WO2016199428A1 - Switch device - Google Patents

Switch device Download PDF

Info

Publication number
WO2016199428A1
WO2016199428A1 PCT/JP2016/002808 JP2016002808W WO2016199428A1 WO 2016199428 A1 WO2016199428 A1 WO 2016199428A1 JP 2016002808 W JP2016002808 W JP 2016002808W WO 2016199428 A1 WO2016199428 A1 WO 2016199428A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
relay
switch
control signal
switch device
Prior art date
Application number
PCT/JP2016/002808
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 洋
知士 久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017523115A priority Critical patent/JP6817582B2/en
Priority to CN201680033447.6A priority patent/CN107710617B/en
Publication of WO2016199428A1 publication Critical patent/WO2016199428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit

Definitions

  • the present invention generally relates to a switch device, and more particularly to a switch device having a mechanical relay and a semiconductor relay.
  • the direct current switch includes an electronic on / off switch inserted into a direct current path and a mechanical on / off switch connected in parallel to the electronic on / off switch.
  • the direct current switch includes a switch control circuit that controls a time difference between opening and closing of the mechanical opening / closing switch and the electronic opening / closing switch.
  • the switch control circuit performs control to close the mechanical on / off switch after a predetermined time after the electronic on / off switch is closed. As a result, this DC switch reduces the power loss of the electronic switch when the DC current path is made conductive.
  • the electronic opening / closing switch semiconductor relay
  • the mechanical opening / closing switch mechanical relay
  • the electronic opening / closing switch and the mechanical opening / closing switch are individually provided. It was necessary to control by giving a control signal. For this reason, the conventional example has a problem that it is difficult to control a hybrid relay combining a semiconductor relay and a mechanical relay with one control signal.
  • the present invention has been made in view of the above points, and an object thereof is to easily control a hybrid relay combining a semiconductor relay and a mechanical relay with one control signal.
  • the switch device includes a semiconductor relay, a mechanical relay, and a control circuit.
  • the semiconductor relay opens and closes a power feeding path from a power source to a load.
  • the mechanical relay has a contact portion electrically connected in parallel with the semiconductor relay, and opens and closes the power feeding path by turning on and off the contact portion in accordance with a control signal input from the outside.
  • the control circuit receives the control signal and controls the semiconductor relay.
  • the semiconductor relay has a semiconductor switch.
  • the semiconductor switch opens and closes the power supply path by turning on / off according to the charge accumulated in the capacitive component.
  • the control circuit is configured to control the semiconductor switch so that the timing at which the semiconductor switch is turned off is delayed from the timing at which the contact portion of the mechanical relay is turned on from off.
  • the switch device 1 As shown in FIGS. 1 and 2, the switch device 1 according to Embodiment 1 of the present invention includes a semiconductor relay 2, a mechanical relay 3, and a control circuit 4.
  • the semiconductor relay 2 opens and closes a power feeding path from the power source A1 to the load B1.
  • the mechanical relay 3 includes a contact portion 32 that is electrically connected in parallel with the semiconductor relay 2, and opens and closes the power supply path by turning the contact portion 32 on and off according to a control signal input from the outside.
  • the control circuit 4 receives the control signal and controls the semiconductor relay 2.
  • the semiconductor relay 2 has a semiconductor switch 2B.
  • the semiconductor switch 2B opens and closes the power feeding path by turning on / off according to the electric charge accumulated in the capacitance component (capacitor 42).
  • the control circuit 4 is configured to control the semiconductor switch 2B so that the timing at which the semiconductor switch 2B is turned off is delayed from the timing at which the contact portion 32 of the mechanical relay 3 is turned off.
  • the switch device 1 of the present embodiment will be described in detail.
  • the ON signal among the control signals is input means “the control signal becomes high level”.
  • an OFF signal is input from among the control signals” means “the control signal becomes low level”.
  • the switch device 1 includes a pair of input terminals 101 and 102 (first input terminal 101 and second input terminal 102) and a pair of output terminals 111 and 112 (first output terminal). 111 and a second output terminal 112).
  • a pair of input terminals 201 and 202 (first input terminal 201 and second input terminal 202) of the semiconductor relay 2 are electrically connected to the pair of input terminals 101 and 102 via the control circuit 4.
  • a pair of input terminals 301 and 302 (first input terminal 301 and second input terminal 302) of the mechanical relay 3 are electrically connected to the pair of input terminals 101 and 102.
  • the pair of output terminals 111 and 112 include a pair of output terminals 211 and 212 (first output terminal 211 and second output terminal 212) of the semiconductor relay 2 and a pair of output terminals 311 and 312 (mechanical relay 3).
  • the first output terminal 311 and the second output terminal 312) are electrically connected. That is, the mechanical relay 3 is electrically connected to the semiconductor relay 2 in parallel.
  • the switch device 1 of this embodiment is turned on when at least one of the semiconductor relay 2 and the mechanical relay 3 is turned on. Moreover, the switch apparatus 1 of this embodiment is turned off when both the semiconductor relay 2 and the mechanical relay 3 are turned off.
  • a control signal is input to the pair of input terminals 101 and 102 from, for example, a microcomputer.
  • a Zener diode ZD1 is electrically connected between the pair of input terminals 101 and 102 so that an excessive voltage is not input.
  • a power source A1 and a load B1 are electrically connected to the pair of output terminals 111 and 112. Therefore, if the pair of output terminals 111 and 112 are non-conductive (switch device 1 is off), power is not supplied from the power source A1 to the load B1. Further, when the pair of output terminals 111 and 112 are electrically connected (the switch device 1 is turned on), power is supplied from the power source A1 to the load B1. That is, the switch device 1 of the present embodiment opens and closes the power feeding path from the power source A1 to the load B1.
  • a DC power source is used as the power source A1, but an AC power source may be used.
  • the load B1 is, for example, an electric vehicle (Electric Vehicle: EV).
  • the load B1 may be, for example, a security device, an amusement device, a medical device, a storage battery system, a heater, a DC motor, or the like.
  • the power source A1 is an AC power source
  • the load B1 is configured by a load that operates by being supplied with AC power.
  • the power source A1 is a DC power source
  • the load B1 is configured by a load that operates by being supplied with DC power.
  • the load B1 may be a resistance load or an inductive load.
  • load B1 is a coil which a switch has, for example, and is an inductive load.
  • the semiconductor relay 2 is a so-called non-contact relay and includes a light emitting element 2A, a semiconductor switch 2B, and a light receiving element 2C.
  • the light emitting element 2A and the semiconductor switch 2B are electrically insulated from each other. That is, in the switch device 1 of this embodiment, the semiconductor relay 2 uses the light emitting element 2A and the light receiving element 2C to electrically connect the pair of input ends 201 and 202 and the pair of output ends 211 and 212. Insulated.
