow rate according to the algorithm represented by the following formula (10):
  • V target gas flow, m 3 /h
  • t g the ambient temperature measured in the current working environment, °C;
  • P amb the atmospheric pressure measured in the current working environment, kPa
  • the heat load of the gas cooking system of the present embodiment was measured under various working environments different from the initial calibration environment, and the results showed that the measured thermal load of each fire file position and the initial calibrated heat load in these working environments The deviation between them is less than 0.02 kW.
  • Fig. 5 is a block diagram showing the structure of a second embodiment of a gas-fired cooking system having an automatic firepower calibration function according to the present invention.
  • 1 denotes a gas pressure detecting unit
  • 23 denotes an ambient temperature and atmospheric pressure detecting unit
  • 4 denotes a control processor
  • 5 denotes a gas regulating device
  • 6 denotes a gas heating device
  • 7 denotes a gas pipe
  • 8 denotes a gas flow meter
  • 9 denotes Gas flow rate detection unit.
  • the gas pressure detecting unit 1 includes an integrated gas pressure sensor and a gas pressure detecting and converting circuit.
  • the ambient temperature and atmospheric pressure detecting unit 23 includes an integrated ambient temperature and atmospheric pressure sensor and a corresponding detecting and converting circuit, and an ambient temperature.
  • the detecting unit 3 includes an integrated ambient temperature sensor and an ambient temperature detecting and converting circuit.
  • the gas adjusting device 5 includes a proportional valve and a valve driving mechanism.
  • the gas flow detecting unit 9 includes an integrated gas flow rate sensor and gas flow rate detecting and converting. Circuit.
  • the ambient temperature and atmospheric pressure detecting unit 23 is mounted on the outer casing of the cooking system; the gas pressure detecting unit 1 is installed between the proportional valve and the gas nozzle of the gas heating device
  • the gas flow rate sensor is installed on the gas pipeline between the gas flow meter 8 and the proportional valve; the gas pressure detecting unit 1, the ambient temperature and atmospheric pressure detecting unit 23, the gas adjusting device 5, and the gas flow detecting unit 9 Signal transmission is performed wirelessly with the control processor 4, respectively.
  • the gas pressure detecting unit 1 is configured to measure the gas pressure in the gas pipe between the proportional valve and the gas nozzle, and generate a gas pressure detecting signal based on the measured gas pressure;
  • the ambient temperature and atmospheric pressure detecting unit 23 is used for measuring ambient temperature and atmospheric pressure, and generating an ambient temperature detection signal and an atmospheric pressure detection signal respectively based on the measured ambient temperature and atmospheric pressure;
  • the gas flow rate detecting unit 9 is configured to measure between the proportional valve and the gas flow meter 8 The gas flow rate in the gas pipeline and generates a gas flow rate detection signal based on the measured gas flow rate.
  • the control processor 4 performs arithmetic processing on the measured atmospheric pressure and ambient temperature to obtain a target gas pressure, and outputs a gas pressure adjustment signal to the gas adjusting device 5 as needed.
  • control processor 4 has a corresponding software program or logic operation circuit to determine the target gas pressure according to the algorithm represented by the following formula (8):
  • p 1 ' is the target gas pressure, kPa
  • K is a correction factor used to correct the influence of other factors such as the gas white number on the target gas pressure
  • P 2 is the gas pressure in the initial calibration environment, kPa
  • T 1 and T 2 - respectively the measured ambient temperature and the ambient temperature in the initial calibration environment, K;
  • P amb1 and P amb2 - respectively measured atmospheric pressure and atmospheric pressure in an initial calibration environment, kPa;
  • s 1 and s 2 - are saturated water vapor pressures, kPa, respectively, corresponding to the measured ambient temperature and the initial nominal ambient temperature. Saturated water vapor pressure is obtained by querying the relationship between ambient temperature and saturated water vapor pressure.
  • the initial calibration environment and the gas pressure corresponding to each initial calibration heat load are uniquely determined, and according to the above formula (8), it can be calculated and obtained in the current working environment.
  • the target gas pressure required for a calibrated thermal load equal or substantially equal thermal load.
  • Fig. 6 is a flow chart showing the automatic firepower calibration of the gas cooking system of the embodiment.
  • the initial firepower calibration of the cooking system is performed in an initial calibration environment.
  • the detecting unit 1 measures the current gas pressure
  • the ambient temperature and atmospheric pressure detecting unit 23 measures the current ambient temperature and the atmospheric pressure
  • the control processor 4 obtains the current saturated water vapor pressure by querying the relationship between the ambient temperature and the saturated water vapor pressure, and according to the above
  • the algorithm represented by the formula (8) performs an arithmetic processing on the measured ambient temperature and atmospheric pressure to obtain a target gas pressure corresponding to the current working environment, and the target gas pressure and the gas pressure measured by the gas pressure detecting unit 1 For comparison, if there is no deviation from the comparison result, or if there is a deviation, but the deviation is within the allowable range, no adjustment is necessary.
  • the gas pressure control signal is output to the gas adjustment.
  • the device 5; the gas adjusting device 5 automatically adjusts the opening degree of the proportional valve according to the control signal, so that the gas pressure reaches or approaches the target gas pressure.
  • the target gas pressure is corrected after the automatic fire calibration is completed to obtain the corrected target gas pressure, and according to the corrected target gas pressure and the measured gas pressure.
  • the gas pressure is controlled or adjusted as a result of the comparison.
  • the gas-fired cooking system of the present embodiment controls the fire strength by adjusting the gas flow rate to achieve stable output of the fire power.
  • the heat load of the gas cooking system of the present embodiment was measured under various working environments different from the initial calibration environment, and the results showed that the measured thermal load of each fire file position and the initial calibrated heat load in these working environments The deviation between them is less than 0.02 kW.
  • Tables 1 and 2 below respectively show the firepower files of the gas-fired cooking system in two working environments different from the initial calibration environment. The measured thermal load of the bit and its deviation from the initial calibrated thermal load.
  • the deviation between the measured thermal load of the gas cooking system of the comparative example and the initial calibration heat load is in the vast majority. In the case, it will be greater than 0.02 kW, and the deviation between the measured thermal load and the initial calibration heat load will increase as the gap between the working environment and the initial calibration environment increases, which will seriously affect the dishes and other cooked foods. Quality and consistency.
