WO2016199565A1 - 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 - Google Patents
銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 Download PDFInfo
- Publication number
- WO2016199565A1 WO2016199565A1 PCT/JP2016/065122 JP2016065122W WO2016199565A1 WO 2016199565 A1 WO2016199565 A1 WO 2016199565A1 JP 2016065122 W JP2016065122 W JP 2016065122W WO 2016199565 A1 WO2016199565 A1 WO 2016199565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- porous body
- copper porous
- skeleton
- composite member
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1143—Making porous workpieces or articles involving an oxidation, reduction or reaction step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/062—Fibrous particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/20—Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12153—Interconnected void structure [e.g., permeable, etc.]
Definitions
- the present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite.
- the present invention relates to a method for manufacturing a member.
- Patent Document 1 proposes a metal porous body obtained by modifying the surface of a metal porous body having a three-dimensional network structure into a porous metal film.
- Patent Document 2 proposes a heat exchange member in which a copper porous layer is formed by sintering copper powder on the surface of a copper tube.
- an oxidation film is formed by oxidizing a metal porous body having a three-dimensional network structure, and further, a reduction treatment is performed to change the surface of the metal porous body to a porous metal film. Quality.
- the powder which consists of copper or a copper alloy is used as a raw material, this raw material powder is temporarily joined to the surface of a copper pipe with a binder, and a copper porous layer is formed by performing oxidation treatment and reduction treatment. ing.
- the present invention was made against the background as described above, and is a copper porous body particularly excellent in thermal conductivity and electrical conductivity, and a copper porous body in which this copper porous body is joined to a member main body. It aims at providing the manufacturing method of a composite member, a copper porous body, and the manufacturing method of a copper porous composite member.
- the copper porous body of one embodiment of the present invention (hereinafter referred to as “copper porous body of the present invention”) has a three-dimensional network structure skeleton.
- the copper porous body has a redox layer formed by a redox treatment on the surface of the skeleton, and the entire average crystal grain size including the skeleton and the redox layer Is 5% or more of the diameter of the skeleton.
- the redox layer formed by the redox treatment is provided on the surface of the skeleton portion, the specific surface area is increased, for example, the heat passing through the porous skeleton surface. It is possible to greatly improve the exchange efficiency and the like. And since the total average crystal grain size including the skeleton part and the redox layer is 5% or more of the diameter of the skeleton part, the crystal grain size is relatively large, and the skeleton part and the redox layer The layer has fewer grain boundaries and is excellent in thermal conductivity and electrical conductivity.
- the skeleton is preferably a sintered body of a plurality of copper fibers.
- a sufficient gap is secured between the copper fibers, the shrinkage rate during sintering can be suppressed, and the porosity can be made relatively high.
- the copper fiber has a diameter R in the range of 0.02 mm to 1.0 mm, and a ratio L / R of the length L to the diameter R of 4 to 2500. It is preferable to be within the following range.
- copper fibers having a diameter R in the range of 0.02 mm to 1.0 mm and a ratio L / R of the length L to the diameter R in the range of 4 to 2500 are baked. Since it is configured by being bonded, a sufficient gap is secured between the copper fibers, the shrinkage rate during sintering can be suppressed, the porosity can be increased, and the dimensions are further increased. Excellent accuracy.
- a copper porous composite member according to another aspect of the present invention (hereinafter referred to as “copper porous composite member of the present invention”) is characterized in that a member main body and the above-mentioned copper porous body are joined. Yes.
- the copper porous composite member having this configuration since the copper porous body having a relatively large specific surface area and excellent in thermal conductivity and electrical conductivity is firmly joined to the member main body, In addition to the characteristics of a single copper porous body excellent in heat exchange efficiency through the skeleton surface, the copper porous composite member exhibits various characteristics such as excellent heat transfer characteristics and conductivity.
- the joint surface of the member main body with the copper porous body is made of copper or a copper alloy, and the copper porous body and the member main body are sintered. It is preferable that it is joined by.
- the copper porous body and the member main body are integrally bonded by sintering, the copper porous body and the member main body are firmly bonded, and the copper porous composite Various properties such as excellent strength, heat transfer characteristics and conductivity are exhibited as members.
- the method for producing a copper porous body according to another aspect of the present invention is a method for producing a copper porous body for producing the above-mentioned copper porous body. And a redox treatment step for forming the redox layer by oxidation-reduction treatment of the skeleton portion, and a recrystallization step for recrystallizing the skeleton portion and the redox layer. Yes.
- an oxidation-reduction treatment step of forming the oxidation-reduction layer by oxidation-reduction treatment of the skeleton portion, and recrystallization for recrystallizing the skeleton portion and the oxidation-reduction layer In the recrystallization step, the crystal grains of the skeleton part and the redox layer can be coarsened, and a copper porous body excellent in thermal conductivity and electrical conductivity is manufactured. It becomes possible.
- the skeleton may be formed by sintering a copper raw material.
- a skeleton having a three-dimensional network structure can be formed, and a copper porous body made of a sintered body can be obtained.
- the manufacturing method of the copper porous body of this invention it is preferable to perform the homogenization process of the said frame
- the crystal grains of the redox layer can be coarsened by growing the crystal grains of the redox layer based on the coarse crystal grains of the skeleton.
- the method for producing a copper porous composite member according to another embodiment of the present invention is a copper porous material in which a member main body and a copper porous body are joined. It is a manufacturing method of the copper porous composite member which manufactures a composite member, Comprising: It has the joining process which joins the copper porous body manufactured by the manufacturing method of the above-mentioned copper porous body, and the said member main body. It is characterized by.
- the copper porous body having the same high porosity and excellent strength as the copper porous body produced by the above-described copper porous body production method is provided.
- a bonding surface to which the copper porous body is bonded in the member main body is made of copper or a copper alloy, and the copper porous body It is preferable to join the member main body by sintering.
- the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member excellent in various characteristics such as heat transfer characteristics and conductivity can be manufactured. .
- a copper porous body particularly excellent in thermal conductivity and electrical conductivity a copper porous composite member in which this copper porous body is joined to a member body, a method for producing a copper porous body, and A method for producing a copper porous composite member can be provided.
- the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS. 1-4.
- the copper porous body 10 which is this embodiment has the frame
- the copper fiber 11 is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more and 2500. Within the following range.