  • the semiconductor relay 2 includes insulating portions 2A and 2C that electrically insulate the primary side (the pair of input terminals 101 and 102 side) from the secondary side (the pair of output terminals 111 and 112 side). It can be said that.
  • the insulating portions 2A and 2C may have other configurations.
  • the semiconductor relay 2 is configured to electrically insulate between the pair of input ends 201 and 202 and the pair of output ends 211 and 212 by using a capacitor instead of the light emitting element 2A and the light receiving element 2C. May be.
  • the semiconductor relay 2 needs to further include a drive circuit for driving the semiconductor switch 2B.
  • the light emitting element 2A is configured to convert an electric signal input to the pair of input ends 201 and 202 into light.
  • the light emitting element 2A is a light emitting diode.
  • the light emitting diode has an anode electrically connected to the first input end 201 and a cathode electrically connected to the second input end 202.
  • the light emitting element 2 ⁇ / b> A emits light upon receiving an ON signal among control signals input to the pair of input terminals 201 and 202. Further, the light emitting element 2A does not emit light while receiving an off signal among the control signals. Note that the number of light emitting diodes constituting the light emitting element 2A is not limited to one, and may be plural.
  • the current adjusting resistor 11 is electrically connected in series to the light emitting element 2A. This resistor 11 prevents an excessive current from flowing through the light emitting element 2A.
  • the light receiving element 2C is configured to receive a light emitted from the light emitting element 2A and generate a photovoltaic power.
  • the light receiving element 2C is configured by a photodiode array formed by electrically connecting a plurality of photodiodes in series.
  • the semiconductor switch 2B is an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the gate of the semiconductor switch 2B is electrically connected to one end on the high potential side of the light receiving element 2C.
  • the drain of the semiconductor switch 2B is electrically connected to the first output terminal 111.
  • the source of the semiconductor switch 2B is electrically connected to one end on the low potential side of the light receiving element 2C and the second output terminal 112.
  • the semiconductor switch 2B is configured to be turned on / off according to the charge accumulated in the gate capacitance.
  • the “gate capacitance” means a capacitor (generally referred to as “gate input capacitance”) existing between the gate and source of the semiconductor switch 2B and a capacitor (generally referred to as “gate capacitance”) between the gate and drain. Output capacity).
  • the semiconductor switch 2B there is one semiconductor switch 2B, but two semiconductor switches may be used. That is, when the power source A1 is an AC power source, the switch device 1 requires two semiconductor switches 2B.
  • the semiconductor switch 2B is an enhancement type MOSFET, but may be a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor relay 2 further includes a semiconductor element 2D and a resistor 2E as a charge / discharge path for charging and discharging the gate capacitance of the semiconductor switch 2B.
  • the semiconductor element 2D is an n-channel depletion type MOSFET.
  • the drain of the semiconductor element 2D is electrically connected to one end on the high potential side of the light receiving element 2C.
  • the gate of the semiconductor element 2D is electrically connected to one end on the low potential side of the light receiving element 2C.
  • the source of the semiconductor element 2D is electrically connected to one end on the low potential side of the light receiving element 2C via the resistor 2E.
  • the resistor 2E is electrically connected between the gate and source of the semiconductor element 2D.
  • the switch device 1 further includes a control circuit 4 and a varistor VR1.
  • the varistor VR1 is electrically connected between the pair of output ends 211 and 212.
  • the varistor VR1 protects the semiconductor switch 2B from an excessive back electromotive force applied between the pair of output terminals 211 and 212 when the switch device 1 is turned off.
  • the varistor VR1 is not necessary when the load B1 is a resistance load.
  • the control circuit 4 has a delay circuit 5 and a buffer circuit 6.
  • the delay circuit 5 includes a resistor 41 and a capacitor 42.
  • the resistor 41 is electrically connected between the first input terminal 101 and the input terminal of the buffer circuit 6.
  • the capacitor 42 is electrically connected between the connection point between the resistor 41 and the input end of the buffer circuit 6 and the second input terminal 102.
  • the delay circuit 5 is configured to delay a control signal input to the pair of input terminals 101 and 102 and input the delayed control signal to the pair of input terminals 201 and 202 of the semiconductor relay 2. For this reason, in the switch apparatus 1 of this embodiment, the timing at which the control signal is input to the semiconductor relay 2 can be delayed from the timing at which the control signal is input to the mechanical relay 3.
  • the buffer circuit 6 is electrically connected between the output terminal on the high voltage side of the delay circuit 5 and the first input terminal 201 of the semiconductor relay 2.
  • a control signal delayed by the delay circuit 5 is input to the buffer circuit 6.
  • the buffer circuit 6 does not output the control signal until the voltage of the input control signal reaches the threshold voltage, and outputs the control signal when the threshold voltage is reached. For example, when an ON signal among the control signals is input to the buffer circuit 6, the buffer circuit 6 outputs an ON signal when the voltage of the ON signal exceeds the threshold voltage. In addition, when an off signal among the control signals is input to the buffer circuit 6, the buffer circuit 6 outputs an off signal when the voltage of the off signal falls below the threshold voltage.
  • the buffer circuit 6 is configured to receive a control signal via the delay circuit 5 and output the control signal when the voltage of the control signal reaches the threshold voltage. Therefore, the buffer circuit 6 converts the control signal whose voltage gradually changes according to the time constant of the delay circuit 5 into a rectangular wave control signal, and outputs the converted control signal to the light emitting element 2A. For this reason, in the switch device 1 of the present embodiment, since the control signal whose voltage gradually changes with the passage of time is not input to the semiconductor relay 2, the time for which the semiconductor switch 2B operates in the active region can be shortened. . As a result, in the switch device 1 of the present embodiment, the stability of the operation of the semiconductor switch 2B can be improved.
  • the light receiving element 2C in response to the light emitted from the light emitting element 2A, the light receiving element 2C generates a photovoltaic power. Then, when a current flows from the light receiving element 2C to the semiconductor element 2D and the resistor 2E, a voltage drop occurs in the resistor 2E, and the semiconductor element 2D is turned off by this voltage drop. For this reason, a current flows from the light receiving element 2C to the gate of the semiconductor switch 2B, the gate capacitance of the semiconductor switch 2B is charged, and the semiconductor switch 2B is turned on. As a result, the pair of output terminals 111 and 112 are electrically connected.
  • the capacitor 42 of the delay circuit 5 starts to discharge. For this reason, the voltage of the control signal via the delay circuit 5 gradually decreases from the high level to the low level as time elapses.
  • the buffer circuit 6 outputs the off signal, so that the light emitting element 2A does not emit light. .
  • the semiconductor switch 2B opens and closes the power supply path from the power source A1 to the load B1 by turning on / off according to the charge accumulated in the capacitance component (capacitor 42).
  • the semiconductor relay 2 opens and closes the power feeding path from the power source A1 to the load B1 in accordance with a control signal input from the outside.
  • the semiconductor relay 2 includes the light emitting element 2A and the light receiving element 2C.
