WO2016199566A1 - 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 - Google Patents

銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 Download PDF

Info

Publication number
WO2016199566A1
WO2016199566A1 PCT/JP2016/065160 JP2016065160W WO2016199566A1 WO 2016199566 A1 WO2016199566 A1 WO 2016199566A1 JP 2016065160 W JP2016065160 W JP 2016065160W WO 2016199566 A1 WO2016199566 A1 WO 2016199566A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
porous body
copper porous
fibers
less
Prior art date
Application number
PCT/JP2016/065160
Other languages
English (en)
French (fr)
Inventor
喜多 晃一
純 加藤
俊彦 幸
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020177032666A priority Critical patent/KR20180016985A/ko
Priority to US15/579,688 priority patent/US10493528B2/en
Priority to CN201680025074.8A priority patent/CN107530776B/zh
Priority to EP16807273.4A priority patent/EP3308883A4/en
Publication of WO2016199566A1 publication Critical patent/WO2016199566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]

Definitions

  • the present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite.
  • the present invention relates to a method for manufacturing a member.
  • Patent Document 1 proposes a heat transfer member having a three-dimensional network structure by using powder made of copper or a copper alloy as a raw material and sintering in a reducing atmosphere.
  • Patent Document 2 proposes a heat exchange member in which a copper porous layer is formed by sintering copper powder on the surface of a copper tube.
  • Patent Document 1 sintering is performed in an inert gas atmosphere or a reducing atmosphere.
  • the powder which consists of copper or a copper alloy is used as a raw material, this raw material powder is temporarily joined to the surface of a copper pipe with a binder, and a copper raw material is sintered by performing oxidation treatment and reduction treatment. A copper porous layer is formed.
  • the copper metal bond is insufficient only by sintering in an inert gas atmosphere or a reducing atmosphere. May become insufficient.
  • the present invention was made against the background as described above, and a copper porous body in which copper raw materials are reliably bonded to each other and particularly excellent in heat conduction characteristics and electric conduction characteristics, It aims at providing the manufacturing method of the copper porous composite member joined to the member main body, the copper porous body, and the copper porous composite member.
  • the copper porous body of one embodiment of the present invention (hereinafter referred to as “copper porous body of the present invention”) has a three-dimensional network structure skeleton.
  • the surface of the skeleton has a redox layer formed by redox treatment, the specific surface area is increased, and for example, the heat exchange efficiency is greatly improved. It becomes possible to make it. And since the oxygen concentration of the whole skeleton part is 0.025 mass% or less, the copper raw materials are surely metal-bonded by the oxidation-reduction treatment, and particularly excellent in heat conduction characteristics and electrical conduction characteristics. Yes.
  • the specific surface area of the entire copper porous body is 0.01 m 2 / g or more and the porosity is in the range of 50% or more and 90% or less. .
  • the specific surface area is large and the porosity is set high, for example, the heat exchange efficiency and the like can be reliably improved.
  • the skeleton is a sintered body of a plurality of copper fibers, and the copper fibers have a diameter R in the range of 0.02 mm to 1.0 mm.
  • the ratio L / R of the length L to the diameter R is preferably in the range of 4 or more and 2500 or less.
  • copper fibers having a diameter R in the range of 0.02 mm to 1.0 mm and a ratio L / R of the length L to the diameter R in the range of 4 to 2500 are baked. Since it is configured by being bonded, a sufficient gap is secured between the copper fibers, the shrinkage rate during sintering can be suppressed, the porosity can be increased, and the dimensions are further increased. Excellent accuracy.
  • a copper porous composite member according to another aspect of the present invention (hereinafter referred to as “copper porous composite member of the present invention”) is characterized in that a member main body and the above-mentioned copper porous body are joined. Yes. According to the copper porous composite member of this configuration, since the copper porous body excellent in surface property stability is firmly bonded to the member main body, as a copper porous composite member, excellent heat conduction characteristics and Electrical conductivity characteristics can be exhibited.
  • the joint surface of the member main body with the copper porous body is made of copper or a copper alloy, and the copper porous body and the member main body are sintered. It is preferable that it is joined by.
  • the copper porous body and the member main body are integrally bonded by sintering, the copper porous body and the member main body are firmly bonded, and the copper porous composite Excellent thermal conductivity and electrical conductivity as a member.
  • the method for producing a copper porous body according to another aspect of the present invention is a method for producing a copper porous body for producing the above-mentioned copper porous body. And a skeleton part forming step for forming the skeleton part having an oxygen concentration of 0.025 mass% or less and a redox step for forming the redox layer on the surface of the skeleton part. Yes.
  • a skeleton part forming step for forming the skeleton part having an oxygen concentration of 0.025 mass% or less, and a redox layer for forming the redox layer on the surface of the skeleton part A copper porous body that has a large specific surface area and that is reliably metal-bonded to each other by oxidation-reduction treatment, and that is particularly excellent in heat conduction characteristics and electrical conduction characteristics. .
  • a copper raw material laminating step of laminating the copper raw material having an oxygen concentration of 0.03 mass% or less, and a plurality of the laminated copper raw materials are sintered together.
  • the redox layer may be formed on the surface of the skeleton part. That is, in the method for producing a copper porous body, the skeleton part forming step and the oxidation-reduction step are performed in the copper raw material laminating step and the sintering step.
  • the oxygen concentration in the copper porous body after sintering can be 0.025 mass% or less.
  • the sintering step after the copper fibers are oxidized, the oxidized copper fibers are reduced and the copper fibers are bonded to each other, so that a redox layer is formed on the surface of the skeleton part. Can do.
  • the manufacturing method of the copper porous body of this invention it is good also as a structure which performs the prereduction process which reduces the oxygen concentration of the said copper raw material.
  • the oxygen concentration of the copper raw material can be limited to 0.03 mass% or less, and the oxygen concentration in the sintered copper porous body can be reduced. It can be 0.025 mass% or less.
  • the method for producing a copper porous composite member according to another embodiment of the present invention is a copper porous material in which a member main body and a copper porous body are joined. It is a manufacturing method of the copper porous composite member which manufactures a composite member, Comprising: It has the joining process which joins the copper porous body manufactured by the manufacturing method of the above-mentioned copper porous body, and the said member main body. It is characterized by.
  • the copper porous body produced by the above-described method for producing a copper porous body is provided, and the copper porous body excellent in heat conduction characteristics and electric conduction characteristics is provided. It becomes possible to manufacture a quality composite member.
  • a bonding surface to which the copper porous body is bonded in the member main body is made of copper or a copper alloy, and the copper porous body It is preferable to join the member main body by sintering.
  • the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member having excellent heat conduction characteristics and electrical conduction characteristics can be produced.
  • the manufacturing method of a porous body and the manufacturing method of a copper porous composite member can be provided.
  • the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS. 1-3.
  • the copper porous body 10 which is this embodiment has the frame
  • the copper fiber 11 is made of copper or a copper alloy.
  • the copper fiber 11 is made of, for example, C1100 (tough pitch copper).
  • the copper fiber 11 has a diameter R in the range of 0.02 mm to 1.0 mm, and a ratio L / R of the length L to the diameter R in the range of 4 to 2500. Yes.
  • the copper fiber 11 is given a shape such as twisting or bending.
  • the apparent density D A is less 51% of the true density D T of the copper fibers 11.
  • the shape of the copper fiber 11 is arbitrary as long as the apparent density D A is 51% or less of the true density DT of the copper fiber 11.
  • the void shape between the fibers can be formed three-dimensionally and isotropically.