- the copper fiber 11 is comprised by C1100 (tough pitch copper), for example.
- the copper fiber 11 is given a shape such as twisting or bending.
- the apparent density ratio D A is less 51% of the true density D T of the copper fibers 11.
- a void shape between fibers can be formed sterically and isotropically. This leads to an improvement in the isotropy of various characteristics such as heat transfer characteristics and conductivity.
- the oxidation reduction layer is formed in the surface of the frame
- the redox layers formed on each other are bonded together.
- the redox layer has a porous structure, and has fine irregularities on the surface of the skeleton 12 (copper fibers 11).
- the specific surface area of the whole copper porous body 10 shall be 0.01 m ⁇ 2 > / g or more, and the porosity shall be in the range of 50% or more and 90% or less.
- the upper limit value of the specific surface area of the entire copper porous body 10 is 0.50 m 2 / g.
- the range of the specific surface area of the entire preferred copper porous body 10 is 0.03m 2 /g ⁇ 0.40m 2 / g, more preferably 0.05m 2 /g ⁇ 0.30m 2 / g.
- the porosity range is 60% to 90%, and more preferably 70% to 90%.
- skeleton part 12 and a redox layer is coarsened, and the whole containing the frame
- the average crystal grain size is set to 5% or more of the diameter of the skeleton 12.
- the coarsening of the crystal grains reduces the number of crystal grain boundaries existing in the entire copper porous body 10 including the skeleton 12 and the redox layer.
- the entire average crystal grain size including the skeleton part 12 and the redox layer is in the range of 5% to 300% of the diameter of the skeleton part 12.
- a homogenization process is performed with respect to the copper fiber 11 used as a raw material (homogenization process process S00).
- the furnace is cooled in an inert atmosphere (for example, argon, nitrogen, etc.) after heat treatment at 300 ° C. to 1080 ° C. for 5 minutes to 24 hours.
- an inert atmosphere for example, argon, nitrogen, etc.
- the holding temperature in the homogenization step S00 is set within a range of 300 ° C. or higher and 1080 ° C. or lower.
- the lower limit of the holding temperature in the homogenization step S00 is 500 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
- the holding time in the homogenization treatment step S00 is set within a range of 5 minutes to 24 hours. In order to reliably coarsen the crystal grains of the copper fiber 11, it is preferable that the lower limit of the holding time in the homogenization step S00 is 30 minutes or more and the upper limit of the holding time is 18 hours or less.
- the copper fibers 11 subjected to the homogenization treatment are spread and filled from the spreader 31 into the stainless steel container 32 to stack the copper fibers 11 (copper fiber lamination).
- Step S01 the copper fibers laminating step S01, a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 50% of the true density D T of the copper fibers 11.
- shape provision processing such as a twist process and a bending process, is given to the copper fiber 11, a three-dimensional and isotropic space
- oxidation reduction treatment step S02 oxidation reduction treatment step S02
- the stainless steel container 32 filled with the copper fibers 11 is charged into a heating furnace 33 and heated in an air atmosphere to oxidize the copper fibers 11 (oxidation process step). S21).
- the conditions of the oxidation treatment step S21 in the present embodiment are set such that the holding temperature is 520 ° C. or higher and 900 ° C. or lower and the holding time is 5 minutes or longer and 300 minutes or shorter.
- the holding temperature in the oxidation treatment step S ⁇ b> 21 is set to 520 ° C. or higher and 900 ° C. or lower.
- the lower limit of the holding temperature in the oxidation treatment step S21 is 600 ° C. or higher and the upper limit of the holding temperature is 850 ° C. or lower.
- the holding time in the oxidation treatment step S21 is set within a range of 5 minutes or more and 300 minutes or less.
- the minimum of the retention time in oxidation treatment process S21 shall be 10 minutes or more.
- the upper limit of the retention time in oxidation treatment process S21 into 100 minutes or less.
- the stainless steel container 32 filled with the copper fibers 11 is charged into the heating furnace 34 and heated in a reducing atmosphere. Then, the oxidized copper fibers 11 are reduced to form a redox layer, and the copper fibers 11 are joined together to form the skeleton part 12 (reduction treatment step S22).
- the conditions of the reduction treatment step S22 in the present embodiment are such that the atmosphere is a mixed gas atmosphere of argon and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter. .
- the holding temperature in the reduction treatment step S ⁇ b> 22 is less than 600 ° C.
- the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced.
- the holding temperature in the reduction treatment step S22 exceeds 1080 ° C., it is heated to the vicinity of the melting point of copper, and the specific surface area and the porosity may be reduced.
- the holding temperature in the reduction treatment step S22 is set to 600 ° C. or higher and 1080 ° C. or lower.
- the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 650 ° C. or higher.
- the upper limit of the retention temperature in reduction process process S22 shall be 1050 degrees C or less.
- the holding time in the reduction treatment step S22 is set within a range of 5 minutes or more and 300 minutes or less.
- the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 10 minutes or more.
- an oxidation reduction layer is formed on the surface of the copper fiber 11 (frame portion 12), and fine irregularities are generated. Moreover, an oxide layer is formed on the surface of the copper fiber 11 by the oxidation treatment step S21, and the plurality of copper fibers 11 are cross-linked by the oxide layer. Thereafter, by performing the reduction treatment step S22, the oxide layer formed on the surface of the copper fiber 11 is reduced to form the above-described oxidation-reduction layer, and the oxidation-reduction layers are bonded to each other. The fibers 11 are sintered to form the skeleton part 12.
- the stainless steel container 32 filled with the copper fibers 11 is charged into the heat treatment furnace 35, and the skeleton part 12 and the redox layer are formed. Recrystallization treatment is performed (recrystallization step S03).
- the conditions of the recrystallization step S03 in this embodiment are a reducing atmosphere or an inert gas atmosphere (N 2 atmosphere in this embodiment), a holding temperature of 300 ° C. or higher and 1080 ° C. or lower, a holding time of 5 minutes or longer, and 24 hours. Within the following range.
- the crystal grains of the skeleton part 12 and the redox layer are coarsened, and the total average crystal grain size including the skeleton part 12 and the redox layer is set to 5% or more of the diameter of the skeleton part 12.
- the holding temperature in the recrystallization step S03 is less than 300 ° C.
- the recrystallization may not be sufficiently performed.