  • the semiconductor switch 2B is configured to be turned on / off by the photovoltaic force generated by the light receiving element 2C.
  • the switch device 1 according to the present embodiment has an advantage that the potential difference between the input and the output hardly affects the on / off of the semiconductor switch 2B. Note that whether or not to adopt the configuration for the semiconductor relay 2 is arbitrary.
  • the semiconductor relay 2 is not limited to the circuit configuration shown in FIG.
  • the semiconductor switch 2B may be configured to be turned on / off according to the presence or absence of light emitted from the light emitting element 2A.
  • the mechanical relay 3 is a so-called contact relay (for example, an electromagnetic relay), and includes a coil 31 and a contact portion 32.
  • the coil 31 has a first end electrically connected to the first input end 301 and a second end electrically connected to the second input end 302. The coil 31 is excited when a control signal is input to the pair of input ends 301 and 302.
  • the contact portion 32 has a first end electrically connected to the first output end 311 and a second end electrically connected to the second output end 312.
  • the contact part 32 includes a fixed contact and a movable contact.
  • the fixed contact and the movable contact are opened and closed according to the excitation / de-excitation of the coil 31.
  • the contact part 32 is off because the movable contact is away from the fixed contact.
  • the contact part 32 is comprised so that when the coil 31 is excited, a movable contact contacts a fixed contact, and it switches on.
  • the mechanical relay 3 mechanically switches on / off of the contact portion 32 in accordance with a control signal input to the pair of input terminals 301 and 302, thereby connecting or not connecting the pair of output terminals 111 and 112. Switch continuity.
  • the mechanical relay 3 opens and closes the power feeding path from the power source A1 to the load B1 by turning on / off the contact portion 32 according to the control signal.
  • the “contact voltage” shown in FIG. 3 is a voltage applied between the pair of output terminals 111 and 112.
  • the “first current” shown in FIG. 3 is a current flowing through the pair of output terminals 211 and 212 of the semiconductor relay 2.
  • the “second current” shown in FIG. 3 is a current flowing through the pair of output terminals 311 and 312 of the mechanical relay 3.
  • the contact portion 32 of the mechanical relay 3 is turned on at time t11 (> t10) after a predetermined time from time t10. Turn on. For this reason, between the pair of output terminals 311 and 312 is conducted, the second current flows. Then, since the pair of output terminals 111 and 112 are also connected, the power supply path from the power source A1 to the load B1 is closed, and a current flows through the load B1. In the present embodiment, since the load B1 is an inductive load, the second current gradually increases from time t11 to time t12 (> t11). When the load B1 is a resistance load, the second current rises sharply at time t11.
  • the switch device 1 of this embodiment compared with the case where the power supply path is closed only by the semiconductor relay 2 without using the mechanical relay 3, the power loss and heat generation at the on-resistance of the semiconductor switch 2B are reduced.
  • the energization current can be increased.
  • the “energization current” is a current that flows between the pair of output terminals 111 and 112 when the power supply path from the power source A1 to the load B1 is closed.
  • the semiconductor switch 2B is not turned off, so that the power supply voltage is not applied between the pair of output terminals 111 and 112. For this reason, in the switch device 1 of the present embodiment, compared to the case where the semiconductor switch 2B of the semiconductor relay 2 is turned off before the contact part 32 of the mechanical relay 3, an arc is less likely to occur when the contact part 32 is turned off.
  • the contact portion 32 is turned off before the semiconductor switch 2B. It is desirable to be controlled.
  • this control is referred to as “priority off control”.
  • the turn-off time of the semiconductor switch 2B is shorter than the return time of the contact part 32, the semiconductor switch 2B is turned off before the contact part 32.
  • control circuit 4 controls the semiconductor switch 2B to delay the timing at which the semiconductor switch 2B is turned off from the timing at which the contact portion 32 of the mechanical relay 3 is turned from on to off. It is configured as follows. For this reason, in the switch apparatus 1 of this embodiment, priority OFF control is realizable by one control signal, without controlling the semiconductor relay 2 and the mechanical relay 3 separately.
  • the control circuit 4 controls the semiconductor switch 2B to delay the timing at which the semiconductor switch 2B is turned on from the timing at which the contact portion 32 of the mechanical relay 3 is turned on from off. It is configured as follows. For this reason, in the switch apparatus 1 of this embodiment, when a pair of output terminals 111 and 112 conduct
  • the switch device 1 according to the present embodiment includes the control circuit 4, complicated control such as individually controlling the semiconductor relay 2 and the mechanical relay 3 and shifting the respective off timings is unnecessary. is there. That is, the switch device 1 of the present embodiment can easily control a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined with one control signal.
  • the switch apparatus 1 of this embodiment is the structure which the semiconductor switch 2B (contact part 32) turns on when a control signal is a high level
  • another structure may be sufficient. That is, the switch device 1 of the present embodiment may be configured such that the semiconductor switch 2B (contact portion 32) is turned on when the control signal is at a low level.
  • the ON signal among the control signals is input means “the control signal becomes low level”.
  • the OFF signal of the control signal is not input” means “the control signal becomes high level”.
  • a switch device 1A according to a modification of the first embodiment of the present invention will be described with reference to FIG.
  • the switch device 1 ⁇ / b> A of this modification is different from the switch device 1 of the first embodiment in that a control circuit 4 ⁇ / b> A is provided instead of the control circuit 4. Since the configuration excluding the control circuit 4A in the switch device 1A of the present modification is the same as that of the switch device 1 of the first embodiment, the description thereof is omitted here.
  • the control circuit 4 ⁇ / b> A has a delay circuit 5 ⁇ / b> A instead of the delay circuit 5.
  • the delay circuit 5A further includes a diode 43 and resistors 44 and 45 in addition to the resistor 41 and the capacitor 42 of the delay circuit 5.
  • the resistance value of the resistor 41 is smaller than the resistance value of the resistor 41 in the delay circuit 5 of the first embodiment.
  • the diode 43 has an anode electrically connected to the first input terminal 101 and a cathode electrically connected to the resistor 41.
  • the resistor 44 is electrically connected to the capacitor 42 in parallel.
  • the resistance value of the resistor 44 is larger than the resistance value of the resistor 41.
  • the resistor 45 is electrically connected to the capacitor 42 in series. The resistance value of the resistor 45 is approximately the same as the resistance value of the resistor 41.
  • the delay circuit 5A when an ON signal among the control signals is input between the pair of input terminals 101 and 102, in the delay circuit 5A, the resistance value of the resistor 41 is greater than the resistance value of the resistor 41 in the delay circuit 5 of the first embodiment. Since it is small, the time constant is smaller than that of the delay circuit 5. Therefore, the delay time of the on signal by the control circuit 4A is shorter than the delay time of the on signal by the control circuit 4 of the first embodiment.