  • the gas-fired cooking system with automatic fire calibration function of the present invention has a deviation between the measured thermal load of each fire file position and the initial calibrated thermal load in the above two working environments is less than 0.02 kW.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Ovens (AREA)

Abstract

一种具有自动火力标定功能的燃气式烹调系统及其自动火力标定方法,该系统包括燃气调节装置(5)和燃气加热装置(6),燃气调节装置(5)用于调节燃气加热装置(6)中的燃气压力;燃气压力检测单元(1),用于测量在燃气流动方向上位于燃气调节装置(5)下游的燃气管道中的燃气压力,并基于所测量到的燃气压力生成燃气压力检测信号;环境温度检测单元(3)和大气压力检测单元(2),用于测量环境温度和大气压力,并基于所测量到的环境温度和大气压力分别生成环境温度检测信号和大气压力检测信号;控制处理器(4),用于接收燃气压力检测信号、环境温度检测信号和大气压力检测信号,并对所测量到的环境温度和大气压力进行处理以得到目标燃气压力,以及基于所测量到的燃气压力和目标燃气压力向燃气调节装置(5)输出燃气压力控制信号;该自动火力标定方法根据实际环境温度、大气压力和目标燃气压力之间的关系表,调整目标燃气压力值,并根据所测量到的燃气压力与目标燃气压力比对的结果,对燃气压力进行控制或调节;该系统和方法使得烹调装置能够在各种工作环境下得到相同或者大致相同的火力,实现火力稳定输出。

Description

具有自动火力标定功能的燃气式烹调系统 技术领域
本发明涉及烹调器具领域;更具体地讲,本发明涉及一种具有自动火力标定功能的燃气式烹调系统。
背景技术
烹调是对经过各种加工整理的烹饪原料进行加热和调味,将其制成色、香、味、形、营养俱佳的菜肴的过程。菜肴的种类复杂,其烹调技法也是千差万别,特别是对于中式菜肴来说,其烹调技法尤其繁多,例如煎、炒、烹、炸、溜、爆、煸、蒸、烧、煮,等等。对于每一种菜肴及其烹调技法来说,火候的掌握都是关键因素之一。例如,炒、爆、烹、炸等技法多用旺火速成,烧、炖、煮、焖等技法多用小火长时间烹调。所谓掌握火候,就是按照烹调方法、菜品特点及食用的不同具体要求,调节、控制加热的火力强度和时间,将食品原料烹制至符合食用要求并达到规定的质量标准。
热源的火力、传热介质的温度和加热时间是构成火候的三个主要要素,其中,火力可以通过所使用炊具的热负荷来衡量。对于燃气炊具来说,其热负荷是指燃气在炊具中燃烧时单位时间内所释放的热量。烹调,尤其是采用半自动或自动烹调系统以标准化的方式进行烹调时,如果热负荷或火力的设定或调节有误差,当该误差值达到足以影响菜肴质量的程度时,与火候相关的工艺参数就必须进行相应的修正或调节,否则会因为火候不正确而影响菜肴的质量及其一致性。本发明人的研究表明,当实际火力与设定的标准火力之间的偏差超过2%时,就会对部分菜肴尤其是火力敏感菜肴的质量造成比较大的不利影响。
对于自动或半自动的烹调系统来说,理论上可以测量传热介质的温度、被烹调物的温度等各种反应火候状态的参数,进而对烹调系统的火力强度及火候进行控制。例如,中国专利CN03154580.1公开了一种带传感器的可调节火力炊具及其烹调系统,该可调节火力炊具包括至少一个用于测量火候状态的传感器,其用于检测包括烹调容器在内的传热介质和/或被烹调物的物理量和/或化学量和/或其变化量,并将所测得的数据传送给控制处理器,使得控制处理器及时动态地判断和控制烹调火候。
烹调过程中,由于被烹调物在烹调容器内作无规律的运动等各种原因,传热介质与被烹调物之间的传热过程复杂且不规律,位于不同区域的传热介质和被烹调物的温度通常并不相同。但是,以上的现有烹调系统仅对传热介质和被 烹调物的局部进行测量,由于这种局部测量所得到的数据很难具有代表性,因而这些测量数据并不能准确地反映出火力强度和烹调火候的真实状况,根据这些测量数据进行的火候控制当然也就是不够精确的。
另外,中国专利CN200910107623.8公开了一种基于机器视觉的烹调系统的火候控制系统,配合烹调设备的主处理器及火力调节装置使用,该火候控制系统包括运动模块、图像成像模块、热红外传感模块、视觉处理模块及通讯模块,图像成像模块接收主处理器的命令或信息,对正在烹调的菜肴进行图像采样后,通过通讯模块将图像信息发送到视觉处理模块,视觉处理模块对图像信息进行实时处理,得到典型加热对象的位置信息,根据该位置信息,运动模块带动热红外传感模块对典型加热对象进行温度采样,并通过通讯模块将该温度信息发送到烹调设备的主处理器或火力调节装置。
上述的这种火候控制系统理论上可以获得具有代表性的温度测量数据并实现对烹调火候的准确控制,但其不仅结构复杂,而且对于某些烹调工艺,尤其是对于煎、炸、炒、爆、溜等烹调工艺来说,由于此时被烹调物通常处于一种“烟熏火燎”的状态,因而油烟会对图像成像模块所获取的菜肴图像形成干扰,导致实际上难以准确地获取到正确的典型加热对象,根据这些不正确的测量数据所进行的火候控制当然也就是不够精确的。
发明内容
针对现有技术的不足,本发明的目的在于提供一种燃气式烹调系统以及该燃气式烹调系统的自动火力标定方法,该燃气式烹调系统能够根据工作环境的变化对其火力进行自动标定,从而实现在不同工作环境下的稳定火力输出,以对烹调火候进行精确控制,并烹制出质量稳定的菜肴及其它烹调食品。
一方面,为了实现上述发明目的,本发明提供了一种具有自动火力标定功能的燃气式烹调系统,其包括燃气调节装置和燃气加热装置,该燃气调节装置至少用于调节燃气加热装置中的燃气压力。其中,该燃气式烹调系统还包括:燃气压力检测单元,用于测量在燃气流动方向上位于燃气调节装置下游的燃气管道中的燃气压力,并基于所测量到的燃气压力生成燃气压力检测信号;环境参数检测单元,用于测量环境温度和大气压力,并基于所测量到的环境温度和大气压力分别生成环境温度检测信号和大气压力检测信号;控制处理器,用于接收燃气压力检测信号、环境温度检测信号和大气压力检测信号,并对所测量到的环境温度和大气压力进行处理以得到目标燃气压力,以及基于所测量到的燃气压力和目标燃气压力向燃气调节装置输出燃气压力控制信号。
在本发明的燃气式烹调系统中,热负荷与环境温度、大气压力、燃气压力等变量之间具有如下的变函数关系(参照中国《家用燃气灶具》国家标准):
Figure PCTCN2016085596-appb-000001
式中:
Φ—实测热负荷,kW;
Q1—0℃、101.3kPa状态下试验燃气的低热值,MJ/m3
V—实测燃气流量,m3/h;
tg—燃气流量计内的燃气温度,℃;
Pamb—试验时的大气压力,kPa;
Pm—实测燃气流量计内的燃气相对静压力,kPa;
S—温度为tg时的饱和水蒸气压力,kPa(当使用干式流量计测量时,S值应乘以试验燃气的相对湿度进行修正)。
Figure PCTCN2016085596-appb-000002
式中:
Φ—实测折算热负荷,单位为千瓦(kW);
Q1—0℃、101.3kPa状态下设计气的低热值,单位为兆焦耳每立方米(MJ/m3);
v—实测燃气流量,单位为立方每小时(m3/h);
da—标准状态下干试验气的相对密度;
dmg—标准状态下干设计气的相对密度;
pamb—试验时的大气压力,单位为千帕(kPa);
ps—设计时使用的额定燃气供气压力,单位为千帕(kPa);
Pm—实测燃气流量计内的燃气相对静压力,单位为千帕(kPa);
tg—实测燃气流量计内的燃气温度,单位为摄氏度(℃);