  • the copper porous body 10 This leads to an improvement in isotropy of various characteristics such as heat transfer characteristics and conductivity.
  • the copper fiber 11 is adjusted to a predetermined converted fiber diameter by a drawing method, a coil cutting method, a wire cutting method, a melt spinning method, etc., and the length is further adjusted to satisfy a predetermined L / R. It is manufactured by cutting.
  • the oxidation reduction layer is formed in the surface of the frame
  • the redox layers formed on each other are bonded together.
  • the redox layer has a porous structure, and has fine irregularities on the surface of the skeleton 12 (copper fibers 11).
  • the specific surface area of the whole copper porous body 10 shall be 0.01 m ⁇ 2 > / g or more, and the porosity shall be in the range of 50% or more and 90% or less.
  • the upper limit value of the specific surface area of the entire copper porous body 10 is 0.50 m 2 / g.
  • the range of the specific surface area of the entire preferred copper porous body 10 is 0.03m 2 /g ⁇ 0.40m 2 / g, more preferably 0.05m 2 /g ⁇ 0.30m 2 / g.
  • the porosity range is 60% to 90%, and more preferably 70% to 90%.
  • skeleton part 12 shall be 0.025 mass% or less.
  • the lower limit value of the oxygen concentration of the entire skeleton 12 is a value depending on the grade of copper used, and is not particularly limited.
  • the lower limit of the oxygen concentration when oxygen-free copper is used is about 0.00001 mass%.
  • a copper fiber 11 having an oxygen concentration of 0.03 mass% or less is prepared.
  • the oxygen concentration of the copper fiber 11 is reduced to 0.03 mass% or less by performing the preliminary reduction treatment step S00 on the copper fiber 11 having an oxygen concentration of about 0.05 mass%.
  • the preliminary reduction treatment step S00 particularly reduces the amount of oxygen on the surface of the copper fiber 11.
  • the surface of the copper fiber 11 is obtained by performing the preliminary reduction treatment step S00.
  • the conditions of the pre-reduction treatment step S00 are such that the atmosphere is a mixed gas atmosphere of argon and hydrogen, the holding temperature is 350 ° C. or more and 850 ° C. or less, and the holding temperature is 5 minutes or more and 120 minutes or less. ing.
  • the holding temperature in the preliminary reduction treatment step S00 is set to 350 ° C. or higher and 850 ° C. or lower.
  • the lower limit of the holding temperature in the preliminary reduction treatment step S00 is preferably set to 400 ° C. or higher.
  • the holding time in the preliminary reduction treatment step S00 is set within a range of 5 minutes or more and 120 minutes or less.
  • the lower limit of the holding time in the preliminary reduction treatment step S00 is preferably set to 10 minutes or more.
  • the copper fibers 11 subjected to the preliminary reduction treatment step S00 are spread from the spreader 31 into the stainless steel container 32 to be bulk-filled, and the copper fibers 11 are laminated (copper copper).
  • a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 50% of the true density D T of the copper fibers 11.
  • shape provision processing such as a twist process and a bending process, is given to the copper fiber 11, a three-dimensional and isotropic space
  • oxidation reduction treatment step S02 oxidation reduction treatment step S02
  • oxidation reduction treatment step S02 oxidation reduction treatment step S02
  • the stainless steel container 32 filled with the copper fibers 11 is charged into a heating furnace 33 and heated in an air atmosphere to oxidize the copper fibers 11 (oxidation treatment step). S21).
  • the conditions of the oxidation treatment step S21 in the present embodiment are set such that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter.
  • the holding temperature in the oxidation treatment step S ⁇ b> 21 is set to 520 ° C. or higher and 1050 ° C. or lower.
  • the lower limit of the holding temperature in the oxidation treatment step S21 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
  • the holding time in the oxidation treatment step S21 is set within a range of 5 minutes or more and 300 minutes or less.
  • the minimum of the retention time in oxidation treatment process S21 shall be 10 minutes or more.
  • the upper limit of the retention time in oxidation treatment process S21 into 100 minutes or less.
  • the stainless steel container 32 filled with the copper fibers 11 is charged into the heating furnace 34 and heated in a reducing atmosphere. Then, the oxidized copper fibers 11 are reduced to form a redox layer, and the copper fibers 11 are joined together to form the skeleton part 12 (reduction treatment step S22).
  • the conditions of the reduction treatment step S22 in the present embodiment are such that the atmosphere is a mixed gas atmosphere of argon and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter. .
  • the holding temperature in the reduction treatment step S ⁇ b> 22 is less than 600 ° C.
  • the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced.
  • the holding temperature in the reduction treatment step S22 exceeds 1080 ° C., it is heated to the vicinity of the melting point of copper, and the strength and the porosity may be reduced.
  • the holding temperature in the reduction treatment step S22 is set to 600 ° C. or higher and 1080 ° C. or lower.
  • the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 650 ° C. or higher.
  • the holding time in the reduction treatment step S22 is set within a range of 5 minutes or more and 300 minutes or less.
  • the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 10 minutes or more.
  • the upper limit of the holding time in the reduction treatment step S22 is 100 minutes or less.
  • an oxidation reduction layer is formed on the surface of the copper fiber 11 (frame portion 12), and fine irregularities are generated. Moreover, an oxide layer is formed on the surface of the copper fiber 11 by the oxidation treatment step S21, and the plurality of copper fibers 11 are cross-linked by the oxide layer. Thereafter, by performing the reduction treatment step S22, the oxide layer formed on the surface of the copper fiber 11 is reduced to form the above-described oxidation-reduction layer, and the oxidation-reduction layers are bonded to each other. The fibers 11 are sintered to form the skeleton part 12.
  • the copper fibers 11 and 11 are sintered together to form the skeleton part 12, and a redox layer is formed on the surface of the skeleton part 12 (copper fiber 11).
  • skeleton part 12 shall be 0.025 mass% or less, and the copper porous body 10 which is this embodiment is manufactured.
  • the oxygen concentration of the entire skeleton part 12 is set to 0.025 mass% or less, so the oxidation treatment step S21 and the reduction treatment step S22.
  • the copper fibers 11 are reliably metal-bonded to each other, and are particularly excellent in heat conduction characteristics and electrical conduction characteristics.
  • the oxygen concentration of the entire skeleton part 12 exceeds 0.025 mass%, the metal bond of the copper fiber 11 becomes insufficient, and there is a possibility that the heat conduction characteristic and the electric conduction characteristic are deteriorated.
  • the oxygen concentration of the entire skeleton part 12 is set to 0.25 mass% or less. In order to further improve the heat conduction characteristics and electrical conduction characteristics, it is preferable that the oxygen concentration of the entire skeleton portion 12 is 0.02 mass% or less.
  • the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more, Since the skeleton part 12 is formed by sintering the copper fiber 11 within the range of 2500 or less, a sufficient gap is secured between the copper fibers 11 and the shrinkage rate during sintering The porosity is high and the dimensional accuracy is excellent.
  • the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is in the range of 4 to 2500.
  • the bulk density D P is the true density D apparent density D A copper porous body 10 produced by sintering and stacked so that more than 50% of T copper fibers 11 Copper Since it is 51% or less of the true density DT of the fiber 11, the shrinkage
  • the diameter R of the copper fibers 11 is set in the range of 0.02 mm or more and 1.0 mm or less.
  • the lower limit of the diameter R of the copper fiber 11 is preferably 0.05 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
  • the ratio L / R of the length L and the diameter R of the copper fibers 11 is set in the range of 4 or more and 2500 or less.
  • the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more.
  • the manufacturing method of the copper porous body which is this embodiment since the oxidation treatment process S21 which oxidizes the copper fiber 11 and the reduction treatment process S22 which reduces the oxidized copper fiber 11 are provided. A redox layer can be formed on the surface of the copper fiber 11 (skeleton part 12). And according to the manufacturing method of the copper porous body which is this embodiment, since the copper fiber 11 by which oxygen concentration was made 0.03 mass% or less by prereduction process process S00 is used, oxygen of the frame
  • the copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.
  • the copper porous body 110 is obtained by sintering a plurality of copper fibers to form a skeleton portion, as in the first embodiment.
  • the copper fiber is made of copper or a copper alloy
  • the diameter R is in the range of 0.02 mm to 1.0 mm