- the holding temperature in the recrystallization step S03 exceeds 1080 ° C.
- the recrystallization proceeds completely, and no further crystal grain coarsening can be achieved.
- it will be heated to the melting
- the holding temperature in the recrystallization step S03 is set to 300 ° C. or higher and 1080 ° C. or lower.
- the holding time in the recrystallization step S03 is set within the range of 5 minutes or more and 24 hours or less.
- the product T ⁇ H of the holding temperature T (° C.) and the holding time H (min) in the step S03 is preferably 1000000 or less, and more preferably 600000 or less.
- (T ⁇ 300) ⁇ H is preferably 5000 or more, and more preferably 10,000 or more.
- the copper fibers 11 and 11 are sintered together to form the skeleton part 12, and a redox layer is formed on the surface of the skeleton part 12 (copper fiber 11).
- the copper porous body 10 which is this embodiment is manufactured by coarsening the crystal grain of the frame
- the overall average crystal grain size including the skeleton portion 12 and the redox layer is 5% or more of the diameter of the skeleton portion 12.
- the diameter of the skeleton 12 is in the range of 5% or more and 300% or less, so that the crystal grain size is relatively large and the crystal grain boundary is reduced, and the thermal conductivity and electrical conductivity are reduced. Is excellent.
- the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more, Since the skeleton part 12 is formed by sintering the copper fiber 11 within the range of 2500 or less, a sufficient gap is secured between the copper fibers 11 and the shrinkage rate during sintering The porosity is high and the dimensional accuracy is excellent.
- the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is in the range of 4 to 2500.
- the bulk density D P is the true density D Apparent density ratio D A copper porous body 10 produced by sintering and stacked so that more than 50% of T copper fibers 11 Since it is 51% or less of the true density DT of the copper fiber 11, the shrinkage
- the diameter R of the copper fibers 11 is set in the range of 0.02 mm or more and 1.0 mm or less.
- the lower limit of the diameter R of the copper fiber 11 is preferably 0.05 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
- the ratio L / R of the length L and the diameter R of the copper fibers 11 is set in the range of 4 or more and 2500 or less.
- the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more.
- the manufacturing method of the copper porous body which is this embodiment since the oxidation treatment process S21 which oxidizes the copper fiber 11 and the reduction treatment process S22 which reduces the oxidized copper fiber 11 are provided. A redox layer can be formed on the surface of the copper fiber 11 (skeleton part 12). And according to the manufacturing method of the copper porous body which is this embodiment, since it has recrystallization process S03 which performs recrystallization process of frame part 12 and a redox layer, the crystal of frame part 12 and a redox layer The grains can be coarsened, and the overall average crystal grain size including the skeleton 12 and the redox layer can be 5% or more of the diameter of the skeleton 12.
- the copper fiber 11 is used as the sintering raw material for forming the skeleton part 12, the ratio of the non-redox region to the redox layer formed on the surface is increased, and the crystal grain size is increased. It can suppress becoming fine.
- the homogenization process S00 which performs the homogenization process of the copper fiber 11 which forms the frame
- the copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.
- the copper porous body 110 is obtained by sintering a plurality of copper fibers to form a skeleton portion, as in the first embodiment.
- the copper fiber is made of copper or a copper alloy
- the diameter R is in the range of 0.02 mm to 1.0 mm
- the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. It is within the range.
- the copper fiber is made of, for example, C1100 (tough pitch copper).
- the copper fiber is given a shape such as twisting or bending.
- the apparent density ratio D A is less 51% of the true density D T of copper fibers.
- a redox layer is formed by performing redox treatment (oxidation treatment and reduction treatment) on the surfaces of the copper fibers (skeleton part) and the copper plate 120 constituting the copper porous body 110 as described later.
- redox treatment oxidation treatment and reduction treatment
- fine irregularities are formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120.
- the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more, and the porosity is in the range of 50% to 90%.
- the upper limit value of the specific surface area of the entire copper porous body 10 is 0.50 m 2 / g.
- the range of the specific surface area of the entire preferred copper porous body 10 is 0.03m 2 /g ⁇ 0.40m 2 / g, more preferably 0.05m 2 /g ⁇ 0.30m 2 / g.
- the porosity range is 60% to 90%, and more preferably 70% to 90%.
- the crystal grains of the skeleton part and the redox layer of the copper porous body 110 are coarsened, and the overall average crystal grain size including the skeleton part and the redox layer is the diameter of the skeleton part. Of 5% or more. As described above, the coarsening of the crystal grains reduces the number of crystal grain boundaries existing in the entire copper porous body 110 including the skeleton and the redox layer. In the present embodiment, the average crystal grain size of the entire copper porous body 110 including the skeleton part and the redox layer is in the range of 5% to 300% of the diameter of the skeleton part.
- the copper plate 120 which is a member main body is prepared (copper plate arrangement
- copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101).
- bulk density D P is stacked a plurality of copper fibers to be equal to or less than 50% of the true density D T of copper fibers.
- the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering step S102 and joining step S103). ).
- the oxidation treatment step S121 for oxidizing the copper fibers and the copper plate 120 and the oxidized copper fibers and the copper plate 120 are reduced and sintered.
- the copper plate 120 on which the copper fibers are laminated is placed in a heating furnace and heated in an air atmosphere to oxidize the copper fibers (oxidation treatment step S121).
- oxidation treatment step S121 an oxide layer having a thickness of 1 ⁇ m or more and 100 ⁇ m or less is formed on the surfaces of the copper fiber and the copper plate 120, for example.
- the conditions of the oxidation treatment step S121 in this embodiment are that the holding temperature is 520 ° C. or higher and 900 ° C. or lower, desirably 600 ° C. or higher and 850 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter, preferably 10 It is within the range of not less than 100 minutes and not more than 100 minutes.
- the copper plate 120 on which the copper fibers are laminated is placed in a firing furnace, heated in a reducing atmosphere, and oxidized copper fibers and the copper plate 120.
- the copper fiber and the copper plate 120 are combined with each other (reduction process step S122).
- the conditions of the reduction treatment step S122 in the present embodiment are that the atmosphere is a mixed gas atmosphere of nitrogen and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, desirably 650 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 Min. To 300 min., Preferably 10 min. To 100 min.
- a redox layer is formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120, and fine irregularities are generated.
