WO2016201835A1 - 液晶透镜、显示装置及其制作方法 - Google Patents

液晶透镜、显示装置及其制作方法 Download PDF

Info

Publication number
WO2016201835A1
WO2016201835A1 PCT/CN2015/092155 CN2015092155W WO2016201835A1 WO 2016201835 A1 WO2016201835 A1 WO 2016201835A1 CN 2015092155 W CN2015092155 W CN 2015092155W WO 2016201835 A1 WO2016201835 A1 WO 2016201835A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sub
region
electrode
tilt angle
Prior art date
Application number
PCT/CN2015/092155
Other languages
English (en)
French (fr)
Inventor
林家强
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/103,151 priority Critical patent/US10732482B2/en
Publication of WO2016201835A1 publication Critical patent/WO2016201835A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present disclosure relates to a liquid crystal lens, a display device, and a method of fabricating the same.
  • the liquid crystal lens drives the liquid crystal layer by a voltage to achieve a focusing effect.
  • a liquid crystal is generally driven by a multi-electrode method.
  • the refractive index of the liquid crystal molecules at the edge of the electrode is greatly changed, so that the spatial distribution curve of the refractive index of the liquid crystal is not smooth, thereby causing the focusing performance of the liquid crystal lens. Getting worse.
  • embodiments of the present invention provide a liquid crystal lens, a display device, and a method of fabricating the same, which can produce a relatively smooth refractive index of a liquid crystal, thereby providing a liquid crystal lens with better focusing performance.
  • a first aspect of the invention provides a liquid crystal lens comprising: an upper substrate; a lower substrate disposed opposite the upper substrate; a liquid crystal layer between the upper substrate and the lower substrate; at least one first electrode disposed on a side of the substrate adjacent to the liquid crystal layer; at least one second electrode and at least one third electrode disposed on a side of the lower substrate adjacent to the liquid crystal layer; wherein the liquid crystal layer above the second electrode is a first region located above the third electrode
  • the liquid crystal layer is a second region, and the liquid crystals in the first region and the second region are formed with an inclination angle greater than 0 degrees, and the alignment direction of the liquid crystal in the first region is opposite to the alignment direction of the liquid crystal in the second region.
  • the second electrode and the third electrode are spaced apart, and each liquid crystal lens comprises two opposite edges, and at least one second electrode is disposed at one edge of the two edges, in two At least one third electrode is disposed at the other edge of the edge.
  • the tilt of the liquid crystal in the first region and the second region is in the range of 8-15 degrees.
  • the first region includes a first sub-region and a second sub-region, the liquid crystal in the first sub-region has a first sub-tilt angle, and the liquid crystal in the second sub-region Having a second sub-tilt angle, the first sub-tilt angle being different from the second sub-tilt angle; and/or the second region comprising a fourth sub-region and a fifth sub-region, the liquid crystal in the fourth sub-region having a fourth sub-tilt The angle, the liquid crystal in the fifth sub-region has a fifth sub-tilt angle, and the fourth sub-tilt angle is different from the fifth sub-tilt angle.
  • the first area in a case where the first area includes the first sub-area and the second sub-area, the first area further includes a third sub-area, and the third sub-area is a neighboring area of the first area,
  • the liquid crystal in the third sub-region has a third sub-tilt angle, the third sub-tilt angle being different from the first and second sub-tilt angles;
  • the second region in the case where the second region includes the fourth sub-region and the fifth sub-region, the second The region further includes a sixth sub-region, the sixth sub-region is a neighboring region of the second region, the liquid crystal in the sixth sub-region has a sixth sub-tilt angle, and the sixth sub-tilt angle is different from the fourth sub-tilt angle and the fifth Sub-tilt angle.
  • the alignment direction of the liquid crystal in the first region is at an angle of 70-90 degrees with the length direction of the electrode.
  • the liquid crystal layer further includes a third region under the first electrode, and the liquid crystals in the third region are horizontally aligned.
  • the tilt angle of the liquid crystal in the third region is in the range of 0-3 degrees.
  • the liquid crystal lens further includes an alignment film, wherein the alignment film covers the second electrode and the third electrode, or the alignment film covers the entire surface of the lower substrate.
  • the liquid crystal is a positive liquid crystal.
  • a display device comprising the liquid crystal lens of the first aspect.
  • the display device includes a plurality of liquid crystal lenses, and the spacing between adjacent two liquid crystal lenses is 8-20 ⁇ m.
  • a method of fabricating a liquid crystal lens includes: providing an upper substrate; providing a lower substrate disposed opposite to the upper substrate; providing a liquid crystal layer between the upper substrate and the lower substrate; forming at least one first electrode on a side of the upper substrate adjacent to the liquid crystal layer; Forming at least one second electrode and at least one third electrode on a side of the substrate adjacent to the liquid crystal layer, wherein the liquid crystal layer above the second electrode is a first region, and the liquid crystal layer above the third electrode is a second region; The liquid crystal in the second region is formed with an inclination angle greater than 0 degrees, and the alignment direction of the liquid crystal in the first region is opposite to the alignment direction of the liquid crystal in the second region.
  • the step of forming the liquid crystal in the first region and the second region at an oblique angle further comprises the step of: performing light processing on the liquid crystal layer region between the first electrode and the second electrode to The liquid crystal in the first region is formed with a first tilt angle without voltage; and the liquid crystal layer region between the first electrode and the third electrode is light-treated such that the liquid crystal in the second region is in a voltage-free state A second inclination angle is formed below.
  • the step of photo-treating the liquid crystal layer region between the first electrode and the second electrode such that the liquid crystal in the first region is formed at a first tilt angle without voltage includes the following Step: applying a first voltage to the initial liquid crystal layer by applying a voltage to the second electrode and the first electrode, so that the liquid crystal of the liquid crystal layer is inclined at a first tilt angle, wherein a voltage applied to the second electrode is greater than that to the first electrode Applying a voltage to cause a voltage difference between the first electrode and the second electrode; irradiating the liquid crystal layer region between the first electrode and the second electrode with ultraviolet light to cause the liquid crystal in the first region to be in a voltage-free state A first inclination angle is formed below.
  • the step of performing light treatment on the liquid crystal layer region between the first electrode and the third electrode to form the second tilt angle of the liquid crystal in the second region without voltage is further included a step of: applying a second voltage to the initial liquid crystal layer by applying a voltage to the third electrode and the first electrode, so that the liquid crystal of the liquid crystal layer is inclined at a second tilt angle, wherein a voltage applied to the third electrode is greater than the first a voltage applied by the electrode, thereby causing a voltage difference between the first electrode and the third electrode; irradiating the liquid crystal layer region between the first electrode and the third electrode with ultraviolet light, so that the liquid crystal in the second region is in a voltage-free manner In the case, a second inclination angle is formed.
  • the step of forming the liquid crystal of the first region to have a first tilt angle without voltage further comprises the step of: applying a first sub-voltage to the initial liquid crystal layer, so that The liquid crystal of the liquid crystal layer is inclined at a first sub-tilt angle; ultraviolet light is irradiated to the first sub-region such that the liquid crystal in the first sub-region is formed with a first sub-tilt angle; and a second sub-volt
  • a third sub-region is also applied to the third sub-region adjacent to the first region a voltage
  • ultraviolet light is irradiated to the third sub-region such that the liquid crystal in the third sub-region is formed with a third sub-tilt angle
  • different sub-voltages are respectively applied to at least two sub-regions between the first electrode and the third electrode
  • a sixth sub-voltage is applied, and the sixth sub-region is irradiated with ultraviolet light so that the liquid crystal in the sixth sub-region is formed with a sixth sub-tilt angle.
  • liquid crystal of the first region when the liquid crystal of the first region is subjected to light treatment, it may also react with the alignment film to enable the liquid crystal of the first region to maintain the first tilt angle without voltage;
  • the liquid crystal of the two regions when the liquid crystal of the two regions is subjected to light treatment, it is also possible to react with the alignment film so that the liquid crystal of the second region can maintain the second tilt angle without voltage.
  • the step of performing light treatment on the liquid crystal layer region between the first electrode and the third electrode, so that the liquid crystal in the second region is formed with the second tilt angle without voltage further includes a step of applying a second voltage to the liquid crystal layer by applying a voltage to the third electrode and the first electrode such that the liquid crystal of the liquid crystal layer is inclined at a second tilt angle, wherein a voltage applied to the third electrode is greater than being applied to the first electrode a voltage, thereby generating a voltage difference between the first electrode and the third electrode; irradiating the liquid crystal layer region between the first electrode and the third electrode, so that the liquid crystal in the second region is formed without voltage The second tilt angle.
  • the liquid crystal layer further includes a third region under the first electrode, and before the liquid crystal in the first region and the second region is formed with a tilt angle, the method further includes: The liquid crystals in the third region are aligned horizontally.