  • the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. It is within the range.
  • the copper fiber is made of oxygen-free copper, for example.
  • the copper fiber is given a shape such as twisting or bending.
  • the apparent density D A is less 51% of the true density D T of copper fibers.
  • a redox layer is formed by performing redox treatment (oxidation treatment and reduction treatment) on the surfaces of the copper fibers (skeleton part) and the copper plate 120 constituting the copper porous body 110 as described later.
  • redox treatment oxidation treatment and reduction treatment
  • fine irregularities are formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120.
  • the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more, and the porosity is in the range of 50% to 90%.
  • the oxidation reduction layer formed in the surface of the copper fiber and the oxidation reduction layer formed in the surface of the copper plate are united.
  • skeleton part of the copper porous body 110 shall be 0.025 mass% or less.
  • the lower limit value of the oxygen concentration of the entire skeleton 12 is a value depending on the grade of copper used, and is not particularly limited.
  • the lower limit of the oxygen concentration when oxygen-free copper is used is about 0.00001 mass%.
  • the copper plate 120 which is a member main body is prepared (copper plate arrangement
  • copper fibers having an oxygen concentration of 0.03 mass% or less are dispersed and laminated on the surface of the copper plate 120 (copper fiber lamination step S101).
  • the oxygen concentration with 0.03 mass% or less of copper fibers, the plurality as bulk density D P is equal to or less than 50% of the true density D T copper fibers copper fibers Are stacked.
  • the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering step S102 and joining step S103). ).
  • the oxidation treatment step S121 for oxidizing the copper fibers and the copper plate 120 and the oxidized copper fibers and the copper plate 120 are reduced and sintered.
  • the copper plate 120 on which the copper fibers are laminated is placed in a heating furnace and heated in an air atmosphere to oxidize the copper fibers (oxidation treatment step S121).
  • oxidation treatment step S121 an oxide layer having a thickness of 1 ⁇ m or more and 100 ⁇ m or less is formed on the surfaces of the copper fiber and the copper plate 120, for example.
  • the conditions of the oxidation treatment step S121 in this embodiment are that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, desirably 600 ° C. or higher and 1000 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter, preferably 10 It is within the range of not less than 100 minutes and not more than 100 minutes.
  • the copper plate 120 on which the copper fibers are laminated is placed in a firing furnace, heated in a reducing atmosphere, and oxidized copper fibers and the copper plate 120.
  • the copper fiber and the copper plate 120 are combined with each other (reduction process step S122).
  • the conditions of the reduction treatment step S122 in the present embodiment are that the atmosphere is a mixed gas atmosphere of nitrogen and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, desirably 650 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 Min. To 300 min., Preferably 10 min. To 100 min.
  • a redox layer is formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120, and fine irregularities are generated.
  • an oxide layer is formed on the surfaces of the copper fibers (skeleton) and the copper plate 120 by the oxidation treatment step S121, and the plurality of copper fibers and the copper plate 120 are cross-linked by the oxide layer.
  • the reduction treatment S122 is performed to reduce the copper fiber (skeleton part) and the oxide layer formed on the surface of the copper plate 120, and the copper fibers are sintered through the oxidation-reduction layer to form the skeleton part.
  • the copper porous body 110 and the copper plate 120 are combined.
  • the copper porous composite member 100 according to the present embodiment is manufactured by the manufacturing method as described above.
  • the oxygen concentration of the entire skeleton part of the copper porous body 110 is set to 0.025 mass% or less.
  • the copper fibers 11 are securely bonded to each other by S121 and the reduction treatment step S122, and are particularly excellent in heat conduction characteristics and electric conduction characteristics.
  • the diameter R is within the range of 0.02 mm to 1.0 mm on the surface of the copper plate 120, and the ratio L between the length L and the diameter R is L. / R is 4 or more and 2500 or less, a copper porous body 110 having a high porosity and excellent strength and dimensional accuracy is bonded, and heat transfer characteristics and conductivity Excellent properties such as properties.
  • an oxidation-reduction layer is formed on the surfaces of the copper fibers and the copper plate 120 constituting the copper porous body 110, and the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more.
  • the porosity is in the range of 50% or more and 90% or less, and the heat exchange efficiency and the like can be greatly improved.
  • the upper limit value of the specific surface area of the entire copper porous body 10 is 0.50 m 2 / g.
  • the range of the specific surface area of the entire preferred copper porous body 10 is 0.03m 2 /g ⁇ 0.40m 2 / g, more preferably 0.05m 2 /g ⁇ 0.30m 2 / g.
  • the porosity range is 60% to 90%, and more preferably 70% to 90%.
  • bond part of the copper fiber which comprises the copper porous body 110, and the surface of the copper plate 120 it formed in the surface of the copper plate 120 and the oxidation reduction layer formed in the surface of the copper fiber. Since the oxidation-reduction layer is integrally bonded, the copper porous body 110 and the copper plate 120 are firmly bonded, and excellent in various properties such as the strength of the bonding interface, heat transfer characteristics, and conductivity. Yes.
  • oxygen-free copper having an oxygen concentration of 0.03 mass% or less is used as the copper fiber.
  • concentration can be 0.025 mass% or less.
  • a copper fiber is laminated
  • the atmosphere of the oxidation treatment steps S21 and S121 may be any oxidizing atmosphere in which copper or a copper alloy is oxidized at a predetermined temperature. Specifically, the atmosphere is not limited to the atmosphere, and 10 vol. In inert gas (for example, nitrogen). Any atmosphere containing at least% oxygen may be used. Also, the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined temperature. Specifically, hydrogen of several vol% or more is used. A nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, a pure hydrogen gas, or an ammonia decomposition gas or a propane decomposition gas that is often used industrially can also be suitably used.
  • inert gas for example, nitrogen
  • Any atmosphere containing at least% oxygen may be used.
  • the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined
  • the copper fiber made of tough pitch copper (JIS C1100) or oxygen-free copper (JIS C1020) has been described.
  • Phosphorus deoxidized copper (JIS C1201, C1220) copper containing silver (for example, Cu-0.02-0.5 mass% Ag), chromium copper (for example, Cu-0.02-1.0 mass% Cr), zircon copper ( For example, Cu-0.02 to 1.0 mass% Zr), tin-containing copper (for example, Cu-0.1 to 1.0 mass% Sn), or the like can be preferably used.
  • silver-containing copper, chromium copper, tin-containing copper, zircon copper, or the like excellent in high-temperature strength.
  • this embodiment demonstrated as what forms the frame
  • the fiber whose oxygen concentration is 0.03 mass% or less
  • a copper porous body such as a nonwoven fabric or a metal filter, or a copper porous body such as a fiber nonwoven fabric or a metal filter whose oxygen concentration is reduced to 0.03 mass% or less by performing the pre-reduction treatment S00.
  • the oxygen concentration of the entire skeleton can be made 0.025 mass% or less, and the same effect is expected.
  • the copper porous composite member having the structure shown in FIG. 4 has been described as an example.
  • the present invention is not limited to this, and the copper having the structure as shown in FIGS. It may be a porous composite member.
  • a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
  • a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.
  • the copper porous composite member 400 of the structure which joined the copper porous body 410 to the internal peripheral surface of the copper pipe 420 which is a member main body may be sufficient.
  • the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper tube 520 which is a member main body may be sufficient.
  • a copper porous composite member 600 having a structure in which a copper porous body 610 is bonded to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
  • the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.
  • Fiber length L As the fiber length L of the copper fiber, a simple average value calculated by image analysis using a particle analyzer “Morphology G3” manufactured by Malvern, Inc. was used.
  • a manufacturing method can be provided, and can be applied as, for example, electrodes and current collectors, members for heat exchangers, silencers, filters, impact absorbing members and the like in various batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