S—温度为tg时的饱和水蒸气压力,单位为千帕(kPa)(当使用干式流量计测量时,S值应乘以试验燃气的相对湿度进行修正);
0.622—水蒸气理想气体的相对密度。
通过对上述公式推演,当一个燃气加热装置在燃气成分、燃气压力和燃气阀开度等不变的情况下,燃气温度和大气压力变化对燃气流量和热负荷的影响关系分别由以下公式(3)和(4)所表示:
Figure PCTCN2016085596-appb-000003
式中:
v1和v2—分别是状态1和状态2时的燃气流量,m3/h;
T1和T2—分别是状态1和状态2时的燃气温度,K;
Pamb1和Pamb2—分别是状态1和状态2时的大气压力,kPa;
s1和s2—分别是状态1和状态2时相应燃气温度对应的饱和水蒸气压力,
Figure PCTCN2016085596-appb-000004
式中:
Φ1和Φ2—分别是状态1和状态2时的热负荷;
T1和T2—分别是状态1和状态2时的燃气温度,K;
pamb1和pamb2—分别是状态1和状态2时的大气压力,kPa;
s1和s2—分别是状态1和状态2时相应燃气温度对应的饱和水蒸气压力,kPa。
另根据流体力学,伯努利方程,可得如下公式(5):
Figure PCTCN2016085596-appb-000005
式中:
P为气体压力;
ρ为气体密度;
V为气体流速;
C为伯努利常数。
结合以上公式(3)至(5),可得出如下公式(6):
Figure PCTCN2016085596-appb-000006
式中:
P1和P2—分别是状态1和状态2时的燃气输出时压力,kPa;
T1和T2—分别是状态1和状态2时的燃气温度(K),由于燃气通常是由管道或瓶装方式供应,因此燃气温度仅近似为环境温度;
pamb1和pamb2—分别是状态1和状态2时的大气压力,kPa;
s1和s2—分别是状态1和状态2时相应燃气温度对应的饱和水蒸气压力,kPa;
C1和C2—分别是状态1和状态2时相应燃气的伯努利常数。
由以上公式(4)可知,当燃气温度T(近似为环境温度)、大气压力Pamb 和饱和水蒸气压力中的任何一个发生变化时,燃气加热装置的热负荷将发生变化。例如,当烹调系统所处的地理位置不同时,其输出的火力可能会由于大气压力和环境温度的不同而出现差异;并且,即使对于具有确定位置的烹调系统来说,其工作环境也可能因气候变化和/或其他原因而发生变化,例如,当烹调系统运行一定时间以后,其环境温度可能会比开始运行时的环境温度要高,这是由于烹调系统在运行过程中会向周围环境释放热量的缘故。
因此,为保证热负荷输出不变,燃气压力P就应作相应变化。设环境温度T2、大气压力Pamb2、以及燃气压力P2为某一状态下已知值,并可测量另一状态下环境温度度T1、大气压力Pamb1,同时引入反应例如燃气华白数等其他因素影响的修正系数K,由公式(6)可推出:
Figure PCTCN2016085596-appb-000007
式中,p1′应为调节后的燃气压力值。
当公式(7)中的C1和C2取值为0时,可得到如下的公式(8):
Figure PCTCN2016085596-appb-000008
本发明的燃气式烹调系统,尤其是半自动或自动燃气式烹调系统,采用标准化的烹调程序进行烹调,其中在烹调程序中设定标准化的火力强度(火力檔位)和加热时间,以得到质量合格且稳定的菜肴及其它烹调食品。因此,对本发明的燃气式烹调系统,尤其是半自动或者自动燃气式烹调系统,在初始标定环境下进行初始火力标定,以使得各火力档位具有标准化的火力强度,并得到该初始标定环境下与各火力档位相应的燃气压力。即,对本发明的燃气式烹调系统,尤其是半自动或自动燃气式烹调系统来说,其初始标定环境下的环境温度T2、大气压力Pamb2、与各热负荷相应的燃气压力P2、以及饱和水蒸气压力s2是确定的。因此,本发明的燃气式烹调系统根据当前工作环境下所测量到的环境温度T1和大气压力Pamb1、以及当前工作环境下的饱和水蒸气压力s1,基于上述公式(8)所表示的关系就可以自动确定在当前工作环境下要得到与初始标定的热负荷相等或基本相等的热负荷所需要的目标燃气压力,并且可根据目标燃气压力与所测量到的燃气压力之间的比对结果,对燃气压力进行自动控制或调节,从而实现在不同工作环境下的稳定火力输出。
或者,在本发明中,可以在实验室创设各种工作环境,并将在各环境温度和大气压力下烹调系统的实测热负荷与初始标定的热负荷相等或基本相等时所测量到的燃气压力作为目标燃气压力,从而得到环境温度、大气压力-目标燃气压力关系表。
本发明的燃气式烹调系统既可以在出厂前于初始标定环境下进行初始火力标定,也可以在使用地于初始标定环境下进行初始火力标定。当初始标定时所采用的燃气与工作时所采用的燃气具有相同的华白数时,修正系数K的取值可以为1。例如,由于各地区所使用燃气的华白数通常是相同的,因此,当在使用地进行初始火力标定时,修正系数K的取值可以为1。
根据本发明的一具体实施方式,控制处理器包括处理单元和存储单元,存储单元中存储有表示环境温度、大气压力与目标燃气压力之间对应关系的环境温度、大气压力-目标燃气压力关系表,处理单元基于所测量到的环境温度和大气压力来查询该关系表以得到目标燃气压力。
在该具体实施方式中,可以在实验室创设各种工作环境,并将在各环境温度和大气压力下烹调系统的实测热负荷与初始标定的热负荷相等或基本相等时所测量到的燃气压力作为目标燃气压力,从而得到环境温度、大气压力-目标燃气压力关系表;或者可以按照上述公式(8)确定在各预定环境温度和大气压力下要得到与初始标定的热负荷相等或基本相等的热负荷所需要的目标燃气压力,从而得到环境温度、大气压力-目标燃气压力关系表。其中,环境温度、大气压力-目标燃气压力关系表可以由燃气式烹调系统运行相应程序而得到,也可以由外部输入。
根据本发明的另一具体实施方式,控制处理器具有根据所测量到的环境温度和大气压力确定目标燃气压力的运算法则,并根据该运算法则得到目标燃气压力。
根据本发明的另一具体实施方式,控制处理器还用于对所测量到的环境温度进行处理以得到饱和水蒸气压力,并对饱和水蒸气压力以及所测量到的环境温度和大气压力进行处理以得到目标燃气压力。
本发明中,控制处理器可以通过查询环境温度与饱和水蒸气压力的关系表得到饱和水蒸气压力,也可以按照饱和水蒸气压力与环境温度关系的经验公式对所测量到的环境温度进行运算处理以得到饱和水蒸气压力。
根据本发明的另一具体实施方式,燃气式烹调系统进一步包括燃气流速检测单元,其用于测量燃气管道中的燃气流速,并基于所测量到的燃气流速向控制处理器传输燃气流速检测信号;控制处理器还用于对所测量到的燃气流速和燃气压力进行处理以得到燃气的伯努利常数,并对燃气的伯努利常数以及所测量到的环境温度和大气压力进行处理以得到校正后的目标燃气压力,以及基于所测量到的燃气压力和校正后的目标燃气压力向燃气调节装置输出燃气压力控制信号。
本发明中,通过对燃气流速和燃气压力进行两次或两次以上的测评,并根 据上述公式(5),就可以得到相应状态下燃气的伯努利常数C。
本发明中,校正后的目标燃气压力可通过如下公式(9)得到:
Figure PCTCN2016085596-appb-000009
式中:
p1”为校正后的目标燃气压力;
K为修正系数;
P2为初始标定环境下的燃气压力;
T1和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
Pamb1和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
s1和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力;
C1和C2分别是当前工作环境和初始标定环境下燃气管道中燃气的伯努利常数。
由以上技术方案可见,通过对目标燃气压力进行校正,本发明的燃气式烹调系统可以对其火力强度进行更为准确的控制和调节。并且,考虑到烹调系统工作时燃气的伯努利常数C会产生动态变化,对目标燃气压力的校正也可以是动态地进行的。