  • a liquid crystal lens a display device, and a method of fabricating the same, at least one first electrode is disposed on a side of the upper substrate adjacent to the liquid crystal layer, and at least one second electrode is disposed on a side of the lower substrate adjacent to the liquid crystal layer And at least one third electrode, the liquid crystal layer above the second electrode is a first region, and the liquid crystal layer above the third electrode is a second region, and the liquid crystals in the first region and the second region are formed with a slope greater than 0 degrees The angle, the alignment direction of the liquid crystal in the first region is opposite to the alignment direction of the liquid crystal in the second region.
  • the control of the liquid crystal refractive index profile can be achieved by simultaneously relying on the preset tilt angle of the first region and the second region of the liquid crystal layer and the elasticity of the liquid crystal itself.
  • the liquid crystal lens provided by the embodiment of the present invention has a liquid crystal refractive index profile which is smoother, so that the liquid crystal lens has better focusing performance.
  • FIG. 1(a) and 1(b) are schematic views showing the structure of a liquid crystal lens according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic flow chart of a method for fabricating a liquid crystal lens according to Embodiment 3 of the present invention.
  • FIGS. 4(a), (b) and (c) are schematic diagrams showing an exemplary method of fabricating a liquid crystal lens according to a third embodiment of the present invention.
  • Embodiment 1 of the present invention provides a liquid crystal lens 1.
  • the liquid crystal lens 1 includes: an upper substrate 11; a lower substrate 12 disposed opposite the upper substrate 11; a liquid crystal layer 13 between the upper substrate 11 and the lower substrate 12; and at least one first electrode 14
  • the first substrate 11 is disposed on a side close to the liquid crystal layer 13; at least one second electrode 15 and at least one third electrode 16 are disposed on a side of the lower substrate 12 adjacent to the liquid crystal layer 13.
  • the liquid crystal layer 13 includes a first region 131 above the second electrode 15 and a second region 132 above the third electrode 16, the liquid crystals in the first region 131 and the second region 132 having a tilt angle greater than 0 degrees.
  • the alignment direction of the liquid crystal in the first region 131 is opposite to the alignment direction of the liquid crystal in the second region 132.
  • the tilt angle of the liquid crystal is defined in the present application as the angle between the long axis of the liquid crystal and the surface of the substrate 11.
  • the liquid crystal molecules in the first region 131 and the second region 132 have the same inclination angles, respectively.
  • the alignment direction of the liquid crystal in the first region 131 and the alignment direction of the liquid crystal in the second region 132 can be understood as the first region after the liquid crystal molecules in the first region 131 and the second region 132 are formed into a tilt angle by a pretilt process.
  • a straight line in which the tilt direction of the liquid crystal in 131, a straight line in which the tilt direction of the liquid crystal in the second region 132 is located, and a straight line in the direction of the long axis of the substrate surface constitute a triangle.
  • the angle between the straight line where the alignment direction of the liquid crystal of the first region 131 located at the second electrode 15 and the substrate are at an angle ⁇ , and the liquid crystal at the second region 132 at the third electrode 16
  • the angle between the straight line where the alignment direction is located and the substrate is the angle ⁇ , and the angles ⁇ and ⁇ are the inner angles of the triangle shown in Fig. 1(b).
  • the liquid crystal lens provided in the first embodiment of the present invention different tilt angles are preset in specific regions of the liquid crystal layer.
  • the control of the refractive index profile of the liquid crystal can be achieved by the inclination angle preset by the first region 131 and the second region 132 of the liquid crystal layer and the elasticity of the liquid crystal itself.
  • the liquid crystal lens provided in the first embodiment of the present invention has a liquid crystal refractive index profile which is smoother, so that the liquid crystal lens has better focusing performance.
  • the lens property is exhibited only in the state of voltage driving, and in the state without voltage driving, the liquid crystal layer including the above electrode structure and the specific region having the inclination angle is present. Lens properties.
  • the second electrode 15 and the third electrode 16 may be disposed at intervals.
  • Each liquid crystal lens 1 includes two opposite edges, and a second electrode 15 may be disposed at one edge of two opposite edges of the liquid crystal lens 1 at the other edge of the opposite edges of the liquid crystal lens 1.
  • a third electrode 16 is provided.
  • the width of the second electrode 15 and the third electrode 16 can be set, for example, to 10-30 ⁇ m;
  • each of the first electrodes 14 is disposed opposite to a second electrode 15 and a third electrode 16 such that a voltage difference is formed between each of the first electrodes 14 and the opposite second electrode 15 and each of the first electrodes 14 A voltage difference is formed between the opposing third electrode 16.
  • Such a structure having electrodes (i.e., the second electrode 15 and the third electrode 16) only at the edge of the liquid crystal lens makes the refractive index curve of the liquid crystal forming the lens smoother on the one hand, and greatly reduces the number of electrodes on the other hand.
  • the angle of the tilt angle of the liquid crystal in the first region 131 and the second region 132 may be, for example, in the range of 8-15 degrees.
  • the angle between the straight line where the oblique direction of the liquid crystal in the first region 131 is located and the angle ⁇ between the substrate and the oblique direction of the liquid crystal in the second region 132 and the angle ⁇ of the substrate In the range of 8-15 degrees.
  • the tilt angle of the liquid crystal is small, for example, in the range of 1-4 degrees.
  • the liquid crystals in the first region 131 and the second region 132 may be disposed to have a large inclination angle, for example, in the range of 8-15 degrees.
  • the liquid crystal may be specifically a positive liquid crystal such that positive liquid crystal molecules are aligned in an electric field direction perpendicular to the surface of the electrode under an applied voltage.
  • different voltages may be applied to the liquid crystals in the first region and/or the second region to obtain different tilt angles.
  • the following three structures may be formed:
  • the first region 131 includes a first sub-region and a second sub-region, the liquid crystal in the first sub-region has a first sub-tilt angle, and the liquid crystal in the second sub-region has a second sub-tilt angle, the first sub-pixel The tilt angle is different from the second sub-tilt angle.
  • the second region 132 includes a fourth sub-region and a fifth sub-region, the liquid crystal in the fourth sub-region has a fourth sub-tilt angle, and the liquid crystal in the fifth sub-region has a fifth sub-tilt angle, the fourth sub-region The tilt angle is different from the fifth sub-tilt angle.
  • the first region 131 includes a first sub-region and a second sub-region, the liquid crystal in the first sub-region has a first sub-tilt angle, and the liquid crystal in the second sub-region has a second sub-tilt angle, the first sub-region The tilt angle is different from the second sub-tilt angle, and the second region 132 includes a fourth sub-region and a fifth sub-region, the liquid crystal in the fourth sub-region has a fourth sub-tilt angle, and the liquid crystal in the fifth sub-region has Fifth sub-slant The angle, the fourth sub-tilt angle is different from the fifth sub-tilt angle.
  • the first area 131 includes a first sub-area, a second sub-area, and a third sub-area, and the third sub-area is a neighboring area of the first area, in the first sub-area
  • the liquid crystal has a first sub-tilt angle, the liquid crystal in the second sub-region has a second sub-tilt angle, the liquid crystal in the third sub-region has a third sub-tilt angle, and the third sub-tilt angle is different from the first and second a sub-tilt angle;
  • the second region includes a fourth sub-region, a fifth sub-region, and a sixth sub-region, wherein the sixth sub-region is a neighboring region of the second region, and the liquid crystal in the fourth sub-region has a fourth sub-tilt angle
  • the alignment direction of the liquid crystal in the first region 131 may be perpendicular to the length direction of the electrode, or the alignment direction of the liquid crystal in the first region 131 may be opposite to the length direction of the electrode.
  • an angle of 70-90 degrees may be provided.
  • the liquid crystal layer 13 may further include a third region 133 under the first electrode 14, and the liquid crystal in the third region 133 is horizontally aligned.
  • a horizontal alignment film may be covered on the first electrode 14, and the liquid crystal in the third region 133 may be horizontally aligned such that the alignment of the liquid crystals in the third region 133 is substantially horizontal.
  • the ideal state of alignment of the liquid crystal in the third region is "completely horizontal", but the liquid crystal in the second region below the third region is only close to horizontal, for example, liquid crystal in the second region 132.
  • the angle of the tilt angle is in the range of 0-3 degrees.
  • the liquid crystal lens 1 may further include an alignment film 17, and the alignment film 17 covers the second electrode 15 and the third electrode 16, or the alignment film 17 may cover the entire surface.
  • the alignment film may be composed of a polymer material including polystyrene and its derivatives, polyvinyl alcohol, polyester, epoxy resin, polyurethane, polysilane, polyimide, or the like.
  • Embodiment 2 of the present invention provides a display device 2. As shown in FIG. 2, the display device 2 includes at least one liquid crystal lens 1 according to any of the specific embodiments of the first embodiment.
  • the adjacent two liquid crystal lenses may have a certain pitch, for example, 8-20 ⁇ m, by which the liquid crystal phase error can be realized. (disclination area) The purpose of fixing in this area.
  • the display device includes the liquid crystal lens according to any one of the specific embodiments of the first embodiment, and different tilt angles are preset in specific regions of the liquid crystal layer.
  • the tilt angle of the first region and the second region of the liquid crystal layer and the elasticity of the liquid crystal itself can be used to control the refractive index profile of the liquid crystal.
  • the liquid crystal refractive index profile of the display device provided by the second embodiment of the present invention is smoother, so that the display device has better focusing performance.
  • a third embodiment of the present invention provides a method for fabricating a liquid crystal lens.