三次元網目構造の骨格部(12)を有する銅多孔質体(10、110)であって、前記骨格部(12)の表面に、酸化還元処理によって形成された酸化還元層を有しており、前記骨格部(12)全体の酸素濃度が0.025mass%以下とされていることを特徴とする。

Description

銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
 本願発明は、銅又は銅合金からなる銅多孔質体、及び、この銅多孔質体が部材本体に接合されてなる銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法に関するものである。
 本願は、2015年6月12日に、日本に出願された特願2015-119523号に基づき優先権を主張し、その内容をここに援用する。
 上述の銅多孔質体及び銅多孔質複合部材は、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター、衝撃吸収部材等として使用されている。
 例えば特許文献1には、銅又は銅合金からなる粉末を原料として、還元雰囲気で焼結することにより、三次元網目構造とした伝熱部材が提案されている。
 また、特許文献2には、銅管表面に銅粉末を焼結させて銅多孔質層を形成した熱交換部材が提案されている。
日本国特開平08-145592号公報(A) 日本国特開平11-217680号公報(A)
 ところで、特許文献1においては、不活性ガス雰囲気あるいは還元性雰囲気で焼結を行っている。また、特許文献2においては、銅又は銅合金からなる粉末を原料とし、この原料粉末を銅管の表面にバインダーで仮接合し、酸化処理及び還元処理を行うことで銅原料を焼結して銅多孔質層を形成している。特許文献1及び特許文献2に記載されているように、不活性ガス雰囲気あるいは還元性雰囲気で焼結を行っただけでは銅の金属結合は不十分な状態であり、熱伝導特性や電気伝導特性が不十分となるおそれがあった。
 本願発明は、以上のような事情を背景としてなされたものであって、銅原料同士が確実に接合され、熱伝導特性及び電気伝導特性に特に優れた銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することを目的としている。
 このような課題を解決して、前記目的を達成するために、本願発明の一態様の銅多孔質体(以下、「本願発明の銅多孔質体」と称する)は、三次元網目構造の骨格部を有する銅多孔質体であって、前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しており、前記骨格部全体の酸素濃度が0.025mass%以下とされていることを特徴としている。
 この構成の銅多孔質体によれば、前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しているので、比表面積が大きくなり、例えば熱交換効率等を大幅に向上させることが可能となる。
 そして、前記骨格部全体の酸素濃度が0.025mass%以下とされているので、酸化還元処理によって銅原料同士が確実に金属結合されることになり、熱伝導特性及び電気伝導特性に特に優れている。
 ここで、本願発明の銅多孔質体においては、前記銅多孔質体全体の比表面積が0.01m/g以上、気孔率が50%以上90%以下の範囲内とされていることが好ましい。
 この場合、比表面積が大きく、且つ、気孔率が高く設定されているので、例えば熱交換効率等を確実に向上させることが可能となる。
 また、本願発明の銅多孔質体においては、前記骨格部は、複数の銅繊維の焼結体とされており、前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされていることが好ましい。
 この場合、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維同士が焼結されることで構成されているので、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を高くすることが可能となり、さらに寸法精度に優れている。
 本願発明の他態様の銅多孔質複合部材(以下、「本願発明の銅多孔質複合部材」と称する)は、部材本体と、上述の銅多孔質体と、が接合されてなることを特徴としている。
 この構成の銅多孔質複合部材によれば、表面性状の安定性に優れた銅多孔質体が部材本体と強固に接合されていることから、銅多孔質複合部材として、優れた熱伝導特性及び電気伝導特性を発揮することができる。
 ここで、本願発明の銅多孔質複合部材においては、前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体とが焼結によって接合されていることが好ましい。
 この場合、前記銅多孔質体と前記部材本体とが、焼結によって一体に結合しているので、前記銅多孔質体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた熱伝導特性及び電気伝導特性を発揮する。
 本願発明の他態様の銅多孔質体の製造方法(以下、「本願発明の銅多孔質体の製造方法」と称する)は、上述の銅多孔質体を製造する銅多孔質体の製造方法であって、酸素濃度が0.025mass%以下の前記骨格部を形成する骨格部形成工程と、前記骨格部の表面に前記酸化還元層を形成する酸化還元工程と、を備えていることを特徴としている。
 この構成の銅多孔質体の製造方法によれば、酸素濃度が0.025mass%以下の前記骨格部を形成する骨格部形成工程と、前記骨格部の表面に前記酸化還元層を形成する酸化還元工程と、を備えているので、比表面積が大きく、かつ、酸化還元処理によって銅原料同士が確実に金属結合され、熱伝導特性及び電気伝導特性に特に優れた銅多孔質体を得ることができる。
 ここで、本願発明の銅多孔質体の製造方法においては、酸素濃度が0.03mass%以下の前記銅原料を積層する銅原料積層工程と、積層された複数の前記銅原料同士を焼結する焼結工程と、を有し、前記焼結工程では、前記銅繊維を酸化させた後、酸化された前記銅繊維を還元し、前記銅繊維同士を結合させて前記骨格部を形成するとともに、前記骨格部の表面に前記酸化還元層を形成する構成としてもよい。すなわち、この銅多孔質体の製造方法においては、上述の前記骨格部形成工程と前記酸化還元工程とを、前記銅原料積層工程及び前記焼結工程で実施していることになる。
 この場合、酸素濃度が0.03mass%以下の前記銅原料を用いているので、焼結後の銅多孔質体における酸素濃度を0.025mass%以下とすることができる。また、前記焼結工程では、前記銅繊維を酸化させた後、酸化された前記銅繊維を還元するとともに前記銅繊維同士を結合させているので、骨格部の表面に酸化還元層を形成することができる。
 また、本願発明の銅多孔質体の製造方法においては、前記銅原料の酸素濃度を低減させる予備還元処理を行う構成としてもよい。
 この場合、銅原料の酸素濃度を低減させる予備還元処理を備えているので、銅原料の酸素濃度を0.03mass%以下に制限することができ、焼結後の銅多孔質体における酸素濃度を0.025mass%以下とすることができる。
 本願発明の他態様の銅多孔質複合部材の製造方法(以下、「本願発明の銅多孔質複合部材の製造方法」と称する)は、部材本体と銅多孔質体とが接合された銅多孔質複合部材を製造する銅多孔質複合部材の製造方法であって、上述の銅多孔質体の製造方法によって製造された銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする。
 この構成の銅多孔質複合部材の製造方法によれば、上述の銅多孔質体の製造方法によって製造された銅多孔質体を備えることになり、熱伝導特性及び電気伝導特性に優れた銅多孔質複合部材を製造することが可能となる。
 ここで、本願発明の銅多孔質複合部材の製造方法においては、前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することが好ましい。
 この場合、前記部材本体と前記銅多孔質体とを焼結によって一体化することができ、熱伝導特性及び電気伝導特性に優れた銅多孔質複合部材を製造することが可能となる。
 本願発明によれば、銅原料同士が確実に接合され、熱伝導特性及び電気伝導特性に特に優れた銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することができる。
本願発明の第一の実施形態である銅多孔質体の拡大模式図である。 図1に示す銅多孔質体の製造方法の一例を示すフロー図である。 図1に示す銅多孔質体を製造する製造工程を示す説明図である。 本願発明の第二の実施形態である銅多孔質複合部材の外観説明図である。 図4に示す銅多孔質複合部材の製造方法の一例を示すフロー図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。 本願発明の他の実施形態である銅多孔質複合部材の外観図である。
 以下に、本願発明の実施形態である銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法について、添付した図面を参照して説明する。
(第一の実施形態)
 まず、本願発明の第一の実施形態である銅多孔質体10について、図1から図3を参照して説明する。
 本実施形態である銅多孔質体10は、図1に示すように、複数の銅繊維11が焼結された骨格部12を有している。
 ここで、銅繊維11は、銅又は銅合金からなり、本実施形態では、銅繊維11は、例えばC1100(タフピッチ銅)で構成されている。また、この銅繊維11は、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。
 なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。
また、本実施形態である銅多孔質体10においては、その見掛け密度Dが銅繊維11の真密度Dの51%以下とされている。銅繊維11の形状については、前記見掛け密度Dが銅繊維11の真密度Dの51%以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、繊維同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質体10の伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
 なお、銅繊維11は、引き抜き法、コイル切削法、ワイヤ切削法、溶融紡糸法などにより、所定の換算繊維径に調整され、これをさらに所定のL/Rを満たすように長さを調整して切断することにより、製造される。
 ここで、換算繊維径Rとは、各繊維の断面積Aを元に算出される値であり、断面形状に関わらず真円であると仮定し、以下の式により定義されるものである。
   R=(A/π)1/2×2
 また、本実施形態である銅多孔質体10においては、骨格部12(銅繊維11)の表面に酸化還元層が形成されており、銅繊維11、11同士の結合部においては、互いの表面に形成された酸化還元層同士が一体に結合している。
 なお、この酸化還元層は、ポーラスな構造とされており、骨格部12(銅繊維11)の表面に微細な凹凸を生じさせている。これにより、銅多孔質体10全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされている。
 特に限定はされないが、銅多孔質体10全体の比表面積の上限値は0.50m/gである。
 また、特に限定はされないが、好ましい銅多孔質体10全体の比表面積の範囲は0.03m/g~0.40m/gであり、より好ましくは0.05m/g~0.30m/gである。同様に特に限定はされないが、気孔率の範囲は60%~90%であり、より好ましくは70%~90%である。
 そして、本実施形態である銅多孔質体10においては、骨格部12全体の酸素濃度が0.025mass%以下とされている。
 骨格部12全体の酸素濃度の下限値は使用する銅のグレードに依存する値であり、特に限定はされない。無酸素銅が使用された場合の酸素濃度の下限値は0.00001mass%程度である。
 次に、本実施形態である銅多孔質体10の製造方法について、図2のフロー図及び図3の工程図等を参照して説明する。
 まず、酸素濃度が0.03mass%以下の銅繊維11を準備する。本実施形態では、例えば、酸素濃度が0.05mass%程度の銅繊維11に対して予備還元処理工程S00を行うことにより、銅繊維11の酸素濃度を0.03mass%以下にまで低減している。また、この予備還元処理工程S00により、特に銅繊維11の表面の酸素量が低減されることになる。なお、予備還元処理工程S00を行う前の状態で、銅繊維11の酸素濃度が0.03mass%以下であった場合であっても、予備還元処理工程S00を行うことにより、銅繊維11表面の清浄度を増すことが可能となる。