根据本发明的另一具体实施方式,燃气式烹调系统进一步包括燃气流量检测单元,其用于测量燃气管道中的燃气流量,并基于所测量到的燃气流量向控制处理器传输燃气流量检测信号;控制处理器还用于根据转换公式或表格得到目标燃气流量,并基于所测量到的燃气流量和所述目标燃气流量向燃气调节装置输出燃气流量控制信号。其中,燃气流量可以直接测量得到,也可以通过测量燃气流速,并将燃气流速转换为燃气流量而间接测量得到。
在上述技术方案中,控制处理器可通过运算如下的转换公式(10)而得到各工作环境下燃气式烹调系统的热负荷与初始标定的热负荷相等或基本相等时所需要的目标燃气流量:
Figure PCTCN2016085596-appb-000010
式中:
Φ—初始标定热负荷,kW;
Q1—0℃、101.3kPa状态下燃气的低热值,MJ/m3
V—目标燃气流量,m3/h;
tg—当前工作环境下所测量到的环境温度,℃;
Pamb—当前工作环境下所测量到的大气压力,kPa;
Pm—实测燃气流量计内的燃气相对静压力,kPa;
S—温度为tg时的饱和水蒸气压力,kPa(当使用干式流量计测量时,S值应乘以燃气的相对湿度进行修正)。
或者,可以根据上述公式(10)而预先得到表示各火力强度下燃气相对静压力、环境温度和大气压力与目标燃气流量之间对应关系的转换表格,控制处理器通过查询该转换表格来得到目标燃气流量。
通过调节燃气压力而对火力强度进行控制具有速度快的优点,这尤其适合于燃气式烹调系统对火力强度进行快速调节的要求。而通过调节燃气流量而对火力强度进行控制具有控制精度更高的优势,但其要求更长的调节时间。在上述技术方案中,同时采用调节燃气压力和燃气流量来对火力强度进行控制,具有调节速度快、精度高的显著优势。
根据本发明的另一具体实施方式,环境参数检测单元包括环境温度检测单元和大气压力检测单元,环境温度检测单元用于测量环境温度并基于所测量到的环境温度生成环境温度检测信号,大气压力检测单元用于测量大气压力并基于所测量到的大气压力生成大气压力检测信号。
根据本发明的另一具体实施方式,环境参数检测单元包括环境温度和大气压力检测单元,其用于测量环境温度和大气压力并基于所测量到的环境温度和大气压力分别生成环境温度检测信号和大气压力检测信号。这是考虑到大气压力检测单元在测量大气压力时,需要测量环境温度来自动更正其中传感器的静态漂移;并且,与同时使用环境温度检测单元和大气压力检测单元相比,使用环境温度和大气压力检测单元的成本更低。
根据本发明的另一具体实施方式,燃气调节装置包括以电机和/或电信号和/或其它驱动装置直接和/或间接驱动以进行多级和/或无级连续调节的燃气调节阀。
根据本发明的另一具体实施方式,环境参数检测单元与控制处理器之间、燃气压力检测单元与控制处理器之间、控制处理器与燃气调节装置之间可以通过有线或者无线的方式进行信号传输。
根据本发明的另一具体实施方式,燃气压力检测单元包括压力传感器,例如差压式传感器,该压力传感器设置在燃气调节装置和燃气喷嘴之间的燃气管道上。另外一种可实施的方式是,在该燃气管道上设置燃气检测旁路,压力传感器设置在该燃气检测旁路上。
根据本发明的另一具体实施方式,燃气式烹调系统为自动或者半自动燃气 式烹调系统。
另一方面,为了实现本发明的目的,本发明提供了一种针对燃气式烹调系统的如此的自动火力标定方法,该燃气式烹调系统包括燃气调节装置和燃气加热装置,该燃气调节装置至少用于调节燃气加热装置中的燃气压力。其中,该自动火力标定方法包括如下步骤:⑴在初始标定环境下对燃气式烹调系统的各火力强度进行初始标定;⑵确定在各预定环境温度和大气压力下要达到初始标定的每一火力强度所需要的目标燃气压力,以得到环境温度、大气压力-目标燃气压力关系表;⑶测量当前工作环境下在燃气流动方向上位于燃气调节装置下游的燃气管道中的燃气压力;⑷测量燃气式烹调系统在当前工作环境下的环境温度和大气压力;⑸查询环境温度、大气压力-目标燃气压力关系表,以得到在当前工作环境下要达到初始标定的火力强度所需要的目标燃气压力;⑹根据所测量到的燃气压力与目标燃气压力比对的结果,对燃气压力进行控制或调节。
在烹调之前或者烹调过程中,本发明的燃气式烹调系统可以根据当前工作环境下所测量到的环境温度T1和大气压力Pamb1,通过查询环境温度、大气压力-目标燃气压力关系表而获得目标燃气压力,并根据目标燃气压力与所测量到的燃气压力之间的比对结果,对燃气压力进行自动控制或调节,从而实现在不同工作环境下的稳定火力输出。
本发明中,可以通过查询环境温度与饱和水蒸气压力的关系表得到饱和水蒸气压力,也可以按照饱和水蒸气压力与环境温度关系的经验公式对所测量到的环境温度进行运算处理以得到饱和水蒸气压力。
根据本发明的一具体实施方式,上述自动火力标定方法进一步包括在步骤⑹之后对目标燃气压力进行校正,并根据所测量到的燃气压力与校正后的目标燃气压力比对的结果,进一步对燃气压力进行控制或调节的步骤;其中,按照上面的公式(9)所表示的函数关系得到校正后的目标燃气压力。
根据本发明的另一具体实施方式,本发明的自动火力标定方法进一步包括如下步骤:通过转换公式或表格,确定在当前工作环境下要达到初始标定的火力强度所需要的目标燃气流量;测量当前工作环境下的燃气流量;根据所测量到的燃气流量与目标燃气流量比对的结果,对燃气流量进行控制或调节。其中,燃气流量可以直接测量得到,也可以通过测量燃气流速,并将燃气流速转换为燃气流量而间接测量得到。
在上述技术方案中,可以通过运算上述的转换公式(10)而得到各工作环境下燃气式烹调系统的热负荷与初始标定的热负荷相等或基本相等时所需要的目标燃气流量。
或者,可以根据上述公式(10)而预先得到表示各火力强度下燃气相对静压力、环境温度和大气压力与目标燃气流量之间对应关系的转换表格,并通过查询该转换表格来得到目标燃气流量。
通过调节燃气压力而对火力强度进行控制具有速度快的优点,这尤其适合于燃气式烹调系统对火力强度进行快速调节的要求。而通过调节燃气流量而对火力强度进行控制具有控制精度更高的优势,但其要求更长的调节时间。在上述技术方案中,同时采用调节燃气压力和燃气流量来对火力强度进行控制,具有调节速度快、精度高的显著优势。
再一方面,为了实现本发明的目的,本发明还提供了针对燃气式烹调系统的、如此的自动火力标定方法,该燃气式烹调系统包括燃气调节装置和燃气加热装置,该燃气调节装置用于调整燃气加热装置中的燃气压力。其中,该自动火力标定方法包括如下步骤:⑴在初始标定环境下对燃气式烹调系统的各火力强度进行初始标定;⑵测量当前工作环境下在燃气流动方向上位于燃气调节装置下游的燃气管道中的燃气压力;⑶测量燃气式烹调系统在当前工作环境下的环境温度和大气压力;⑷对所测量到的环境温度和大气压力进行运算处理以确定在当前工作环境下要达到初始标定的火力强度所需要的目标燃气压力;⑸根据所测量到的燃气压力与目标燃气压力比对的结果,对燃气压力进行控制或调节。
根据本发明的一具体实施方式,上述自动火力标定方法进一步包括在步骤⑸之后对目标燃气压力进行校正,并根据所测量到的燃气压力与校正后的目标燃气压力比对的结果,进一步对燃气压力进行控制或调节的步骤;其中,按照上面的公式(9)所表示的函数关系得到校正后的目标燃气压力。
本发明的燃气式烹调系统能够根据其工作环境的变化而动态并且自动地标定火力强度,以在各种工作环境下输出与初始标定数值相同或者大致相同的热负荷,从而实现火力的稳定输出。因此,本发明的燃气式烹调系统可以实现对烹调火候的精确控制,并烹制出质量稳定的菜肴及其它烹调食品。
本发明的自动火力标定方法能够根据燃气式烹调系统工作环境的变化而动态并且自动地标定其火力强度,以使得燃气式烹调系统在各种工作环境下输出与初始标定数值相同或者大致相同的热负荷,从而实现火力的稳定输出。因此,采用本发明的自动火力标定方法后,燃气式烹调系统可以实现对烹调火候的精确控制,从而烹制出质量稳定的菜肴及其它烹调食品。
为了更清楚地阐述本发明的目的、技术方案及优点,下面结合附图和具体实施方式对本发明做进一步的详细说明。各个附图中,相同的附图标记具有相同的含义。