  • the manufacturing method includes the following steps: Step S31, providing an upper substrate; providing a lower substrate disposed opposite to the upper substrate; providing the upper substrate and a liquid crystal layer between the lower substrates; at least one first electrode is formed on a side of the upper substrate adjacent to the liquid crystal layer; at least one second electrode and at least one third electrode are formed on a side of the lower substrate adjacent to the liquid crystal layer; wherein The liquid crystal layer above the second electrode is a first region, and the liquid crystal layer above the third electrode is a second region; and in step S32, the liquid crystals in the first region and the second region are formed with an inclination angle greater than 0 degrees, And the alignment direction of the liquid crystal in the first region is opposite to the alignment direction of the liquid crystal in the second region.
  • the step of forming the liquid crystal in the first region and the second region with the tilt angle specifically includes the following steps: Step S321, performing light processing on the liquid crystal layer region between the first electrode and the second electrode to make the first region The liquid crystal is formed with a first tilt angle without voltage; and step S322, the liquid crystal layer region between the first electrode and the third electrode is light-processed so that the liquid crystal in the second region is in a voltage-free state A second tilt angle is formed.
  • the liquid crystal lens produced by the method of the third embodiment of the present invention has a liquid crystal refractive index curve which is smoother, so that the liquid crystal lens has better focusing performance.
  • step S321 may further include the following steps: Step 3211, applying a first voltage to the initial liquid crystal layer by applying a voltage to the first electrode and the second electrode, so that the liquid crystal layer The liquid crystal is inclined at a first tilt angle.
  • the voltage applied to the second electrode is greater than the voltage applied to the first electrode to create a voltage difference between the first electrode and the second electrode; and step 3212,
  • the liquid crystal layer region between the first electrode and the second electrode is irradiated with ultraviolet light such that the liquid crystal in the first region is formed with the first tilt angle without voltage.
  • the liquid crystal layer is loaded with a polarizing voltage required to deflect the liquid crystal layer to the first pretilt angle, and then the first region is removed by the light shielding plate or the light shielding mask.
  • the liquid crystal in other regions is shielded from light, and the liquid crystal in the first region is irradiated with an illumination unit having ultraviolet light, so that a reactive monomer incorporated in the liquid crystal molecule and a polyimide as an alignment layer (polyimides)
  • a bonding reaction occurs to form a new long-chain molecular structure, and the direction of the long-chain molecular structure is substantially the same as the direction in which the liquid crystals are arranged.
  • the alignment of the liquid crystal is formed after the bonding is cured. After the application of the voltage is stopped, the liquid crystal molecules near the surface of the alignment layer remain aligned in substantially the same direction as the solidified long chain molecules, so that the liquid crystal of the first region has a first pretilt angle.
  • step S322 may further include the following steps: applying a voltage to the third liquid electrode and the first electrode to apply a second voltage to the initial liquid crystal layer to make the liquid crystal of the liquid crystal layer Tilting according to the second tilt angle, the voltage applied to the third electrode is greater than the voltage applied to the first electrode, thereby generating a voltage difference between the first electrode and the third electrode; and liquid crystal between the first electrode and the third electrode The layer region is irradiated with ultraviolet light such that the liquid crystal in the second region is formed with the second tilt angle without voltage.
  • the liquid crystal layer region between the first electrode and the third electrode (or the second electrode) may be divided into a plurality of sub-regions, and then different voltages are respectively applied. This way of applying a voltage enables a more accurate pretilt angle to be formed.
  • the liquid crystal layer region between the first electrode and the second electrode when the liquid crystal layer region between the first electrode and the second electrode includes at least two sub-regions, the at least two sub-regions
  • the tilt angle of the liquid crystal is different.
  • the liquid crystal layer region between the first electrode and the second electrode includes a first sub-region 41 and a second sub-region 42, the first sub-region 41 is formed with a first sub-tilt angle, and the second sub-region 42 is formed with a second Sub-tilt angle
  • step S321 may further include the following steps: step S3211', applying a first sub-voltage to the initial liquid crystal layer, so that the liquid crystal of the liquid crystal layer is tilted according to the first sub-tilt angle; step S3212', for the a sub-region 41 is irradiated with ultraviolet light such that the liquid crystal in the first sub-region 51 is formed with a first sub-tilt angle; in step S3213', a second sub-voltage is applied to the liquid crystal layer, so that the liquid crystal of the liquid crystal layer is in accordance with the second The sub-tilt angle is inclined; and in step S3214', the second sub-area 42 is irradiated with ultraviolet light so that the liquid crystal in the second sub-area 42 is formed with the second sub-tilt angle.
  • the liquid crystal layer is loaded to make the liquid crystal a polarizing voltage required to deflect the layer to the first sub-pretilt angle; shielding the liquid crystal of the region other than the first sub-region 41 with a light shielding plate or a light shielding mask, and using the illumination unit having ultraviolet light to the first sub-
  • the liquid crystal of the region 41 is irradiated such that the liquid crystal of the first sub-region 41 has a first sub-pretilt angle.
  • the tilt angles of the liquid crystals in the at least two sub-regions are different.
  • the liquid crystal layer region between the first electrode and the third electrode includes a fourth sub-region and a fifth sub-region, and the fourth sub-region is formed with a fourth sub-tilt angle, and the fifth sub-region is formed with a fifth sub-tilt angle ,
  • the step S322 may specifically include the steps of: applying a fourth sub-voltage to the initial liquid crystal layer, tilting the liquid crystal of the liquid crystal layer according to the fourth sub-tilt angle; and irradiating the fourth sub-area with ultraviolet light to make the first
  • the liquid crystal in the four sub-regions is formed with a fourth sub-tilt angle;
  • a fifth sub-voltage is applied to the liquid crystal layer, so that the liquid crystal of the liquid crystal layer is inclined at a fifth sub-tilt angle; and the fifth sub-region is irradiated with ultraviolet light, so that The liquid crystal in the fifth sub-region is formed with a fifth sub-tilt angle.
  • a voltage may also be applied to the adjacent sub-region of the first region, the applied voltage value being slightly different from the voltage applied in the first and second sub-regions, which is more The careful application of voltage enables a more accurate pretilt angle to be formed.
  • the embodiment may further include the following steps: step S3215', applying a third sub-voltage in the third sub-area 53 adjacent to the first area; step S3216', The third sub-region 53 is irradiated with ultraviolet light so that the liquid crystal in the third sub-region 53 is formed with a third sub-tilt angle.
  • the pre-tilt angle is formed by applying an appropriate voltage to the adjacent region of the liquid crystal layer region between the first electrode and the second electrode (or the third electrode), and the first electrode and the third electrode are made to be compared with the case where only the liquid crystal itself is elastic.
  • the adjacent region of the liquid crystal layer region between the electrodes (or the second electrode) is formed with a more precise pretilt angle.
  • the sixth sub-segment adjacent to the second region may be The sixth sub-voltage is applied to the region, and the sixth sub-region is irradiated with ultraviolet light such that the liquid crystal in the sixth sub-region is formed with a sixth sub-tilt angle.
  • the alignment film when the liquid crystal of the first region is subjected to light treatment, the alignment film may also be reacted to enable the liquid crystal of the first region to maintain the first tilt without voltage. angle.
  • the liquid crystal of the second region when the liquid crystal of the second region is subjected to light treatment, it can react with the alignment film to enable the liquid crystal of the second region to maintain the second tilt angle without voltage.
  • the liquid crystal layer region between the first electrode and the third electrode is light-processed in step S322, so that the liquid crystal in the second region is formed with a second tilt without voltage.
  • the step of angle may specifically include the following steps: Step S3221, applying a second voltage to the liquid crystal layer by applying a voltage to the third electrode and the first electrode, respectively, so that the liquid crystal of the liquid crystal layer is inclined at the second tilt angle, and is applied to the third electrode.
  • the voltage is greater than the voltage applied to the first electrode to generate a voltage difference between the first electrode and the third electrode; and in step S3222, the liquid crystal layer region between the first electrode and the third electrode is irradiated to make the second
  • the liquid crystal of the region can be formed with a second tilt angle without voltage.
  • the liquid crystal layer is loaded with a polarizing voltage required to deflect the liquid crystal layer to the second pretilt angle, and the light shielding plate or the light shielding mask is used to remove the second region except the second region.
  • the liquid crystals of other regions are shielded from light, and the liquid crystal of the second region is irradiated with the illumination unit so that the liquid crystal of the second region has a second pretilt angle.
  • the liquid crystal layer further includes a third region under the first electrode 14, and the method further includes: before the liquid crystal in the first region and the second region is formed with a tilt angle, the method further includes Step: Align the liquid crystal level in the third region.
  • the first electrode may be covered with a horizontal alignment film, and then the liquid crystal in the third region may be horizontally aligned such that the alignment of the liquid crystal in the third region is substantially horizontal.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一液晶透镜、显示装置、及其制作方法,液晶透镜(1)包括上基板(11),下基板(12),在上基板(11)和下基板(12)之间的液晶层(13);至少一个第一电极(14),设置在上基板(11)靠近液晶层(13)的一侧;至少一个第二电极(15)和至少一个第三电极(16),设置在下基板(12)靠近液晶层(13)的一侧,液晶层(13)包括位于第二电极(15)上方的第一区域(131)和位于第三电极(16)上方的第二区域(132),第一区域(131)和第二区域(132)中的液晶具有倾斜角,第一区域(131)中液晶的配向方向与第二区域(132)中液晶的配向方向相对。还提供了一制作上述液晶透镜的方法及一包括上述液晶透镜的显示装置。该液晶透镜具有较好的聚焦性能。