 本実施形態では、予備還元処理工程S00の条件は、雰囲気がアルゴンと水素の混合ガス雰囲気、保持温度が350℃以上、850℃以下、保持温度が5分以上、120分以下の範囲内とされている。
 ここで、予備還元処理工程S00における保持温度が350℃未満の場合には、銅繊維11を十分に還元できず、銅繊維11の酸素濃度を低減できないおそれがある。一方、予備還元処理工程S00における保持温度が850℃を超える場合には、予備還元処理工程S00において、銅繊維11同士が焼結してしまうおそれがある。
 以上のことから、本実施形態においては、予備還元処理工程S00における保持温度を350℃以上、850℃以下に設定している。なお、銅繊維11の酸素濃度を確実に低減するためには、予備還元処理工程S00における保持温度の下限を400℃以上とすることが好ましい。また、予備還元処理工程S00における銅繊維11同士の焼結を確実に抑制するためには、保持温度の上限を800℃以下とすることが好ましい。
 また、予備還元処理工程S00における保持時間が5分未満の場合には、銅繊維11を十分に還元できず、酸素濃度を低減できないおそれがある。一方、予備還元処理工程S00における保持時間が120分を超える場合には、予備還元処理工程S00において、銅繊維11同士が焼結してしまうおそれがある。
 以上のことから、本実施形態においては、予備還元処理工程S00における保持時間を5分以上、120分以下の範囲内に設定している。なお、銅繊維11の酸素濃度を確実に低減するためには、予備還元処理工程S00における保持時間の下限を10分以上とすることが好ましい。また、予備還元処理工程S00における銅繊維11同士の焼結を確実に抑制するためには、保持時間の上限を100分以下とすることが好ましい。
 次に、図3に示すように、予備還元処理工程S00を行った銅繊維11を、散布機31からステンレス製容器32内に向けて散布して嵩充填し、銅繊維11を積層する(銅繊維積層工程S01)。
 ここで、この銅繊維積層工程S01では、充填後の嵩密度Dが銅繊維11の真密度Dの50%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保されることになる。
 次に、ステンレス製容器32内に嵩充填された銅繊維11を酸化還元処理する(酸化還元処理工程S02)。
 この酸化還元処理工程S02においては、図2及び図3に示すように、銅繊維11の酸化処理を行う酸化処理工程S21と、酸化処理された銅繊維11を還元して焼結する還元処理工程S22と、を備えている。
 本実施形態では、図3に示すように、銅繊維11が充填されたステンレス製容器32を加熱炉33内に装入し、大気雰囲気で加熱して銅繊維11を酸化処理する(酸化処理工程S21)。この酸化処理工程S21により、銅繊維11の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
 本実施形態における酸化処理工程S21の条件は、保持温度が520℃以上、1050℃以下、保持時間が5分以上、300分以下の範囲内とされている。
 ここで、酸化処理工程S21における保持温度が520℃未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持温度が1050℃を超える場合には、銅繊維11の内部にまで酸化が進行してしまうおそれがある。
 以上のことから、本実施形態においては、酸化処理工程S21における保持温度を520℃以上、1050℃以下に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持温度の下限を600℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
 また、酸化処理工程S21における保持時間が5分未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持時間が300分を超える場合には、銅繊維11の内部にまで酸化が進行してしまうおそれがある。
 以上のことから、本実施形態においては、酸化処理工程S21における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持時間の下限を10分以上とすることが好ましい。また、銅繊維11の内部にまで酸化することを確実に抑制するためには、酸化処理工程S21における保持時間の上限を100分以下とすることが好ましい。
 次に、本実施形態では、図3に示すように、酸化処理工程S21を実施した後、銅繊維11が充填されたステンレス製容器32を加熱炉34内に装入し、還元雰囲気で加熱して、酸化された銅繊維11を還元処理して酸化還元層を形成するとともに、銅繊維11同士を結合して骨格部12を形成する(還元処理工程S22)。
 本実施形態における還元処理工程S22の条件は、雰囲気がアルゴンと水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、保持時間が5分以上、300分以下の範囲内とされている。
 ここで、還元処理工程S22における保持温度が600℃未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがある。一方、還元処理工程S22における保持温度が1080℃を超える場合には、銅の融点近傍にまで加熱されることになり、強度及び気孔率の低下がおこるおそれがある。
 以上のことから、本実施形態においては、還元処理工程S22における保持温度を600℃以上、1080℃以下に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するためには、還元処理工程S22における保持温度の下限を650℃以上とすることが好ましい。また、強度及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持温度の上限を1050℃以下とすることが好ましい。
 また、還元処理工程S22における保持時間が5分未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがあるとともに、焼結が不十分となるおそれがある。一方、還元処理工程S22における保持時間が300分を超える場合には、焼結による熱収縮が大きくなるとともに強度が低下するおそれがある。
 以上のことから、本実施形態においては、還元処理工程S22における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するとともに焼結を十分に進行させるためには、還元処理工程S22における保持温度の下限を10分以上とすることが好ましい。また、焼結による熱収縮や強度低下を確実に抑制するためには、還元処理工程S22における保持時間の上限を100分以下とすることが好ましい。
 この酸化処理工程S21及び還元処理工程S22により、銅繊維11(骨格部12)の表面には、酸化還元層が形成され、微細な凹凸が生じることになる。
 また、酸化処理工程S21によって銅繊維11の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維11同士が架橋される。その後、還元処理工程S22を行うことで、銅繊維11の表面に形成された酸化物層が還元されて上述の酸化還元層が形成されるとともに、この酸化還元層同士が結合することにより、銅繊維11同士が焼結されて骨格部12が形成される。
 以上のような製造方法により、銅繊維11、11同士が焼結されて骨格部12が形成されるとともに、骨格部12(銅繊維11)の表面に酸化還元層が形成される。そして、骨格部12全体の酸素濃度が0.025mass%以下とされ、本実施形態である銅多孔質体10が製造される。
 以上のような構成とされた本実施形態である銅多孔質体10によれば、骨格部12全体の酸素濃度が0.025mass%以下とされているので、酸化処理工程S21及び還元処理工程S22によって銅繊維11同士が確実に金属結合され、熱伝導特性及び電気伝導特性に特に優れている。
 ここで、骨格部12全体の酸素濃度が0.025mass%を超える場合、銅繊維11の金属結合が不十分となって、熱伝導特性及び電気伝導特性が低下してしまうおそれがある。
 以上のことから、本実施形態では、骨格部12全体の酸素濃度を0.25mass%以以下に設定している。なお、さらに熱伝導特性及び電気伝導特性を向上させるためには、骨格部12全体の酸素濃度を0.02mass%以下とすることが好ましい。
 また、本実施形態である銅多孔質体10によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11が焼結されることで骨格部12が形成されているので、銅繊維11同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率の高く、かつ寸法精度に優れている。
 また、本実施形態においては、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11を、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置する銅繊維積層工程S01を備えているので、銅繊維11同士の間の空隙を確保することができ、収縮を抑えることが可能となる。これにより、気孔率の高く寸法精度に優れた銅多孔質体10を製造することができる。
 具体的には、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置して焼結することによって製造された銅多孔質体10の見掛け密度Dが銅繊維11の真密度Dの51%以下とされているので、焼結時の収縮が抑制されており、高い気孔率を確保することが可能となる。
 ここで、銅繊維11の直径Rが0.02mm未満の場合には、銅繊維11同士の接合面積が小さく、焼結強度が不足するおそれがある。一方、銅繊維11の直径Rが1.0mmを超える場合には、銅繊維11同士が接触する接点の数が不足し、やはり、焼結強度が不足するおそれがある。
 以上のことから、本実施形態では、銅繊維11の直径Rを0.02mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.05mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
 また、銅繊維11の長さLと直径Rとの比L/Rが4未満の場合には、積層配置したときに嵩密度Dが銅繊維11の真密度Dの50%以下とすることが難しく、気孔率の高い銅多孔質体10を得ることが困難となるおそれがある。一方、銅繊維11の長さLと直径Rとの比L/Rが2500を超える場合には、銅繊維11を均一に分散させることができなくなり、均一な気孔率を有する銅多孔質体10を得ることが困難となるおそれがある。
 以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、2500以下の範囲内に設定している。なお、さらなる気孔率の向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、確実に気孔率が均一な銅多孔質体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を500以下とすることが好ましい。
 また、本実施形態である銅多孔質体の製造方法によれば、銅繊維11を酸化させる酸化処理工程S21と、酸化された銅繊維11を還元する還元処理工程S22と、を備えているので、銅繊維11(骨格部12)の表面に酸化還元層を形成することができる。
 そして、本実施形態である銅多孔質体の製造方法によれば、予備還元処理工程S00によって酸素濃度が0.03mass%以下とされた銅繊維11を用いているので、骨格部12全体の酸素濃度を0.025mass%以下とすることができる。
(第二の実施形態)
 次に、本願発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
 図4に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質体110と、を備えている。
 ここで、本実施形態である銅多孔質体110は、第一の実施形態と同様に、複数の銅繊維が焼結されて骨格部が形成されたものである。ここで、銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。本実施形態では、銅繊維は、例えば無酸素銅で構成されている。
 なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体110においては、その見掛け密度Dが銅繊維の真密度Dの51%以下とされている。