附图说明
图1是本发明燃气式烹调系统实施例1的结构框图;
图2是本发明燃气式烹调系统实施例1的自动火力标定流程图;
图3是根据校正后的目标燃气压力对本发明燃气式烹调系统实施例1的火力强度进行校正的流程图;
图4是根据目标燃气流量对本发明燃气式烹调系统实施例1的火力强度进行校正的流程图;
图5是本发明燃气式烹调系统实施例2的结构框图;
图6是本发明燃气式烹调系统实施例2的自动火力标定流程图。
具体实施方式
实施例1
图1是本发明具有自动火力标定功能的燃气式烹调系统实施例1的结构框图。其中,1表示燃气压力检测单元,2表示大气压力检测单元,3表示环境温度检测单元,4表示控制处理器,41表示存储单元,42表示处理单元,5表示燃气调节装置,6表示燃气加热装置,7表示燃气管道,8表示燃气流量计,9表示燃气流速检测单元。
燃气压力检测单元1包括燃气压力传感器和燃气压力检测及转换电路,大气压力检测单元2包括大气压力传感器和大气压力检测及转换电路,环境温度检测单元3包括环境温度传感器和环境温度检测及转换电路,燃气调节装置5包括比例阀和阀驱动机构,燃气流速检测单元9包括燃气流速传感器和燃气流速检测及转换电路。其中,环境温度传感器和大气压力传感器安装在烹调系统的外壳体上,易于与环境相接触并尽量避免热源的干扰;燃气压力传感器安装在比例阀和燃气加热装置的燃气喷嘴之间的燃气管道上;燃气流速传感器安装在燃气流量计8与比例阀之间的燃气管道上;燃气压力检测及转换电路、大气压力检测及转换电路、环境温度检测及转换电路、燃气流速检测及转换电路集成在控制处理器4的控制电路板上。
如图1所示,燃气压力检测单元1用于测量比例阀和燃气喷嘴之间的燃气管道中的燃气压力,并基于所测量到的燃气压力生成燃气压力检测信号;大气压力检测单元2用于测量大气压力,并基于所测量到的大气压力生成大气压力检测信号;环境温度检测单元3用于测量环境温度,并基于所测量到的环境温 度生成环境温度检测信号;燃气流速检测单元9用于测量比例阀和燃气流量计8之间的燃气管道中的燃气流速,并基于所测量到的燃气流速生成燃气流速检测信号。燃气压力检测信号、大气压力检测信号、环境温度检测信号和燃气流速检测信号输入并存储在存储单元41内;同时,存储单元41中还存储有表示各热负荷下环境温度和大气压力与目标燃气压力之间对应关系的环境温度、大气压力-目标燃气压力关系表,环境温度与饱和水蒸气压力关系表,以及烹调程序等数据。处理单元42读取存储单元41中的相应数据并根据需要输出燃气压力及燃气流量控制信号至燃气调节装置5。
本实施例中,目标燃气压力与环境温度和大气压力之间具有如下公式(8)所示的函数关系:
Figure PCTCN2016085596-appb-000011
式中:
p1′为目标燃气压力,kPa;
K为修正系数,用于修正例如燃气华白数等其他因素对目标燃气压力的影响;
P2为初始标定环境下的燃气压力,kPa;
T1和T2—分别是预定工作环境和初始标定环境下的环境温度,K;
Pamb1和Pamb2—分别是预定工作环境和初始标定环境下的大气压力,kPa;
s1和s2—分别是与预定工作环境温度和初始标定环境温度对应的饱和水蒸气压力,kPa。饱和水蒸气压力通过查询环境温度与饱和水蒸气压力关系表而获得。
对于本发明的燃气式烹调系统来说,其初始标定环境和与各初始标定热负荷对应的燃气压力是唯一确定的,根据以上公式(8)就可以计算出在预定工作环境下要得到与初始标定的热负荷相等或基本相等的热负荷所需要的目标燃气压力,进而得到表示环境温度和大气压力与目标燃气压力之间对应关系的环境温度、大气压力-目标燃气压力关系表。
图2是本实施例燃气式烹调系统的自动火力标定流程图。如图2所示,首先,在初始标定环境下对烹调系统进行初始火力标定,并根据以上公式(8)确定在各预定环境温度和大气压力下要达到初始标定的每一火力强度所需要的目标燃气压力,以得到环境温度、大气压力-目标燃气压力关系表并将其存储至存储单元41。在烹调之前或者烹调过程中,对烹调系统进行自动火力标定以实现 稳定的火力输出,为此,大气压力检测单元2测量当前大气压力,环境温度检测单元3测量当前环境温度,燃气压力检测单元1测量的当前燃气压力;控制处理器4通过查询环境温度、大气压力-目标燃气压力关系表确定与所测量到的大气压力和环境温度相同或者最接近的大气压力和环境温度,从而获取与其对应的目标燃气压力,并将该目标燃气压力与燃气压力检测单元1实测的燃气压力进行比对,如果比对结果没有偏差,或者虽然有偏差,但该偏差在允许的范围之内,对菜肴质量没有明显或不可接受的影响,则不必进行调节,如果比对结果存在不允许的偏差,则输出燃气压力控制信号至燃气调节装置5;燃气调节装置5根据该控制信号自动调整比例阀的开度,从而使燃气压力达到或者接近目标燃气压力。
进一步地,如图3所示,控制处理器4在自动火力标定完成之后还对目标燃气压力进行校正以得到校正后的目标燃气压力,并根据校正后的目标燃气压力与燃气压力检测单元1实测的燃气压力的比对结果,输出燃气压力控制信号至燃气调节装置5;燃气调节装置5根据该控制信号自动调整比例阀的开度,从而使燃气压力达到或者接近校正后的目标燃气压力。
其中,控制处理器4具有相应的软件程序或者逻辑运算电路,以按照如下公式(9)所表示的运算法则得到校正后的目标燃气压力:
Figure PCTCN2016085596-appb-000012
式中:
p1”为校正后的目标燃气压力;
K为修正系数,用于修正例如燃气华白数等其他因素对目标燃气压力的影响;
P2为初始标定环境下的燃气压力;
T1和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
Pamb1和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
s1和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力;
C1和C2分别是当前工作环境和初始标定环境下燃气管道中燃气的伯努利常数,其由控制处理器通过对所测量到的燃气流速和燃气压力进行处理而得到。
同时,本实施例的燃气式烹调系统还通过调节燃气流量而对其火力强度进行控制,以实现火力的稳定输出。并且,燃气流量的调节通常是在燃气压力的调节之后进行的。为了实现燃气流量的调节,如图4所示,首先,控制处理器4 获得目标燃气流量,并对燃气流速检测单元9(此时也作为燃气流量检测单元)所测量到的燃气流速进行处理以得到实际燃气流量;然后,控制处理器4根据目标燃气流量与实际燃气流量的比对结果,输出燃气压力控制信号至燃气调节装置5,燃气调节装置5根据该控制信号自动调整比例阀的开度,从而使燃气流量达到或者接近目标燃气流量。
其中,控制处理器4具有相应的软件程序或者逻辑运算电路,以按照如下公式(10)所表示的运算法则而得到目标燃气流量:
Figure PCTCN2016085596-appb-000013
式中:
Φ—初始标定热负荷,kW;
Q1—0℃、101.3kPa状态下燃气的低热值,MJ/m3
V—目标燃气流量,m3/h;
tg—当前工作环境下所测量到的环境温度,℃;
Pamb—当前工作环境下所测量到的大气压力,kPa;
Pm—实测燃气流量计内的燃气相对静压力,kPa;
S—温度为tg时的饱和水蒸气压力,kPa(当使用干式流量计测量时,S值应乘以燃气的相对湿度进行修正)。
在与初始标定环境不同的多种工作环境下对本实施例的燃气式烹调系统的热负荷进行了测定,结果表明,在这些工作环境下各火力文件位的实测热负荷与初始标定的热负荷之间的偏差小于0.02kW。
实施例2
图5是本发明具有自动火力标定功能的燃气式烹调系统实施例2的结构框图。其中,1表示燃气压力检测单元,23表示环境温度和大气压力检测单元,4表示控制处理器,5表示燃气调节装置,6表示燃气加热装置,7表示燃气管道,8表示燃气流量计,9表示燃气流速检测单元。