Description

液晶透镜、显示装置及其制作方法 技术领域
本公开涉及一种液晶透镜、显示装置及其制作方法。
背景技术
液晶透镜由电压驱动液晶层来实现聚焦效果。液晶透镜的液晶层的实际折射率的分布曲线越平滑,则液晶透镜的聚焦性效果越好。因此通过电压驱动来控制液晶层的实际折射率的方法决定了液晶透镜的成像质量。
但是,发明人已知一般采用多电极的方式来驱动液晶。在多电极的方式中,因为在电极边缘产生侧向电压,使得液晶分子在电极边缘的折射率产生大幅度变化,从而使得液晶折射率的空间分布曲线不平滑,由此导致液晶透镜的聚焦性能变差。
发明内容
有鉴于此,本发明的实施例提供一种液晶透镜、显示装置及其制作方法,能够产生较为平滑的液晶折射率曲线,从而使液晶透镜具有较好的聚焦性能。
本发明的第一方面,提供一种液晶透镜,其包括:上基板;与上基板相对设置的下基板;位于在上基板和下基板之间的液晶层;至少一个第一电极,设置在上基板靠近液晶层的一侧;至少一个第二电极和至少一个第三电极,设置在下基板靠近液晶层的一侧;其中,位于第二电极上方的液晶层为第一区域,位于第三电极上方的液晶层为第二区域,第一区域和第二区域中的液晶形成有大于0度的倾斜角度,第一区域中液晶的配向方向与第二区域中液晶的配向方向相对。
在一种可能实现的方式中,第二电极和第三电极间隔设置,且每个液晶透镜包含两个相对的边缘,且在两个边缘的一个边缘处设置至少一个第二电极,在两个边缘的另一个边缘处设置至少一个第三电极。
在一种可能实现的方式中,第一区域和第二区域中的液晶的倾斜度在8-15度范围内。
在一种可能实现的方式中,第一区域包括第一子区域和第二子区域,在第一子区域中的液晶具有第一子倾斜角,在第二子区域中的液晶 具有第二子倾斜角,第一子倾斜角不同于第二子倾斜角;并且/或者第二区域包括第四子区域和第五子区域,在第四子区域中的液晶具有第四子倾斜角,在第五子区域中的液晶具有第五子倾斜角,第四子倾斜角不同于第五子倾斜角。
在一种可能实现的方式中,在第一区域包括第一子区域和第二子区域的情况下,第一区域还包括第三子区域,第三子区域为第一区域的邻近区域,在第三子区域中的液晶具有第三子倾斜角,第三子倾斜角不同于第一和第二子倾斜角;在第二区域包括第四子区域和第五子区域的情况下,第二区域还包括第六子区域,第六子区域为第二区域的邻近区域,在第六子区域中的液晶具有第六子倾斜角,第六子倾斜角不同于第四子倾斜角和第五子倾斜角。
在一种可能实现的方式中,第一区域中的液晶的配向方向与电极的长度方向呈70-90度的夹角。
在一种可能实现的方式中,液晶层还包括位于第一电极下方的第三区域,第三区域中的液晶被水平配向。
在一种可能实现的方式中,第三区域中的液晶的倾斜角度在0-3度范围内。
在一种可能实现的方式中,液晶透镜还包括配向膜,其中,配向膜覆盖于第二电极和第三电极上,或,配向膜覆盖于整个下基板的表面上。
在一种可能实现的方式中,液晶为正性液晶。
本发明的第二方面,提供一种显示装置,显示装置包括如第一方面所述的液晶透镜。
在一种可能实现的方式中,显示装置包括多个液晶透镜,相邻的两个液晶透镜的间距为8-20μm。
本发明的第三方面,提供一种液晶透镜的制作方法。所述制作方法包括:提供上基板;提供与上基板相对设置的下基板;提供位于上基板和下基板之间的液晶层;在上基板靠近液晶层的一侧形成至少一个第一电极;在下基板靠近液晶层的一侧形成至少一个第二电极和至少一个第三电极,位于第二电极上方的液晶层为第一区域,位于第三电极上方的液晶层为第二区域;使第一区域和第二区域中的液晶形成有大于0度的倾斜角度,第一区域中液晶的配向方向与第二区域中液晶的配向方向相对。
在一种可能实现的方式中,使第一区域和第二区域中的液晶形成有倾斜角度的步骤还包括以下步骤:对第一电极和第二电极之间的液晶层区域进行光处理,使第一区域中的液晶在无电压的情况下形成有第一倾斜角;和对第一电极和第三电极之间的液晶层区域进行光处理,使第二区域中的液晶在无电压的情况下形成有第二倾斜角。
在一种可能实现的方式中,对第一电极和第二电极之间的液晶层区域进行光处理,使第一区域中的液晶在无电压下的情况形成有第一倾斜角的步骤包括以下步骤:通过向第二电极和第一电极施加电压,向初始的液晶层施加第一电压,使液晶层的液晶按照第一倾斜角倾斜,其中,向第二电极施加的电压大于向第一电极施加的电压,从而使第一电极和第二电极之间产生电压差;对第一电极和第二电极之间的液晶层区域进行紫外光照射,使第一区域中的液晶在无电压的情况下形成有第一倾斜角。
在一种可能实现的方式中,对第一电极和第三电极之间的液晶层区域进行光处理,使第二区域中的液晶在无电压下的情况形成有第二倾斜角的步骤还包括以下步骤:通过向第三电极和第一电极施加电压,向初始的液晶层施加第二电压,使液晶层的液晶按照第二倾斜角倾斜,其中,向第三电极施加的电压大于向第一电极施加的电压,从而使第一电极和第三电极之间产生电压差;对第一电极和第三电极之间的液晶层区域进行紫外光照射,使第二区域中的液晶在无电压的情况下形成有第二倾斜角。
在一种可能实现的方式中,在第一电极和第二电极之间的液晶层区域包括至少两个子区域的情况下,至少两个子区域中的液晶的倾斜角是不同的,第一电极和第二电极之间的液晶层区域包括第一子区域和第二子区域,则第一子区域形成有第一子倾斜角,第二子区域形成有第二子倾斜角,对第一电极和第二电极之间的液晶层区域进行光处理,使第一区域的液晶在无电压的情况下形成有第一倾斜角的步骤还包括以下步骤:向初始的液晶层施加第一子电压,使液晶层的液晶按照第一子倾斜角倾斜;对第一子区域进行紫外光照射,以使第一子区域中的液晶形成有第一子倾斜角;向液晶层施加第二子电压,使液晶层的液晶按照第二子倾斜角倾斜;对第二子区域进行紫外光照射,以使第二子区域中的液 晶形成有第二子倾斜角;并且/或者,在第一电极和第三电极之间的液晶层区域包括至少两个子区域的情况下,至少两个子区域中的液晶的倾斜角是不同的,第一电极和第三电极之间的液晶层区域包括第四子区域和第五子区域,则第四子区域形成有第四子倾斜角,第五子区域形成有第五子倾斜角,对第一电极和三电极之间的液晶层区域进行光处理,使第二区域的液晶在无电压的情况下形成有第二倾斜角的步骤还包括以下步骤:向初始的液晶层施加第四子电压,使液晶层的液晶按照第四子倾斜角倾斜;对第四子区域进行紫外光照射,以使第四子区域中的液晶形成有第四子倾斜角;向液晶层施加第五子电压,使液晶层的液晶按照第五子倾斜角倾斜;对第五子区域进行紫外光照射,以使第五子区域中的液晶形成有第五子倾斜角。
在一种可能实现的方式中,向第一电极和第二电极之间的至少两个子区域分别施加不同的子电压的情况下,还向与第一区域邻近的第三子区域施加第三子电压,对第三子区域进行紫外光照射,以使第三子区域中的液晶形成有第三子倾斜角;向第一电极和第三电极之间的至少两个子区域分别施加不同的子电压的情况下,还向与第二区域邻近的第六子区域施加第六子电压,对第六子区域进行紫外光照射,以使第六子区域中的液晶形成有第六子倾斜角。
在一种可能实现的方式中,对第一区域的液晶在进行光处理时,还可以与配向膜反应,使第一区域的液晶能够在无电压的情况下保持第一倾斜角;对述第二区域的液晶在进行光处理时,还可以与配向膜反应,使第二区域的液晶能够在无电压的情况下保持第二倾斜角。
在一种可能实现的方式中,对第一电极和第三电极之间的液晶层区域进行光处理,使第二区域中的液晶在无电压的情况下形成有第二倾斜角的步骤还包括以下步骤:通过向第三电极和第一电极施加电压,向液晶层施加第二电压,使得液晶层的液晶按照第二倾斜角倾斜,其中,向第三电极施加的电压大于向第一电极施加的电压,从而在第一电极和第三电极之间产生电压差;对第一电极和第三电极之间的液晶层区域进行照射,使第二区域中的液晶在无电压的情况下形成有第二倾斜角。
在一种可能实现的方式中,液晶层还包括第一电极下方的第三区域,在第一区域和第二区域中的液晶形成有倾斜角之前,方法还包括: 使第三区域中的液晶被水平配向。
