WO2016199764A1 - 離型処理方法、反射防止膜の製造方法および離型処理装置 - Google Patents

離型処理方法、反射防止膜の製造方法および離型処理装置 Download PDF

Info

Publication number
WO2016199764A1
WO2016199764A1 PCT/JP2016/066923 JP2016066923W WO2016199764A1 WO 2016199764 A1 WO2016199764 A1 WO 2016199764A1 JP 2016066923 W JP2016066923 W JP 2016066923W WO 2016199764 A1 WO2016199764 A1 WO 2016199764A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
moth
mold release
eye
release processing
Prior art date
Application number
PCT/JP2016/066923
Other languages
English (en)
French (fr)
Inventor
林 秀和
良三 松村
信明 山田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680033863.6A priority Critical patent/CN107635740B/zh
Priority to JP2017523649A priority patent/JP6546992B2/ja
Publication of WO2016199764A1 publication Critical patent/WO2016199764A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Definitions

  • the present invention relates to a mold release processing method, an antireflection film manufacturing method, and a mold release processing apparatus.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities, to the refractive index of the substrate.
  • the reflection in the wavelength region where the reflection is desired to be prevented is suppressed by continuously changing the wavelength.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • Patent Documents 2 to 4 As a method for producing a moth-eye structure, a method using an anodized porous alumina layer obtained by anodizing aluminum is attracting attention (Patent Documents 2 to 4).
  • anodized porous alumina layer obtained by anodizing aluminum will be briefly described.
  • a method for producing a porous structure using anodization has attracted attention as a simple method capable of forming regularly ordered nano-sized cylindrical pores (fine concave portions).
  • an acidic or alkaline electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid
  • a voltage is applied using this as an anode
  • oxidation and dissolution proceed simultaneously on the surface of the substrate, and pores are formed on the surface.
  • An oxide film having the following can be formed. These cylindrical pores are oriented perpendicular to the oxide film and exhibit self-organized regularity under certain conditions (voltage, type of electrolyte, temperature, etc.). Is expected.
  • the porous alumina layer formed under specific conditions takes an array in which almost regular hexagonal cells are two-dimensionally filled with the highest density when viewed from the direction perpendicular to the film surface.
  • Each cell has a pore in the center, and the arrangement of the pores has periodicity.
  • the cell is formed as a result of local dissolution and growth of the film, and dissolution and growth of the film proceed simultaneously at the bottom of the pores called a barrier layer.
  • the cell size that is, the distance between adjacent pores (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization.
  • the diameter of the pores depends on the type, concentration, temperature, etc.
  • the pores of such porous alumina have an arrangement with high regularity (having periodicity) under a specific condition, an arrangement with irregularity to some extent or an irregularity (having no periodicity) depending on the conditions. ).
  • Patent Document 2 discloses a method of forming an antireflection film (antireflection surface) using a stamper having an anodized porous alumina film on the surface.
  • Patent Document 3 discloses a technique for forming a tapered concave portion in which the pore diameter continuously changes by repeating anodization of aluminum and pore diameter enlargement processing.
  • Patent Document 4 a technique for forming an antireflection film using an alumina layer in which fine concave portions have stepped side surfaces.
  • an antireflection film (antireflection surface) is provided by providing a concavo-convex structure (macro structure) larger than the moth eye structure in addition to the moth eye structure (micro structure). ) Can be given an anti-glare (anti-glare) function.
  • the two-dimensional size of the convex portion constituting the concave and convex that exhibits the antiglare function is 1 ⁇ m or more and less than 100 ⁇ m.
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of an anodized aluminum film is used as it is as a mold, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • a method using a photocurable resin is known. First, a photocurable resin is applied on the substrate. Subsequently, the uneven surface of the surface of the moth-eye mold is filled with the photocurable resin by pressing the uneven surface of the moth-eye mold subjected to the release treatment against the photocurable resin in a vacuum. Subsequently, the photocurable resin in the concavo-convex structure is irradiated with ultraviolet rays to cure the photocurable resin.
  • Patent Document 5 is disclosing the mold release processing method which can provide a mold release agent so that there may be no unevenness on the surface of the type
  • the entire disclosure of Patent Document 5 is incorporated herein by reference.
  • This problem is not limited to moth-eye molds, and is a problem common to molds having a porous alumina layer having fine concave portions on the order of submicrons on the surface.
  • the main object of the present invention is to provide a method for releasing the surface of a mold having a porous alumina layer on the surface so that there is no unevenness.
  • a mold release treatment method provides (a) a mold release agent containing a fluorine compound having a mold release property and a solvent, and a cylindrical or columnar mold having a porous alumina layer on the surface. (B) applying the mold release agent to the surface of the mold, and (c) drying the mold release agent applied in the process (b), the mold A step of generating an air flow flowing in a direction parallel to the axis of the mold with respect to the surface of the mold, and a drying step including a step of rotating the mold about the axis of the mold.
  • the rotational speed of the mold in the step (c) is not less than 0.5 rpm and not more than 10 rpm.
  • the flow velocity of the air flow in the step (c) is 0.05 D (m / s) or more when the diameter of the mold in a cross section perpendicular to the axis of the mold is D (m). 52D (m / s) or less.
  • the step of generating the air flow in the step (c) includes a step of supplying a gas containing a solvent that dissolves the fluorine compound contained in the release agent.
  • the gas containing the solvent contains the same solvent as the solvent contained in the release agent.
  • the porous alumina layer has an inverted moth-eye structure having a plurality of recesses having a two-dimensional size of 50 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • An antireflection film manufacturing method includes a step of preparing a mold subjected to a release treatment by any one of the above-described release processing methods, a step of preparing a workpiece, A step of curing the photo-curing resin by irradiating the photo-curing resin with light in a state where the photo-curing resin is provided between the surface of the workpiece and photo-curing cured from the mold. And a step of peeling off the antireflection film formed of resin.
  • a mold release processing apparatus includes a cylindrical cover having a first opening and a second opening, a cylindrical or columnar mold, and the first opening and the second opening of the cover. And a rotation support structure that rotatably supports the axis of the mold substantially parallel to the axis of the cover.
  • the mold release processing device further includes an air flow supply device that supplies an air flow substantially parallel to the shaft of the cover from the first opening.
  • the air flow supply device has a filter provided in the first opening.
  • the rotation support structure includes a motor and a pedestal coupled to a drive shaft of the motor, and at least a part of the pedestal is between the first opening and the second opening. Located in.
  • the surface of the mold having the porous alumina layer on the surface can be subjected to mold release treatment so as not to be uneven.
  • FIG. (A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the type
  • (A)-(c) is a schematic diagram for demonstrating the conventional mold release processing method and the mold release processing apparatus 90 of the comparative example used for it.
  • release agent drying step When the present inventor performed release treatment on a roll-shaped (for example, cylindrical or columnar) moth-eye mold, unevenness of the surface of the moth-eye mold sometimes occurred. According to the study of the present inventors, after the step of applying the release agent to the surface of the moth-eye mold, the step of drying the release agent applied to the surface of the moth-eye mold (“release agent drying step”) ”). Details will be described below.
  • FIGS. 6A to 6C are schematic diagrams for explaining a conventional mold release processing method and a mold release processing apparatus 90 of a comparative example used therefor.
  • 6A is a schematic diagram of a release processing apparatus 90 of a comparative example
  • FIG. 6B is a schematic cross-sectional view of the release processing apparatus 90 of a comparative example.
  • c) is a schematic diagram for explaining a method for investigating the cause of unevenness in the conventional mold release processing method.
  • the release processing apparatus 90 of the comparative example has a rectangular tube-shaped cover 92 having a first opening 92a and a second opening 92b.
  • the mold release processing apparatus 90 of the comparative example holds the cylindrical or columnar moth-eye mold 100 inside the cover 92 such that the long axis direction of the mold 100 is substantially parallel to the long axis direction of the cover 92.
  • the moth-eye mold 100 is placed upright so that the major axis direction is substantially parallel to the vertical direction.
  • the moth-eye mold 100 and the cover 92 are arranged so that the major axis direction of the moth-eye mold 100 and the major axis direction of the cover 92 substantially coincide with the vertical direction.
  • an air flow 105 ′ that flows in a direction parallel to the central axis of the moth-eye mold 100 with respect to the surface of the moth-eye mold 100 having the inverted moth-eye structure (that is, the side surface of the cylinder or column). Is supplied.
  • an air flow 105 'flowing from the first opening 92a of the cover 92 toward the second opening 92b is supplied.
  • the air flow 105 ′ is sent into the cover 92 via the HEPA filter 94, for example.
  • FIG. 6B is a schematic cross-sectional view of the release processing apparatus 90 of the comparative example when viewed from the vertical direction.
  • the air flow 105 ′ flows through the entire region between the cover 92 and the moth-eye mold 100.
  • the cross section (bottom surface) of the moth-eye mold 100 is substantially circular, whereas the cross section (bottom surface) of the cover 92 is rectangular.
  • the cross section of the cover 92 is typically the same shape as the first opening 92a and the second opening 92b.
  • the bottom surface of the moth-eye mold 100 is a circle having a diameter of 300 mm
  • the cross section of the cover 92 is a square having a side of 600 mm.
  • the moth-eye mold 100 is formed of, for example, an aluminum cylinder having a thickness of 15 mm, and the length of the cylinder in the major axis direction is 1600 mm.
  • the step of applying the release agent for example, the method and apparatus described in Patent Document 5 are used. According to the method and / or apparatus described in Patent Document 5, uneven application of the release agent is prevented. That is, a release agent can be applied so that there is no unevenness.
  • the mold release processing apparatus 90 of the comparative example further includes, for example, a motor 97 that rotates the moth-eye mold 100 about the axis.
  • the moth-eye mold 100 may be rotated in the step of applying the release agent.
  • a release agent is applied by a spray coating method
  • the moth-eye mold 100 is rotated about the axis, thereby providing a moth-eye mold.
  • a mold release agent can be applied to the entire 100 side surfaces.
  • the moth-eye mold 100 is not rotated in the mold release agent drying step.
  • the air flow 105 ′ flows in the entire region between the cover 92 and the moth-eye mold 100. Therefore, the air flow 105 ′ can reach the entire side surface of the moth-eye mold 100 without rotating the moth-eye mold 100.
  • unevenness 101a, 101b On the surface of the roll-shaped moth-eye mold 100 that has been subjected to the release treatment (including the step of applying a release agent and the release agent drying step) with the release treatment apparatus 90 of the comparative example, unevenness 101a, 101b is provided. It sometimes occurred. According to the study of the present inventor, unevenness can be roughly classified into two types depending on the place where it occurs. In the present specification, the unevenness 101a refers to unevenness that mainly occurs at the end in the major axis direction of the side surface of the moth-eye mold 100.
  • the unevenness 101a often occurs at both ends of the side surface of the moth-eye mold 100, particularly at the downstream end of the air flow 105 ', that is, in the vicinity of the lower end 100e of the moth-eye mold 100 in the example shown in FIG.
  • the unevenness 101b indicates unevenness that mainly occurs in a central portion in the long axis direction, that is, a portion other than both end portions of the side surface of the moth-eye mold 100.
  • the unevenness 101a is often in the form of a streak.
  • the range 102a where the unevenness 101a occurs extends from the lower end 100e of the moth-eye mold 100 to the length L102a in the major axis direction of the moth-eye mold 100.
  • the length L102a is, for example, 200 mm or more, and may be 300 mm or more.
  • the inventor examined the flow of the air flow 105 ′ in the release treatment apparatus 90 of the comparative example using the smoke wire method in order to investigate the cause of the unevenness 101 a and 101 b.
  • a high resistance thin wire (resistance wire) 110 was installed in the cover 92. Liquid paraffin is applied to the resistance wire 110, and white smoke is generated by applying an electric current to visualize the flow of the air flow 105 '.
  • a smoke wire generator MS-405 manufactured by Ebara Research Laboratory Co., Ltd. was used for the smoke wire method.
  • the location where the flow of the air flow 105 ′ is disturbed matches the location where the unevenness 101 a and 101 b are generated.
  • the air flow 105 ′ may be uneven (non-uniform) at the end in the long axis direction and the central portion in the long axis direction on the surface (side surface) of the moth-eye mold 100.
  • the present inventor thought that the unevenness (non-uniformity) of the air flow 105 ′ contributed to the generation of the unevenness 101 a and 101 b, and came to the present invention.
  • the unevenness 101a, 101b of the moth-eye mold 100 can be observed visually under the fluorescent lamp. Further, when the moth-eye mold 100 had the unevenness 101a and 101b, the moth-eye structure non-uniformity (unevenness) was also formed on the surface of the antireflection film produced using the moth-eye mold 100.
  • the “roll-shaped moth-eye mold” includes a cylindrical moth-eye mold and a cylindrical moth-eye mold.
  • components having substantially the same function are denoted by common reference numerals, and description thereof may be omitted.
  • FIGS. 1A to 1E are schematic diagrams for explaining a mold release processing method and a mold release processing apparatus 50 according to Embodiment 1 of the present invention.
  • FIG. 1A is a schematic view of the mold release processing apparatus 50
  • FIG. 1B is a schematic cross-sectional view of the mold release processing apparatus 50.
  • FIGS. 1C and 1D are diagrams schematically showing a moth-eye mold 100.
  • FIG. FIG. 1E schematically shows an example of a specific configuration of the pedestal 56.
  • the mold release treatment method according to Embodiment 1 of the present invention provides a mold release agent containing a fluorine compound having a mold release property and a solvent, and a cylindrical or columnar mold 100 having a porous alumina layer 14 on the surface.
  • Step (C) includes a step (C1) of generating an air flow 105 flowing in a direction parallel to the axis 100z of the mold 100, and a step (C2) of rotating the mold 100 around the axis 100z of the mold 100.
  • the mold surface having a porous alumina layer on the surface can be mold-released without unevenness, as shown in an experimental example later.
  • the occurrence of unevenness in the release agent drying step can be prevented.
  • a roll-shaped moth-eye mold 100 as shown in FIGS. 1C and 1D and a release agent (not shown) are prepared.
  • the moth-eye mold 100 has a porous alumina layer 14 on the surface (that is, the side surface of a cylinder or a cylinder).
  • Use of the roll-shaped moth-eye mold 100 has an advantage that the antireflection film can be efficiently mass-produced by, for example, a roll-to-roll method.
  • the moth-eye mold 100 includes a roll-shaped support 12 (for example, a stainless steel tube), and an aluminum film 18 formed on the surface of the roll-shaped support 12. And a porous alumina layer 14 formed on the aluminum film 18.
  • FIG. 1D shows only a part of the roll-shaped support 12, a part of the aluminum film 18, and a part of the porous alumina layer 14 for the moth-eye mold 100.
  • the porous alumina layer 14 has a plurality of fine recesses (pores) 14p.
  • the two-dimensional size of the plurality of fine recesses 14p when viewed from the normal direction of the surface is 50 nm or more and less than 500 nm.
  • the moth-eye mold 100 can be produced by repeating anodic oxidation and etching of the aluminum film 18 formed on the roll-shaped support 12.
  • the methods described in Patent Documents 3 and 4 can be used.
  • a release agent is applied.
  • a fluorine-based release agent containing a fluorine-based compound having a releasability and a solvent is used.
  • a fluorine-type mold release agent a well-known thing can be used widely.
  • Fluorosurf manufactured by Fluoro Technology can be used.
  • fluorosurf FG-5010Z130-0.1 can be used.
  • Fluorosurf FG-5010Z130-0.1 contains a perfluorooctylethyl acrylate homopolymer as a fluorine compound and a diluent ZV (hydrofluoroether) as a solvent.