  • the delay circuit 5A prevents the charge accumulated in the capacitor 42 from being discharged to the mechanical relay 3 by the diode 43. ing. Further, in the delay circuit 5A, the time for discharging the charge accumulated in the capacitor 42 is made relatively long by the resistor 44 connected in parallel to the capacitor 42 and the resistor 45 connected in series to the capacitor 42. Therefore, the delay time of the off signal by the control circuit 4A is longer than the delay time of the on signal by the control circuit 4A.
  • the switch device 1A of the present modification utilizes the characteristic that the turn-on time of the semiconductor switch 2B of the semiconductor relay 2 is shorter than the operation time of the contact part 32 of the mechanical relay 3. That is, the delay time of the ON signal by the control circuit 4A is made shorter than the difference between the turn-on time of the semiconductor switch 2B and the operation time of the contact part 32. For this reason, in the switch device 1A of the present modification, even when the ON signal is delayed by the control circuit 4A, the timing at which the semiconductor switch 2B is turned from OFF to ON is made earlier than the timing at which the contact portion 32 is turned from OFF to ON. Is possible.
  • the delay time of the off signal is made longer than the delay time of the on signal by the control circuit 4A. For this reason, in the switch device 1A of the present modification, as with the control circuit 4 of the first embodiment, the timing at which the semiconductor switch 2B is turned from on to off can be delayed from the timing at which the contact portion 32 is turned from on to off. Is possible.
  • the contact portion 32 of the mechanical relay 3 is not turned on. Thereafter, at time t23 (> t22), which is a predetermined time after time t22, the contact portion 32 of the mechanical relay 3 is turned on.
  • time t23 (> t22), which is a predetermined time after time t22, the contact portion 32 of the mechanical relay 3 is turned on.
  • the contact voltage becomes a voltage corresponding to the voltage drop due to the on-resistance between the drain and source of the semiconductor switch 2B, so it is compared with the maximum voltage of the power supply voltage. And small.
  • the inrush current that can be generated when the contact portion 32 is turned on can be reduced as compared with the case where the power supply path is closed only by the mechanical relay 3 without using the semiconductor relay 2. .
  • time t26 (> t25) when a further time elapses from time t25, the semiconductor switch 2B of the semiconductor relay 2 is turned off by inputting an off signal to the semiconductor relay 2 via the control circuit 4A. Then, since the pair of output terminals 111 and 112 become non-conductive, the power supply path from the power source A1 to the load B1 is opened, and no current flows through the load B1. Note that the time from time t26 to time 27 (> t26) is the time during which the varistor VR1 is functioning.
  • the switch device 1 ⁇ / b> A when the ON signal among the control signals is input to the pair of input terminals 101 and 102, the semiconductor of the semiconductor relay 2 is preceded by the contact portion 32 of the mechanical relay 3. It is desirable to control the switch 2B to be turned on. Hereinafter, this control is referred to as “priority on control”.
  • priority on control is realized by using the control circuit 4A while utilizing the characteristic that the turn-on time of the semiconductor switch 2B is shorter than the operation time of the contact part 32. .
  • the control circuit 4A controls the semiconductor switch 2B so that the timing at which the semiconductor switch 2B is turned on is earlier than the timing at which the contact portion 32 of the mechanical relay 3 is turned on. It is configured as follows. For this reason, in the switch device 1A of the present modification, priority on control can be realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3. Further, in the switch device 1A of the present modification example, the priority off control is also realized by using the control circuit 4A as in the control circuit 4 of the first embodiment.
  • the switch device 1A of the present modification includes the control circuit 4A, complicated control such as individually controlling the semiconductor relay 2 and the mechanical relay 3 to shift the on / off timings. Is unnecessary. That is, the switch device 1 ⁇ / b> A of the present modification can easily control a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined with one control signal.
  • the switch device 1B As shown in FIG. 6, the switch device 1B according to the second embodiment of the present invention includes a semiconductor relay 2, a mechanical relay 3, and a control circuit 4B.
  • the semiconductor relay 2 is electrically connected to a power feeding path from the power source A1 to the load B1, and opens and closes the power feeding path according to a first control signal input from the outside.
  • the mechanical relay 3 is electrically connected in parallel with the semiconductor relay 2 and opens and closes the power feeding path according to a second control signal input from the outside.
  • the semiconductor relay 2 has semiconductor switches 23 and 24.
  • the semiconductor switches 23 and 24 open and close the power supply path by being turned on / off according to the first control signal. Further, the semiconductor switches 23 and 24 are configured to be turned on / off according to the electric charge accumulated in the capacitance component (gate capacitance).
  • the control circuit 4B includes a charge / discharge path 25 and an impedance circuit 26.
  • the charge / discharge path 25 charges and discharges the gate capacitance of the semiconductor switches 23 and 24.
  • the impedance circuit 26 is electrically connected to the charge / discharge path 25.
  • the impedance circuit 26 includes an impedance element 261 and is configured to connect the first path S1 to the charge / discharge path 25 when an ON signal is input from among the control signals (first control signals). Furthermore, the impedance circuit 26 is configured to connect the charge / discharge path 25 to the second path S2 including the impedance element 261 when an off signal is input from among the control signals (first control signals).
  • the switch device 1B of the present embodiment will be described in detail. However, in the switch device 1B of the present embodiment, the description of the parts common to the switch device 1 of the first embodiment is omitted. In the switch device 1B of the present embodiment, an AC power source is used as the power source A1, but a DC power source may be used.
  • the ON signal is input from among the first control signals (second control signals)” means “the first control signal (second control signal) becomes high level”.
  • the off signal of the first control signal (second control signal) is input means that “the first control signal (second control signal) becomes low level”.
  • the control signal is input to the pair of input terminals 201 and 202 of the semiconductor relay 2 as the first control signal.
  • the control signal is input to the pair of input terminals 301 and 302 of the mechanical relay 3 as the second control signal. That is, in the switch device 1B of the present embodiment, the first control signal and the second control signal are the same. In other words, the first control signal and the second control signal have the same period and the same phase. Of course, the first control signal and the second control signal may be different control signals.
  • the semiconductor relay 2 is a so-called non-contact relay, and has a light emitting element 21, a light receiving element 22, and two semiconductor switches 23 and 24.
  • the light emitting element 21 is configured to convert an electric signal input to the pair of input ends 201 and 202 into light.
  • the light emitting element 21 is a light emitting diode.
  • the light emitting diode has an anode electrically connected to the first input end 201 and a cathode electrically connected to the second input end 202.
  • the light emitting element 21 emits light in response to the first control signal input to the pair of input ends 201 and 202. Note that the number of light emitting diodes constituting the light emitting element 21 is not limited to one and may be plural.
  • the first control signal and the second control signal are the same as described above.
  • the current adjusting resistor 11 is electrically connected between the first input terminal 101 and the first input terminal 201 of the semiconductor relay 2.