根据本发明的实施例提供的液晶透镜、显示装置及其制作方法,在上基板靠近液晶层的一侧设置有至少一个第一电极;在下基板靠近液晶层的一侧设置有至少一个第二电极和至少一个第三电极,在第二电极上方的液晶层为第一区域,在第三电极上方的液晶层为第二区域,第一区域和第二区域中的液晶形成有大于0度的倾斜角度,第一区域中液晶的配向方向与第二区域中液晶的配向方向相对。当电压驱动时,可以同时依靠在液晶层的第一区域和第二区域预设的倾斜角和液晶自身的弹性来实现对液晶折射率分布曲线的控制。与仅依靠液晶自身弹性的控制方法相比,本发明的实施例提供的液晶透镜的液晶折射率分布曲线更为平滑,从而使液晶透镜具有更好的聚焦性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)和1(b)为本发明实施例一提供的液晶透镜的一种结构示意图;
图2为本发明实施例二提供的显示装置的一种结构示意图;
图3为本发明实施例三提供的液晶透镜的制作方法的一种流程示意图;和
图4(a)、(b)和(c)为本发明实施例三提供的液晶透镜的制作方法的一种示例性示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似 词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。附图中各层膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
实施例一
本发明实施例一提供了一种液晶透镜1。如图1(a)所示,液晶透镜1包括:上基板11;与上基板11相对设置的下基板12;位于上基板11和下基板12之间的液晶层13;至少一个第一电极14,设置在上基板11靠近液晶层13的一侧;至少一个第二电极15和至少一个第三电极16,设置在下基板12靠近液晶层13的一侧。液晶层13包括位于第二电极15上方的第一区域131和位于第三电极16上方的第二区域132,第一区域131和第二区域132中的液晶具有大于0度倾斜角。第一区域131中液晶的配向方向与第二区域132中液晶的配向方向相对。
需说明的是,液晶的倾斜角在本申请中定义为液晶长轴与基板11的表面的夹角。第一区域131和第二区域132中的液晶分子分别具有相同的倾斜角。第一区域131中液晶的配向方向与第二区域132中液晶的配向方向相对可被理解为,第一区域131和第二区域132中的液晶分子经预倾角工艺形成倾斜角后,第一区域131中液晶的倾斜方向所在的直线、第二区域132中液晶的倾斜方向所在的直线、以及基板表面的长轴方向所在的直线构成了三角形。如图1(b)所示,位于第二电极15处的第一区域131的液晶的配向方向所在的直线与基板的夹角为角α,位于第三电极16处的第二区域132的液晶的配向方向所在的直线与基板的夹角为角β,角α和β为图1(b)中所示的三角形的内角。
根据本发明实施例一提供的液晶透镜,在液晶层的特定区域预设不同的倾斜角。当电压驱动时,可以依靠在液晶层的第一区域131和第二区域132预设的倾斜角和液晶自身的弹性来实现对液晶折射率分布曲线的控制。与仅依靠液晶自身弹性的控制方法相比,本发明的实施例一提供的液晶透镜的液晶折射率分布曲线更为平滑,从而使液晶透镜具有更好的聚焦性能。需说明的是,在本发明实施例一中,只有在电压驱动的状态下才呈现透镜性质,而在没有电压驱动的状态下,包含上述电极结构和特定区域具有倾斜角的液晶层则呈现无透镜性质。
在上述实施例中,第二电极15和第三电极16可以间隔设置。每个液晶透镜1包含两个相对的边缘,可在液晶透镜1的两个相对的边缘的一个边缘处设置一个第二电极15,在在液晶透镜1的两个相对的边缘的另一个边缘处设置一个第三电极16。第二电极15和第三电极16的宽度例如可设置为10-30μm;
另外,每个第一电极14均与一个第二电极15和一个第三电极16相对设置,使得每个第一电极14与相对的第二电极15之间形成电压差以及每个第一电极14与相对的第三电极16之间形成电压差。这种只在液晶透镜的边缘具有电极(即第二电极15和第三电极16)的结构一方面使得形成透镜的液晶折射率曲线更为平滑,另一方面大大减少了电极的数量。
可选地,在本发明一个具体实施例中,第一区域131和第二区域132中的液晶具有的倾斜角的角度可以例如在8-15度范围内。例如,如图1(b)所示,第一区域131中液晶的倾斜方向所在的直线与基板的夹角α和第二区域132中液晶的倾斜方向所在的直线与基板的夹角β的角度在8-15度范围内。
常规地,液晶的倾斜角度较小,例如在1-4度范围内。而在本发明实施例中,第一区域131和第二区域132中的液晶可设置为具有较大的倾斜角,例如在8-15度范围内。所述液晶可具体为正性液晶,从而在外加电压作用下,正性液晶分子沿垂直于电极表面方向的电场方向排列。
可选地,为了液晶透镜的液晶折射率分布曲线更为平滑,可以对第一区域和/或第二区域中的液晶分别施加不同的电压从而得到不同的倾斜角。在本发明具体实施例中,通过在第一区域131和/或第二区域132中施加不同的电压,可形成以下三种结构(未示出):
1,第一区域131包括第一子区域和第二子区域,在第一子区域中的液晶具有第一子倾斜角,在第二子区域中的液晶具有第二子倾斜角,第一子倾斜角不同于第二子倾斜角。
2,第二区域132包括第四子区域和第五子区域,在第四子区域中的液晶具有第四子倾斜角,在第五子区域中的液晶具有第五子倾斜角,第四子倾斜角不同于第五子倾斜角。
3,第一区域131包括第一子区域和第二子区域,在第一子区域中的液晶具有第一子倾斜角,在第二子区域中的液晶具有第二子倾斜角,第一子倾斜角不同于第二子倾斜角,且第二区域132包括第四子区域和第五子区域,在第四子区域中的液晶具有第四子倾斜角,在第五子区域中的液晶具有第五子倾斜 角,第四子倾斜角不同于第五子倾斜角。
进一步地,还可以在第一区域或第二区域的邻近区域施加与第一区域或第二区域不同的电压,由此在该邻近区域形成不同的倾斜角。例如,在本发明具体实施例中,第一区域131包括第一子区域、第二子区域时和第三子区域,第三子区域为第一区域的邻近区域,在第一子区域中的液晶具有第一子倾斜角,在第二子区域中的液晶具有第二子倾斜角,在第三子区域中的液晶具有第三子倾斜角,第三子倾斜角不同于第一和第二子倾斜角;第二区域包括第四子区域、第五子区域和第六子区域,其中第六子区域为第二区域的邻近区域,在第四子区域中的液晶具有第四子倾斜角,在第五子区域中的液晶具有第五子倾斜角,在第六子区域中的液晶具有第六子倾斜角,第六子倾斜角不同于第四和第五子倾斜角。
可选地,在本发明一个具体实施例中,第一区域131中的液晶的配向方向可垂直于电极的长度方向,或者,第一区域131中的液晶的配向方向可与电极的长度方向呈例如70-90度的夹角。
可选地,在本发明一个具体实施例中,液晶层13还可以包括位于第一电极14下方的第三区域133,该第三区域133中的液晶被水平配向。
具体地,可以在第一电极上14覆盖有水平配向膜,然后对第三区域133中的液晶做水平配向,使得第三区域133中的液晶的配向基本水平。
在上述具体实施例中,第三区域中的液晶的配向的理想状态为“完全水平”,但位于第三区域下方的第二区域中的液晶仅是接近水平,例如第二区域132中的液晶具有的倾斜角的角度在0-3度范围内。
可选地,在本发明一个具体实施例中,液晶透镜1还可以包括配向膜17,配向膜17覆盖于第二电极15和第三电极16上,或者,配向膜17也可以覆盖于整个下基板12的表面上。配向膜可以由包括聚苯乙烯及其衍生物、聚乙烯醇、聚酯、环氧树脂、聚氨酯、聚硅烷、聚酰亚胺等的高分子材料构成。
实施例二
本发明实施例二提供了一种显示装置2。如图2所示,显示装置2包括至少一个如实施例一的各个具体实施例中任一个所述的液晶透镜1。
在显示装置2包括多个液晶透镜1的情况下,相邻的两个液晶透镜可具有一定间距,该间距例如为8-20μm,通过此种设置方式可以实现把液晶的相错 (disclination area)固定在此区域的目的。
根据本发明实施例二提供的显示装置,该显示装置包括至少一个实施例一的各个具体实施例中任一个所述的液晶透镜,在液晶层的特定区域预设不同的倾斜角。电压驱动时,可以依靠在液晶层的第一区域和第二区域预设的倾斜角和液晶自身的弹性来实现对液晶折射率分布曲线的控制。与仅依靠液晶自身弹性的常规控制方法相比,本发明的实施例二提供的显示装置的液晶折射率分布曲线更为平滑,从而使显示装置具有更好的聚焦性能。