 さらに、本実施形態においては、銅多孔質体110を構成する銅繊維(骨格部)及び銅板120の表面に、後述するように酸化還元処理(酸化処理及び還元処理)を行うことによって酸化還元層が形成されており、これにより、銅繊維(骨格部)及び銅板120の表面に微細な凹凸が生じている。本実施形態では、銅多孔質体110全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされている。
 また、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板の表面に形成された酸化還元層とが一体に結合している。
 そして、本実施形態においては、銅多孔質体110の骨格部全体の酸素濃度が0.025mass%以下とされている。
 骨格部12全体の酸素濃度の下限値は使用する銅のグレードに依存する値であり、特に限定はされない。無酸素銅が使用された場合の酸素濃度の下限値は0.00001mass%程度である。
 次に、本実施形態である銅多孔質複合部材100を製造する方法について、図5のフロー図を参照して説明する。
 まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に酸素濃度が0.03mass%以下の銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、酸素濃度が0.03mass%以下の銅繊維を用いて、嵩密度Dが銅繊維の真密度Dの50%以下となるように複数の銅繊維を積層配置する。
 次に、銅板120の表面に積層配置された銅繊維同士を焼結して銅多孔質体110を成形するとともに銅多孔質体110と銅板120とを結合する(焼結工程S102及び接合工程S103)。この焼結工程S102及び接合工程S103においては、図5に示すように、銅繊維及び銅板120の酸化処理を行う酸化処理工程S121と、酸化処理された銅繊維及び銅板120を還元して焼結する還元処理工程S122と、を備えている。
 本実施形態では、銅繊維が積層配置された銅板120を加熱炉内に装入し、大気雰囲気で加熱して銅繊維を酸化処理する(酸化処理工程S121)。この酸化処理工程S121により、銅繊維及び銅板120の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
 ここで、本実施形態における酸化処理工程S121の条件は、保持温度が520℃以上、1050℃以下、望ましくは600℃以上、1000℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
 次に、本実施形態では、酸化処理工程S121を実施した後、銅繊維が積層配置された銅板120を焼成炉内に装入し、還元雰囲気で加熱して、酸化された銅繊維及び銅板120を還元処理し、銅繊維同士を結合するとともに銅繊維と銅板120とを結合する(還元処理工程S122)。
 ここで、本実施形態における還元処理工程S122の条件は、雰囲気が窒素と水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、望ましくは650℃以上、1050℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
 この酸化処理工程S121及び還元処理工程S122により、銅繊維(骨格部)及び銅板120の表面に酸化還元層が形成され、微細な凹凸が生じることになる。
 また、酸化処理工程S121によって銅繊維(骨格部)及び銅板120の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維同士及び銅板120が架橋される。その後、還元処理S122を行うことで、銅繊維(骨格部)及び銅板120の表面に形成された酸化物層が還元され、酸化還元層を介して銅繊維同士が焼結されて骨格部が形成されるとともに銅多孔質体110と銅板120とが結合される。
 以上のような製造方法によって、本実施形態である銅多孔質複合部材100が製造される。
 以上のような構成とされた本実施形態である銅多孔質複合部材100によれば、銅多孔質体110の骨格部全体の酸素濃度が0.025mass%以下とされているので、酸化処理工程S121及び還元処理工程S122によって銅繊維11同士が確実に金属結合されており、熱伝導特性及び電気伝導特性に特に優れている。
 また、本実施形態である銅多孔質複合部材100においては、銅板120の表面に、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維が焼結されてなる気孔率が高く、強度や寸法精度に優れた銅多孔質体110が接合されており、伝熱特性及び導電性等の各種特性に優れている。
 さらに、本実施形態においては、銅多孔質体110を構成する銅繊維及び銅板120の表面に酸化還元層が形成され、銅多孔質体110全体の比表面積が0.01m/g以上とされ、気孔率が50%以上90%以下の範囲内とされており、熱交換効率等を大幅に向上させることが可能となる。
 特に限定はされないが、銅多孔質体10全体の比表面積の上限値は0.50m/gである。
 また、特に限定はされないが、好ましい銅多孔質体10全体の比表面積の範囲は0.03m/g~0.40m/gであり、より好ましくは0.05m/g~0.30m/gである。同様に特に限定はされないが、気孔率の範囲は60%~90%であり、より好ましくは70%~90%である。
 また、本実施形態においては、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板120の表面に形成された酸化還元層とが一体に結合しているので、銅多孔質体110と銅板120とが強固に接合されることになり、接合界面の強度、伝熱特性及び導電性等の各種特性に優れている。
 本実施形態である銅多孔質複合部材100の製造方法によれば、銅繊維として酸素濃度が0.03mass%以下の無酸素銅を用いているので、銅多孔質体110の骨格部全体の酸素濃度を0.025mass%以下とすることができる。
 また、本実施形態である銅多孔質複合部材100の製造方法によれば、銅及び銅合金からなる銅板120の表面に銅繊維を積層配置し、焼結工程S102及び接合工程S103を同時に実施しているので、製造プロセスを簡略化することが可能となる。
 以上、本願発明の実施形態について説明したが、本願発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、図3に示す製造設備を用いて、銅多孔質体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質体を製造してもよい。
 酸化処理工程S21、S121の雰囲気については、所定温度で銅もしくは銅合金が酸化する酸化性雰囲気であればよく、具体的には、大気中に限らず、不活性ガス(例えば、窒素)に10vol%以上の酸素を含有する雰囲気であればよい。また、還元処理工程S22,S122の雰囲気についても、所定温度で銅酸化物が金属銅に還元もしくは酸化銅が分解する還元性雰囲気であればよく、具体的には、数vol%以上の水素を含有する窒素―水素混合ガス、アルゴン―水素混合ガス、純水素ガス、もしくは工業的によく用いられるアンモニア分解ガス、プロパン分解ガスなども好適に用いることができる。
 また、本実施形態においては、タフピッチ銅(JIS C1100)または無酸素銅(JIS C1020)からなる銅繊維を用いるものとして説明したが、これに限定されることはなく、銅繊維11の材質としては、リン脱酸銅(JIS C1201,C1220)、銀入り銅(たとえばCu-0.02~0.5mass%Ag)、クロム銅(たとえばCu-0.02~1.0mass%Cr)、ジルコン銅(たとえばCu-0.02~1.0mass%Zr)、錫入り銅(たとえばCu-0.1~1.0mass%Sn)などを好適に用いることができる。特に、200℃以上の高温環境下で使用する場合には、高温強度に優れた銀入り銅、クロム銅、錫入り銅、ジルコン銅などを用いることが好ましい。
 さらに、本実施形態では、銅繊維を焼結することで銅多孔質体の骨格部を形成するものとして説明したが、これに限定されることはなく、酸素濃度が0.03mass%以下の繊維不織布や金属フィルター等の銅多孔質体を用いる、あるいは予備還元処理S00を行うことにより酸素濃度が0.03mass%以下に低減した繊維不織布や金属フィルター等の銅多孔質体を素材に用いることで、骨格部全体の酸素濃度を0.025mass%以下とすることができ、同様の効果が期待される。
 また、第二の実施形態では、図4に示す構造の銅多孔質複合部材を例に挙げて説明したが、これに限定されることはなく、図6から図11に示すような構造の銅多孔質複合部材であってもよい。
 例えば、図6に示すように、銅多孔質体210の中に、部材本体として複数の銅管220が挿入された構造の銅多孔質複合部材200であってもよい。
 あるいは、図7に示すように、銅多孔質体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
 さらに、図8に示すように、部材本体である銅管420の内周面に銅多孔質体410を接合した構造の銅多孔質複合部材400であってもよい。
 また、図9に示すように、部材本体である銅管520の外周面に銅多孔質体510を接合した構造の銅多孔質複合部材500であってもよい。
 さらに、図10に示すように、部材本体である銅管620の内周面及び外周面に銅多孔質体610を接合した構造の銅多孔質複合部材600であってもよい。
 また、図11に示すように、部材本体である銅板720の両面に銅多孔質体710を接合した構造の銅多孔質複合部材700であってもよい。
 以下に、本願発明の効果を確認すべく行った確認実験の結果について説明する。
 表1に示す原料を用いて、三次元網目構造の骨格部を有する銅多孔質体を製造した。
 そして、表2に示す条件で酸化還元処理を行い、幅30mm×長さ200mm×厚さ5mmの銅多孔質体を製造した。なお、本発明例3~7、9,10においては、表2に示す条件で予備還元処理工程を実施した。
 さらに、得られた銅多孔質体について、酸素濃度、気孔率、相対電気伝導度について評価した。評価結果を表3に示す。なお、評価方法を以下に示す。
(繊維径R)
 繊維径Rは、マルバーン社製粒子解析装置「Morphologi G3」を用いて、JIS Z 8827-1に基づいて、画像解析により算出された円相当径(Heywood径)R=(A/π)1/2×2の平均値を用いた。
(繊維長L)
 銅繊維の繊維長Lは、マルバーン社製粒子解析装置「Morphologi G3」を用いて、画像解析により算出された単純平均値を用いた。
(繊維の酸素濃度)
 銅繊維約1gをLECO社製ガス分析装置(型番:TCEN-600)に投入し、キャリアガスとしてヘリウムガスを用いた不活性ガス融解法により、銅繊維中の酸素濃度(mass%)を測定した。
(銅多孔質体の酸素濃度C
 得られた銅多孔質体から切り出したサンプル約1gをLECO社製ガス分析装置(型番:TCEN-600)に投入し、キャリアガスとしてヘリウムガスを用いた不活性ガス融解法により、酸素濃度C(mass%)を測定した。
(見掛け密度比D/D及び気孔率P)
 得られた銅多孔質体の質量M(g)、体積V(cm)、銅多孔質体を構成する銅繊維の真密度D(g/cm)を測定し、以下の式で見掛け密度比D/D及び気孔率P(%)を算出した。なお、真密度Dは、精密天秤を用いて、水中法によって測定した。
  D/D=M/(V×D
  P=(1-(M/(V×D)))×100
(相対電気伝導率C
 得られた銅多孔質体から幅10mm×長さ500mm×厚さ5mmのサンプルを切り出し、JIS C2525に基づいて四端子法により電気伝導率C(S/m)を測定した。また、銅多孔質体を構成する銅又は銅合金からなるバルク材の電気伝導率C(S/m)と、銅多孔質体の見掛け密度比D/Dから、以下の式により、相対電気伝導率C(%)を求めた。
  C(%)=C/(C×(D/D))×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 銅多孔質体全体の酸素濃度が0.025mass%を超える比較例1、2においては、相対電気伝導率が10%を下回っていた。
 これに対して、銅多孔質体全体の酸素濃度が0.025mass%以下とされた本発明例1~10においては、相対電気伝導率が十分に高くなっていた。
 以上のことから、本発明例によれば、熱伝導特性及び電気伝導特性に優れた銅多孔質体を提供可能であることが確認された。
 熱伝導特性及び電気伝導特性に特に優れた銅多孔質体、この銅多孔質体が部材本体に接合された銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法を提供することができ、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター、衝撃吸収部材等として適用できる。
 10、110  銅多孔質体
 11  銅繊維
 12  骨格部
 100  銅多孔質複合部材
 120  銅板(部材本体)