  • the concentration of the fluoropolymer FG-5010Z130-0.1 perfluorooctylethyl acrylate homopolymer is 0.1%.
  • Some fluorosurfs contain non-flammable fluorine-based solvents or petroleum-based solvents, for example, in addition to the above.
  • the nonflammable fluorine-based solvent include perfluoropolyether, perfluoroalkane, hydrofluoropolyether, hydrofluorocarbon and the like in addition to hydrofluoroether. These nonflammable fluorine-type solvents are used individually by 1 type or in mixture of 2 or more types.
  • the petroleum solvent for example, n-heptane, acetone, or a solvent obtained by mixing n-heptane and acetone is used.
  • fluorine-based mold release agent in addition to the above, for example, OPTOOL DSX manufactured by Daikin can be used. A clear coat made by Mitsui DuPont Fluorochemical Co. can also be used.
  • a fluorine-type solvent as a solvent of a fluorine-type mold release agent.
  • an aqueous solvent or a known organic solvent can be appropriately selected and used.
  • the solvent is not limited to a solvent that dissolves the fluorine compound, but may be a solvent that disperses the fluorine compound in the solvent.
  • Fluorine-based mold release agents have the advantage of high mold-releasing properties for UV-curable resins used in the production of antireflection films, compared to mold release agents other than fluorine-type mold release agents, such as silicone-type mold release agents There is.
  • the fluorine-based release agent has an advantage of high resistance to ultraviolet rays.
  • the layer of the fluorine-based release agent is easily thinned.
  • the method and apparatus described in Patent Document 5 can be used as follows. By using the method and / or apparatus described in Patent Document 5, uneven application of the release agent can be prevented. Moreover, as described in Patent Document 5, a cleaning step, a step of drying the surface, a step of baking the surface, and the like may be further performed before the step of applying the release agent.
  • a solvent is applied to the surface of the moth-eye mold 100.
  • the solvent to be applied here is typically a solvent contained in a release agent, but is not limited thereto, and may be a solvent that can dissolve a fluorine-containing compound having releasability contained in a release agent. That's fine.
  • the solvent is applied by a spray coating method using, for example, a spray nozzle.
  • a release agent is applied to the surface of the moth-eye mold 100.
  • the release agent is applied by a spray coating method using, for example, a spray nozzle.
  • the release agent applied to the surface of the moth-eye mold 100 is dried.
  • an air flow 105 flowing in a direction parallel to the axis 100z of the moth-eye mold 100 is generated on the surface of the moth-eye mold 100, and the moth-eye mold 100 is rotated about the axis 100z.
  • the axis 100z is the central axis of the moth-eye mold 100.
  • the air flow 105 may be, for example, an air flow, or may be another gas (for example, an inert gas (for example, nitrogen gas, Ar gas), carbon dioxide gas (CO 2 ), oxygen gas, etc.).
  • the mold release agent drying step of the mold release processing method according to the embodiment of the present invention it is possible to suppress the occurrence of unevenness 101a and 101b that may occur in the conventional mold release processing method.
  • the uniformity of the air flow 105 flowing on the surface of the moth-eye mold 100 is determined on both the end and the center of the side surface of the moth-eye mold 100. Can be improved.
  • the rotational speed of the moth-eye mold 100 is, for example, preferably 0.5 rpm or more and 10 rpm or less, and more preferably 1 rpm or more and 10 rpm or less, as described later with reference to experimental examples.
  • the flow rate of the air flow 105 is preferably, for example, 0.05 ⁇ 100 d (m / s) or more and 0.52 ⁇ 100 d (m / s) or less.
  • the diameter of the bottom surface of the moth-eye mold 100 is 100 d (m).
  • the bottom surface of the moth-eye mold 100 is a cross section perpendicular to the axis 100z of the moth-eye mold 100.
  • the above-mentioned range of the flow velocity of the air flow 105 corresponds to a range of 1 rpm or more and 10 rpm or less when converted to a rotation speed. Because rpm is a unit representing the number of rotations per minute, 1 rpm corresponds to ( ⁇ ⁇ 100 d) / 60 (m / s). The relationship between the flow rate of the air flow 105 and the rotational speed of the moth-eye mold 100 will be described later with reference to experimental examples.
  • the mold release processing apparatus 50 according to the present embodiment will be described. According to the mold release processing apparatus 50, the mold release processing method according to the present embodiment can be performed. However, the mold release processing apparatus by embodiment of this invention is not restricted to what is illustrated below.
  • the mold release processing apparatus 50 includes a cylindrical cover 52 having a first opening 52a and a second opening 52b, and a rotation support structure 58, as shown in FIG.
  • the rotary support structure 58 is configured such that the cylindrical or columnar mold 100 is formed between the first opening 52a and the second opening 52b of the cover 52 and substantially parallel to the axis 52z of the cover 52, and the axis 100z of the mold 100. Supports rotation around.
  • the mold surface having the porous alumina layer on the surface can be mold-released so as not to be uneven.
  • the occurrence of unevenness in the release agent drying step can be prevented.
  • FIG. 1B is a schematic cross-sectional view of the mold release processing apparatus 50.
  • the moth-eye mold 100 and the cover 52 are arranged so that the major axis direction is substantially parallel to the vertical direction. That is, the shaft 100z direction of the moth-eye mold 100 and the shaft 52z direction of the cover 52 can be arranged so as to substantially coincide with the vertical direction.
  • the moth-eye mold 100 may be suspended from above by a suspension member 69 (see FIG. 1A) attached to the moth-eye mold 100, for example.
  • the cover 52 may be provided, for example, inside a prismatic or rectangular tube-like application chamber 62 (see FIG. 1B).
  • the release processing apparatus 90 of the comparative example has a rectangular tube-shaped cover 92, the distance from each point on the surface of the moth-eye mold 100 to the cover 92 is not uniform. This is thought to contribute to the non-uniformity of the airflow 105 '.
  • the cross section of the cover 52 and the cross section of the moth-eye mold 100 are both substantially circular.
  • the shape of the first opening 52a and the second opening 52b of the cover 52 is a circle having the same diameter.
  • the cover 52 and the moth-eye mold 100 are installed so that the centers thereof coincide when viewed from the vertical direction. At this time, the distance to the cover 52 is equal to each point on the surface of the moth-eye mold 100.
  • the flow velocity of the air flow 105 can be uniform for each point on the surface of the moth-eye mold 100.
  • This effect can be obtained at both the end portion in the major axis direction and the central portion in the major axis direction of the surface (side surface) of the moth-eye mold 100. Therefore, for example, the occurrence of unevenness 101a and 101b (see FIG. 6A) that can occur in the release processing apparatus 90 of the comparative example is suppressed.
  • the cross section of the cover 52 is a circle having a diameter of 500 mm.
  • the bottom surface of the moth-eye mold 100 is a circle having a diameter of 300 mm.
  • the moth-eye mold 100 is formed of, for example, an aluminum cylinder having a thickness of 15 mm, and the length of the cylinder in the long axis direction is 1600 mm.
  • the cover 52 is made of, for example, a metal (for example, stainless steel, an anodized Al plate, or the like) or a resin (for example, an acrylic resin, a polycarbonate resin, a BS resin, or the like).
  • the cover 52 may be formed by combining half cylinders formed of different materials.
  • the cover 52 is formed by combining half cylinders formed of stainless steel and acrylic resin.
  • the cover 52 is formed of a transparent material such as acrylic resin, it is easy to observe the air flow 105 in the cover 52 using, for example, a smoke wire method.
  • the rotation support structure 58 includes, for example, a motor 57 and a pedestal 56 coupled to a drive shaft 57d of the motor 57. At least a part of the pedestal 56 is located between the first opening 52a and the second opening 52b.
  • the rotation support structure 58 may further include a coupling member (not shown) that couples the base 56 and the drive shaft 57 d of the motor 57.
  • the motor 57 rotates the moth-eye mold 100 around the shaft 100z of the moth-eye mold 100.
  • the moth-eye mold 100 can be rotated about the shaft 100z in the release agent drying step.
  • the occurrence of unevenness 101a and 101b that can occur in the release processing apparatus 90 of the comparative example is suppressed.
  • One of the causes of unevenness is considered to be non-uniform speed of drying of the release agent due to non-uniformity of the air flow 105. It is considered that when the moth-eye mold 100 is rotated, the air flow 105 can be made uniform and unevenness can be suppressed.
  • a preferable range of the flow velocity of the air flow 105 and the rotation speed of the moth-eye mold 100 will be described later with reference to experimental examples.
  • the moth-eye mold 100 may be rotated by the motor 57.
  • the pedestal 56 When at least a part of the pedestal 56 is positioned between the first opening 52a and the second opening 52b of the cover 52, it is between the second opening 52b of the cover 52 and the lower end 100e of the moth-eye mold 100 in the vertical direction.
  • the distance L can be increased.
  • the second opening 52 b of the cover 52 is located below the lower end 100 e of the moth-eye mold 100. Further, the moth-eye mold 100 can be stably supported in the mold release process.
  • unevenness 101a is generated around the end (particularly the lower end) in the major axis direction of the surface (side surface) of the moth-eye mold 100. (See Fig. 6 (a)).
  • the second opening 52b of the cover 52 is above the lower end 100e of the moth-eye mold 100, or even if it is below, the distance L is small. It is considered that the air flow 105 ′ is disturbed near the lower end 100 e on the side surface of the mold 100 and unevenness 101 a is generated.
  • the distance L is large, the air flow 105 is suppressed from being disturbed around the lower end 100e of the side surface of the moth-eye mold 100, and the occurrence of unevenness 101a is suppressed.
  • the distance L is, for example, preferably 200 mm or more, and more preferably 300 mm or more.
  • the range 102a where unevenness 101a is generated (see FIG. 6A) is small, it may be usable without any problem in practice.
  • a film for example, an antireflection film
  • a part other than the part corresponding to the effective area of the mold may be handled as a surplus space.
  • the range in which the length in the major axis direction from the lower end 100e of the moth-eye mold 100 is, for example, within 20 mm to 50 mm may not be included in the effective area of the mold. Therefore, in the moth-eye mold 100, there is no practical problem if the length L102a (see FIG. 6A) in the major axis direction from the lower end 100e of the range 102a where the unevenness 101a occurs is, for example, 20 mm or less. Can be used.
  • the pedestal 56 has, for example, a cylindrical shape, and is provided so that the axial direction of the pedestal 56 substantially coincides with the axis 100z direction of the mold 100.
  • the cross-sectional area of the pedestal 56 in the plane perpendicular to the axis 100z of the mold 100 substantially matches the cross-sectional area of the mold 100 in the plane perpendicular to the axis 100z of the mold 100.
  • the pedestal 56 may have a structure as shown in FIG. FIG. 1E schematically shows an example of a specific configuration of the pedestal 56.
  • the pedestal 56 includes a base plate (mount plate) 56a on which the mold 100 is mounted and fixed, a liquid receiving plate 56b that receives liquid dropped from the surface of the mold 100, and these plates. And a connecting member 56z for connecting the two to each other.
  • the cross-sectional shapes of the base plate 56a and the liquid receiving plate 56b when viewed from the vertical direction are typically substantially circular, respectively.
  • the diameter of the cross section when viewed from the vertical direction of the base plate 56a is substantially the same as the diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100.
  • the center of the cross section when viewed from the vertical direction of the base plate 56a is, for example, on the long axis of the moth-eye mold 100.
  • the diameter of the cross section when viewed from the vertical direction of the liquid receiving plate 56b is larger than the diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100.
  • the center of the cross section when viewed from the vertical direction of the liquid receiving plate 56b is, for example, on the long axis of the moth-eye mold 100.
  • the liquid receiving plate 56b has a tapered side surface.
  • the diameter of the upper surface (the surface on the base plate 56a side) of the liquid receiving plate 56b is smaller than the diameter of the lower surface (the surface on the side opposite to the base plate 56a) of the liquid receiving plate 56b.
  • the diameter of the upper surface of the liquid receiving plate 56b is substantially the same as the diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100, for example.
  • the diameter of the lower surface of the liquid receiving plate 56b is larger than the diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100, for example.
  • the center and diameter of the cross section when viewed from the vertical direction of the base plate 56a substantially coincide with the center and diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100, the surface adheres to the surface of the moth-eye mold 100.
  • the liquid can flow smoothly. Furthermore, the turbulence of the airflow 105 in the vicinity of the lower end 100e of the moth-eye mold 100 can be suppressed.
  • the diameter of the lower surface of the liquid receiving plate 56b (the surface opposite to the base plate 56a) is larger than the diameter of the cross section when viewed from the long axis direction of the moth-eye mold 100, a cover is formed from below the moth-eye mold 100. Gases and dust that can penetrate into 52 can be reduced.
  • all of the connecting members 56z overlap with the moth-eye mold 100.
  • the cross-sectional area when viewed from the vertical direction of the connecting member 56z is smaller than the cross-sectional area when viewed from the long axis direction of the moth-eye mold 100.
  • a space is formed between the base plate 56a and the liquid receiving plate 56b.
  • the vaporized solvent and / or the release agent may stay.
  • the release agent applied to the surface of the moth-eye mold 100 can be prevented from drying from the lower end 100 e side of the moth-eye mold 100. The occurrence of unevenness can be suppressed by making the release agent dry at a uniform rate.
  • the mold release processing device 50 further includes, for example, an air flow supply device 55 that supplies an air flow 105 substantially parallel to the shaft 52z of the cover 52 from the first opening 52a.
  • the airflow 105 supplied by the airflow supply device 55 flows from the first opening 52a toward the second opening 52b.
  • the airflow supply device 55 includes, for example, a filter 53 provided in the first opening 52a.
  • the air flow supply device may further include, for example, a HEPA filter 54 provided outside the first opening 52a of the filter 53.
  • an airflow is introduced into the airflow supply device 55 from a blower (not shown).
  • the blower unit may be provided separately from the mold release processing device 50.
  • the airflow introduced from the blower is made uniform by passing through the filter 53.
  • An airflow 105 flowing in a direction parallel to the axis 100z of the mold 100 is supplied into the cover 52.
  • the filter 53 is, for example, a punching plate (punching metal).
  • the thickness of the punching plate is, for example, 0.5 mm to 1.5 mm.
  • the opening diameter of the punching plate is, for example, 1.0 mm to 8.0 mm.
  • the pitch of the openings of the punching plate is, for example, 1 mm to 20 mm.
  • the aperture ratio of the punching plate is, for example, 20% to 50%.
  • a punching plate having a round hole 60 ° staggered pattern (a pattern in which circular openings are arranged on lattice points of a regular triangular lattice) is used.
  • the aperture ratio of this punching pattern is obtained by 90.6 ⁇ D 2 / P 2 (%) (P: pitch between holes, D: hole diameter).
  • the air blowing unit may be provided as a part of the airflow supply device 55 without being limited to the above-described example.
  • the airflow supply device 55 may further include a blower (not shown) that is, for example, a fan, a blower, a fan, or the like.
  • Both the step of applying the mold release agent and the step of drying the mold release agent can be performed using the mold release processing apparatus 50. If a common apparatus is used, it is not necessary to move the moth-eye mold between both processes, and the manufacturing yield can be improved.
  • International Publication No. 2012/133390 by the present applicant discloses a mold release treatment method for improving the sustainability of mold release properties by performing the step of applying a mold release agent twice or more. Every time the step of applying the release agent is performed, a step of drying the release agent is required. Therefore, also in the mold release processing method described in International Publication No. 2012/133390, the production yield is improved by performing both the step of applying the mold release agent and the step of drying the mold release agent using a common apparatus. be able to.
  • the entire disclosure of WO 2012/133390 is incorporated herein by reference.