  • the resistor 11 prevents an excessive current from flowing through the light emitting element 21. Note that when the first control signal and the second control signal are individually input to the semiconductor relay 2 and the mechanical relay 3, the resistor 11 is not necessary.
  • the light receiving element 22 is configured to receive a light emitted from the light emitting element 21 and generate a photovoltaic power.
  • the light receiving element 22 is configured by a photodiode array in which a plurality of photodiodes are electrically connected in series.
  • the anode is electrically connected to one end on the high potential side of the charge / discharge path 25 and the cathode is electrically connected to one end on the low potential side of the charge / discharge path 25.
  • the semiconductor switches 23 and 24 are both n-channel enhancement type MOSFETs.
  • the gates of the semiconductor switches 23 and 24 are electrically connected to one end on the high potential side of the light receiving element 22.
  • the sources of the semiconductor switches 23 and 24 are electrically connected to one end on the low potential side of the light receiving element 22 via the impedance circuit 26.
  • the drain of the semiconductor switch 23 is electrically connected to the first output terminal 111.
  • the drain of the semiconductor switch 24 is electrically connected to the second output terminal 112. That is, the semiconductor switches 23 and 24 are electrically connected in series between the pair of output terminals 111 and 112.
  • the semiconductor switches 23 and 24 are both configured to be turned on / off according to the electric charge accumulated in the capacitance component (gate capacitance).
  • the “gate capacitance” is a capacitor existing between the gate and the source of the semiconductor switches 23 and 24 and a capacitor existing between the gate and the drain.
  • the switch apparatus 1B of this embodiment although there are two semiconductor switches (23, 24), there may be one. That is, when the power source A1 is an AC power source, the switch device 1 requires two semiconductor switches (23, 24). On the other hand, when the power source A1 is a DC power source, the switch device 1B requires one high-potential side semiconductor switch (one of 23 and 24).
  • the semiconductor switches (23, 24) are enhancement type MOSFETs, but may be semiconductor elements such as IGBTs.
  • the control circuit 4B has a charge / discharge path 25 and an impedance circuit 26.
  • the charge / discharge path 25 is configured to charge and discharge the gate capacitance of the semiconductor switches 23 and 24.
  • the charge / discharge path 25 includes a resistor 251 that is electrically connected in parallel with the light receiving element 22.
  • the function of the charge / discharge path 25 will be briefly described.
  • a photoelectromotive force is generated in the light receiving element 22
  • a current flows from the light receiving element 22 to the gates of the semiconductor switches 23 and 24, and the gate capacitances of the semiconductor switches 23 and 24 are charged.
  • the gate capacitances of the semiconductor switches 23 and 24 are discharged via the resistor 251 of the charge / discharge path 25.
  • route 25 is comprised including the resistance 251
  • another structure may be sufficient.
  • the charge / discharge path 25 may include a semiconductor element 252 and a resistor 253 as shown in FIG.
  • the semiconductor element 252 is an n-channel depletion type MOSFET.
  • the drain of the semiconductor element 252 is electrically connected to one end on the high potential side of the light receiving element 22.
  • the gate of the semiconductor element 252 is electrically connected to one end on the low potential side of the light receiving element 22.
  • the source of the semiconductor element 252 is electrically connected to one end on the low potential side of the light receiving element 22 through the resistor 253.
  • the resistor 253 is electrically connected between the gate and source of the semiconductor element 252.
  • the function of the charge / discharge path 25 will be briefly described.
  • a photoelectromotive force is generated in the light receiving element 22
  • a current flows from the light receiving element 22 to the semiconductor element 252 and the resistor 253.
  • a voltage drop occurs in the resistor 253, and the semiconductor element 252 is turned off by this voltage drop. Therefore, a current flows from the light receiving element 22 to the gates of the semiconductor switches 23 and 24, and the gate capacitances of the semiconductor switches 23 and 24 are charged.
  • no photoelectromotive force is generated in the light receiving element 22, no voltage drop occurs in the resistor 253, and the semiconductor element 252 is turned on. For this reason, the gate capacitances of the semiconductor switches 23 and 24 are discharged through a path through the semiconductor element 252.
  • the impedance circuit 26 includes an impedance element 261 and a switch 262.
  • the impedance element 261 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24.
  • the switch 262 is electrically connected to the impedance element 261 in parallel.
  • the impedance circuit 26 is configured to switch the path through which the current flows to the first path S1 via the switch 262 when an ON signal of the first control signals is input to the pair of input terminals 201 and 202. Further, the impedance circuit 26 is configured to switch the path through which the current flows to the second path S2 via the impedance element 261 when an off signal of the first control signals is input to the pair of input terminals 201 and 202. ing.
  • the impedance circuit 26 is configured to connect the charge / discharge path 25 that charges and discharges the gate capacitance of the semiconductor switches 23 and 24 to the first path S1 when an ON signal is input from among the first control signals.
  • the impedance circuit 26 is configured to connect the charge / discharge path 25 to the second path S2 including the impedance element 261 when an off signal is input from the first control signal.
  • the impedance circuit 26 includes a resistor R1 (impedance element 261) and a diode D1 (switch 262).
  • the resistor R ⁇ b> 1 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24.
  • the diode D1 is electrically connected in parallel with the resistor R1.
  • the diode D1 has an anode electrically connected to the sources of the semiconductor switches 23 and 24 and a cathode electrically connected to one end of the light receiving element 22 on the low potential side.
  • the operation of the semiconductor relay 2 will be described.
  • the light emitting element 21 emits light.
  • the light receiving element 22 in response to the light emitted from the light emitting element 21, the light receiving element 22 generates photovoltaic power.
  • the pair of output terminals 111 and 112 are electrically connected.
  • the light emitting element 21 When the off signal of the first control signals is input to the pair of input terminals 201 and 202, the light emitting element 21 does not emit light. For this reason, the light receiving element 22 does not generate photovoltaic power. Then, the gate capacitances of the semiconductor switches 23 and 24 are discharged through the resistor 251 of the charge / discharge path 25 and the second path S2 of the impedance circuit 26, and the semiconductor switches 23 and 24 are turned off. As a result, the pair of output terminals 111 and 112 become non-conductive.
  • the semiconductor relay 2 switches on / off of the semiconductor switches 23 and 24 according to the first control signal input to the pair of input terminals 201 and 202, thereby connecting the pair of output terminals 111 and 112. Switch non-conduction.
  • the semiconductor relay 2 opens and closes the power supply path from the power source A1 to the load B1 by turning on / off the semiconductor switches 23 and 24 according to the first control signal.
  • the semiconductor relay 2 uses the light emitting element 21 and the light receiving element 22 to electrically connect the pair of input ends 201 and 202 and the pair of output ends 211 and 212. Insulated. That is, the semiconductor relay 2 includes the insulating portions 21 and 22 that electrically insulate the primary side (the pair of input terminals 101 and 102 side) from the secondary side (the pair of output terminals 111 and 112 side). It can be said.