- an oxide layer is formed on the surfaces of the copper fibers (skeleton) and the copper plate 120 by the oxidation treatment step S121, and the plurality of copper fibers and the copper plate 120 are cross-linked by the oxide layer.
- the reduction treatment S122 is performed to reduce the copper fiber (skeleton part) and the oxide layer formed on the surface of the copper plate 120, and the copper fibers are sintered through the oxidation-reduction layer to form the skeleton part. At the same time, the copper fiber and the copper plate 120 are combined.
- a recrystallization process is performed in order to coarsen the crystal grains of the skeleton and the redox layer (recrystallization step S104).
- the conditions of the recrystallization step S104 in the present embodiment are a reducing atmosphere or an inert gas atmosphere, a holding temperature of 300 ° C. or higher and 1080 ° C. or lower, a holding time of 5 minutes or longer and 24 hours or shorter.
- the crystal grains of the skeleton part and the redox layer are coarsened, and the total average crystal grain size including the skeleton part and the redox layer is set to 5% or more of the diameter of the skeleton part.
- the copper porous composite member 100 according to the present embodiment is manufactured by the manufacturing method as described above.
- the overall average crystal grain size including the skeleton part and the redox layer of the copper porous body 110 is equal to the diameter of the skeleton part. Since it is 5% or more, the crystal grain size is relatively large, the crystal grain boundary is reduced in the skeleton part and the redox layer, and the thermal conductivity and electrical conductivity are excellent.
- the diameter R is within the range of 0.02 mm to 1.0 mm on the surface of the copper plate 120, and the ratio L between the length L and the diameter R is L. / R is 4 or more and 2500 or less, a copper porous body 110 having a high porosity and excellent strength and dimensional accuracy is bonded, and heat transfer characteristics and conductivity Excellent properties such as properties.
- an oxidation-reduction layer is formed on the surfaces of the copper fibers and the copper plate 120 constituting the copper porous body 110, and the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more.
- the porosity is in the range of 50% or more and 90% or less, and the heat exchange efficiency through the porous skeleton surface can be greatly improved.
- bond part of the copper fiber which comprises the copper porous body 110, and the surface of the copper plate 120 it formed in the surface of the copper plate 120 and the oxidation reduction layer formed in the surface of the copper fiber. Since the oxidation-reduction layer is integrally bonded, the copper porous body 110 and the copper plate 120 are firmly bonded, and excellent in various properties such as the strength of the bonding interface, heat transfer characteristics, and conductivity. Yes.
- the crystal grains of the skeleton part and the redox layer are added.
- the total average crystal grain size including the skeleton and the redox layer can be 5% or more of the diameter of the skeleton.
- a copper fiber is laminated
- the atmosphere of the oxidation treatment steps S21 and S121 may be any oxidizing atmosphere in which copper or a copper alloy is oxidized at a predetermined temperature.
- the atmosphere is not limited to the atmosphere, but an inert gas (for example, nitrogen or argon) ) In an atmosphere containing 10 vol% or more of oxygen.
- the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined temperature. Specifically, hydrogen of several vol% or more is used. A nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, a pure hydrogen gas, or an ammonia decomposition gas or a propane decomposition gas that is often used industrially can also be suitably used.
- Copper porous materials such as a fiber nonwoven fabric and a metal filter
- a material may be prepared, and the copper porous body may be subjected to oxidation-reduction treatment and recrystallization treatment.
- you may perform a homogenization process with respect to copper porous bodies, such as a fiber nonwoven fabric and a metal filter, before performing an oxidation reduction process.
- the copper fiber made of tough pitch copper (JIS C1100) or oxygen-free copper (JIS C1020) has been described.
- Phosphorus deoxidized copper (JIS C1201, C1220) copper containing silver (for example, Cu-0.02-0.5 mass% Ag), chromium copper (for example, Cu-0.02-1.0 mass% Cr), zircon copper ( For example, Cu-0.02 to 1.0 mass% Zr), tin-containing copper (for example, Cu-0.1 to 1.0 mass% Sn), or the like can be preferably used.
- silver-containing copper, chromium copper, tin-containing copper, zircon copper, or the like excellent in high-temperature strength.
- the copper porous composite member having the structure shown in FIG. 5 has been described as an example.
- the present invention is not limited to this, and the copper having the structure as shown in FIGS. It may be a porous composite member.
- a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
- a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.
- a copper porous composite member 400 having a structure in which a copper porous body 410 is joined to an inner peripheral surface of a copper tube 420 that is a member main body may be used.
- the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper tube 520 which is a member main body may be sufficient.
- a copper porous composite member 600 having a structure in which a copper porous body 610 is bonded to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
- the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.
- Example 11 of the present invention a porous material made of a nonwoven fabric was used.
- homogenization treatment was performed at 900 ° C. for 24 hours in a nitrogen atmosphere before the oxidation-reduction treatment step.
- the oxidation reduction process and recrystallization process were performed on the conditions shown in Table 2, and the copper porous body of width 30mm * length 200mm * thickness 5mm was manufactured. In the comparative example, the recrystallization process was omitted. Furthermore, about the obtained copper porous body, the diameter (skeleton diameter) of the skeleton part, the porosity, the average crystal grain size, the specific surface area, the relative tensile strength, and the relative electrical conductivity were evaluated. The evaluation results are shown in Table 3. The evaluation method is shown below. Moreover, the EBSD observation result of this invention example 8 is shown in FIG. 13, and the EBSD observation result of the comparative example 2 is shown in FIG.
- Specific surface area A S As the specific surface area A S (m 2 / g) of the copper porous body, a value measured by the BET method using krypton gas in accordance with JIS Z8830 was used.
- the total average crystal grain size including the skeleton part and the redox layer was small and was 2.2% or less of the diameter of the skeleton part.
- the relative tensile strength ratio RCS is low.
- the total average crystal grain size including the skeleton part and the redox layer was 5% or more of the diameter of the skeleton part, and the relative electrical conductivity was The relative tensile strength ratio RCS is high. From the above, according to the present invention example, it was confirmed that a copper porous body particularly excellent in thermal conductivity and electrical conductivity can be provided.