  • Embodiment 2 A mold release processing method and a mold release processing apparatus in Embodiment 2 of the present invention will be described. Below, it demonstrates centering on the point from which the mold release processing method and mold release processing apparatus in this embodiment differ from the mold release processing method and mold release processing apparatus in Embodiment 1.
  • FIG. 2 A mold release processing method and a mold release processing apparatus in Embodiment 2 of the present invention will be described. Below, it demonstrates centering on the point from which the mold release processing method and mold release processing apparatus in this embodiment differ from the mold release processing method and mold release processing apparatus in Embodiment 1.
  • FIG. 1 A mold release processing method and a mold release processing apparatus in Embodiment 2 of the present invention will be described. Below, it demonstrates centering on the point from which the mold release processing method and mold release processing apparatus in this embodiment differ from the mold release processing method and mold release processing apparatus in Embodiment 1.
  • FIG. 2 A mold release processing method and a mold release processing apparatus in Embodiment 2 of the present invention will be described. Below
  • the step of generating the air flow 105 includes the step of supplying a gas containing a solvent that dissolves the fluorine compound contained in the mold release agent.
  • the vaporized solvent is, for example, the same solvent as the solvent contained in the release agent.
  • the vaporized solvent may be a solvent different from the solvent contained in the release agent.
  • the vaporized solvent may be any solvent that can dissolve, for example, a fluorine compound having releasability contained in the release agent.
  • the mold surface having the porous alumina layer on the surface can be mold-released without any unevenness.
  • the occurrence of unevenness in the release agent drying step can be prevented.
  • the mold release treatment method according to Embodiment 2 of the present invention can have an effect of slowing the drying rate of the mold release agent because the vaporized solvent is contained in the airflow 105. As shown in an experimental example later, in some cases, the occurrence of unevenness could be prevented more effectively than the mold release processing method of the first embodiment.
  • the airflow supply device 55 of the release processing apparatus that performs the release processing method of the present embodiment further includes, for example, a container (for example, a flask).
  • a container for example, a flask
  • the mouth of the container is connected to a steam inlet provided between the HEPA filter 54 and the filter 53.
  • the solvent is naturally vaporized, and an air flow 105 containing the vaporized solvent can be supplied.
  • the vaporized solvent can be included in the gas by putting the solvent into the flask, introducing a gas (for example, nitrogen gas or air) into the solvent in the flask and bubbling.
  • An air flow 105 containing the vaporized solvent can be supplied.
  • the steam inlet connected to the container may be provided outside the HEPA filter 54 and the filter 53.
  • the mold release processing apparatus is not limited to the above example.
  • an evaporating dish may be installed outside the filter 53.
  • the airflow 105 may be generated by air containing the solvent evaporated by putting the solvent in an evaporating dish and naturally evaporating.
  • the container in which the solvent is put is not limited to the evaporating dish, but may be any shape that can hold the liquid inside.
  • the cross section of the container can be, for example, U-shaped or V-shaped.
  • the container for storing the solvent may be provided in contact with the inside of the cylindrical cover 52, for example.
  • the container for containing the solvent may be provided integrally with the mold release processing device 50.
  • the container into which the solvent is placed is preferably provided in the vicinity of the first opening 52 a inside the cover 52.
  • the vaporized solvent may be injected from an air nozzle (not shown) and included in the gas.
  • FIGS. 2A and 2B are schematic views for explaining a release processing apparatus in which an experimental example is performed.
  • the mold release process was performed by the mold release process method of Embodiment 1 or 2 described above.
  • the mold release treatment was performed by changing the flow rate of the air flow 105 and the rotation speed of the moth-eye mold 100 and the presence or absence of the solvent in the air flow 105.
  • the moth-eye mold used here was prepared by repeating anodization and etching of an aluminum substrate using the methods described in Patent Documents 3 and 4, for example.
  • As the aluminum substrate a substrate prepared by forming an aluminum film 18 having a thickness of 1 ⁇ m on the surface of a roll-shaped support (stainless steel tube) by sputtering was used.
  • the diameter of the bottom surface of the aluminum substrate is 300 mm, the length in the major axis direction is 1600 mm, and the thickness is 15 mm.
  • anodization was performed to form a porous alumina layer on the surface of the aluminum film 18.
  • the anodic oxidation process was performed for 60 seconds by applying 80 V using an oxalic acid aqueous solution (concentration 0.05 mol / L, liquid temperature 3 ° C.).
  • a Pt plate was used as the electrode.
  • the distance between the electrode and the substrate was 150 mm.
  • porous alumina layer was completely removed by etching.
  • the etching process was performed for 90 minutes using a phosphoric acid aqueous solution (concentration 8 mol / L, liquid temperature 30 ° C.).
  • the anodic oxidation step was performed for 60 seconds by applying 80 V using an aqueous oxalic acid solution (concentration 0.05 mol / L, liquid temperature 3 ° C.) as described above.
  • the etching process was performed for 20 minutes using a phosphoric acid aqueous solution (concentration 8 mol / L, liquid temperature 30 ° C.).
  • the moth-eye mold thus obtained had a plurality of pores with a depth of about 400 nm and a pore spacing of about 180 nm.
  • the mold release treatment for the moth eye was performed by the mold release processing method of Embodiment 1 or Embodiment 2 described above.
  • the release treatment was performed by changing the flow rate of the air flow 105, the rotation speed of the moth-eye mold 100, and the presence or absence of the solvent in the air flow 105.
  • the diameter of the bottom surface of the cover 52 used is 500 mm
  • the length in the vertical direction is 2000 mm.
  • a distance L (see FIG. 1A) between the second opening 52b of the cover 52 and the lower end 100e of the moth-eye mold 100 in the vertical direction was 200 mm.
  • FIG. 2B is a schematic cross-sectional view of the mold release processing device 50 as viewed from the vertical direction. As shown in FIG. 2B, two velocimeters 120 were installed at four locations at equal intervals in the circumferential direction. The positions in the vertical direction of the four places where the anemometer 120 is installed are the same.
  • the anemometer 120 was installed at the approximate center of the cover 52 in the vertical direction.
  • the flow velocity of the air flow 105 was measured three times by each of the four velocimeters 120, and the average value thereof (that is, the average value of 12 data in total) was used.
  • a substantially semicircular high-resistance thin wire (resistance wire) 110 is provided in the cover 52.
  • a smoke wire generator MS-405 manufactured by Ebara Research Laboratory Co., Ltd. was used for the smoke wire method. Liquid paraffin is applied to the resistance wire 110 and white smoke is generated by applying an electric current to visualize the flow of the air flow 105, and it is visually checked whether the flow of the air flow 105 is uneven (disturbed). It was.
  • the surface of the moth-eye mold 100 after the mold release treatment was examined for the presence or absence of unevenness directly under a fluorescent lamp.
  • indicates that the unevenness of the surface of the moth-eye mold 100 was suppressed to such an extent that it can be used practically without any problem. Specifically, it indicates that the length (L102a in FIG. 6A) in the major axis direction from the lower end 100e in the range where the unevenness occurs is 20 mm or less. “ ⁇ ” indicates that the unevenness of the surface of the moth-eye mold 100 was not visually recognized. Both “x” and “ ⁇ ” indicate the length in the major axis direction from the lower end 100e in the range where the unevenness is visually recognized on the surface of the moth-eye mold 100 (see FIG. 6A). L102a) is greater than 20 mm. “ ⁇ ” indicates that the unevenness of the surface of the moth-eye mold was reduced as compared with “ ⁇ ”.
  • the rotation speed of the moth-eye mold 100 is, for example, preferably from 0.5 rpm to 10 rpm, and more preferably from 1 rpm to 10 rpm.
  • the rotational speed (rpm) and the value converted into the speed (m / s) are shown together.
  • rpm is a unit representing the number of revolutions per minute
  • 1 rpm corresponds to ( ⁇ ⁇ 100 d) / 60 (m / s).
  • the rotational speed is 30 (rpm) it is considered that the airflow 105 is disturbed due to the high rotational speed.
  • the flow rate of the air flow 105 is preferably 0.016 (m / s) or more and 0.157 (m / s) or less, for example.
  • the flow rate of the airflow 105 is more preferably, for example, 0.016 (m / s) or more and 0.126 (m / s) or less.
  • the flow velocity of the airflow 105 is 0.157 (m / s)
  • the airflow 105 contains the vaporized solvent, so that the airflow 105 and the surface of the moth-eye mold 100 can be made more effective. You can see that it was done.
  • the rotational speed (m / s) of the moth-eye mold 100 in the same range as the preferable range of the flow velocity of the air flow 105, 0.016 (m / s) to 0.157 (m / s), is set to the rotational speed ( rpm), it is 1 rpm or more and 10 rpm or less. This is because when the diameter of the bottom surface of the moth-eye mold 100 is 100 d (m), it is not less than ( ⁇ ⁇ 100 d) / 60 (m / s) and not more than ( ⁇ ⁇ 100 d) / 6 (m / s) (that is, 0.
  • the flow velocity of the air flow 105 and the rotation speed of the moth-eye mold 100 are preferably in the same order.
  • the flow velocity of the air flow 105 and the rotation speed of the moth-eye mold 100 may be the same. The inventor considered the reason as follows.
  • the absolute value of the change amount of the total speed v t in each case is expressed by the following formula (3) in the case of (i) and by the following formula (4) in the case of (ii).
  • FIG. 3 A graph plotting the difference between A and B is shown in FIG.
  • B is always larger than A (always A is smaller than B). That is, the change amount of the total speed v t is always smaller in the case of (i) than in the case of (ii). Accordingly, in the case of (i), the amount of change in the total speed v t when the flow velocity v f changes is smaller than in the case of (ii), and the drying rate of the release agent is kept uniform. It is considered easy to sag.
  • the reason why the flow velocity of the air flow 105 and the rotation speed of the moth-eye mold 100 are preferably in the same order can be considered.
  • the above is a consideration of the inventor and does not limit the present invention.
  • FIG. 4 (a) to 4 (e) are schematic cross-sectional views for explaining a method for manufacturing a moth-eye mold.
  • a case where a flat moth-eye mold is manufactured by performing anodization and etching using the aluminum base material 10 having the substrate 16 and the aluminum film 18 deposited on the substrate 16 will be exemplified. .
  • an aluminum substrate 10 is prepared.
  • the aluminum base 10 has a substrate 16 and an aluminum film 18 deposited on the substrate 16.
  • the porous alumina layer 14 having a plurality of pores 14p is formed by anodizing the surface of the substrate 10 (the surface 18s of the aluminum film 18). To do.
  • the porous alumina layer 14 has a porous layer having pores 14p and a barrier layer.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid, for example.
  • the porous alumina layer 14 is formed by anodizing the surface 18s of the aluminum film 18 using an aqueous oxalic acid solution (concentration 0.06 wt%, liquid temperature 5 ° C.) at an applied voltage of 80 V for 30 seconds.
  • anodic oxidation conditions for example, the type of electrolytic solution and the applied voltage
  • the pore spacing, pore depth, pore shape, and the like can be adjusted.
  • the thickness of the porous alumina layer can be changed as appropriate.
  • the aluminum film 18 may be completely anodized.
  • the porous alumina layer 14 is brought into contact with an alumina etchant to be etched by a predetermined amount, thereby expanding the pore diameter of the pores 14p.
  • the amount of etching (that is, the size and depth of the pores 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • the etching solution for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
  • the pores 14p are enlarged by performing etching for 25 minutes using phosphoric acid (concentration 1 mol / L, liquid temperature 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the pores 14p in the depth direction and to thicken the porous alumina layer 14.
  • the growth of the pores 14p starts from the bottom of the already formed pores 14p, so that the side surfaces of the pores 14p are stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further expand the pore diameter of the pores 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in reality, the same etchant may be used.
  • the moth-eye mold 100 having the porous alumina layer 14 having a desired concavo-convex shape is obtained as shown in FIG. Thereafter, the moth-eye mold 100 is used for manufacturing an antireflection film after being subjected to a mold release process by the mold release processing method of the first or second embodiment, for example.
  • a flat moth-eye mold is manufactured using the aluminum base material 10 having the substrate 16 and the aluminum film 18 deposited on the substrate 16 is described as an example.
  • the moth-eye mold is formed by, for example, anodizing and etching using an aluminum base material having a roll-shaped support (for example, a stainless steel tube) and an aluminum film formed on the roll-shaped support. Can be produced.
  • the roll-shaped moth-eye mold uses a flexible polymer film as the substrate 16, forms an aluminum film on the polymer film, and anodizes the surface of the aluminum film to form a porous alumina layer. After the formation, the polymer film can also be produced by fixing it to the outer peripheral surface of a roll-shaped support.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
  • An antireflection film manufacturing method includes a step of preparing a mold subjected to a release treatment by any one of the above-described release processing methods, a step of preparing a workpiece, A step of curing the photo-curing resin by irradiating the photo-curing resin with light in a state where the photo-curing resin is provided between the surface of the workpiece and photo-curing cured from the mold. And a step of peeling off the antireflection film formed of resin.
  • an antireflection film can be produced by a roll-to-roll method.
  • the film preferably has a base film and a hard coat layer formed on the base film, and the antireflection film is preferably formed on the hard coat layer.
  • the base film for example, a TAC (triacetyl cellulose) film can be suitably used.
  • the hard coat layer for example, an acrylic hard coat material can be used.
  • roll-shaped moth-eye mold 100 is prepared.
  • the moth-eye mold 100 that has been subjected to the mold release processing by the mold release processing method of Embodiment 1 or Embodiment 2 is prepared.
  • the ultraviolet curable resin 32 ′ is irradiated with ultraviolet rays (UV) while the workpiece 42 having the ultraviolet curable resin 32 ′ applied to the surface thereof is pressed against the moth-eye mold 100.
  • the ultraviolet curable resin 32 ' is cured.
  • an acrylic resin can be used as the ultraviolet curable resin 32 ′.
  • the workpiece 42 is, for example, a TAC (triacetyl cellulose) film.
  • the workpiece 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater.
  • the workpiece 42 is supported by support rollers 46 and 48 as shown in FIG.
  • the support rollers 46 and 48 have a rotation mechanism and convey the workpiece 42.
  • the roll-shaped moth-eye mold 100 is rotated in the direction indicated by the arrow in FIG. 5 at a rotational speed corresponding to the transport speed of the workpiece 42.
  • the cured product layer 32 to which the concavo-convex structure (inverted moth-eye structure) of the moth-eye mold 100 is transferred is formed on the surface of the workpiece 42. It is formed.
  • the workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
  • the pore 14p of the moth-eye mold 100 has a two-dimensional size of 10 nm or more and less than 500 nm when viewed from the normal direction of the surface. It is preferable (the above-mentioned patent documents 1, 2 and 4), and more preferably 50 nm or more and less than 500 nm.
  • the release treatment method according to the embodiment of the present invention is applicable to the release treatment of a mold having a porous alumina layer on the surface other than the moth-eye mold.
  • it can be used for a mold release process for forming a photonic crystal.
  • the antireflection film is exemplified as the film having the surface having the moth-eye structure.
  • the mold according to the embodiment of the present invention is not limited thereto, and can be widely applied to the manufacture of the film having the surface having the moth-eye structure. .
  • the mold according to the embodiment of the present invention is not limited to this, and forms, for example, a convex portion (for example, a nanopillar) with a sharp tip.
  • a convex portion for example, a nanopillar
  • the bottom of the micro concave portion is not limited to a point, and may be rounded or flat, for example.
  • the shape of the opening of the micro concave portion is not limited to a circle, and may be a rectangular shape, for example.
  • the plurality of micro concave portions may be regularly arranged, or may be irregularly (randomly) arranged.
  • the mold release treatment method according to the present invention can be used as a mold release treatment method for forming an antireflection film, a photonic crystal, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