  • the insulating portions 21 and 22 may have other configurations.
  • the semiconductor relay 2 is configured to electrically insulate between the pair of input terminals 201 and 202 and the pair of output terminals 211 and 212 by using a capacitor instead of the light emitting element 21 and the light receiving element 22. May be. When using a capacitor, the semiconductor relay 2 needs to further include a drive circuit for driving the semiconductor switches 23 and 24.
  • FIG. 10 shows the operation of the switch device 1B of the present embodiment when the power source A1 is a DC power source.
  • the operation is the same as that when the power source A1 is an AC power source, and the description thereof is omitted here.
  • the “power supply voltage” shown in FIGS. 9 and 10 is the output voltage of the power supply A1.
  • the “control signal” shown in FIGS. 9 and 10 is a generic term for the first control signal and the second control signal.
  • the contact voltage becomes a voltage corresponding to the voltage drop due to the on-resistance between the drain and source of the semiconductor switches 23 and 24.
  • the inrush current that can be generated when the contact portion 32 is turned on can be reduced as compared with the case where the power supply path is closed only by the mechanical relay 3 without using the semiconductor relay 2. .
  • the contact resistance of the contact portion 32 is smaller than the on-resistance of the semiconductor switches 23 and 24, most of the current flowing from the power source A1 to the load B1 flows through the contact portion 32.
  • the power loss and heat generation at the on-resistance of the semiconductor switches 23 and 24 are small compared to the case where the power supply path is closed only by the semiconductor relay 2 without using the mechanical relay 3.
  • the energization current can be increased.
  • the switch device 1B of the present embodiment an arc is generated when the contact portion 32 is turned off, compared to the case where the semiconductor switches 23 and 24 of the semiconductor relay 2 are turned off before the contact portion 32 of the mechanical relay 3. hard. This is particularly effective when the power source A1 is a DC power source.
  • the switch device 1 ⁇ / b> B of the present embodiment has the semiconductor relay 2 semiconductor prior to the contact portion 32 of the mechanical relay 3 when an ON signal among the control signals is input to the pair of input terminals 101 and 102. It is desirable to control the switches 23 and 24 to be turned on. That is, it is desirable that the switch device 1B of the present embodiment can execute the priority on control. Therefore, the switch device 1B of the present embodiment utilizes the characteristic that the turn-on time of the semiconductor switches 23 and 24 of the semiconductor relay 2 is shorter than the operation time of the contact portion 32 of the mechanical relay 3. For this reason, in the switch device 1B of the present embodiment, the priority on control can be realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3.
  • the switch device 1B of the present embodiment when the off signal among the control signals is input to the pair of input terminals 101 and 102, the contact portion 32 is provided before the semiconductor switches 23 and 24. It is desirable to be controlled to turn off. That is, it is desirable that the switch device 1B of the present embodiment can perform priority off control.
  • the turn-off time of the semiconductor switches 23 and 24 is shorter than the return time of the contact portion 32, the semiconductor switches 23 and 24 are turned off before the contact portion 32.
  • the switch device 1B of the present embodiment when an off signal is input from the control signal (first control signal), the gate capacitances of the semiconductor switches 23 and 24 are discharged through the second path S2 of the impedance circuit 26. To do. That is, by discharging the gate capacitances of the semiconductor switches 23 and 24 via the impedance element 261, the time constant is increased so that the turn-on time of the semiconductor switches 23 and 24 is longer than the return time of the contact portion 32. Yes. For this reason, in the switch apparatus 1B of this embodiment, priority off control is realizable by one control signal, without controlling the semiconductor relay 2 and the mechanical relay 3 separately.
  • the turn-on time of the semiconductor switches 23 and 24 may be longer than the operation time of the contact part 32. Therefore, in the switch device 1B of the present embodiment, when an ON signal is input from among the control signals (first control signals), the gate capacitances of the semiconductor switches 23 and 24 are set via the first path S1 of the impedance circuit 26. Charge. That is, when an ON signal is input from among the control signals, the gate capacitances of the semiconductor switches 23 and 24 are charged without going through the impedance element 261, so that the turn-on time of the semiconductor switches 23 and 24 is prevented from becoming long. be able to.
  • control circuit 4B controls the semiconductor switches 23 and 24, so that the contact point 32 of the mechanical relay 3 is turned off from the on time when the semiconductor switches 23 and 24 are turned off. It is configured to be delayed from the timing. In the present embodiment, the control circuit 4B controls the semiconductor switches 23 and 24, so that the contact point 32 of the mechanical relay 3 is turned on from the off time when the semiconductor switches 23 and 24 are turned on. It is configured to be earlier than the timing.
  • the switch device 1B of the present embodiment has the gate capacitances of the semiconductor switches 23 and 24 via the second path S2 of the impedance circuit 26 when an ON signal is input from among the control signals (first control signals). It may be configured to charge.
  • the control circuit 4B controls the semiconductor switches 23 and 24 so that the timing at which the semiconductor switches 23 and 24 are turned on is set to be higher than the timing at which the contact portion 32 of the mechanical relay 3 is turned on from off. It will be delayed.
  • the switch device 1B of the present embodiment includes the control circuit 4B having the charge / discharge path 25 and the impedance circuit 26.
  • the priority on control and the priority off control are realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3. Can do.
  • the semiconductor relay 2 may be individually controlled with the first control signal and the mechanical relay 3 may be individually controlled with the second control signal. That is, the switch device 1B of the present embodiment can increase the degree of freedom of control.
  • the semiconductor relay 2 and the mechanical relay 3 are controlled by one control signal.
  • the first control signal and the second control signal are the same.
  • this configuration there is an advantage that complicated control such as shifting the timing of controlling each of the semiconductor relay 2 and the mechanical relay 3 is unnecessary, and control becomes easy. That is, in this configuration, a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined can be easily controlled with one control signal. Note that whether or not to adopt the configuration is arbitrary.
  • the semiconductor relay 2 includes a light emitting element 21 and a light receiving element 22.
  • the semiconductor switches 23 and 24 are configured to be turned on / off by the photovoltaic force generated by the light receiving element 22.
  • the switch device 1 ⁇ / b> B of this embodiment has an advantage that the potential difference between the input and output hardly affects the on / off of the semiconductor switches 23 and 24. Note that whether or not to adopt the configuration for the semiconductor relay 2 is arbitrary.
  • the impedance circuit 26 is not limited to the configuration shown in FIG. 8, and may have other configurations.
  • the impedance circuit 26 may include a resistor R1 (impedance element 261) and a switching element Q1 (switch 262).
  • the resistor R1 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24, similarly to the configuration shown in FIG.
  • the switching element Q1 is an n-channel enhancement type MOSFET.
  • the gate of the switching element Q1 is electrically connected to one end of the light receiving element 22 on the high potential side.
  • the drain of the switching element Q1 is electrically connected to the sources of the semiconductor switches 23 and 24.