- a manufacturing method can be provided, and can be applied to, for example, electrodes and current collectors, members for heat exchangers, silencers, filters, impact absorbing members, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
本願は、2015年6月12日に、日本に出願された特願2015-119694号に基づき優先権を主張し、その内容をここに援用する。
例えば、特許文献1には、三次元網目構造の金属多孔体の表面を多孔質金属膜に改質した金属多孔質体が提案されている。
また、特許文献2には、銅管表面に銅粉末を焼結させて銅多孔質層を形成した熱交換部材が提案されている。
また、特許文献2においては、銅又は銅合金からなる粉末を原料とし、この原料粉末を銅管の表面にバインダーで仮接合し、酸化処理及び還元処理を行うことで銅多孔質層を形成している。
さらに、特許文献1においては、実施例としてステンレス鋼からなる金属多孔体を用いたものが記載されているが、銅又は銅合金からなる金属多孔体において、どのような条件で酸化処理及び還元処理を行うことで表面を改質可能であるかは開示されていなかった。
そして、前記骨格部及び前記酸化還元層を含む全体の平均結晶粒径が、前記骨格部の直径の5%以上とされているので、結晶粒径が比較的大きく、前記骨格部及び前記酸化還元層において結晶粒界が少なくなり、熱伝導性及び電気伝導性に優れている。
この場合、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を比較的高くすることが可能となる。
この場合、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維同士が焼結されることで構成されているので、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を高くすることが可能となり、さらに寸法精度に優れている。
この構成の銅多孔質複合部材によれば、比表面積が比較的大きく、かつ、熱伝導性及び電気伝導性に優れた銅多孔質体が部材本体と強固に接合されていることから、多孔体骨格表面を介した熱交換効率等に優れた銅多孔質体単体の特性に加え、銅多孔質複合部材として、優れた伝熱特性及び導電性等の各種特性を発揮する。
この場合、前記銅多孔質体と前記部材本体とが、焼結によって一体に結合しているので、前記銅多孔質体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた強度、伝熱特性及び導電性等の各種特性を発揮する。
この場合、銅原料を焼結することで、三次元網目構造を有する骨格部を形成することができ、焼結体からなる銅多孔質体を得ることができる。
この場合、前記酸化還元処理工程の前に、前記骨格部の均質化処理を行うことにより、前記骨格部における結晶粒を予め粗大化することが可能となる。また、骨格部の粗大な結晶粒を元に酸化還元層の結晶粒を成長させることで、酸化還元層の結晶粒についても粗大化させることができる。なお、銅原料を焼結して前記骨格部を形成する場合には、骨格部を形成する銅原料に対して均質化処理を行ってもよい。
この場合、前記部材本体と前記銅多孔質体とを焼結によって一体化することができ、伝熱特性及び導電性等の各種特性に優れた銅多孔質複合部材を製造することが可能となる。
まず、本願発明の第一の実施形態である銅多孔質体10について、図1から図4を参照して説明する。
本実施形態である銅多孔質体10は、図1に示すように、複数の銅繊維11が焼結された骨格部12を有している。
なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。
また、本実施形態である銅多孔質体10においては、その見掛け密度比DAが銅繊維11の真密度DTの51%以下とされている。銅繊維11の形状については、前記見掛け密度比DAが銅繊維11の真密度DTの51%以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、繊維同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質体10の伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
なお、この酸化還元層は、ポーラスな構造とされており、骨格部12(銅繊維11)の表面に微細な凹凸を生じさせている。これにより、銅多孔質体10全体の比表面積が0.01m2/g以上とされ、気孔率が50%以上90%以下の範囲内とされている。
特に限定はされないが、銅多孔質体10全体の比表面積の上限値は0.50m2/gである。
また、特に限定はされないが、好ましい銅多孔質体10全体の比表面積の範囲は0.03m2/g~0.40m2/gであり、より好ましくは0.05m2/g~0.30m2/gである。同様に特に限定はされないが、気孔率の範囲は60%~90%であり、より好ましくは70%~90%である。
まず、原料となる銅繊維11に対して、均質化処理を行う(均質化処理工程S00)。
本実施形態における均質化処理工程S00においては、不活性雰囲気(例えばアルゴン、窒素など)で、300℃以上1080℃以下、5分以上24時間以下熱処理をした後に炉冷している。
以上のことから、本実施形態では、均質化処理工程S00における保持温度を300℃以上1080℃以下の範囲内に設定している。なお、銅繊維11の結晶粒を確実に粗大化させるためには、均質化処理工程S00における保持温度の下限を500℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
以上のことから、本実施形態では、均質化処理工程S00における保持時間を5分以上24時間以下の範囲内に設定している。なお、銅繊維11の結晶粒を確実に粗大化させるためには、均質化処理工程S00における保持時間の下限を30分以上、保持時間の上限を18時間以下、とすることが好ましい。
ここで、この銅繊維積層工程S01では、充填後の嵩密度DPが銅繊維11の真密度DTの50%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保されることになる。
この酸化還元処理工程S02においては、図3及び図4に示すように、銅繊維11の酸化処理を行う酸化処理工程S21と、酸化処理された銅繊維11を還元して焼結する還元処理工程S22と、を備えている。
本実施形態における酸化処理工程S21の条件は、保持温度が520℃以上、900℃以下、保持時間が5分以上、300分以下の範囲内とされている。
以上のことから、本実施形態においては、酸化処理工程S21における保持温度を520℃以上、900℃以下に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持温度の下限を600℃以上、保持温度の上限を850℃以下、とすることが好ましい。
以上のことから、本実施形態においては、酸化処理工程S21における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持時間の下限を10分以上とすることが好ましい。また、銅繊維11の内部にまで酸化することを確実に抑制するためには、酸化処理工程S21における保持時間の上限を100分以下とすることが好ましい。
本実施形態における還元処理工程S22の条件は、雰囲気がアルゴンと水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、保持時間が5分以上、300分以下の範囲内とされている。
以上のことから、本実施形態においては、還元処理工程S22における保持温度を600℃以上、1080℃以下に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するためには、還元処理工程S22における保持温度の下限を650℃以上とすることが好ましい。また、比表面積及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持温度の上限を1050℃以下とすることが好ましい。
以上のことから、本実施形態においては、還元処理工程S22における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するとともに焼結を十分に進行させるためには、還元処理工程S22における保持温度の下限を10分以上とすることが好ましい。また、焼結による熱収縮や比表面積及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持時間の上限を100分以下とすることが好ましい。