 離型処理方法は、(a)離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層(14)を有する円筒状または円柱状の型(100)とを用意する工程と、(b)型の表面に、離型剤を付与する工程と、(c)工程(b)において付与された離型剤を乾燥させる工程とを包含する。工程(c)は、型の表面に対して、型の軸(100z)に平行な方向に流れる気流(105)を生成させる工程、および、型の軸を中心に型を回転させる工程を含む。

Description

離型処理方法、反射防止膜の製造方法および離型処理装置
 本発明は、離型処理方法、反射防止膜の製造方法および離型処理装置に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。
 近年、反射防止技術として、凹凸の周期が可視光の波長(λ=380nm~780nm)以下に制御された微細な凹凸パターンを基板表面に形成する方法が注目されている(特許文献1から4を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。
 この方法は、いわゆるモスアイ(Motheye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射を防止したい波長域の反射を抑えている。
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。
 モスアイ構造の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法が注目されている(特許文献2から4)。
 ここで、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層について簡単に説明する。従来から、陽極酸化を利用した多孔質構造体の製造方法は、規則正しく配列されたナノオーダーの円柱状の細孔(微細な凹部)を形成できる簡易な方法として注目されてきた。硫酸、蓚酸、または燐酸等の酸性電解液またはアルカリ性電解液中に基材を浸漬し、これを陽極として電圧を印加すると、基材の表面で酸化と溶解が同時に進行し、その表面に細孔を有する酸化膜を形成することができる。この円柱状の細孔は、酸化膜に対して垂直に配向し、一定の条件下(電圧、電解液の種類、温度等)では自己組織的な規則性を示すため、各種機能材料への応用が期待されている。
 特定の条件下で形成されたポーラスアルミナ層は、膜面に垂直な方向から見たときに、ほぼ正六角形のセルが二次元的に最も高密度で充填された配列をとっている。それぞれのセルはその中央に細孔を有しており、細孔の配列は周期性を有している。セルは局所的な皮膜の溶解および成長の結果形成されるものであり、バリア層と呼ばれる細孔底部で、皮膜の溶解と成長とが同時に進行する。このとき、セルのサイズすなわち、隣接する細孔の間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。また、細孔の直径は、電解液の種類、濃度、温度等に依存するものの、通常、セルのサイズ(膜面に垂直な方向からみたときのセルの最長対角線の長さ)の1/3程度であることが知られている。このようなポーラスアルミナの細孔は、特定の条件下では高い規則性を有する(周期性を有する)配列、また、条件によってはある程度規則性の乱れた配列、あるいは不規則(周期性を有しない)な配列を形成する。
 特許文献2は、陽極酸化ポーラスアルミナ膜を表面に有するスタンパを用いて、反射防止膜(反射防止表面)を形成する方法を開示している。
 また、特許文献3に、アルミニウムの陽極酸化と孔径拡大処理を繰り返すことによって、連続的に細孔径が変化するテーパー形状の凹部を形成する技術が開示されている。
 本出願人は、特許文献4に、微細な凹部が階段状の側面を有するアルミナ層を用いて反射防止膜を形成する技術を開示している。
 また、特許文献1、2および4に記載されているように、モスアイ構造(ミクロ構造)に加えて、モスアイ構造よりも大きな凹凸構造(マクロ構造)を設けることによって、反射防止膜(反射防止表面)にアンチグレア(防眩)機能を付与することができる。アンチグレア機能を発揮する凹凸を構成する凸部の2次元的な大きさは1μm以上100μm未満である。特許文献1、2および4の開示内容の全てを参考のために本明細書に援用する。
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および4に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。
 モスアイ用型を用いた反射防止膜の製造方法としては、光硬化性樹脂を用いる方法が知られている。まず、基板上に光硬化性樹脂を付与する。続いて、離型処理を施したモスアイ用型の凹凸表面を真空中で光硬化性樹脂に押圧することにより、モスアイ用型の表面の凹凸構造中に光硬化性樹脂が充填される。続いて、凹凸構造中の光硬化性樹脂に紫外線を照射し、光硬化性樹脂を硬化する。その後、基板からモスアイ用型を分離することによって、モスアイ用型の凹凸構造が転写された光硬化性樹脂の硬化物層が基板の表面に形成される。光硬化性樹脂を用いた反射防止膜の製造方法は、例えば特許文献4に記載されている。
 本出願人は、ロール状のモスアイ用型を用いて、ロール・ツー・ロール方式により反射防止膜を効率良く製造する方法を開発している(例えば特許文献5)。特許文献5は、表面にポーラスアルミナ層を有する型の表面に、むらの無いように離型剤を付与することができる離型処理方法を開示している。特許文献5の開示内容の全てを参考のために本明細書に援用する。
特表2001-517319号公報 特表2003-531962号公報 特開2005-156695号公報 国際公開第2006/059686号 国際公開第2011/111669号
 しかしながら、本発明者が、モスアイ用型に離型処理を行ったところ、モスアイ用型の表面にむらが生じることがあった。むらは、特許文献5の離型処理方法で離型剤を付与してもなお生じる場合があった。本発明者の検討によると、離型剤をモスアイ用型の表面に付与した後、離型剤を乾燥させる工程でむらが生じることが分かった。詳細は、後述する。
 この問題は、モスアイ用型に限らず、サブミクロンオーダーの微細な凹部を有するポーラスアルミナ層を表面に有する型に共通の問題である。
 本発明の主な目的は、表面にポーラスアルミナ層を有する型の表面を、むらの無いように離型処理する方法を提供することにある。
 本発明の実施形態による離型処理方法は、(a)離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層を有する円筒状または円柱状の型とを用意する工程と、(b)前記型の前記表面に、前記離型剤を付与する工程と、(c)前記工程(b)において付与された前記離型剤を乾燥させる工程であって、前記型の前記表面に対して、前記型の軸に平行な方向に流れる気流を生成させる工程、および、前記型の軸を中心に前記型を回転させる工程を含む乾燥工程とを包含する。
 ある実施形態において、前記工程(c)における、前記型の回転速度は、0.5rpm以上10rpm以下である。
 ある実施形態において、前記工程(c)における、前記気流の流速は、前記型の軸に垂直な断面における前記型の直径をD(m)とすると、0.05D(m/s)以上0.52D(m/s)以下である。
 ある実施形態において、前記工程(c)における、前記気流を生成させる工程は、前記離型剤に含まれる前記フッ素化合物を溶解する溶剤を含む気体を供給する工程を含む。
 ある実施形態において、前記溶剤を含む気体は、前記離型剤に含まれる前記溶剤と同じ溶剤を含む。
 ある実施形態において、前記ポーラスアルミナ層は、表面の法線方向から見たときの2次元的な大きさが50nm以上500nm未満の複数の凹部を有する、反転されたモスアイ構造を表面に有する。
 本発明の実施形態による反射防止膜の製造方法は、上記のいずれかの離型処理方法によって離型処理が施された型を用意する工程と、被加工物を用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型から、硬化させられた光硬化樹脂で形成された反射防止膜を剥離する工程とを包含する。
 本発明の実施形態による離型処理装置は、第1開口と第2開口とを有する円筒状のカバーと、円筒状または円柱状の型を、前記カバーの前記第1開口と前記第2開口との間において、前記カバーの軸と略平行に、前記型の軸の周りに回転可能に支持する、回転支持構造体とを有する。
 ある実施形態において、前記離型処理装置は、前記第1開口から前記カバーの前記軸に略平行な気流を供給する、気流供給装置をさらに有する。
 ある実施形態において、前記気流供給装置は、前記第1開口に設けられたフィルタを有する。
 ある実施形態において、前記回転支持構造体は、モータと、前記モータの駆動軸に結合された台座とを有し、前記台座の少なくとも一部は、前記第1開口と前記第2開口との間に位置する。
 本発明の実施形態によると、表面にポーラスアルミナ層を有する型の表面を、むらの無いように離型処理することができる。
(a)~(e)は、本発明の実施形態1による離型処理方法および離型処理装置50を説明するための模式的な図である。 (a)および(b)は、実験例を行った離型処理装置を説明するための模式的な図である。 気流105の流速およびモスアイ用型100の回転速度の関係についての考察を説明するための図である。 (a)~(e)は、モスアイ用型の製造方法を説明するための模式的な断面図である。 ロール・ツー・ロール方式により反射防止膜を製造する方法を説明するための模式的な断面図である。 (a)~(c)は、従来の離型処理方法およびそれに用いられる比較例の離型処理装置90を説明するための模式的な図である。
 本発明者が、ロール状(例えば円筒状または円柱状)のモスアイ用型に離型処理を行ったところ、モスアイ用型の表面にむらが生じることがあった。本発明者の検討によると、むらは、離型剤をモスアイ用型の表面に付与する工程の後、モスアイ用型の表面に付与された離型剤を乾燥させる工程(「離型剤乾燥工程」ということがある。)において生じていた。以下、詳細を説明する。
 図6(a)~(c)を参照して、従来の離型処理方法を説明する。図6(a)~(c)は、従来の離型処理方法およびそれに用いられる比較例の離型処理装置90を説明するための模式的な図である。図6(a)は、比較例の離型処理装置90の模式的な図であり、図6(b)は、比較例の離型処理装置90の模式的な断面図であり、図6(c)は、従来の離型処理方法において発生したむらの原因を調べる方法を説明するための模式的な図である。
 図6(a)に示すように、比較例の離型処理装置90は、第1開口92aと第2開口92bとを有する角筒状のカバー92を有する。比較例の離型処理装置90は、円筒状または円柱状のモスアイ用型100を、型100の長軸方向がカバー92の長軸方向と略平行になるように、カバー92の内側に保持する。モスアイ用型100は、例えば、長軸方向が鉛直方向と略平行となるように立てて配置される。典型的には、モスアイ用型100の長軸方向およびカバー92の長軸方向が、鉛直方向に略一致するように配置される。
 離型剤乾燥工程では、モスアイ用型100の、反転されたモスアイ構造を有する表面(すなわち、円筒または円柱の側面)に対して、モスアイ用型100の中心軸に平行な方向に流れる気流105’が供給される。図6(a)に示す例では、カバー92の第1開口92aから第2開口92bに向かって流れる気流105’が供給される。気流105’は、例えば、HEPAフィルタ94を介してカバー92内に送り込まれる。
 図6(b)は、比較例の離型処理装置90を、鉛直方向から見たときの模式的な断面図である。気流105’は、カバー92とモスアイ用型100との間の領域全体を流れる。図6(b)に示すように、モスアイ用型100の断面(底面)はほぼ円であるのに対し、カバー92の断面(底面)は矩形状である。カバー92の断面は、典型的には、第1開口92aおよび第2開口92bと同じ形状である。例えば、モスアイ用型100の底面は直径300mmの円であり、カバー92の断面は一辺600mmの正方形である。モスアイ用型100は、例えば、厚さ15mmのアルミニウムの円筒から形成され、円筒の長軸方向の長さは1600mmである。
 離型剤を付与する工程は、例えば特許文献5に記載の方法および装置を用いる。特許文献5に記載の方法および/または装置によると、離型剤の塗布むらの発生が防止される。すなわち、むらの無いように離型剤を付与することができる。
 比較例の離型処理装置90は、例えば、モスアイ用型100を、軸を中心に回転させるモータ97をさらに有する。特許文献5に記載されているように、離型剤を付与する工程においてモスアイ用型100を回転させてもよい。例えば、離型剤をスプレーコート法によって付与する場合に、モスアイ用型100の長軸方向に移動するスプレーノズルを用いると、モスアイ用型100を、軸を中心に回転させることで、モスアイ用型100の側面全体に離型剤を付与することができる。これに対して、従来の離型処理方法において、離型剤乾燥工程ではモスアイ用型100を回転させない。離型剤乾燥工程では、上述したように、気流105’は、カバー92とモスアイ用型100との間の領域全体を流れる。従って、モスアイ用型100を回転させなくても、気流105’はモスアイ用型100の側面全体に及び得るからである。
 比較例の離型処理装置90で離型処理(離型剤を付与する工程および離型剤乾燥工程を含む。)を施したロール状のモスアイ用型100の表面には、むら101a、101bが生じることがあった。本発明者の検討によると、むらは、発生する場所によって、主に2種類に大別することができる。本明細書において、むら101aは、モスアイ用型100の側面のうち、長軸方向における端部に主に生じるむらを指す。むら101aは、モスアイ用型100の側面の両端のうち、特に気流105’の下流側の端部、すなわち図6(a)に示す例ではモスアイ用型100の下端100e付近に生じることが多い。むら101bは、モスアイ用型100の側面のうち、長軸方向における中央部分、すなわち、両端部以外の部分に主に生じるむらを指す。むら101aは、筋状であることが多い。図6(a)に示すように、むら101aが生じている範囲102aは、モスアイ用型100の長軸方向において、モスアイ用型100の下端100eから、長さL102aの範囲に及ぶ。比較例の離型処理装置90で離型処理を施したモスアイ用型100において、長さL102aは、例えば200mm以上であり、300mm以上であることもあった。