Claims (10)

  1.  三次元網目構造の骨格部を有する銅多孔質体であって、
     前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しており、
     前記骨格部全体の酸素濃度が0.025mass%以下とされていることを特徴とする銅多孔質体。
  2.  前記銅多孔質体全体の比表面積が0.01m/g以上、気孔率が50%以上90%以下の範囲内とされていることを特徴とする請求項1に記載の銅多孔質体。
  3.  前記骨格部は、複数の銅繊維の焼結体とされており、前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされていることを特徴とする請求項1又は請求項2に記載の銅多孔質体。
  4.  部材本体と、請求項1から請求項3のいずれか一項に記載の銅多孔質体と、が接合されてなることを特徴とする銅多孔質複合部材。
  5.  前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体とが焼結によって接合されていることを特徴とする請求項4に記載の銅多孔質複合部材。
  6.  請求項1から請求項3のいずれか一項に記載の銅多孔質体を製造する銅多孔質体の製造方法であって、
     酸素濃度が0.025mass%以下の前記骨格部を形成する骨格部形成工程と、前記骨格部の表面に前記酸化還元層を形成する酸化還元工程と、を備えていることを特徴とする銅多孔質体の製造方法。
  7.  酸素濃度が0.03mass%以下の前記銅原料を積層する銅原料積層工程と、積層された複数の前記銅原料同士を焼結する焼結工程と、を有し、前記焼結工程では、前記銅繊維を酸化させた後、酸化された前記銅繊維を還元し、前記銅繊維同士を結合させて前記骨格部を形成するとともに、前記骨格部の表面に前記酸化還元層を形成することを特徴とする請求項6に記載の銅多孔質体の製造方法。
  8.  前記銅原料の酸素濃度を低減させる予備還元処理を行うことを特徴とする請求項7に記載の銅多孔質体の製造方法。
  9.  部材本体と銅多孔質体とが接合された銅多孔質複合部材を製造する銅多孔質複合部材の製造方法であって、
     請求項6から請求項8のいずれか一項に記載の銅多孔質体の製造方法によって製造された銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。
  10.  前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することを特徴とする請求項9に記載の銅多孔質複合部材の製造方法。
PCT/JP2016/065160 2015-06-12 2016-05-23 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 WO2016199566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177032666A KR20180016985A (ko) 2015-06-12 2016-05-23 동 다공질체, 동 다공질 복합 부재, 동 다공질체의 제조 방법, 및, 동 다공질 복합 부재의 제조 방법
US15/579,688 US10493528B2 (en) 2015-06-12 2016-05-23 Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part
CN201680025074.8A CN107530776B (zh) 2015-06-12 2016-05-23 铜多孔体、铜多孔复合部件、铜多孔体的制造方法及铜多孔复合部件的制造方法
EP16807273.4A EP3308883A4 (en) 2015-06-12 2016-05-23 Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-119523 2015-06-12
JP2015119523A JP6107888B2 (ja) 2015-06-12 2015-06-12 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法