また、酸化処理工程S21によって銅繊維11の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維11同士が架橋される。その後、還元処理工程S22を行うことで、銅繊維11の表面に形成された酸化物層が還元されて上述の酸化還元層が形成されるとともに、この酸化還元層同士が結合することにより、銅繊維11同士が焼結されて骨格部12が形成される。
本実施形態における再結晶工程S03の条件は、還元雰囲気又は不活性ガス雰囲気(本実施形態ではN2雰囲気)で、保持温度が300℃以上、1080℃以下、保持時間が5分以上、24時間以下の範囲内とされている。
この再結晶工程S03により、骨格部12及び酸化還元層の結晶粒を粗大化し、骨格部12及び酸化還元層を含む全体の平均結晶粒径を、骨格部12の直径の5%以上とする。
以上のことから、本実施形態においては、再結晶工程S03における保持温度を300℃以上、1080℃以下に設定している。
以上のことから、本実施形態においては、再結晶工程S03における保持時間を5分以上、24時間以下の範囲内に設定している。
具体的には、嵩密度DPが銅繊維11の真密度DTの50%以下となるように積層配置して焼結することによって製造された銅多孔質体10の見掛け密度比DAが銅繊維11の真密度DTの51%以下とされているので、焼結時の収縮が抑制されており、高い気孔率を確保することが可能となる。
以上のことから、本実施形態では、銅繊維11の直径Rを0.02mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.05mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、2500以下の範囲内に設定している。なお、さらなる気孔率の向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、確実に気孔率が均一な銅多孔質体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を500以下とすることが好ましい。
そして、本実施形態である銅多孔質体の製造方法によれば、骨格部12及び酸化還元層の再結晶処理を行う再結晶工程S03を備えているので、骨格部12及び酸化還元層の結晶粒を粗大化させることができ、骨格部12及び酸化還元層を含む全体の平均結晶粒径を、骨格部12の直径の5%以上にすることができる。
なお、本実施形態では、骨格部12を形成する焼結原料として銅繊維11を用いているので、表面に形成された酸化還元層に対する非酸化還元領域が占める割合が大きくなり、結晶粒径が微細になることを抑制できる。
次に、本願発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
図5に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質体110と、を備えている。
なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体110においては、その見掛け密度比DAが銅繊維の真密度DTの51%以下とされている。
特に限定はされないが、銅多孔質体10全体の比表面積の上限値は0.50m2/gである。
また、特に限定はされないが、好ましい銅多孔質体10全体の比表面積の範囲は0.03m2/g~0.40m2/gであり、より好ましくは0.05m2/g~0.30m2/gである。同様に特に限定はされないが、気孔率の範囲は60%~90%であり、より好ましくは70%~90%である。
また、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板の表面に形成された酸化還元層とが一体に結合している。
まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、嵩密度DPが銅繊維の真密度DTの50%以下となるように複数の銅繊維を積層配置する。
ここで、本実施形態における酸化処理工程S121の条件は、保持温度が520℃以上、900℃以下、望ましくは600℃以上、850℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
ここで、本実施形態における還元処理工程S122の条件は、雰囲気が窒素と水素の混合ガス雰囲気、保持温度が600℃以上、1080℃以下、望ましくは650℃以上、1050℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
また、酸化処理工程S121によって銅繊維(骨格部)及び銅板120の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維同士及び銅板120が架橋される。その後、還元処理S122を行うことで、銅繊維(骨格部)及び銅板120の表面に形成された酸化物層が還元され、酸化還元層を介して銅繊維同士が焼結されて骨格部が形成されるとともに銅繊維と銅板120とが結合される。
本実施形態における再結晶工程S104の条件は、還元雰囲気又は不活性ガス雰囲気で、保持温度が300℃以上、1080℃以下、保持時間が5分以上、24時間以下の範囲内とされている。この再結晶工程S104により、骨格部及び酸化還元層の結晶粒を粗大化し、骨格部及び酸化還元層を含む全体の平均結晶粒径を、骨格部の直径の5%以上とする。
以上のような製造方法によって、本実施形態である銅多孔質複合部材100が製造される。
また、本実施形態においては、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板120の表面に形成された酸化還元層とが一体に結合しているので、銅多孔質体110と銅板120とが強固に接合されることになり、接合界面の強度、伝熱特性及び導電性等の各種特性に優れている。
また、本実施形態である銅多孔質複合部材100の製造方法によれば、銅及び銅合金からなる銅板120の表面に銅繊維を積層配置し、焼結工程S102及び接合工程S103を同時に実施しているので、製造プロセスを簡略化することが可能となる。
例えば、図4に示す製造設備を用いて、銅多孔質体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質体を製造してもよい。
酸化処理工程S21、S121の雰囲気については、所定温度で銅もしくは銅合金が酸化する酸化性雰囲気であればよく、具体的には、大気中に限らず、不活性ガス(例えば、窒素やアルゴンなど)に10vol%以上の酸素を含有する雰囲気であればよい。また、還元処理工程S22,S122の雰囲気についても、所定温度で銅酸化物が金属銅に還元もしくは酸化銅が分解する還元性雰囲気であればよく、具体的には、数vol%以上の水素を含有する窒素―水素混合ガス、アルゴン―水素混合ガス、純水素ガス、もしくは工業的によく用いられるアンモニア分解ガス、プロパン分解ガスなども好適に用いることができる。
あるいは、図8に示すように、銅多孔質体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
また、図10に示すように、部材本体である銅管520の外周面に銅多孔質体510を接合した構造の銅多孔質複合部材500であってもよい。
また、図12に示すように、部材本体である銅板720の両面に銅多孔質体710を接合した構造の銅多孔質複合部材700であってもよい。
表1に示す原料を用いて、三次元網目構造の骨格部を有する銅多孔質体を製造した。なお、本発明例11においては、不織布からなる多孔質材料を用いた。
また、本発明例8においては、酸化還元処理工程の前に、窒素雰囲気で、900℃、24時間の均質化処理を行った。
さらに、得られた銅多孔質体について、骨格部の直径(骨格径)、気孔率、平均結晶粒径、比表面積、相対引張強度、相対電気伝導率について評価した。評価結果を表3に示す。なお、評価方法を以下に示す。
また、本発明例8のEBSD観察結果を図13に、比較例2のEBSD観察結果を図14に示す。
銅多孔質体における骨格径Rは、マルバーン社製粒子解析装置「Morphologi G3」を用いて、JIS Z 8827-1に基づいて、画像解析により算出された円相当径(Heywood径)R=(A/π)0.5×2の平均値を用いた。
得られた銅多孔質体の質量M(g)、体積V(cm3)、銅多孔質体を構成する銅繊維の真密度DT(g/cm3)を測定し、以下の式で見掛け密度比DA/DT及び気孔率P(%)を算出した。なお、真密度DTは、精密天秤を用いて、水中法によって測定した。
DA/DT=M/(V×DT)
P=(1-(M/(V×DT)))×100
銅多孔質体の比表面積AS(m2/g)は、JIS Z8830に準拠し、クリプトンガスを用いたBET法により測定した値を用いた。
サンプルを切断、研磨、エッチング処理を行った後に、EBSD装置(TSLソリューション社製)にて結晶粒径の測定を行った。その際、気孔部を除いた全材料の面積をS、各結晶粒の粒径をd1,d2,d3,・・・とした場合のそれぞれの面積s1、s2、s3,・・・とし、平均結晶粒径DCを、以下の式で算出した。