 上述したように、離型剤を付与する工程には、特許文献5に記載の方法および装置を用いているので、離型剤の塗布むらの発生は抑制される。すなわち、むら101a、101bは、離型剤を付与する工程で生じたものではないと考えられる。
 本発明者は、むら101a、101bが生じた原因を調べるために、比較例の離型処理装置90内での気流105’の流れを、スモークワイヤ法を用いて調べた。図6(c)に示すように、カバー92内に高抵抗の細線(抵抗線)110を設置した。抵抗線110に流動パラフィンを塗布し、電流を流すことで白煙を発生させ、気流105’の流れを可視化する。スモークワイヤ法には、株式会社菅原研究所製のスモークワイヤ発生装置MS-405を用いた。調べた結果、気流105’の流れが乱れている箇所と、むら101a、101bが生じている箇所が一致していた。すなわち、モスアイ用型100の表面(側面)のうち、長軸方向における端部、および、長軸方向における中央部分において、気流105’のむら(不均一性)が生じることがあった。本発明者は、気流105’のむら(不均一性)が、むら101a、101bの発生に寄与していると考え、本発明に想到した。
 モスアイ用型100のむら101a、101bは、蛍光灯直下で、目視により、観察することができる。また、モスアイ用型100がむら101a、101bを有すると、モスアイ用型100を用いて作製した反射防止膜の表面にも、モスアイ構造の不均一性(むら)が形成された。
 以上は、本発明者の考察であり、本発明を限定するものではない。
 以下で、図面を参照して、本発明の実施形態による離型処理方法を説明する。なお、本発明は以下で例示する実施形態に限られない。以下、ロール状のモスアイ用型に離型処理をする場合を例に説明する。「ロール状のモスアイ用型」には、円筒状のモスアイ用型および円柱状のモスアイ用型が含まれる。以下の図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。
 (実施形態1)
 図1(a)~(e)を参照して、本発明の実施形態1による離型処理方法および離型処理装置を説明する。図1(a)~(e)は、本発明の実施形態1による離型処理方法および離型処理装置50を説明するための模式的な図である。図1(a)は、離型処理装置50の模式的な図であり、図1(b)は、離型処理装置50の模式的な断面図である。図1(c)および(d)は、モスアイ用型100を模式的に示す図である。図1(e)は、台座56の具体的な構成の一例を模式的に示す図である。
 本発明の実施形態1による離型処理方法は、離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層14を有する円筒状または円柱状の型100とを用意する工程(A)と、型100の表面に離型剤を付与する工程(B)と、工程(B)において付与された離型剤を乾燥させる工程(C)とを有する。工程(C)は、型100の軸100zに平行な方向に流れる気流105を生成させる工程(C1)、および、型100の軸100zを中心に型100を回転させる工程(C2)を含む。
 本発明の実施形態1による離型処理方法によると、後に実験例を示すように、表面にポーラスアルミナ層を有する型の表面を、むらの無いように離型処理することができる。特に、離型剤乾燥工程におけるむらの発生を防止することができる。
 以下、本発明の実施形態1による離型処理方法の詳細を説明する。
 まず、図1(c)および(d)に示すようなロール状のモスアイ用型100と、離型剤(不図示)とを用意する。モスアイ用型100は、表面(すなわち円筒または円柱の側面)にポーラスアルミナ層14を有する。ロール状のモスアイ用型100を用いると、例えば、ロール・ツー・ロール方式により反射防止膜を効率良く量産することができるという利点がある。
 モスアイ用型100は、例えば図1(d)に示すように、ロール状の支持体12(例えばステンレス鋼製の管)と、ロール状の支持体12の表面上に形成されたアルミニウム膜18と、アルミニウム膜18の上に形成されたポーラスアルミナ層14とを有する。なお、図1(d)では、簡単のため、モスアイ用型100について、ロール状の支持体12の一部、アルミニウム膜18の一部、およびポーラスアルミナ層14の一部のみを示す。ポーラスアルミナ層14は、複数の微細な凹部(細孔)14pを有する。複数の微細な凹部14pの、表面の法線方向から見たときの2次元的な大きさは50nm以上500nm未満である。モスアイ用型100は、後に詳述するように、ロール状の支持体12上に形成されたアルミニウム膜18の陽極酸化およびエッチングを繰り返すことにより作製できる。モスアイ用型100の作製には、例えば、上記特許文献3および4に記載されている方法を用いることができる。
 次に、離型剤の付与を行う。離型剤としては、離型性を有するフッ素系化合物と溶剤とを含むフッ素系離型剤を用いる。フッ素系離型剤としては、公知のものを広く用いることができる。例えば、フロロテクノロジー社製のフロロサーフを用いることができる。フロロサーフとしては、例えばフロロサーフFG-5010Z130-0.1を用いることができる。フロロサーフFG-5010Z130-0.1には、フッ素系化合物としてパーフルオロオクチルエチルアクリレートの単独重合物が含まれ、溶剤として希釈剤ZV(ハイドロフルオロエーテル)が含まれている。例えば、フロロサーフFG-5010Z130-0.1のパーフルオロオクチルエチルアクリレートの単独重合物の濃度は、0.1%である。フロロサーフには、溶剤として、上記以外に、例えば、不燃性フッ素系溶剤または石油系溶剤が含まれているものがある。不燃性フッ素系溶剤は、ハイドロフルオロエーテル以外に、例えば、パーフルオロポリエーテル、パーフルオロアルカン、ハイドロフルオロポリエーテル、ハイドロフルオロカーボン等が挙げられる。これらの不燃性フッ素系溶剤は、一種単独で、又は二種以上を混合して使用される。石油系溶剤としては、例えば、n-ヘプタン、アセトン、またはn-ヘプタンとアセトンとを混合させた溶剤が使用される。
 フッ素系離型剤としては、上記以外に、例えば、ダイキン社製のオプツールDSXを用いることができる。また、三井デュポンフロロケミカル社製のクリアコートを用いることもできる。また、フッ素系離型剤の溶剤としては、フッ素系の溶剤を用いることが好ましい。ただし、水系の溶剤、または公知の有機溶剤を適宜選択して用いることもできる。なお、溶剤は、フッ素系化合物を溶解するものだけでなく、溶剤中にフッ素系化合物を分散させるものであってもよい。
 フッ素系離型剤は、フッ素系離型剤以外の、例えばシリコーン系の離型剤等の離型剤に比べ、反射防止膜の製造に用いられる紫外線硬化性樹脂に対する離型性が高いという利点がある。また、フッ素系の離型剤は、紫外線に対する耐性が高いという利点がある。また、フッ素系の離型剤の層は、薄膜化しやすい。
 離型剤の付与には、例えば、以下のように、特許文献5に記載の方法および装置を用いることができる。特許文献5に記載の方法および/または装置を用いることによって、離型剤の塗布むらを防ぐことができる。また、特許文献5に記載されているように、離型剤を付与する工程の前に、洗浄工程、表面を乾燥させる工程、表面をベークする工程等をさらに行ってもよい。
 まず、モスアイ用型100の表面に溶剤を付与する。ここで付与する溶剤は、典型的には、離型剤に含まれる溶剤であるが、これに限られず離型剤に含まれる離型性を有するフッ素系化合物を溶解することができる溶剤であればよい。溶剤は、例えば、スプレーノズルを用いて、スプレーコート方式により付与される。続いて、モスアイ用型100の表面に離型剤を付与する。離型剤は、例えば、スプレーノズルを用いて、スプレーコート方式により付与される。
 続いて、モスアイ用型100の表面に付与された離型剤を乾燥させる。離型剤乾燥工程では、モスアイ用型100の表面に対して、モスアイ用型100の軸100zに平行な方向に流れる気流105を生成させ、かつ、軸100zを中心に、モスアイ用型100を回転させる。軸100zは、モスアイ用型100の中心軸である。気流105は、例えば空気の流れであってよいし、他のガス(例えば不活性ガス(例えば窒素ガス、Arガスなど)、二酸化炭素ガス(CO2)、酸素ガスなど)であってもよい。
 本発明の実施形態による離型処理方法の離型剤乾燥工程によると、従来の離型処理方法で発生し得るむら101a、101bの発生を抑制することができる。本発明の実施形態による離型処理方法の離型剤乾燥工程によると、モスアイ用型100の表面に流れる気流105の均一性を、モスアイ用型100の側面のうち、端部および中央部の両方において向上させることができる。
 モスアイ用型100の回転速度は、実験例を参照して後述するように、例えば、0.5rpm以上10rpm以下であることが好ましく、1rpm以上10rpm以下であることがさらに好ましい。気流105の流速は、例えば、0.05×100d(m/s)以上0.52×100d(m/s)以下であることが好ましい。ここで、モスアイ用型100の底面の直径は100d(m)である。モスアイ用型100の底面は、モスアイ用型100の軸100zに垂直な断面である。気流105の流速の上記範囲は、回転速度に換算すると、1rpm以上10rpm以下の範囲に相当する。rpmは一分間あたりの回転数を表す単位なので、1rpmは(π×100d)/60(m/s)に相当するからである。気流105の流速と、モスアイ用型100の回転速度との関係については、実験例を参照して後述する。
 次に、本実施形態による離型処理装置50を説明する。離型処理装置50によると、本実施形態による離型処理方法を行うことができる。ただし、本発明の実施形態による離型処理装置は、以下に例示するものに限られない。
 離型処理装置50は、図1(a)に示すように、第1開口52aと第2開口52bとを有する円筒状のカバー52と、回転支持構造体58とを有する。回転支持構造体58は、円筒状または円柱状の型100を、カバー52の第1開口52aと第2開口52bとの間において、カバー52の軸52zと略平行に、型100の軸100zの周りに回転可能に支持する。
 離型処理装置50によると、表面にポーラスアルミナ層を有する型の表面を、むらの無いように離型処理することができる。特に、離型剤乾燥工程におけるむらの発生を防止することができる。
 図1(b)は、離型処理装置50の模式的な断面図である。モスアイ用型100およびカバー52は、例えば、長軸方向が鉛直方向とほぼ平行となるように、配置される。すなわち、モスアイ用型100の軸100z方向およびカバー52の軸52z方向が、鉛直方向と略一致するように、配置され得る。モスアイ用型100は、例えば、モスアイ用型100に取り付けられた吊り下げ部材69(図1(a)参照)によって、上方から吊り下げられていてもよい。カバー52は、例えば角柱状または角筒状の付与室62(図1(b)参照)の内側に設けられていてもよい。
 比較例の離型処理装置90は、角筒状のカバー92を有するので、モスアイ用型100の表面の各点から、カバー92までの距離は均一ではない。このことが、気流105’の不均一性に寄与し得ると考えられる。
 これに対して、本発明の実施形態による離型処理装置50では、図1(b)に示すように、カバー52の断面およびモスアイ用型100の断面は、ともにほぼ円である。典型的には、カバー52の第1開口52aおよび第2開口52bの形状は、互いに同じ直径を有する円である。典型的には、鉛直方向から見たとき、カバー52およびモスアイ用型100の中心が一致するように設置される。このとき、モスアイ用型100の表面の各点に対して、カバー52までの距離が等しい。本発明の実施形態による離型処理装置50では、モスアイ用型100の表面の各点に対して、気流105の流速が均一になり得る。この効果は、モスアイ用型100の表面(側面)のうち、長軸方向における端部、および、長軸方向における中央部分の両方において得られ得る。従って、例えば比較例の離型処理装置90において発生し得るむら101a、101b(図6(a)参照)の発生が抑制される。
 例えば、カバー52の断面は直径500mmの円である。モスアイ用型100の底面は直径300mmの円であり、モスアイ用型100は、例えば、厚さ15mmのアルミニウムの円筒から形成され、円筒の長軸方向の長さは1600mmである。カバー52は、例えば金属(例えばステンレス鋼、陽極酸化加工したAl板など)または樹脂(例えばアクリル樹脂、ポリカーボネート樹脂、BS系樹脂など)から形成されている。異なる材料から形成された半円筒を組み合わせて、カバー52を形成してもよい。例えば、ここでは、ステンレス鋼およびアクリル樹脂から形成された半円筒を組み合わせてカバー52を形成する。カバー52の少なくとも一部を、アクリル樹脂等透明な材料で形成すると、例えばスモークワイヤ法を用いてカバー52内の気流105を観察することが容易である。
 回転支持構造体58は、例えば、モータ57と、モータ57の駆動軸57dに結合された台座56とを有する。台座56の少なくとも一部は、第1開口52aと第2開口52bとの間に位置する。回転支持構造体58は、台座56と、モータ57の駆動軸57dとを結合する結合部材(不図示)をさらに有していてもよい。
 モータ57は、モスアイ用型100の軸100zを中心に、モスアイ用型100を回転させる。モータ57によって、離型剤乾燥工程において、軸100zを中心にモスアイ用型100を回転させることができる。これにより、実験例を後に示すように、比較例の離型処理装置90において発生し得るむら101a、101b(図6(a)参照)の発生が抑制される。むらが発生する原因の一つは、気流105の不均一性に起因して、離型剤が乾燥する速さが不均一であることと考えられる。モスアイ用型100を回転させると、気流105を均一化することができ、むらの発生を抑制することができると考えられる。気流105の流速およびモスアイ用型100の回転速度の好ましい範囲については、実験例を参照して後述する。離型剤を付与する工程においても、モータ57によってモスアイ用型100を回転させてももちろんよい。