实施例三
本发明实施例三提供了一种液晶透镜的制作方法,如图3所示,该制作方法包括以下步骤:步骤S31,提供上基板;提供与上基板相对设置的下基板;提供位于上基板和下基板之间的液晶层;在上基板靠近液晶层的一侧形成有至少一个第一电极;在下基板靠近液晶层的一侧形成有至少一个第二电极和至少一个第三电极;其中,位于第二电极上方的液晶层为第一区域,位于在第三电极上方的液晶层为第二区域;和步骤S32,使第一区域和第二区域中的液晶形成有大于0度的倾斜角度,且第一区域中液晶的配向方向与第二区域中液晶的配向方向相对。
其中,使第一区域和第二区域中的液晶形成有倾斜角的步骤具体包括以下步骤:步骤S321,对第一电极和第二电极之间的液晶层区域进行光处理,使第一区域中的液晶在无电压的情况下形成有第一倾斜角;和步骤S322,对第一电极和第三电极之间的液晶层区域进行光处理,使第二区域中的液晶在无电压的情况下形成有第二倾斜角。
根据本发明实施例三提供的液晶透镜的制作方法,在液晶层的特定区域预设不同的倾斜角.当电压驱动时,可以依靠在液晶层的第一区域和第二区域预设的倾斜角和液晶自身的弹性来实现对液晶折射率曲线的控制。与仅依靠液晶自身弹性的控制方法相比,本发明的实施例三的方法制作的液晶透镜的液晶折射率曲线更为平滑,从而使液晶透镜具有更好的聚焦性能。
可选地,在本发明一个具体实施例中,步骤S321又可具体包括以下步骤:步骤3211,通过向第一电极和第二电极施加电压,向初始的液晶层施加第一电压,使得液晶层的液晶按照第一倾斜角倾斜。向第二电极施加的电压大于向第一电极施加的电压,从而在第一电极和第二电极之间产生电压差;和步骤3212, 对第一电极和第二电极之间的液晶层区域进行紫外光照射,使所述第一区域中的液晶在无电压的情况下形成有所述第一倾斜角。
具体而言,首先通过对第一电极和第二电极通电,向液晶层加载使液晶层偏转至第一预倾角所需的起偏电压,而后用遮光板或者遮光光罩对除第一区域之外的其它区域的液晶进行遮光,用具有紫外光的光照单元对第一区域的液晶进行照射,使得液晶分子中掺入的活性单体(reactive monomer)与作为配向层的聚酰亚胺(polyimides)发生键结反应而形成新的长链状分子结构,而该长链分子结构的方向与液晶排列方向大致相同。因此在键结固化之后对液晶形成了配向的作用。在停止施加电压之后,接近配向层表面的液晶分子仍会保持与固化的长链分子大致相同方向的排列,使得第一区域的液晶具有第一预倾角。
同理,在本发明一个具体实施例中,步骤S322可还具体包括以下步骤:通过向第三电极和第一电极施加电压,向初始的液晶层施加第二电压,使所述液晶层的液晶按照第二倾斜角倾斜,向第三电极施加的电压大于向第一电极施加的电压,从而在第一电极和第三电极之间产生电压差;对第一电极和第三电极之间的液晶层区域进行紫外光照射,使第二区域中的液晶在无电压的情况下形成有所述第二倾斜角。
另外,可选地,可以在第一电极和第三电极(或第二电极)之间的液晶层区域划分为若干子区域,然后分别施加不同的电压。这种施加电压的方式能够使形成的预倾角更为精确。
在本发明另一个具体实施例中,如图4(a)和(b)所示,第一电极和第二电极之间的液晶层区域包括至少两个子区域时,所述至少两个子区域中的液晶的倾斜角是不同的。例如,第一电极和第二电极之间的液晶层区域包括第一子区域41和第二子区域42,第一子区域41形成有第一子倾斜角,第二子区域42形成有第二子倾斜角;
这种情况下,步骤S321还可具体包括以下步骤:步骤S3211’,向初始的液晶层施加第一子电压,使液晶层的液晶按照第一子倾斜角倾斜;步骤S3212’,对所述第一子区域41进行紫外光照射,以使所述第一子区域51中的液晶形成有第一子倾斜角;步骤S3213’,向液晶层施加第二子电压,使液晶层的液晶按照第二子倾斜角倾斜;和步骤S3214’,对第二子区域42进行紫外光照射,以使第二子区域42中的液晶形成有第二子倾斜角。
具体而言,首先,通过对第一电极和第二电极通电,向液晶层加载使液晶 层偏转至第一子预倾角所需的起偏电压;用遮光板或遮光光罩对除第一子区域41之外的其它区域的液晶进行遮光,并用具有紫外光的光照单元对第一子区域41的液晶进行照射,使第一子区域41的液晶具有第一子预倾角。然后,对第一电极和第二电极通电,向液晶层加载使液晶层偏转至第二子预倾角所需的起偏电压;用遮光板或遮光光罩对除第二子区域42之外的其它区域的液晶进行遮光,并用具有紫外光的光照单元对第二子区域42的液晶进行照射,使第二子区域42的液晶具有第二子预倾角。
同理,当第一电极和第三电极之间的液晶层区域包括至少两个子区域时,所述至少两个子区域中的液晶的倾斜角是不同的。例如,第一电极和第三电极之间的液晶层区域包括第四子区域和第五子区域,则第四子区域形成有第四子倾斜角,第五子区域形成有第五子倾斜角,
这种情况下,步骤S322可具体包括以下步骤:向初始的液晶层施加第四子电压,使液晶层的液晶按照第四子倾斜角倾斜;对第四子区域进行紫外光照射,以使第四子区域中的液晶形成有第四子倾斜角;向液晶层施加第五子电压,使所述液晶层的液晶按照第五子倾斜角倾斜;对第五子区域进行紫外光照射,以使第五子区域中的液晶形成有第五子倾斜角。
进一步地,如图4(c)所示,还可以对第一区域的邻近子区域施加电压,该施加的电压值与在第一和第二子区域施加的电压略有不同,这种更为细致的施加电压方式能够使形成的预倾角更为精确。
由此,在上述步骤S3211’~S3214’的基础上,本实施例还可包括以下步骤:步骤S3215’,在与第一区域邻近的第三子区域53施加第三子电压;步骤S3216’,对第三子区域53进行紫外光照射,以使第三子区域53中的液晶形成有第三子倾斜角。
通过施加适当的电压使第一电极和第二电极(或第三电极)之间的液晶层区域的邻近区域形成预倾角,与仅依靠液晶自身弹性的情况相比,使第一电极和第三电极(或第二电极)之间的液晶层区域的邻近区域形成有更为精确的预倾角。
同理,在第一电极和第三电极之间的液晶层区域包括至少两个子区域且分别向所述至少两个子区域施加不同的子电压的情况下,可以对第二区域邻近的第六子区域施加第六子电压,对第六子区域进行紫外光照射,以使第六子区域中的液晶形成有第六子倾斜角。
可选地,在本发明一个具体实施例中,在对第一区域的液晶进行光处理时,还可以与配向膜反应,使第一区域的液晶能够在无电压的情况下下保持第一倾斜角。
同理,在对第二区域的液晶在进行光处理时,可以与配向膜反应,使该第二区域的液晶能够在无电压的情况下下保持第二倾斜角。
基于上述各个具体的实施例,可选地,在步骤S322中对第一电极和第三电极之间的液晶层区域进行光处理,使第二区域中的液晶在无电压下形成有第二倾斜角的步骤可具体包括以下步骤:步骤S3221,通过向第三电极和第一电极分别施加电压,向液晶层施加第二电压,使得液晶层的液晶按照第二倾斜角倾斜,向第三电极施加的电压大于向第一电极施加的电压,从而在第一电极和第三电极之间产生电压差;和步骤S3222,对第一电极和第三电极之间的液晶层区域进行照射,使第二区域的液晶能够在无电压的情况下形成有第二倾斜角。
具体而言,通过对第一电极和第二电极通电,向液晶层加载使液晶层偏转至第二预倾角所需的起偏电压,用遮光板或遮光光罩对除第二区域之外的其它区域的液晶进行遮光,用光照单元对第二区域的液晶进行照射,使第二区域的液晶具有第二预倾角。
可选地,在本发明一个具体实施例中,液晶层还包括第一电极14下方的第三区域,在第一区域和所述第二区域中的液晶形成有倾斜角之前,该方法还包括步骤:将第三区域中的液晶水平配向。
具体地,可在第一电极上覆盖有水平配向膜,然后对第三区域中的液晶做水平配向,使得第三区域中的液晶的配向基本水平。
以上实施方式仅用于说明本公开,而并非对本公开的限制,有关技术领域的普通技术人员,在不脱离本公开的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本公开的范畴,本公开的专利保护范围应由权利要求限定。