Publications (1)

Publication Number Publication Date
WO2016199566A1 true WO2016199566A1 (ja) 2016-12-15

Family

ID=57504523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065160 WO2016199566A1 (ja) 2015-06-12 2016-05-23 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法

Country Status (6)

Country Link
US (1) US10493528B2 (ja)
EP (1) EP3308883A4 (ja)
JP (1) JP6107888B2 (ja)
KR (1) KR20180016985A (ja)
CN (1) CN107530776B (ja)
WO (1) WO2016199566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126450A (ko) * 2017-04-21 2018-11-27 제이엑스금속주식회사 구리분말 및 그 제조 방법, 및 입체조형물의 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565710B2 (ja) * 2016-01-27 2019-08-28 三菱マテリアル株式会社 銅部材接合体の製造方法
JP6733286B2 (ja) * 2016-04-27 2020-07-29 三菱マテリアル株式会社 銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP2018193584A (ja) * 2017-05-17 2018-12-06 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
DE102017216566A1 (de) * 2017-09-19 2019-03-21 Alantum Europe Gmbh Verfahren zur Herstellung eines offenporösen Formkörpers mit modifizierter Oberfläche, der mit einem Metall gebildet ist und einen mit dem Verfahren hergestellten Formkörper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192107A (ja) * 1998-12-25 2000-07-11 Kogi Corp 多孔質金属及びその製造方法
JP2013189676A (ja) * 2012-03-13 2013-09-26 National Institute Of Advanced Industrial Science & Technology 金属多孔体及び金属多孔体の製造方法。
WO2016063905A1 (ja) * 2014-10-22 2016-04-28 三菱マテリアル株式会社 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2203895A (en) 1939-01-06 1940-06-11 Gen Motors Corp Method of sintering porous metal objects
JPS5817817B2 (ja) 1974-11-26 1983-04-09 株式会社豊田中央研究所 大表面積金属体の製造方法
US5378426A (en) 1992-10-21 1995-01-03 Pall Corporation Oxidation resistant metal particulates and media and methods of forming the same with low carbon content
JP3387158B2 (ja) 1993-06-16 2003-03-17 株式会社ユアサコーポレーション 亜鉛極板
JPH08145592A (ja) 1994-11-16 1996-06-07 Hitachi Chem Co Ltd 伝熱部材およびその製造法
US5640669A (en) 1995-01-12 1997-06-17 Sumitomo Electric Industries, Ltd. Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
JP3264240B2 (ja) 1998-01-30 2002-03-11 三菱マテリアル株式会社 銅多孔質層を有する銅管の製造方法
JP2000248304A (ja) 1999-03-03 2000-09-12 Fukuda Metal Foil & Powder Co Ltd 多孔質金属粉末およびその製造方法
US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
JP3735712B2 (ja) * 2002-03-12 2006-01-18 独立行政法人産業技術総合研究所 多孔質材料の作製方法及びその成形体
JP2004218887A (ja) * 2003-01-10 2004-08-05 Fujikura Ltd 電子素子の冷却装置
PT2054901T (pt) 2006-08-16 2020-01-16 H C Starck Tantalum And Niobium Gmbh Produtos semiacabados com uma superfície ativa do ponto de vista da sinterização e um processo para a sua produção
CN101088675A (zh) 2007-07-05 2007-12-19 华东理工大学 铜镍合金多孔表面管的烧结方法
WO2009055452A2 (en) * 2007-10-24 2009-04-30 Mott Corporation Sintered fiber filter
JP4812823B2 (ja) * 2008-10-27 2011-11-09 Ntn株式会社 複層軸受の製造方法
CN103402601B (zh) 2011-02-04 2016-02-17 恩特格林斯公司 烧结粉末和金属纤维的多孔金属膜
CN102876909B (zh) * 2012-10-26 2014-06-11 湖南新光环科技发展有限公司 泡沫金属及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192107A (ja) * 1998-12-25 2000-07-11 Kogi Corp 多孔質金属及びその製造方法
JP2013189676A (ja) * 2012-03-13 2013-09-26 National Institute Of Advanced Industrial Science & Technology 金属多孔体及び金属多孔体の製造方法。
WO2016063905A1 (ja) * 2014-10-22 2016-04-28 三菱マテリアル株式会社 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3308883A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126450A (ko) * 2017-04-21 2018-11-27 제이엑스금속주식회사 구리분말 및 그 제조 방법, 및 입체조형물의 제조 방법
EP3412379A4 (en) * 2017-04-21 2019-10-30 JX Nippon Mining & Metals Corporation COPPER POWDER, METHOD FOR PRODUCING COPPER POWDER AND METHOD FOR PRODUCING A SOLID MOLDED OBJECT
KR102173257B1 (ko) 2017-04-21 2020-11-03 제이엑스금속주식회사 구리분말 및 그 제조 방법, 및 입체조형물의 제조 방법

Also Published As

Publication number Publication date
EP3308883A4 (en) 2018-11-14
US10493528B2 (en) 2019-12-03
JP2017002375A (ja) 2017-01-05
EP3308883A1 (en) 2018-04-18
CN107530776A (zh) 2018-01-02
KR20180016985A (ko) 2018-02-20
CN107530776B (zh) 2019-12-06
US20180161877A1 (en) 2018-06-14
JP6107888B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6065059B2 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
WO2016199566A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6011593B2 (ja) 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法
JP6589402B2 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
WO2016199571A1 (ja) 銅多孔質体、及び、銅多孔質複合部材
WO2018135575A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
WO2017187938A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6565710B2 (ja) 銅部材接合体の製造方法
JP6249060B2 (ja) 銅多孔質複合部材
WO2018212039A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177032666

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579688

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807273

Country of ref document: EP