燃气压力检测单元1包括集成为一体的燃气压力传感器和燃气压力检测及转换电路,环境温度和大气压力检测单元23包括集成为一体的环境温度和大气压力传感器以及相应的检测及转换电路,环境温度检测单元3包括集成为一体的环境温度传感器和环境温度检测及转换电路,燃气调节装置5包括比例阀和阀驱动机构,燃气流速检测单元9包括集成为一体的燃气流速传感器和燃气流速检测及转换电路。其中,环境温度和大气压力检测单元23安装在烹调系统的外壳体上;燃气压力检测单元1安装在比例阀和燃气加热装置的燃气喷嘴之间 的燃气管道7上;燃气流速传感器安装在燃气流量计8与比例阀之间的燃气管道上;燃气压力检测单元1、环境温度和大气压力检测单元23、燃气调节装置5和燃气流速检测单元9分别与控制处理器4通过无线的方式进行信号传输。
如图5所示,燃气压力检测单元1用于测量比例阀和燃气喷嘴之间的燃气管道中的燃气压力,并基于所测量到的燃气压力生成燃气压力检测信号;环境温度和大气压力检测单元23用于测量环境温度和大气压力,并基于所测量到的环境温度和大气压力分别生成环境温度检测信号和大气压力检测信号;燃气流速检测单元9用于测量比例阀和燃气流量计8之间的燃气管道中的燃气流速,并基于所测量到的燃气流速生成燃气流速检测信号。控制处理器4对所测量到的大气压力和环境温度进行运算处理以得到目标燃气压力,并根据需要输出燃气压力调整信号至燃气调节装置5。
本实施例中,控制处理器4具有相应的软件程序或者逻辑运算电路,以按照如下公式(8)所表示的运算法则确定目标燃气压力:
Figure PCTCN2016085596-appb-000014
式中:
p1′为目标燃气压力,kPa;
K为修正系数,用于修正例如燃气华白数等其他因素对目标燃气压力的影响;
P2为初始标定环境下的燃气压力,kPa;
T1和T2—分别是所测量到的环境温度和初始标定环境下的环境温度,K;
Pamb1和Pamb2—分别是所测量到的大气压力和初始标定环境下的大气压力,kPa;
s1和s2—分别是与所测量到的环境温度和初始标定环境温度对应的饱和水蒸气压力,kPa。饱和水蒸气压力通过查询环境温度与饱和水蒸气压力关系表而获得。
对于本发明的燃气式烹调系统来说,其初始标定环境和与各初始标定热负荷对应的燃气压力是唯一确定的,根据以上公式(8)就可以计算出在当前工作环境下要得到与初始标定的热负荷相等或者基本相等的热负荷所需要的目标燃气压力。
图6是本实施例燃气式烹调系统的自动火力标定流程图。如图6所示,首先,在初始标定环境下对烹调系统进行初始火力标定。在烹调之前或者烹调过程中,对烹调系统进行自动火力标定以实现稳定的火力输出,为此,燃气压力 检测单元1测量当前燃气压力,环境温度和大气压力检测单元23测量当前环境温度和大气压力;控制处理器4通过查询环境温度与饱和水蒸气压力关系表而获得当前饱和水蒸气压力,并根据上述公式(8)所表示的运算法则对所测得的环境温度和大气压力进行运算处理,获得与当前工作环境对应的目标燃气压力,并将该目标燃气压力与燃气压力检测单元1实测的燃气压力进行比对,如果比对结果没有偏差,或者虽然有偏差,但该偏差在允许的范围之内,则不必进行调节,如果比对结果存在不允许的偏差,则输出燃气压力控制信号至燃气调节装置5;燃气调节装置5根据该控制信号自动调整比例阀的开度,从而使燃气压力达到或者接近目标燃气压力。
在本实施例中,与实施例1相同的是,在自动火力标定完成之后还对目标燃气压力进行校正以得到校正后的目标燃气压力,并根据校正后的目标燃气压力与实测的燃气压力的比对结果,对燃气压力进行控制或调节。并且,同样与实施例1相同的是,本实施例的燃气式烹调系统还通过调节燃气流量而对其火力强度进行控制,以实现火力的稳定输出。
在与初始标定环境不同的多种工作环境下对本实施例的燃气式烹调系统的热负荷进行了测定,结果表明,在这些工作环境下各火力文件位的实测热负荷与初始标定的热负荷之间的偏差小于0.02kW。
对比例
作为对比例的是一种不具有自动火力标定功能的燃气式烹调系统,以下表1和表2分别示出了该燃气式烹调系统在与初始标定环境不同的两种工作环境下,各火力文件位的实测热负荷及其与初始标定热负荷之间的偏差。
表1
Figure PCTCN2016085596-appb-000015
表2
Figure PCTCN2016085596-appb-000016
通过以上表1和表2的实测数据可知,即使在与初始标定环境相差不大的工作环境下,对比例的燃气式烹调系统的实测热负荷与初始标定热负荷之间的偏差在绝大多数情况下也会大于0.02kW,且实测热负荷与初始标定热负荷之间的偏差随着工作环境与初始标定环境之间差距的增大而增大,这会严重影响到菜肴及其它烹调食品的质量及其一致性。与此相对的,本发明具有自动火力标定功能的燃气式烹调系统在以上两种工作环境下各火力文件位的实测热负荷与初始标定的热负荷之间的偏差均小于0.02kW。
需要注意的是,以上所描绘的实施例的各个方面可以进行相互的组合和/或替换,除非这种组合和/或替换之间存在相互排斥的情形。
虽然以上通过实施例描绘了本发明,但应当理解的是,本领域普通技术人员在不脱离本发明的发明范围内,依照本发明所作的同等改进,应为本发明的发明范围所涵盖。

Claims (18)

  1. 一种具有自动火力标定功能的燃气式烹调系统,其包括燃气调节装置和燃气加热装置,所述燃气调节装置至少用于调节所述燃气加热装置中的燃气压力,其中,所述燃气式烹调系统还包括:
    燃气压力检测单元,用于测量在燃气流动方向上位于所述燃气调节装置下游的燃气管道中的燃气压力,并基于所测量到的燃气压力生成燃气压力检测信号;
    环境参数检测单元,用于测量环境温度和大气压力,并基于所测量到的环境温度和大气压力分别生成环境温度检测信号和大气压力检测信号;
    控制处理器,用于接收所述燃气压力检测信号、所述环境温度检测信号和所述大气压力检测信号,并对所测量到的环境温度和大气压力进行处理以得到目标燃气压力,以及基于所测量到的燃气压力和所述目标燃气压力向所述燃气调节装置输出燃气压力控制信号。
  2. 如权利要求1所述的燃气式烹调系统,其中,所述控制处理器包括处理单元和存储单元,所述存储单元中存储有环境温度、大气压力-目标燃气压力关系表,所述处理单元基于所测量到的环境温度和大气压力来查询所述关系表以得到所述目标燃气压力。
  3. 如权利要求1所述的燃气式烹调系统,其中,所述控制处理器具有根据所测量到的环境温度和大气压力确定所述目标燃气压力的运算法则,并根据所述运算法则得到所述目标燃气压力。
  4. 如权利要求1所述的燃气式烹调系统,其中,所述控制处理器还用于对所测量到的环境温度进行处理以得到饱和水蒸气压力,并对所述饱和水蒸气压力以及所测量到的环境温度和大气压力进行处理以得到所述目标燃气压力。
  5. 如权利要求1所述的燃气式烹调系统,其进一步包括燃气流速检测单元,所述燃气流速检测单元用于测量燃气管道中的燃气流速,并基于所测量到的燃气流速向所述控制处理器传输燃气流速检测信号;所述控制处理器还用于对所测量到的燃气流速和燃气压力进行处理以得到燃气的伯努利常数,并对所述伯 努利常数以及所测量到的环境温度和大气压力进行处理以得到校正后的目标燃气压力,以及基于所测量到的燃气压力和校正后的目标燃气压力向所述燃气调节装置输出燃气压力控制信号。
  6. 如权利要求1所述的燃气式烹调系统,其进一步包括燃气流量检测单元,所述燃气流量检测单元用于测量燃气管道中的燃气流量,并基于所测量到的燃气流量向所述控制处理器传输燃气流量检测信号;所述控制处理器还用于根据转换公式或表格得到目标燃气流量,并基于所测量到的燃气流量和所述目标燃气流量向所述燃气调节装置输出燃气流量控制信号。
  7. 如权利要求1所述的燃气式烹调系统,其中,所述环境参数检测单元包括环境温度检测单元和大气压力检测单元,所述环境温度检测单元用于测量环境温度并基于所测量到的环境温度生成环境温度检测信号,所述大气压力检测单元用于测量大气压力并基于所测量到的大气压力生成大气压力检测信号。