  • the source of the switching element Q1 is electrically connected to one end of the light receiving element 22 on the low potential side.
  • the impedance circuit 26 may include a resistor R1 (impedance element 261), a capacitor C1 (impedance element 261), and a diode D1 (switch 262).
  • the resistor R1 and the diode D1 are the same as those shown in FIG.
  • Capacitor C1 is electrically connected in parallel with resistor R1.
  • the impedance element 261 may include a capacitive element (here, the capacitor C1).
  • the turn-off time of the semiconductor switches 23 and 24 can be more effectively increased as compared with the case where the impedance element 261 is configured only by a resistor.
  • the impedance element 261 is configured by the resistor R1 and the capacitor C1, but may be configured by only the capacitor C1.
  • the switch device 1B of the present embodiment has a configuration in which the semiconductor switches 23 and 24 (contact point portion 32) are turned on when the first control signal (second control signal) is at a high level, but the other configuration. May be. That is, the switch device 1B of the present embodiment may be configured such that the semiconductor switches 23 and 24 (contact points 32) are turned on when the first control signal (second control signal) is at a low level.
  • the ON signal is input from among the first control signals (second control signals)” means “the first control signal (second control signal) is at a low level”.
  • the off signal of the first control signal (second control signal) is input” means “the first control signal (second control signal) becomes high level”.
  • the switch device 1B of the present embodiment may further include the control circuit 4 of the first embodiment and the control circuit 4A of a modification of the first embodiment. Also in this case, it is possible to realize the priority on control and the priority off control with one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3.
  • the switch device (1, 1A, 1B) includes a semiconductor relay (2), a mechanical relay (3), a control circuit (4, 4). 4A, 4B).
  • the semiconductor relay (2) opens and closes a power feeding path from the power source (A1) to the load (B1).
  • the mechanical relay (3) has a contact portion (32) electrically connected in parallel with the semiconductor relay (2), and turns on / off the contact portion (32) according to a control signal input from the outside. This opens and closes the feed path.
  • the control circuit (4, 4A, 4B) receives the control signal and controls the semiconductor relay (2).
  • the semiconductor relay (2) has semiconductor switches (2B, 23, 24).
  • the semiconductor switches (2B, 23, 24) open / close the power supply path by turning on / off according to the electric charge accumulated in the capacitive component.
  • the control circuit (4, 4A, 4B) controls the semiconductor switch (2B, 23, 24) so that the timing at which the semiconductor switch (2B, 23, 24) is turned off is turned on.
  • the contact portion (32) is configured to be delayed from the timing when the contact portion (32) is turned off.
  • the control circuit (4A, 4B) controls the semiconductor switch (2B, 23, 24),
  • the timing at which the semiconductor switch (2B, 23, 24) is turned on from off is configured to be earlier than the timing at which the contact portion (32) of the mechanical relay (3) is turned on from off.
  • the control circuit (4) controls the semiconductor switch (2B) so that the semiconductor switch (2B) is turned off.
  • the timing of turning on is configured to be delayed from the timing of turning on the contact portion (32) of the mechanical relay (3).
  • the semiconductor relay (2) has a primary side and a secondary side. It further has an insulating part (2A, 2C, 21, 22) for electrical insulation.
  • control circuit (4, 4A) is provided on the primary side to delay the control signal, A delay circuit (5, 5A) for outputting the control signal to the semiconductor relay (2).
  • the control circuit (4, 4A) receives a control signal via the delay circuit (5, 5A). And a buffer circuit (6) configured to output the control signal when the voltage of the control signal reaches the threshold voltage.
  • the switch device (1B) according to the seventh aspect of the present invention further includes a charge / discharge path (25) for charging and discharging the capacitive component according to the control signal in any of the fourth to sixth aspects.
  • the control circuit (4B) includes an impedance circuit (26) provided on the secondary side and electrically connected to the charge / discharge path (25).
  • the impedance circuit (26) has an impedance element (261).
  • the impedance circuit (26) connects the charge / discharge path (25) to the first path (S1) when an ON signal is input from among the control signals, and charges / discharges when an OFF signal is input from among the control signals.
  • the path (25) is configured to be connected to the second path (S2) including the impedance element (261).
  • the impedance element (261) includes a capacitive element (capacitor (C1)).
  • the insulating portion (21, 22) receives the control signal and emits light (21), A light receiving element (22) that generates a photovoltaic force in response to light emitted from the light emitting element (21).
  • the switch device (1, 1A, 1B) includes the control circuit (4, 4A, 4B), the semiconductor relay (2) and the mechanical relay (3) can be provided with a semiconductor relay ( 2) A time difference between opening and closing of the mechanical relay (3) can be provided. Therefore, the present invention can easily control a hybrid relay in which the semiconductor relay (2) and the mechanical relay (3) are combined with one control signal.

Abstract

The present invention addresses the problem of easily controlling, by means of one control signal, a hybrid relay wherein a semiconductor relay and a mechanical relay are combined. A switch device (1) is provided with a semiconductor relay (2), a mechanical relay (3), and a control circuit (4). The semiconductor relay (2) opens/closes a power supply path. The mechanical relay (3) has a contact section (32) to be electrically connected in parallel to the semiconductor relay (2), and opens/closes the power supply path by turning on/off the contact section (32) corresponding to a control signal. The semiconductor relay (2) has a semiconductor switch (2B). The control circuit (4) is configured such that, by controlling the semiconductor switch (2B) by receiving the control signal, a timing at which the semiconductor switch (2B) is turned off from being turned on is delayed from the timing at which the contact section (32) of the mechanical relay (3) is turned off from being tuned on.

Description

スイッチ装置Switch device
 本発明は、一般にスイッチ装置に関し、より詳細には、メカニカルリレーと半導体リレーとを有するスイッチ装置に関する。 The present invention generally relates to a switch device, and more particularly to a switch device having a mechanical relay and a semiconductor relay.
 従来、直流電流が流れる直流電流路を開路または閉路とする直流スイッチが知られており、たとえば文献1(日本国特許出願公開番号2012-28193)に開示されている。この直流スイッチは、直流電流路に挿入される電子的開閉スイッチと、電子的開閉スイッチに対して並列に接続される機械的開閉スイッチとを備える。また、この直流スイッチは、機械的開閉スイッチと電子的開閉スイッチとの相互の開閉の時間差を制御するスイッチ制御回路とを備える。 Conventionally, a DC switch that opens or closes a DC current path through which a DC current flows is known, and is disclosed in, for example, Document 1 (Japanese Patent Application Publication No. 2012-28193). The direct current switch includes an electronic on / off switch inserted into a direct current path and a mechanical on / off switch connected in parallel to the electronic on / off switch. The direct current switch includes a switch control circuit that controls a time difference between opening and closing of the mechanical opening / closing switch and the electronic opening / closing switch.