 台座56の少なくとも一部が、カバー52の第1開口52aと第2開口52bとの間に位置すると、鉛直方向における、カバー52の第2開口52bと、モスアイ用型100の下端100eとの間の距離Lを大きくすることができる。ここで、鉛直方向において、カバー52の第2開口52bは、モスアイ用型100の下端100eよりも下方にある。また、離型処理工程において、モスアイ用型100を安定に支持することができる。
 比較例の離型処理装置90を用いた従来の離型処理方法においては、モスアイ用型100の表面(側面)のうち、長軸方向における端部(特に下端部)を中心にむら101aが生じることがあった(図6(a)参照)。比較例の離型処理装置90においては、カバー52の第2開口52bが、モスアイ用型100の下端100eよりも上方にあるか、または、下方にあったとしても距離Lが小さいので、モスアイ用型100の側面の下端100e付近で気流105’が乱れ、むら101aが発生したと考えられる。本発明の実施形態による離型処理装置50では、距離Lが大きいので、モスアイ用型100の側面の下端100e周辺において気流105が乱れることが抑制され、むら101aの発生が抑制される。距離Lは、例えば200mm以上であることが好ましく、300mm以上であることがさらに好ましい。
 むら101aの発生が完全に抑制されなくても、むら101aが生じている範囲102a(図6(a)参照)が小さい場合は、実用上問題なく使用することができる場合がある。モスアイ用型を用いて膜(例えば反射防止膜)を作製する際、作製された膜のうち、型の有効領域に対応する部分以外の部分は、余剰スペースとして取り扱われることがある。モスアイ用型100の下端100eからの長軸方向における長さが例えば20mm~50mm以内である範囲は、型の有効領域に含まれないことがある。従って、モスアイ用型100において、むら101aが生じている範囲102aの、下端100eからの長軸方向における長さL102a(図6(a)参照)が、例えば20mm以下であれば、実用上問題なく使用することができる。
 台座56は、例えば、円柱状であり、台座56の軸方向が、型100の軸100z方向と略一致するように設けられる。例えば、型100の軸100zに垂直な面における台座56の断面積は、型100の軸100zに垂直な面における型100の断面積と略一致する。
 台座56は、例えば、図1(e)に示すような構造を有していてもよい。図1(e)は、台座56の具体的な構成の一例を模式的に示す図である。
 図1(e)に例示するように、台座56は、型100を装着・固定する台板(マウントプレート)56aと、型100の表面から滴下した液体を受ける液受け板56bと、これらの板を互いに接続する接続部材56zとを有する。台板56aおよび液受け板56bの、鉛直方向から見たときの断面形状は、それぞれ、典型的には略円である。
 台板56aの鉛直方向から見たときの断面の直径は、モスアイ用型100の長軸方向から見たときの断面の直径と略同じである。台板56aの鉛直方向から見たときの断面の中心は、例えば、モスアイ用型100の長軸上にある。
 液受け板56bの鉛直方向から見たときの断面の直径は、モスアイ用型100の長軸方向から見たときの断面の直径よりも大きい。液受け板56bの鉛直方向から見たときの断面の中心は、例えば、モスアイ用型100の長軸上にある。液受け板56bは、テーパー状の側面を有する。液受け板56bの上面(台板56a側の面)の直径は、液受け板56bの下面(台板56aとは反対側の面)の直径よりも小さい。液受け板56bの上面の直径は、例えばモスアイ用型100の長軸方向から見たときの断面の直径と略同じである。液受け板56bの下面の直径は、例えばモスアイ用型100の長軸方向から見たときの断面の直径よりも大きい。
 台板56aの鉛直方向から見たときの断面の中心および直径が、モスアイ用型100の長軸方向から見たときの断面の中心および直径と略一致すると、モスアイ用型100の表面に付着した液体を、スムーズに流すことができる。さらに、モスアイ用型100の下端100e付近における気流105の乱れを抑制することができる。
 液受け板56bの側面がテーパー状であると、モスアイ用型100の下方に設けられた液溜め59内に滴下した液体が、跳ねてモスアイ用型100に付着することを防ぐことができる。
 液受け板56bの下面(台板56aとは反対側の面)の直径が、モスアイ用型100の長軸方向から見たときの断面の直径よりも大きいと、モスアイ用型100の下方からカバー52内に侵入し得る気体やダストを低減することができる。
 鉛直方向から見たとき、接続部材56zの全ては、モスアイ用型100と重なる。接続部材56zの鉛直方向から見たときの断面積は、モスアイ用型100の長軸方向から見たときの断面積よりも小さい。これにより、台板56aと液受け板56bとの間に空間が形成される。形成された空間には、気化した溶剤および/または離型剤が滞留し得る。モスアイ用型100の表面に塗布された離型剤が、モスアイ用型100の下端100e側から乾燥することを防ぐことができる。離型剤が乾燥する速度を均一にすることで、むらの発生を抑制することができる。
 離型処理装置50は、例えば、第1開口52aからカバー52の軸52zに略平行な気流105を供給する、気流供給装置55をさらに有する。気流供給装置55によって供給された気流105は、第1開口52aから第2開口52bに向かって流れる。
 気流供給装置55は、例えば、第1開口52aに設けられたフィルタ53を有する。気流供給装置は、例えば、フィルタ53の、第1開口52aの外側に設けられたHEPAフィルタ54をさらに有してもよい。
 気流供給装置55には、例えば、図示しない送風部から気流が導入される。送風部は、離型処理装置50とは別に設けられていてもよい。送風部から導入された気流は、フィルタ53を通過することで均一化される。型100の軸100zに平行な方向に流れる気流105がカバー52内に供給される。フィルタ53は、例えばパンチングプレート(パンチングメタル)である。パンチングプレートの厚さは、例えば0.5mm~1.5mmである。パンチングプレートの開口径は、例えば1.0mm~8.0mmである。パンチングプレートの開口のピッチは、例えば1mm~20mmである。パンチングプレートの開口率は、例えば20%~50%である。ここでは、例えば、丸孔60°千鳥パターン(円形の開口が正三角格子の格子点上に配列されているパターン)のパンチングプレートを用いる。このパンチングパターンの開口率は、90.6×D2/P2(%)(P:孔間ピッチ、D:孔直径)で得られる。
 上述した例に限られず、送風部は、気流供給装置55の一部として設けられていてもよい。気流供給装置55は、例えば、ファン、送風機、扇風機等である送風部(不図示)をさらに有していてもよい。
 離型剤を付与する工程および離型剤乾燥工程は、ともに離型処理装置50を用いて行うことができる。共通の装置を用いると、両工程の間にモスアイ用型を移動させる必要がなく、製造歩留りを向上させることができる。本出願人による国際公開第2012/133390号は、離型剤を付与する工程を2回以上行うことで、離型性の持続性を向上させる離型処理方法を開示している。離型剤を付与する工程を行う毎に、離型剤を乾燥させる工程が必要である。従って、国際公開第2012/133390号に記載の離型処理方法においても、離型剤を付与する工程および離型剤乾燥工程の両方を共通の装置を用いて行うことで、製造歩留りを向上させることができる。参考のために、国際公開第2012/133390号の開示内容の全てを本明細書に援用する。
 (実施形態2)
 本発明の実施形態2における離型処理方法および離型処理装置を説明する。以下では、本実施形態における離型処理方法および離型処理装置が、実施形態1における離型処理方法および離型処理装置と異なる点を中心に説明を行う。
 実施形態2による離型処理方法では、気流105を生成させる工程は、離型剤に含まれるフッ素化合物を溶解する溶剤を含む気体を供給する工程を含む。気化した溶剤は、例えば、離型剤に含まれる溶剤と同じ溶剤である。気化した溶剤は、離型剤に含まれる溶剤と異なる溶剤であってもよい。気化した溶剤は、例えば、離型剤に含まれる離型性を有するフッ素系化合物を溶解することができる溶剤であればよい。
 本発明の実施形態2による離型処理方法によると、後に実験例を示すように、表面にポーラスアルミナ層を有する型の表面を、むらの無いように離型処理することができる。特に、離型剤乾燥工程におけるむらの発生を防止することができる。
 本発明の実施形態2による離型処理方法は、気流105に気化した溶剤が含まれるので、離型剤の乾燥速度が遅くなる効果を有し得る。実験例を後に示すように、実施形態1の離型処理方法よりも効果的にむらの発生を防止することができる場合があった。
 本実施形態の離型処理方法を行う離型処理装置の気流供給装置55は、例えば、容器(例えばフラスコ)をさらに有する。容器の口は、HEPAフィルタ54とフィルタ53との間に設けられた蒸気導入口と連結されている。容器中に溶剤を入れると、溶剤が自然気化し、気化した溶剤を含む気流105を供給することができる。あるいは、フラスコに溶剤を入れ、フラスコ内の溶剤中に気体(例えば窒素ガスまたは空気)を導入しバブリングすることで、気化した溶剤を気体に含ませることができる。気化した溶剤を含む気流105を供給することができる。容器に連結される蒸気導入口は、HEPAフィルタ54およびフィルタ53の外側に設けられてもよい。
 本発明の実施形態2による離型処理装置は、上記の例示に限られない。例えば、蒸発皿をフィルタ53の外側に設置してもよい。溶剤を蒸発皿に入れて自然気化させて、気化した溶剤を含む空気によって、気流105を生成してもよい。溶剤を入れる容器は、蒸発皿に限られず、液体を内側に保持できる形状であればよい。容器の断面は、例えばU字状またはV字状であり得る。溶剤を入れる容器は、例えば、円筒状のカバー52の内側に接して設けられていてもよい。例えば、溶剤を入れる容器は、離型処理装置50と一体として設けられていてもよい。例えば、気流105が第1開口52aから第2開口52bに向かって流れる場合には、溶剤を入れる容器は、カバー52の内側の第1開口52a付近に設けられていることが好ましい。または、気化させた溶剤を、図示しないエアーノズルから噴射して気体中に含ませてもよい。このとき、気流の流れを大きく変化させないためには、溶剤をミスト状の小さい粒子にして噴霧することが好ましい。さらに、その後フィルタ53を介することで、均一化された気流105が得られ得る。
 (実験例)
 以下、実験例を示す。図2(a)および(b)は、実験例を行った離型処理装置を説明するための模式的な図である。実験例として、上述した実施形態1または実施形態2の離型処理方法により、離型処理を施した。ここでは、気流105の流速およびモスアイ用型100の回転速度、ならびに気流105中の溶剤の有無を変えて、離型処理を行った。
 ここで用いたモスアイ用型は、例えば上記特許文献3および4に記載されている方法を用いて、アルミニウム基材の陽極酸化とエッチングとを繰り返すことにより作製した。アルミニウム基材として、ロール状の支持体(ステンレス鋼製の管)の表面上にスパッタ法により、厚さが1μmのアルミニウム膜18を成膜して作製した基材を用いた。アルミニウム基材の底面の直径は300mm、長軸方向の長さは1600mm、厚さは15mmである。
 この基材を用いて、まず、陽極酸化を行うことにより、アルミニウム膜18の表面にポーラスアルミナ層を形成した。陽極酸化工程は、シュウ酸水溶液(濃度0.05mol/L、液温3℃)を用いて、80V印加して60秒間行った。電極としては、Ptプレートを用いた。電極と基材との距離は150mmとした。
 次に、エッチングを行うことにより、ポーラスアルミナ層を完全に除去した。エッチング工程は、リン酸水溶液(濃度8mol/L、液温30℃)を用いて90分間行った。
 次に、陽極酸化工程とエッチング工程とを交互に5回(陽極酸化を5回、エッチングを4回)行った。陽極酸化工程は、上記と同様に、シュウ酸水溶液(濃度0.05mol/L、液温3℃)を用いて、80V印加して60秒間行った。エッチング工程は、リン酸水溶液(濃度8mol/L、液温30℃)を用いて20分間行った。
 こうして得られたモスアイ用型は、深さ400nm程度、細孔間隔180nm程度の複数の細孔が形成されていた。
 次に、以下に示すように、上述した実施形態1または実施形態2の離型処理方法で、モスアイ用型の離型処理を行った。このとき、離型剤乾燥工程において、下記表1のように、気流105の流速およびモスアイ用型100の回転速度、ならびに気流105中の溶剤の有無を変えて、離型処理を施した。ここで、用いたカバー52の底面の直径は500mm、鉛直方向の長さは2000mmである。鉛直方向における、カバー52の第2開口52bと、モスアイ用型100の下端100eとの間の距離L(図1(a)参照)は、200mmとした。
 気流105の流速は、以下のように測定した。図2(a)および(b)に模式的に示すように、カバー52の内側の4箇所のそれぞれに、2種類の流速計120(ベアトリックス株式会社製、超微風速センサーBS-03およびBS-05)を設けた。計測可能な流速範囲が互いに異なる2種類の流速計を設置することで、より広い範囲の流速を測定することが可能になる。図2(b)は離型処理装置50を鉛直方向から見た模式的な断面図である。図2(b)に示すように、周方向において等間隔に4箇所に、2個ずつ流速計120を設置した。流速計120を設置する4箇所の、鉛直方向における位置は、互いに同じである。流速計120は、鉛直方向において、カバー52のほぼ中心に設置した。気流105の流速は、4箇所の流速計120によってそれぞれ3回ずつ計測し、その平均値(すなわち、計12データの平均値)とした。
 スモークワイヤ法を用いて、離型剤乾燥工程における気流105の流れを観察し、気流105の不均一性の有無を調べた。図2(b)に示すように、カバー52内に、略半円状の高抵抗の細線(抵抗線)110を設けた。スモークワイヤ法には、株式会社菅原研究所製のスモークワイヤ発生装置MS-405を用いた。抵抗線110に流動パラフィンを塗布し、電流を流すことで白煙を発生させ、気流105の流れを可視化し、気流105の流れに不均一性(乱れ)が生じていないかどうかを目視で調べた。
 離型処理後のモスアイ用型100の表面について、蛍光灯直下で、目視により、むらの有無を調べた。