  8. 如权利要求1所述的燃气式烹调系统,其中,所述控制处理器对所测量到的环境温度和大气压力按如下函数关系进行运算处理,以确定所述目标燃气压力:
    Figure PCTCN2016085596-appb-100001
    其中,
    p1′为目标燃气压力;
    K为修正系数;
    P2为初始标定环境下的燃气压力;
    T1和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
    Pamb1和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
    s1和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力。
  9. 一种燃气式烹调系统的自动火力标定方法,所述燃气式烹调系统包括燃气调节装置和燃气加热装置,所述燃气调节装置至少用于调节所述燃气加热装 置中的燃气压力,其中,所述自动火力标定方法包括如下步骤:
    ⑴在初始标定环境下对所述燃气式烹调系统的各火力强度进行初始标定;
    ⑵确定在各预定环境温度和大气压力下要达到初始标定的每一火力强度所需要的目标燃气压力,以得到环境温度、大气压力-目标燃气压力关系表;
    ⑶测量当前工作环境下在燃气流动方向上位于所述燃气调节装置下游的燃气管道中的燃气压力;
    ⑷测量所述燃气式烹调系统在当前工作环境下的环境温度和大气压力;
    ⑸查询所述环境温度、大气压力-目标燃气压力关系表,以得到在当前工作环境下要达到初始标定的火力强度所需要的目标燃气压力;以及
    ⑹根据所测量到的燃气压力与所述目标燃气压力比对的结果,对所述燃气压力进行控制或调节。
  10. 如权利要求9所述的自动火力标定方法,其中,所述目标燃气压力与所述预定环境温度和大气压力之间具有如下的函数关系:
    Figure PCTCN2016085596-appb-100002
    其中,
    p1′为目标燃气压力;
    K为修正系数;
    P2为初始标定环境下的燃气压力;
    T1和T2分别是预定环境温度和初始标定环境下的环境温度;
    Pamb1和Pamb2分别是预定大气压力和初始标定环境下的大气压力;
    s1和s2分别是预定工作环境和初始标定环境下的饱和水蒸气压力。
  11. 如权利要求10所述的自动火力标定方法,其中,步骤⑵中通过查询环境温度与饱和水蒸气压力的关系表而获得所述饱和水蒸气压力。
  12. 如权利要求10所述的自动火力标定方法,其进一步包括在步骤⑹之后对所述目标燃气压力进行校正,并根据所测量到的燃气压力与校正后的目标燃气压力比对的结果,进一步对所述燃气压力进行控制或调节的步骤;其中,按照如下的函数关系得到校正后的目标燃气压力:
    Figure PCTCN2016085596-appb-100003
    其中,
    p1”为校正后的目标燃气压力;
    K为修正系数;
    P2为初始标定环境下的燃气压力;
    T1’和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
    Pamb1’和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
    s1’和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力;
    C1和C2分别是当前工作环境和初始标定环境下燃气管道中燃气的伯努利常数。
  13. 如权利要求9所述的自动火力标定方法,其中,所述燃气调节装置还用于调节所述燃气加热装置中的燃气流量,所述自动火力标定方法进一步包括如下步骤:
    通过转换公式或表格,确定在当前工作环境下要达到初始标定的火力强度所需要的目标燃气流量;
    测量当前工作环境下的燃气流量;
    根据所测量到的燃气流量与所述目标燃气流量比对的结果,对所述燃气流量进行控制或调节。
  14. 如权利要求9所述的自动火力标定方法,其中,步骤⑷中利用环境温度检测单元测量所述环境温度,利用大气压力检测单元测量所述大气压力。
  15. 一种燃气式烹调系统的自动火力标定方法,所述燃气式烹调系统包括燃气调节装置和燃气加热装置,所述燃气调节装置至少用于调节所述燃气加热装置中的燃气压力,其中,所述自动火力标定方法包括如下步骤:
    ⑴在初始标定环境下对所述燃气式烹调系统的各火力强度进行初始标定;
    ⑵测量当前工作环境下在燃气流动方向上位于所述燃气调节装置下游的燃气管道中的燃气压力;
    ⑶测量所述燃气式烹调系统在当前工作环境下的环境温度和大气压力;
    ⑷对所测量到的环境温度和大气压力进行运算处理以确定在当前工作环境下要达到初始标定的火力强度所需要的目标燃气压力;以及
    ⑸根据所测量到的燃气压力与所述目标燃气压力比对的结果,对所述燃气压力进行控制或调节。
  16. 如权利要求15所述的自动火力标定方法,其中,步骤⑷中对所测量到的环境温度和大气压力按如下函数关系进行运算处理以确定所述目标燃气压力:
    Figure PCTCN2016085596-appb-100004
    其中,
    p1′为目标燃气压力;
    K为修正系数;
    P2为初始标定环境下的燃气压力;
    T1和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
    Pamb1和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
    s1和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力。
  17. 如权利要求16所述的自动火力标定方法,其中,步骤⑷中通过查询环境温度与饱和水蒸气压力的关系表而获得所述饱和水蒸气压力。
  18. 如权利要求16所述的自动火力标定方法,其进一步包括在步骤⑸之后 对所述目标燃气压力进行校正,并根据所测量到的燃气压力与校正后的目标燃气压力比对的结果,进一步对所述燃气压力进行控制或调节的步骤;其中,按照如下的函数关系得到校正后的目标燃气压力:
    Figure PCTCN2016085596-appb-100005
    其中,
    p1”为校正后的目标燃气压力;
    K为修正系数;
    P2为初始标定环境下的燃气压力;
    T1和T2分别是所测量到的环境温度和初始标定环境下的环境温度;
    Pamb1和Pamb2分别是所测量到的大气压力和初始标定环境下的大气压力;
    s1和s2分别是当前工作环境和初始标定环境下的饱和水蒸气压力;
    C1和C2分别是当前工作环境和初始标定环境下燃气管道中燃气的伯努利常数。
PCT/CN2016/085596 2015-06-17 2016-06-13 具有自动火力标定功能的燃气式烹调系统 WO2016202226A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510337049.0A CN106322447B (zh) 2015-06-17 2015-06-17 具有自动火力标定功能的燃气式烹调系统
CN201510337645.9 2015-06-17
CN201510337212.3 2015-06-17
CN201510337645.9A CN106257143B (zh) 2015-06-17 2015-06-17 燃气式烹调系统的自动火力标定方法
CN201510337212.3A CN106257142B (zh) 2015-06-17 2015-06-17 燃气式烹调系统的自动火力标定方法