DC=d1×(s1/S)+d2×(s2/S)+d2×(s2/S)+・・・
得られた銅多孔質体を幅10mm×長さ100mm×厚さ5mmの試験片に加工した後、インストロン型引張試験機を用いて引張試験を行い、最大引張荷重Smax(N)を見掛け上の試料断面積 50mm2 で除算して最大引張強度S(N/mm2)を測定した。前記測定により得られた最大引張強度Sは見掛け密度により変化するため、本実施例では、前記最大引張強度S(N/mm2)を前記見掛け密度比DA/DTで規格化した値S/(DA/DT)を相対引張強度SR(N/mm2)として定義し、比較した。
得られた銅多孔質体から幅10mm×長さ500mm×厚さ5mmのサンプルを切り出し、JIS C2525に基づいて四端子法により電気伝導率C1(S/m)を測定した。また、銅多孔質体を構成する銅又は銅合金からなるバルク材の電気伝導率C2(S/m)と、銅多孔質体の見掛け密度比DA/DTから、以下の式により、相対電気伝導率CR(%)を求めた。
CR(%)=C1/(C2×(DA/DT))×100
上述のように算出した相対電気伝導率CR及び相対引張強度SRから、下記の式により、相対電気伝導率対相対引張強度比RCSを算出した。
RCS=CR/SR
これに対して、再結晶工程を実施した本発明例においては、骨格部及び酸化還元層を含む全体の平均結晶粒径が、骨格部の直径の5%以上とされており、相対電気伝導率対相対引張強度比RCSが高くなっている。
以上のことから、本発明例によれば、熱伝導性及び電気伝導性に特に優れた銅多孔質体を提供可能であることが確認された。
11 銅繊維
12 骨格部
100 銅多孔質複合部材
120 銅板(部材本体)
Claims (10)
- 三次元網目構造の骨格部を有する銅多孔質体であって、
前記骨格部の表面に、酸化還元処理によって形成された酸化還元層を有しており、
前記骨格部及び前記酸化還元層を含む全体の平均結晶粒径が、前記骨格部の直径の5%以上とされていることを特徴とする銅多孔質体。 - 前記骨格部は、複数の銅繊維の焼結体とされていることを特徴とする請求項1に記載の銅多孔質体。
- 前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされていることを特徴とする請求項2に記載の銅多孔質体。
- 部材本体と、請求項1から請求項3のいずれか一項に記載の銅多孔質体と、が接合されてなることを特徴とする銅多孔質複合部材。
- 前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体とが焼結によって接合されていることを特徴とする請求項4に記載の銅多孔質複合部材。
- 請求項1から請求項3のいずれか一項に記載の銅多孔質体を製造する銅多孔質体の製造方法であって、
前記骨格部を酸化還元処理して前記酸化還元層を形成する酸化還元処理工程と、前記骨格部及び前記酸化還元層を再結晶させる再結晶工程と、を備えていることを特徴とする銅多孔質体の製造方法。 - 銅原料を焼結して前記骨格部を形成することを特徴とする請求項6に記載の銅多孔質体の製造方法。
- 前記酸化還元処理工程の前に、前記骨格部の均質化処理を行うことを特徴とする請求項6又は請求項7に記載の銅多孔質体の製造方法。
- 部材本体と銅多孔質体とが接合された銅多孔質複合部材を製造する銅多孔質複合部材の製造方法であって、
請求項6から請求項8のいずれか一項に記載の銅多孔質体の製造方法によって製造された銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。 - 前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記銅多孔質体と前記部材本体とを焼結によって接合することを特徴とする請求項9に記載の銅多孔質複合部材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16807272.6A EP3308882B1 (en) | 2015-06-12 | 2016-05-23 | Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member |
KR1020177032668A KR20180018495A (ko) | 2015-06-12 | 2016-05-23 | 동 다공질체, 동 다공질 복합 부재, 동 다공질체의 제조 방법, 및, 동 다공질 복합 부재의 제조 방법 |
US15/579,668 US10478896B2 (en) | 2015-06-12 | 2016-05-23 | Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part |
CN201680024898.3A CN107614162B (zh) | 2015-06-12 | 2016-05-23 | 铜多孔体、铜多孔复合部件、铜多孔体的制造方法及铜多孔复合部件的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-119694 | 2015-06-12 | ||
JP2015119694A JP6065059B2 (ja) | 2015-06-12 | 2015-06-12 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199565A1 true WO2016199565A1 (ja) | 2016-12-15 |
Family
ID=57504791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065122 WO2016199565A1 (ja) | 2015-06-12 | 2016-05-23 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10478896B2 (ja) |
EP (1) | EP3308882B1 (ja) |
JP (1) | JP6065059B2 (ja) |
KR (1) | KR20180018495A (ja) |
CN (1) | CN107614162B (ja) |
WO (1) | WO2016199565A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135575A1 (ja) * | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
CN110004314A (zh) * | 2018-05-25 | 2019-07-12 | 中国科学院金属研究所 | 一种含三维多孔结构金属铜的制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6733286B2 (ja) * | 2016-04-27 | 2020-07-29 | 三菱マテリアル株式会社 | 銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
JP2018193584A (ja) * | 2017-05-17 | 2018-12-06 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
TWI674326B (zh) * | 2018-11-19 | 2019-10-11 | 財團法人工業技術研究院 | 銅鋯合金散熱元件及銅鋯合金殼體的製造方法 |
CN113896257B (zh) * | 2020-07-07 | 2023-11-17 | 苏州铜宝锐新材料有限公司 | 水处理过滤结构及其制作方法 |
KR102675273B1 (ko) * | 2023-06-28 | 2024-06-13 | 에스케이넥실리스 주식회사 | 용해 속도가 향상된 동 원재료 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000192107A (ja) * | 1998-12-25 | 2000-07-11 | Kogi Corp | 多孔質金属及びその製造方法 |
JP2013189676A (ja) * | 2012-03-13 | 2013-09-26 | National Institute Of Advanced Industrial Science & Technology | 金属多孔体及び金属多孔体の製造方法。 |
WO2016063905A1 (ja) * | 2014-10-22 | 2016-04-28 | 三菱マテリアル株式会社 | 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2203895A (en) | 1939-01-06 | 1940-06-11 | Gen Motors Corp | Method of sintering porous metal objects |