Claims (21)

  1. 一种液晶透镜,包括:
    上基板;
    与所述上基板相对设置的下基板;
    液晶层,位于在所述上基板和所述下基板之间;
    至少一个第一电极,设置在所述上基板靠近所述液晶层的一侧;和
    至少一个第二电极和至少一个第三电极,设置在所述下基板靠近所述液晶层的一侧,
    其中,所述液晶层包括所述位于第二电极上方的第一区域和位于所述第三电极上方的第二区域,所述第一区域和所述第二区域中的液晶具有大于0度的倾斜角度,所述第一区域中液晶的配向方向与所述第二区域中液晶的配向方向相对。
  2. 根据权利要求1所述的液晶透镜,其中,
    所述第二电极和所述第三电极间隔设置,且每个液晶透镜包含两个相对的边缘,且在所述两个边缘的一个所述边缘处设置至少一个所述第二电极,在所述两个边缘的另一个边缘处设置至少一个所述第三电极。
  3. 根据权利要求1所述的液晶透镜,其中,
    所述第一区域和所述第二区域中的液晶的倾斜角度在8-15度范围内。
  4. 根据权利要求1所述的液晶透镜,其中,
    所述第一区域包括第一子区域和第二子区域,在所述第一子区域中的液晶具有第一子倾斜角,在所述第二子区域中的液晶具有第二子倾斜角,所述第一子倾斜角不同于所述第二子倾斜角;
    并且/或者
    所述第二区域包括第四子区域和第五子区域,在所述第四子区域中的液晶具有第四子倾斜角,在所述第五子区域中的液晶具有第五子倾斜角,所述第四子倾斜角不同于所述第五子倾斜角。
  5. 根据权利要求4所述的液晶透镜,其中,
    在所述第一区域包括第一子区域和第二子区域的情况下,所述第一区域还包括第三子区域,所述第三子区域为所述第一区域的邻近区域, 在所述第三子区域中的液晶具有第三子倾斜角,所述第三子倾斜角不同于所述第一子倾斜角和第二子倾斜角;
    在所述第二区域包括第四子区域和第五子区域的情况下,所述第二区域还包括第六子区域,所述第六子区域为所述第二区域的邻近区域,在所述第六子区域中的液晶具有第六子倾斜角,所述第六子倾斜角不同于所述第四子倾斜角和第五子倾斜角。
  6. 根据权利要求1所述的液晶透镜,其中,
    所述第一区域中的液晶的配向方向与电极的长度方向呈70-90度的夹角。
  7. 根据权利要求1所述的液晶透镜,其中,
    所述液晶层还包括位于所述第一电极下方的第三区域,所述第三区域中的液晶被水平配向。
  8. 根据权利要求7所述的液晶透镜,其中,
    所述第三区域中的液晶的倾斜角度在0-3度范围内。
  9. 根据权利要求1所述的液晶透镜,还包括配向膜,其中所述配向膜覆盖于所述第二电极和所述第三电极上,或,所述配向膜覆盖于整个所述下基板的表面上。
  10. 根据权利要求1所述的液晶透镜,其中,所述液晶为正性液晶。
  11. 一种显示装置,包括至少一个如权利要求1-10中任一项所述的液晶透镜。
  12. 根据权利要求11所述的显示装置,其中所述显示装置包括多个所述液晶透镜,相邻的两个液晶透镜的间距为8-20μm。
  13. 一种液晶透镜的制作方法,包括以下步骤:
    提供上基板;提供与所述上基板相对设置的下基板;提供位于所述上基板和所述下基板之间的液晶层;在所述上基板靠近所述液晶层的一侧形成至少一个第一电极;在所述下基板靠近所述液晶层的一侧形成有至少一个第二电极和至少一个第三电极,位于所述第二电极上方的液晶层为第一区域,位于所述第三电极上方的液晶层为第二区域;
    使所述第一区域和所述第二区域中的液晶形成有大于0度倾斜角度,所述第一区域中液晶的配向方向与所述第二区域中液晶的配向方向相对。
  14. 根据权利要求13所述的制作方法,其中,使所述第一区域和所述第二区域中的液晶形成有大于0度倾斜角度的步骤还包括以下步骤:
    对所述第一电极和所述第二电极之间的液晶层区域进行光处理,使所述第一区域中的液晶在无电压的情况下形成有第一倾斜角;和
    对所述第一电极和所述第三电极之间的液晶层区域进行光处理,使所述第二区域中的液晶在无电压的情况下形成有第二倾斜角。
  15. 根据权利要求14所述的制作方法,其中,对所述第一电极和所述第二电极之间的液晶层区域进行光处理,使所述第一区域中的液晶在无电压下的情况形成有第一倾斜角的步骤还包括以下步骤:
    通过向所述第二电极和所述第一电极施加电压,向初始的液晶层施加第一电压,使所述液晶层的液晶按照第一倾斜角倾斜,其中,所述向所述第二电极施加的电压大于所述向所述第一电极施加的电压,从而使所述第一电极和所述第二电极之间产生电压差;
    对所述第一电极和所述第二电极之间的液晶层区域进行紫外光照射,使所述第一区域中的液晶在无电压的情况下形成有所述第一倾斜角。
  16. 根据权利要求14所述的制作方法,其中,对所述第一电极和所述第三电极之间的液晶层区域进行光处理,使所述第二区域中的液晶在无电压下的情况形成有第二倾斜角的步骤还包括以下步骤:
    通过向所述第三电极和所述第一电极施加电压,向初始的液晶层施加第二电压,使所述液晶层的液晶按照第二倾斜角倾斜,其中,所述向所述第三电极施加的电压大于所述向所述第一电极施加的电压,从而使所述第一电极和所述第三电极之间产生电压差;
    对所述第一电极和所述第三电极之间的液晶层区域进行紫外光照射,使所述第二区域中的液晶在无电压的情况下形成有所述第二倾斜角。
  17. 根据权利要求14所述的制作方法,其中,
    在所述第一电极和所述第二电极之间的液晶层区域包括至少两个子区域的情况下,所述至少两个子区域中的液晶的倾斜角是不同的,所述第一电极和所述第二电极之间的液晶层区域包括第一子区域和第二 子区域,则所述第一子区域形成有第一子倾斜角,所述第二子区域形成有第二子倾斜角,
    所述对所述第一电极和所述第二电极之间的液晶层区域进行光处理,使所述第一区域的液晶在无电压的情况下形成有所述第一倾斜角的步骤还包括以下步骤:
    向初始的液晶层施加第一子电压,使所述液晶层的液晶按照第一子倾斜角倾斜;对所述第一子区域进行紫外光照射,以使所述第一子区域中的液晶形成有所述第一子倾斜角;向液晶层施加第二子电压,使所述液晶层的液晶按照第二子倾斜角倾斜;对所述第二子区域进行紫外光照射,以使所述第二子区域中的液晶形成有所述第二子倾斜角;
    并且/或者,
    在所述第一电极和所述第三电极之间的液晶层区域包括至少两个子区域的情况下,所述至少两个子区域中的液晶的倾斜角是不同的,所述第一电极和所述第三电极之间的液晶层区域包括第四子区域和第五子区域,则所述第四子区域形成有第四子倾斜角,所述第五子区域形成有第五子倾斜角,
    所述对所述第一电极和所述三电极之间的液晶层区域进行光处理,使所述第二区域的液晶在无电压的情况下形成有所述第二倾斜角的步骤还包括以下步骤:
    向初始的液晶层施加第四子电压,使所述液晶层的液晶按照第四子倾斜角倾斜;对所述第四子区域进行紫外光照射,以使所述第四子区域中的液晶形成有所述第四子倾斜角;向液晶层施加第五子电压,使所述液晶层的液晶按照第五子倾斜角倾斜;对所述第五子区域进行紫外光照射,以使所述第五子区域中的液晶形成有所述第五子倾斜角。
  18. 根据权利要求17所述的制作方法,其中,
    向所述第一电极和第二电极之间的至少两个子区域分别施加不同的子电压的情况下,还向与所述第一区域邻近的第三子区域施加第三子电压,对所述第三子区域进行紫外光照射,以使所述第三子区域中的液晶形成有第三子倾斜角;
    向所述第一电极和第三电极之间的至少两个子区域分别施加不同的子电压的情况下,还向与所述第二区域邻近的第六子区域施加第六子 电压,对所述第六子区域进行紫外光照射,以使所述第六子区域中的液晶形成有第六子倾斜角。
  19. 根据权利要求14所述的制作方法,其中,
    对所述第一区域的液晶在进行光处理时,还可以与配向膜反应,使所述第一区域的液晶能够在无电压的情况下保持所述第一倾斜角;
    对所述第二区域的液晶在进行光处理时,还可以与配向膜反应,使所述第二区域的液晶能够在无电压的情况下保持所述第二倾斜角。
  20. 根据权利要求13-19任一项所述的制作方法,其中,对所述第一电极和所述第三电极之间的液晶层区域进行光处理,使所述第二区域中的液晶在无电压的情况下形成有所述第二倾斜角的步骤还包括以下步骤:
    通过向所述第三电极和第一电极施加电压,向所述液晶层施加第二电压,使得所述液晶层的液晶按照第二倾斜角倾斜,其中,向所述第三电极施加的电压大于向所述第一电极施加的电压,从而在所述第一电极和所述第三电极之间产生电压差;
    对所述第一电极和所述第三电极之间的液晶层区域进行照射,使所述第二区域中的液晶在无电压的情况下形成有所述第二倾斜角。
  21. 根据权利要求13所述的制作方法,其中,
    所述液晶层还包括所述第一电极下方的第三区域,
    在所述第一区域和所述第二区域中的液晶形成有倾斜角之前,所述方法还包括:使所述第三区域中的液晶被水平配向。
PCT/CN2015/092155 2015-06-18 2015-10-19 液晶透镜、显示装置及其制作方法 WO2016201835A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/103,151 US10732482B2 (en) 2015-06-18 2015-10-19 Liquid crystal lens and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510342539.X 2015-06-18
CN201510342539.XA CN104865771B (zh) 2015-06-18 2015-06-18 显示装置、液晶透镜及其制作方法