CN201510337049.0 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016202226A1 true WO2016202226A1 (zh) 2016-12-22

Family

ID=57544949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085596 WO2016202226A1 (zh) 2015-06-17 2016-06-13 具有自动火力标定功能的燃气式烹调系统

Country Status (2)

Country Link
TW (1) TWI614454B (zh)
WO (1) WO2016202226A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637496A (zh) * 2020-04-28 2020-09-08 华帝股份有限公司 一种自动提醒空气供应不足的燃气灶系统及其控制方法
CN114542772A (zh) * 2022-03-09 2022-05-27 浙江威星智能仪表股份有限公司 电子自闭阀及管道燃气保护方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118564949A (zh) * 2024-08-01 2024-08-30 杭州老板电器股份有限公司 明火自动烹饪方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369667A (zh) * 2002-03-19 2002-09-18 黄德勇 中式烹调燃气火力控制装置
CN2674322Y (zh) * 2003-11-11 2005-01-26 南京永普科技有限公司 安全燃气炉灶
CN103335337A (zh) * 2013-06-25 2013-10-02 中山华帝燃具股份有限公司 一种燃气灶远程智能控制系统
KR20130122265A (ko) * 2012-04-30 2013-11-07 린나이코리아 주식회사 조리용기의 열전도율에 따른 과열방지장치 및 방법
KR20140143332A (ko) * 2013-06-06 2014-12-16 린나이코리아 주식회사 가스곤로
CN204063179U (zh) * 2014-09-04 2014-12-31 佛山市顺德区美的电热电器制造有限公司 电磁炉
CN204830058U (zh) * 2015-06-17 2015-12-02 深圳市爱可机器人技术有限公司 具有自动火力标定功能的燃气式烹调系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60331839D1 (de) * 2002-05-31 2010-05-06 Xiaoyong Liu Automatisches kochgerät für lebensmittel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369667A (zh) * 2002-03-19 2002-09-18 黄德勇 中式烹调燃气火力控制装置
CN2674322Y (zh) * 2003-11-11 2005-01-26 南京永普科技有限公司 安全燃气炉灶
KR20130122265A (ko) * 2012-04-30 2013-11-07 린나이코리아 주식회사 조리용기의 열전도율에 따른 과열방지장치 및 방법
KR20140143332A (ko) * 2013-06-06 2014-12-16 린나이코리아 주식회사 가스곤로
CN103335337A (zh) * 2013-06-25 2013-10-02 中山华帝燃具股份有限公司 一种燃气灶远程智能控制系统
CN204063179U (zh) * 2014-09-04 2014-12-31 佛山市顺德区美的电热电器制造有限公司 电磁炉
CN204830058U (zh) * 2015-06-17 2015-12-02 深圳市爱可机器人技术有限公司 具有自动火力标定功能的燃气式烹调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637496A (zh) * 2020-04-28 2020-09-08 华帝股份有限公司 一种自动提醒空气供应不足的燃气灶系统及其控制方法
CN114542772A (zh) * 2022-03-09 2022-05-27 浙江威星智能仪表股份有限公司 电子自闭阀及管道燃气保护方法

Also Published As

Publication number Publication date
TWI614454B (zh) 2018-02-11
TW201700917A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
CN111706887A (zh) 烹饪器具、烹饪器具的控制方法和计算机可读存储介质
WO2016202226A1 (zh) 具有自动火力标定功能的燃气式烹调系统
CN108332240A (zh) 燃气灶及其控制方法
CN110338640A (zh) 一种电蒸箱的控制方法、控制装置及电蒸箱
CN111202436B (zh) 一种基于氧传感器的智能烹饪控制方法
CN105444213A (zh) 锅具的加热控制方法及加热状态检知方法
WO2020062650A1 (zh) 烹饪器具及其保温控制方法、确定方法
CN111631597A (zh) 烹饪器具和控制方法、计算机可读存储介质
CN104534680A (zh) 一种判断烧水器内水沸点的方法
CN108758709B (zh) 一种燃气灶智能温控方法、装置和系统
DK160122B (da) Fremgangsmaade til styring af opvarmningen af en vaeskeformig last i et kogegrej
CN112205856A (zh) 一种蒸汽烹饪设备的控制方法
CN104406206A (zh) 一种燃气灶的自动控制器件
CN106322447B (zh) 具有自动火力标定功能的燃气式烹调系统
CN107544327A (zh) 烹饪器具及其控制、烹饪环境识别方法及装置
CN204830058U (zh) 具有自动火力标定功能的燃气式烹调系统
US9188521B2 (en) Method for controlling the concentration of a component of a gaseous mixture recirculated in a cooking chamber, particularly in food cooking ovens
CN107348831B (zh) 一种修正加热时间的电饭锅以及其加热控制方法
CN106257142B (zh) 燃气式烹调系统的自动火力标定方法
JP2013102868A (ja) 加熱調理器
WO2016091025A1 (zh) 烹饪机及烹饪机的控制方法
CN106257143B (zh) 燃气式烹调系统的自动火力标定方法
CN107224191B (zh) 一种自动保温的电饭锅及其保温控制方法
CN110859487A (zh) 真空烹饪器具及其烹饪方法
CN110876560B (zh) 烹饪器具的控制方法、装置及烹饪器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16810967

Country of ref document: EP

Kind code of ref document: A1