JPS5817817B2 (ja) | 1974-11-26 | 1983-04-09 | 株式会社豊田中央研究所 | 大表面積金属体の製造方法 |
US5378426A (en) | 1992-10-21 | 1995-01-03 | Pall Corporation | Oxidation resistant metal particulates and media and methods of forming the same with low carbon content |
JP3387158B2 (ja) | 1993-06-16 | 2003-03-17 | 株式会社ユアサコーポレーション | 亜鉛極板 |
JPH08145592A (ja) | 1994-11-16 | 1996-06-07 | Hitachi Chem Co Ltd | 伝熱部材およびその製造法 |
KR100193356B1 (ko) | 1994-03-31 | 1999-06-15 | 이사오 우치가사키 | 다공질체의 제조 방법 |
US5640669A (en) | 1995-01-12 | 1997-06-17 | Sumitomo Electric Industries, Ltd. | Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same |
CN1147030A (zh) | 1996-06-18 | 1997-04-09 | 武汉市三合实业公司 | 泡沫型金属铜及其生产技术 |
JP3264240B2 (ja) | 1998-01-30 | 2002-03-11 | 三菱マテリアル株式会社 | 銅多孔質層を有する銅管の製造方法 |
JP2000248304A (ja) | 1999-03-03 | 2000-09-12 | Fukuda Metal Foil & Powder Co Ltd | 多孔質金属粉末およびその製造方法 |
JP3735712B2 (ja) | 2002-03-12 | 2006-01-18 | 独立行政法人産業技術総合研究所 | 多孔質材料の作製方法及びその成形体 |
FI120050B (fi) | 2004-06-03 | 2009-06-15 | Luvata Oy | Menetelmä metallioksidipulverin pelkistämiseksi ja liittämiseksi lämmönsiirtopintaan ja lämmönsiirtopinta |
DK2054901T3 (da) | 2006-08-16 | 2020-01-20 | H C Starck Tantalum And Niobium Gmbh | Halvfærdige produkter med en struktureret sinteraktiv overflade og fremgangsmåde til fremstilling af disse |
KR101645735B1 (ko) * | 2007-10-24 | 2016-08-04 | 모트 코포레이션 | 소결 섬유 필터 |
JP4812823B2 (ja) | 2008-10-27 | 2011-11-09 | Ntn株式会社 | 複層軸受の製造方法 |
JP2011111652A (ja) * | 2009-11-26 | 2011-06-09 | Osaka Gas Co Ltd | 銅多孔体の製造方法及び銅多孔体の塗膜層 |
WO2012106149A2 (en) * | 2011-02-04 | 2012-08-09 | Entegris, Inc. | Porous metal membrane of sintered powders and metal fibers |
JP5166615B1 (ja) | 2012-02-17 | 2013-03-21 | 榮子 山田 | 多孔質表面を持つ金属の多孔体 |
-
2015
- 2015-06-12 JP JP2015119694A patent/JP6065059B2/ja active Active
-
2016
- 2016-05-23 CN CN201680024898.3A patent/CN107614162B/zh active Active
- 2016-05-23 US US15/579,668 patent/US10478896B2/en active Active
- 2016-05-23 WO PCT/JP2016/065122 patent/WO2016199565A1/ja active Application Filing
- 2016-05-23 KR KR1020177032668A patent/KR20180018495A/ko unknown
- 2016-05-23 EP EP16807272.6A patent/EP3308882B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000192107A (ja) * | 1998-12-25 | 2000-07-11 | Kogi Corp | 多孔質金属及びその製造方法 |
JP2013189676A (ja) * | 2012-03-13 | 2013-09-26 | National Institute Of Advanced Industrial Science & Technology | 金属多孔体及び金属多孔体の製造方法。 |
WO2016063905A1 (ja) * | 2014-10-22 | 2016-04-28 | 三菱マテリアル株式会社 | 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3308882A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135575A1 (ja) * | 2017-01-18 | 2018-07-26 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
CN110004314A (zh) * | 2018-05-25 | 2019-07-12 | 中国科学院金属研究所 | 一种含三维多孔结构金属铜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6065059B2 (ja) | 2017-01-25 |
EP3308882B1 (en) | 2022-03-09 |
EP3308882A1 (en) | 2018-04-18 |
JP2017002378A (ja) | 2017-01-05 |
CN107614162A (zh) | 2018-01-19 |
EP3308882A4 (en) | 2018-12-05 |
US20180161876A1 (en) | 2018-06-14 |
KR20180018495A (ko) | 2018-02-21 |
CN107614162B (zh) | 2020-01-07 |
US10478896B2 (en) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065059B2 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
WO2016199566A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
WO2016199571A1 (ja) | 銅多孔質体、及び、銅多孔質複合部材 | |
JP6011593B2 (ja) | 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 | |
JP6589402B2 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
KR20140037104A (ko) | 알루미늄 전해 커패시터용 전극 재료 및 이의 제조 방법 | |
WO2018135575A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
WO2017187938A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
JP6249060B2 (ja) | 銅多孔質複合部材 | |
WO2018212039A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16807272 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177032668 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15579668 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016807272 Country of ref document: EP |