Publications (1)

Publication Number Publication Date
WO2016201835A1 true WO2016201835A1 (zh) 2016-12-22

Family

ID=53911703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092155 WO2016201835A1 (zh) 2015-06-18 2015-10-19 液晶透镜、显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10732482B2 (zh)
CN (1) CN104865771B (zh)
WO (1) WO2016201835A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865771B (zh) * 2015-06-18 2019-03-15 京东方科技集团股份有限公司 显示装置、液晶透镜及其制作方法
TWI584023B (zh) * 2016-08-16 2017-05-21 友達光電股份有限公司 液晶顯示面板及其液晶配向方法
CN111880340A (zh) * 2020-07-29 2020-11-03 重庆惠科金渝光电科技有限公司 一种显示面板及其光配向的方法以及驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202870434U (zh) * 2012-10-11 2013-04-10 京东方科技集团股份有限公司 液晶面板及液晶显示装置
CN103257506A (zh) * 2012-02-20 2013-08-21 京东方科技集团股份有限公司 液晶透镜及其制造方法、制造设备和3d显示装置
CN103336398A (zh) * 2012-10-25 2013-10-02 友达光电股份有限公司 液晶透镜、应用其的显示装置及显示装置的驱动方法
CN104678560A (zh) * 2015-03-03 2015-06-03 深圳超多维光电子有限公司 立体显示装置
CN104865771A (zh) * 2015-06-18 2015-08-26 京东方科技集团股份有限公司 显示装置、液晶透镜及其制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787875B2 (ja) * 1992-07-23 1998-08-20 富士通株式会社 電界制御複屈折効果型液晶表示装置
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4860121B2 (ja) * 2004-06-21 2012-01-25 日本電気株式会社 液晶表示装置
WO2009050869A1 (ja) * 2007-10-15 2009-04-23 Sharp Kabushiki Kaisha 液晶表示装置
KR101649234B1 (ko) 2009-12-30 2016-08-19 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
CN102722052A (zh) * 2012-06-06 2012-10-10 深圳市华星光电技术有限公司 一种液晶显示面板及其制备工艺和显示器
CN202600323U (zh) * 2012-06-12 2012-12-12 京东方科技集团股份有限公司 电驱动液晶透镜液晶盒及二维-三维可切换显示装置
JP5980097B2 (ja) 2012-11-07 2016-08-31 株式会社ジャパンディスプレイ 画像表示装置および液晶レンズ
CN103091930B (zh) 2013-01-30 2016-05-11 深圳市华星光电技术有限公司 一种液晶透镜和立体显示装置
CN103399444B (zh) * 2013-07-31 2016-03-30 京东方科技集团股份有限公司 一种聚合物稳定液晶透镜及其制备方法、显示装置
US20150146115A1 (en) 2013-11-28 2015-05-28 Shenzhen China Star Optoelectronics Technology Co. Ltd. Dispaly device and liquid crystal prism cell panel
CN103744248A (zh) 2013-11-28 2014-04-23 深圳市华星光电技术有限公司 显示装置及液晶盒透镜面板
CN203858434U (zh) 2014-04-14 2014-10-01 重庆卓美华视光电有限公司 液晶透镜、立体显示装置
CN104570542B (zh) 2015-02-02 2018-09-04 京东方科技集团股份有限公司 液晶透镜和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257506A (zh) * 2012-02-20 2013-08-21 京东方科技集团股份有限公司 液晶透镜及其制造方法、制造设备和3d显示装置
CN202870434U (zh) * 2012-10-11 2013-04-10 京东方科技集团股份有限公司 液晶面板及液晶显示装置
CN103336398A (zh) * 2012-10-25 2013-10-02 友达光电股份有限公司 液晶透镜、应用其的显示装置及显示装置的驱动方法
CN104678560A (zh) * 2015-03-03 2015-06-03 深圳超多维光电子有限公司 立体显示装置
CN104865771A (zh) * 2015-06-18 2015-08-26 京东方科技集团股份有限公司 显示装置、液晶透镜及其制作方法

Also Published As

Publication number Publication date
CN104865771A (zh) 2015-08-26
US20170131614A1 (en) 2017-05-11
US10732482B2 (en) 2020-08-04
CN104865771B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US8199294B2 (en) Production method of liquid crystal display including scanning exposure
JP3926874B2 (ja) 液晶セルの製造方法及び液晶セル
US10120239B2 (en) Vertical photo alignment method with maintaining position of mask unchanged and manufacture method of liquid crystal display panel utilizing the same
TWI376555B (zh)
TW567378B (en) Liquid-crystal display device and method of fabricating the same
US6323926B2 (en) Vertical alignment mode LCD having two different alignment regions
CN104777671B (zh) 液晶显示面板及其制造方法
TWI422931B (zh) 液晶顯示面板
JP2013231794A (ja) 液晶表示装置
KR101847325B1 (ko) 액정 디스플레이 장치 및 그 제조방법
KR101872630B1 (ko) 액정 디스플레이 패널의 배향방법 및 상응하는 액정 디스플레이 장치
KR20160106105A (ko) 액정 표시장치 및 그 제조방법
WO2016201835A1 (zh) 液晶透镜、显示装置及其制作方法
JP6541885B2 (ja) 表示パネルの作製方法及び液晶表示装置
JP2016173572A (ja) 液晶表示装置及びその製造方法
JP2009139623A (ja) 液晶レンズ
KR20160096720A (ko) 액정 디스플레이 및 그 제조방법
US20170115495A1 (en) Optical alignment device and spatial beam splitting prism thereof
KR20130106219A (ko) 표시 패널 및 이의 제조 방법
JP2017062362A (ja) 調光フィルム
JP6156540B1 (ja) 調光フィルム及び調光フィルムの製造方法
JP2009210964A (ja) 液晶光学素子
WO2017185423A1 (zh) 液晶面板及液晶显示器
KR101924738B1 (ko) 배향필름의 배향방법
JP2008102557A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15103151

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895405

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15895405

Country of ref document: EP

Kind code of ref document: A1