 結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、「○」は、モスアイ用型100の表面のむらが、実用上問題なく使用することができる程度に抑制されていたことを示す。具体的には、むらが生じている範囲の、下端100eからの長軸方向における長さ(図6(a)中のL102a)が、20mm以下であったことを示す。「◎」は、モスアイ用型100の表面のむらは視認されなかったことを示す。「×」および「△」は、ともに、モスアイ用型100の表面にはむらが視認され、むらが生じている範囲の、下端100eからの長軸方向における長さ(図6(a)中のL102a)が、20mm超であったことを示す。「△」は、「×」よりはモスアイ用型の表面のむらが軽減されていたことを示す。
 気流105の流れを可視化したことで、モスアイ用型100の表面のむらは、気流105の乱れに対応して生じていることを確認した。「◎」の場合は、気流105の流れに乱れが生じていなかった。「○」の場合は、気流105の流れに乱れが生じていたが、下端100eからの長軸方向における長さ(図6(a)中のL102a)が20mm以下の範囲内においてのみ、乱れが生じていた。「×」および「△」の場合は、気流105の流れに乱れが生じ、乱れが生じていた範囲の、下端100eからの長軸方向における長さ(図6(a)中のL102a)は20mm超であった。
 表1から分かるように、モスアイ用型100の回転速度は、例えば、0.5rpm以上10rpm以下であることが好ましく、1rpm以上10rpm以下であることがさらに好ましい。表1中、「回転速度」の欄には、回転速度(rpm)と、それを速度(m/s)に換算した値を併記している。上述したように、rpmは一分間あたりの回転数を表す単位なので、モスアイ用型100の底面の直径を100d(m)とすると、1rpmは(π×100d)/60(m/s)に相当する。回転速度が30(rpm)の実験例では、回転速度が大きいことによって、気流105に乱れが生じたと考えられる。
 表1から分かるように、気流105の流速は、例えば、0.016(m/s)以上0.157(m/s)以下であることが好ましい。気流105が気化した溶剤を含まない場合には、気流105の流速は、例えば、0.016(m/s)以上0.126(m/s)以下であることがさらに好ましい。気流105の流速が0.157(m/s)の場合には、気流105が気化した溶剤を含むことによって、気流105の均一化およびモスアイ用型100の表面の均一化が、より効果的に行われたことが分かる。気流105の流速が0.01(m/s)の実験例では、流速が小さく、気流105が均一にならなかったと考えられる。気流105の流速が0.471(m/s)の実験例では、流速が大きいことによって、気流105に乱れが生じたと考えられる。
 上述した気流105の流速の好ましい範囲、0.016(m/s)以上0.157(m/s)以下、と同じ範囲のモスアイ用型100の回転速度(m/s)を、回転速度(rpm)に換算すると、1rpm以上10rpm以下である。これは、モスアイ用型100の底面の直径を100d(m)とすると、(π×100d)/60(m/s)以上(π×100d)/6(m/s)以下(すなわち、0.05×100d(m/s)以上0.52×100d(m/s)以上)に相当する。すなわち、気流105の流速およびモスアイ用型100の回転速度は、同じオーダーの大きさであることが好ましいことが分かった。例えば、気流105の流速およびモスアイ用型100の回転速度は、同じ大きさであってもよい。この理由について、本発明者は以下のように考察した。
 気流105の流速vf(m/s)とモスアイ用型100の回転速度vr(m/s)との合成からなる総速度vt(m/s)を考える。気流105の流速vfとモスアイ用型100の回転速度vrとは、向きが互いに直交しているとする。従って、vt 2=vf 2+vr 2の関係が成り立つ。離型剤が乾燥する速さは、vtに依存する(例えばvtに比例する)と考えられる。
 気流105の流速vfとモスアイ用型100の回転速度vrとの関係について考えるために、極端な例として2つの場合を考える。(i)下記式(1-1)~(1-3)で表される場合と、(ii)下記式(2-1)~(2-3)で表される場合とを考える。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
(i)と(ii)とで、vtの値が同じになるように、(ii)におけるvfの係数を決定した(式(2-1))。これらの場合において、流速vfに変化が生じたときの、総速度vtの変化量の絶対値を比較する。
 流速vfがavfに変化したとする。aは、0超の実数である。0<a<1の場合は、流速vfが減少したことを表し、a>1の場合は、流速vfが増加したことを表す。a=1の場合は、流速vfに変化はない。それぞれの場合における総速度vtの変化量の絶対値は、(i)の場合は下記式(3)で、(ii)の場合は下記式(4)で、それぞれ表される。
Figure JPOXMLDOC01-appb-M000004
 AとBとの差をプロットしたグラフを図3に示す。図3から分かるように、常にBの方がAよりも大きい(常にAの方がBよりも小さい)。つまり、(i)の場合の方が、(ii)の場合よりも、総速度vtの変化量が常に小さい。従って、(i)の場合の方が、(ii)の場合よりも、流速vfに変化が生じたときの、総速度vtの変化量が小さく、離型剤の乾燥速度が均一に保たれ易いと考えられる。
 以上のように、気流105の流速およびモスアイ用型100の回転速度が同じオーダーの大きさであることが好ましい理由について、考察され得る。ただし、上記は本発明者の考察であり、本発明を限定するものではない。
 次に、図4を参照して、モスアイ用型の製造工程を説明する。図4(a)~(e)は、モスアイ用型の製造方法を説明するための模式的な断面図である。なお、以下では、基板16と、基板16上に堆積されたアルミニウム膜18とを有するアルミニウム基材10を用いて陽極酸化およびエッチングを行うことにより平板状のモスアイ用型を作製する場合を例示する。
 まず、図4(a)に示すように、アルミニウム基材10を用意する。アルミニウム基材10は、基板16と、基板16上に堆積されたアルミニウム膜18とを有する。
 次に、図4(b)に示すように、基材10の表面(アルミニウム膜18の表面18s)を陽極酸化することによって複数の細孔14p(微細な凹部)を有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、細孔14pを有するポーラス層と、バリア層とを有している。ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、クロム酸、クエン酸およびリンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.06wt%、液温5℃)を用いて、印加電圧80Vで30秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。陽極酸化条件(例えば、電解液の種類、印加電圧)を調整することにより、細孔間隔、細孔の深さ、細孔の形状等を調節できる。なお、ポーラスアルミナ層の厚さは適宜変更され得る。アルミニウム膜18を完全に陽極酸化してもよい。
 次に、図4(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより細孔14pの孔径を拡大する。ここで、ウェットエッチングを採用することによって、細孔壁およびバリア層をほぼ等方的にエッチングすることができる。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、細孔14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10質量%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸の水溶液やクロム燐酸混合水溶液を用いることができる。例えば、燐酸(濃度1mol/L、液温30℃)を用いて25分間エッチングを行うことにより、細孔14pを拡大する。
 次に、図4(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、細孔14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで細孔14pの成長は、既に形成されている細孔14pの底部から始まるので、細孔14pの側面は階段状になる。
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより細孔14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング液を用いればよい。
 このように、上述した陽極酸化工程およびエッチング工程を繰り返すことによって、図4(e)に示すように、所望の凹凸形状を有するポーラスアルミナ層14を有するモスアイ用型100が得られる。この後、モスアイ用型100は、例えば実施形態1または実施形態2の離型処理方法により離型処理が施された後に、反射防止膜の製造に用いられる。
 なお、上記では、基板16と、基板16上に堆積されたアルミニウム膜18とを有するアルミニウム基材10を用いて、平板状のモスアイ用型を作製する場合を例に説明したが、ロール状のモスアイ用型は、例えばロール状の支持体(例えばステンレス鋼製の管)と、ロール状の支持体上に形成されたアルミニウム膜とを有するアルミニウム基材を用いて陽極酸化およびエッチングを行うことにより、作製することができる。また、ロール状のモスアイ用型は、基板16として可撓性を有する高分子フィルムを用いて、高分子フィルム上にアルミニウム膜を形成し、アルミニウム膜の表面を陽極酸化することによりポーラスアルミナ層を形成した後、高分子フィルムを、ロール状の支持体の外周面に固定することによっても作製することができる。
 次に、図5を参照して、本発明による実施形態の反射防止膜の製造方法を説明する。図5は、ロール・ツー・ロール方式により反射防止膜を製造する方法を説明するための模式的な断面図である。
 本発明の実施形態による反射防止膜の製造方法は、上記のいずれかの離型処理方法によって離型処理が施された型を用意する工程と、被加工物を用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型から、硬化させられた光硬化樹脂で形成された反射防止膜を剥離する工程とを包含する。
 被加工物として、ロール状のフィルムを用いると、ロール・ツー・ロール方式で、反射防止膜を製造することができる。フィルムは、ベースフィルムと、ベースフィルム上に形成されたハードコート層とを有し、反射防止膜は、ハードコート層の上に形成されていることが好ましい。ベースフィルムとしては、例えば、TAC(トリアセチルセルロース)フィルムを好適に用いることができる。ハードコート層としては、例えば、アクリル系のハードコート材料を用いることができる。
 まず、ロール状のモスアイ用型100を用意する。例えば実施形態1または実施形態2の離型処理方法により離型処理が施されたモスアイ用型100を用意する。
 次に、図5に示すように、紫外線硬化樹脂32’が表面に付与された被加工物42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂32’に紫外線(UV)を照射することによって紫外線硬化樹脂32’を硬化する。紫外線硬化樹脂32’としては、例えばアクリル系樹脂を用いることができる。被加工物42は、例えば、TAC(トリアセチルセルロース)フィルムである。被加工物42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂32’が付与される。被加工物42は、図5に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、被加工物42を搬送する。また、ロール状のモスアイ用型100は、被加工物42の搬送速度に対応する回転速度で、図5に矢印で示す方向に回転される。
 その後、被加工物42からモスアイ用型100を分離(剥離)することによって、モスアイ用型100の凹凸構造(反転されたモスアイ構造)が転写された硬化物層32が被加工物42の表面に形成される。表面に硬化物層32が形成された被加工物42は、図示しない巻き取りローラにより巻き取られる。
 なお、反射防止性能の優れた反射防止膜を形成するためには、モスアイ用型100の細孔14pは、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満であることが好ましく(上記特許文献1、2および4)、50nm以上500nm未満であることがさらに好ましい。
 以上、モスアイ用型に離型処理をする場合を例に説明したが、本発明による実施形態の離型処理方法は、モスアイ用型以外の、表面にポーラスアルミナ層を有する型の離型処理にも用いることができる。例えば、フォトニック結晶を形成する型の離型処理に用いることができる。
 上記では、モスアイ構造を有する表面を備える膜として、反射防止膜を例示したが、本発明の実施形態による型は、これに限られず、モスアイ構造を有する表面を備える膜の製造に広く適用され得る。
 また、上記では、モスアイ構造を形成するためのモスアイ用型を例示したが、本発明の実施形態による型は、これに限られず、例えば先端が尖っていない凸部(例えばナノピラー)などを形成するための型に広く用いることができる。すなわち、本発明の実施形態による型が表面に有するミクロな凹部の形状は、略円錐に限られず、例えば略円錐台であってもよいし、略円柱であってもよい。ミクロな凹部の底部は、点に限られず、例えば丸みを帯びていてもよいし、平面であってもよい。ミクロな凹部の開口部の形状は、円に限られず、例えば矩形状であってもよい。また、複数のミクロな凹部は、規則的に配置されていてもよいし、不規則に(ランダムに)配置されていてもよい。
 本発明による離型処理方法は、反射防止膜、フォトニック結晶等の形成のための型の離型処理方法として用いることができる。
 14  ポーラスアルミナ層
 50  離型処理装置
 52  カバー
 52a 第1開口
 52b 第2開口
 53  フィルタ
 54  HEPAフィルタ
 55  気流供給装置
 56  台座
 57  モータ
 57d  駆動軸
 58  回転支持構造体
 100  モスアイ用型
 105  気流

Claims (11)

  1.  (a)離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層を有する円筒状または円柱状の型とを用意する工程と、
     (b)前記型の前記表面に、前記離型剤を付与する工程と、
     (c)前記工程(b)において付与された前記離型剤を乾燥させる工程であって、前記型の前記表面に対して、前記型の軸に平行な方向に流れる気流を生成させる工程、および、前記型の軸を中心に前記型を回転させる工程を含む乾燥工程と
    を包含する、離型処理方法。
  2.  前記工程(c)において、前記型の回転速度は、0.5rpm以上10rpm以下である、請求項1に記載の離型処理方法。
  3.  前記工程(c)において、前記気流の流速は、前記型の軸に垂直な断面における前記型の直径をD(m)とすると、0.05D(m/s)以上0.52D(m/s)以下である、請求項1または2に記載の離型処理方法。
  4.  前記工程(c)において、前記気流を生成させる工程は、前記離型剤に含まれる前記フッ素化合物を溶解する溶剤を含む気体を供給する工程を含む、請求項1から3のいずれかに記載の離型処理方法。
  5.  前記溶剤を含む気体は、前記離型剤に含まれる前記溶剤と同じ溶剤を含む、請求項4に記載の離型処理方法。
  6.  前記ポーラスアルミナ層は、表面の法線方向から見たときの2次元的な大きさが50nm以上500nm未満の複数の凹部を有する、反転されたモスアイ構造を表面に有する、請求項1から5のいずれかに記載の離型処理方法。
  7.  請求項1から6のいずれかに記載の離型処理方法によって離型処理が施された型を用意する工程と、
     被加工物を用意する工程と、
     前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、
     前記型から、硬化させられた光硬化樹脂で形成された反射防止膜を剥離する工程と
    を包含する、反射防止膜の製造方法。
  8.  第1開口と第2開口とを有する円筒状のカバーと、
     円筒状または円柱状の型を、前記カバーの前記第1開口と前記第2開口との間において、前記カバーの軸と略平行に、前記型の軸の周りに回転可能に支持する、回転支持構造体と
    を有する、離型処理装置。
  9.  前記第1開口から前記カバーの前記軸に略平行な気流を供給する、気流供給装置をさらに有する、請求項8に記載の離型処理装置。
  10.  前記気流供給装置は、前記第1開口に設けられたフィルタを有する、請求項9に記載の離型処理装置。
  11.  前記回転支持構造体は、モータと、前記モータの駆動軸に結合された台座とを有し、
     前記台座の少なくとも一部は、前記第1開口と前記第2開口との間に位置する、請求項8から10のいずれかに記載の離型処理装置。
PCT/JP2016/066923 2015-06-09 2016-06-07 離型処理方法、反射防止膜の製造方法および離型処理装置 WO2016199764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680033863.6A CN107635740B (zh) 2015-06-09 2016-06-07 脱模处理方法、防反射膜的制造方法及脱模处理装置
JP2017523649A JP6546992B2 (ja) 2015-06-09 2016-06-07 離型処理方法、反射防止膜の製造方法および離型処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-116391 2015-06-09
JP2015116391 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016199764A1 true WO2016199764A1 (ja) 2016-12-15

Family

ID=57504815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066923 WO2016199764A1 (ja) 2015-06-09 2016-06-07 離型処理方法、反射防止膜の製造方法および離型処理装置

Country Status (3)

Country Link
JP (1) JP6546992B2 (ja)
CN (1) CN107635740B (ja)
WO (1) WO2016199764A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213016A (ja) * 2005-02-07 2006-08-17 Nitto Denko Corp ポリイミドベルトの製造方法
JP2008238597A (ja) * 2007-03-27 2008-10-09 Ricoh Co Ltd ポリイミド樹脂シームレスベルトの製造方法、ポリイミド樹脂シームレスベルト及び画像形成装置
JP2012169378A (ja) * 2011-02-10 2012-09-06 Seiko Epson Corp 圧電セラミックス膜形成用組成物、圧電素子の製造方法及び液体噴射ヘッドの製造方法
WO2012133390A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 離型処理方法および反射防止膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213016A (ja) * 2005-02-07 2006-08-17 Nitto Denko Corp ポリイミドベルトの製造方法
JP2008238597A (ja) * 2007-03-27 2008-10-09 Ricoh Co Ltd ポリイミド樹脂シームレスベルトの製造方法、ポリイミド樹脂シームレスベルト及び画像形成装置
JP2012169378A (ja) * 2011-02-10 2012-09-06 Seiko Epson Corp 圧電セラミックス膜形成用組成物、圧電素子の製造方法及び液体噴射ヘッドの製造方法
WO2012133390A1 (ja) * 2011-03-30 2012-10-04 シャープ株式会社 離型処理方法および反射防止膜の製造方法

Also Published As

Publication number Publication date
CN107635740A (zh) 2018-01-26
CN107635740B (zh) 2019-11-19
JPWO2016199764A1 (ja) 2018-03-29
JP6546992B2 (ja) 2019-07-17

Similar Documents

Publication Publication Date Title
JP4583506B2 (ja) 反射防止膜、および反射防止膜を備える光学素子、ならびに、スタンパ、およびスタンパの製造方法、ならびに反射防止膜の製造方法
JP4677515B2 (ja) 型およびその製造方法
JP4796216B2 (ja) 型および型の製造方法ならびに反射防止膜
JP4976593B2 (ja) 離型処理方法、型、反射防止膜の製造方法、離型処理装置および型の洗浄乾燥装置
TWI484071B (zh) 陽極氧化層之形成方法及模具之製造方法
JP6458051B2 (ja) 型および型の製造方法ならびに反射防止膜
JP5856286B2 (ja) 離型処理方法および反射防止膜の製造方法
JP5796491B2 (ja) ナノインプリント用モールドの製造装置、及びナノインプリント用モールドの製造方法
JP6293916B2 (ja) 透明フィルム、及び、透明フィルムの製造方法
JP5833763B2 (ja) 型の製造方法
WO2016199764A1 (ja) 離型処理方法、反射防止膜の製造方法および離型処理装置
WO2012133390A1 (ja) 離型処理方法および反射防止膜の製造方法
US10094952B2 (en) Anti-reflection film, method of producing the film and display device
JP6057130B2 (ja) ロール状モールドの製造方法、および複数の凸部を表面に有する物品の製造方法
JP5707342B2 (ja) インプリント用回転式モールド及びその製造方法
WO2018181303A1 (ja) 液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法
JP2015086402A (ja) インプリント用ロール状金型の製造方法
JP2019064001A (ja) 離型処理方法、型および反射防止膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807471

Country of ref document: EP

Kind code of ref document: A1