 そして、スイッチ制御回路は、電子的開閉スイッチが閉路とされた所定時間後に、機械的開閉スイッチを閉路とする制御を行う。これにより、この直流スイッチは、直流電流路を導通とする場合における電子的開閉スイッチの電力損失を小さくしている。 The switch control circuit performs control to close the mechanical on / off switch after a predetermined time after the electronic on / off switch is closed. As a result, this DC switch reduces the power loss of the electronic switch when the DC current path is made conductive.
 しかしながら、上記従来例では、電子的開閉スイッチ(半導体リレー)と機械的開閉スイッチ(メカニカルリレー)との相互の開閉の時間差を設けるためには、電子的開閉スイッチと機械的開閉スイッチとに個別に制御信号を与えて制御する必要があった。このため、従来例は、半導体リレー及びメカニカルリレーを組み合わせたハイブリッドリレーを1つの制御信号で制御することが困難であるという問題があった。 However, in the above conventional example, in order to provide a time difference between the opening / closing of the electronic opening / closing switch (semiconductor relay) and the mechanical opening / closing switch (mechanical relay), the electronic opening / closing switch and the mechanical opening / closing switch are individually provided. It was necessary to control by giving a control signal. For this reason, the conventional example has a problem that it is difficult to control a hybrid relay combining a semiconductor relay and a mechanical relay with one control signal.
 本発明は、上記の点に鑑みてなされており、半導体リレー及びメカニカルリレーを組み合わせたハイブリッドリレーを、1つの制御信号で容易に制御することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to easily control a hybrid relay combining a semiconductor relay and a mechanical relay with one control signal.
 本発明の一態様に係るスイッチ装置は、半導体リレーと、メカニカルリレーと、制御回路とを備える。前記半導体リレーは、電源から負荷への給電路を開閉する。前記メカニカルリレーは、前記半導体リレーと並列に電気的に接続される接点部を有し、外部から入力される制御信号に応じて前記接点部をオン/オフすることにより前記給電路を開閉する。前記制御回路は、前記制御信号を受けて前記半導体リレーを制御する。前記半導体リレーは、半導体スイッチを有する。前記半導体スイッチは、容量成分に蓄積される電荷に応じてオン/オフすることで前記給電路を開閉する。前記制御回路は、前記半導体スイッチを制御することで、前記半導体スイッチがオンからオフになるタイミングを、前記メカニカルリレーの前記接点部がオンからオフになるタイミングよりも遅らせるように構成されている。 The switch device according to one embodiment of the present invention includes a semiconductor relay, a mechanical relay, and a control circuit. The semiconductor relay opens and closes a power feeding path from a power source to a load. The mechanical relay has a contact portion electrically connected in parallel with the semiconductor relay, and opens and closes the power feeding path by turning on and off the contact portion in accordance with a control signal input from the outside. The control circuit receives the control signal and controls the semiconductor relay. The semiconductor relay has a semiconductor switch. The semiconductor switch opens and closes the power supply path by turning on / off according to the charge accumulated in the capacitive component. The control circuit is configured to control the semiconductor switch so that the timing at which the semiconductor switch is turned off is delayed from the timing at which the contact portion of the mechanical relay is turned on from off.
本発明の実施形態1に係るスイッチ装置を示す概略図である。It is the schematic which shows the switch apparatus which concerns on Embodiment 1 of this invention. 同上のスイッチ装置を用いた回路の概略図である。It is the schematic of the circuit using a switch apparatus same as the above. 同上のスイッチ装置の動作説明図である。It is operation | movement explanatory drawing of a switch apparatus same as the above. 本発明の実施形態1の変形例に係るスイッチ装置を示す概略図である。It is the schematic which shows the switch apparatus which concerns on the modification of Embodiment 1 of this invention. 同上のスイッチ装置の動作説明図である。It is operation | movement explanatory drawing of a switch apparatus same as the above. 本発明の実施形態2に係るスイッチ装置を示す概略図である。It is the schematic which shows the switch apparatus which concerns on Embodiment 2 of this invention. 同上のスイッチ装置における充放電経路の一例を示す図である。It is a figure which shows an example of the charging / discharging path | route in a switch apparatus same as the above. 同上のスイッチ装置におけるインピーダンス回路の一例を示す図である。It is a figure which shows an example of the impedance circuit in a switch apparatus same as the above. 電源が交流電源である場合における、同上のスイッチ装置の動作説明図である。It is operation | movement explanatory drawing of a switch apparatus same as the above when a power supply is an alternating current power supply. 電源が直流電源である場合における、同上のスイッチ装置の動作説明図である。It is operation | movement explanatory drawing of a switch apparatus same as the above when a power supply is a DC power supply. 同上のスイッチ装置におけるインピーダンス回路の一例を示す図である。It is a figure which shows an example of the impedance circuit in a switch apparatus same as the above. 同上のスイッチ装置におけるインピーダンス回路の他の一例を示す図である。It is a figure which shows another example of the impedance circuit in a switch apparatus same as the above.
 以下、本発明の実施形態1、実施形態1の変形例、及び実施形態2に係るスイッチ装置について詳細に説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は下記の構成に限定されることはなく、これらの構成以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 Hereinafter, the switch device according to Embodiment 1, Embodiment 1 of the present invention, and Embodiment 2 of the present invention will be described in detail. However, the configuration described below is merely an example of the present invention, and the present invention is not limited to the following configuration, and the technical idea according to the present invention does not depart from the configurations other than these configurations. Within the range, various changes can be made according to the design and the like.
 (実施形態1)
 本発明の実施形態1に係るスイッチ装置1は、図1、図2に示すように、半導体リレー2と、メカニカルリレー3と、制御回路4とを備えている。半導体リレー2は、電源A1から負荷B1への給電路を開閉する。メカニカルリレー3は、半導体リレー2と並列に電気的に接続される接点部32を有し、外部から入力される制御信号に応じて接点部32をオン/オフすることにより給電路を開閉する。制御回路4は、制御信号を受けて半導体リレー2を制御する。
(Embodiment 1)
As shown in FIGS. 1 and 2, the switch device 1 according to Embodiment 1 of the present invention includes a semiconductor relay 2, a mechanical relay 3, and a control circuit 4. The semiconductor relay 2 opens and closes a power feeding path from the power source A1 to the load B1. The mechanical relay 3 includes a contact portion 32 that is electrically connected in parallel with the semiconductor relay 2, and opens and closes the power supply path by turning the contact portion 32 on and off according to a control signal input from the outside. The control circuit 4 receives the control signal and controls the semiconductor relay 2.
 半導体リレー2は、半導体スイッチ2Bを有している。半導体スイッチ2Bは、容量成分(キャパシタ42)に蓄積される電荷に応じてオン/オフすることで給電路を開閉する。制御回路4は、半導体スイッチ2Bを制御することで、半導体スイッチ2Bがオンからオフになるタイミングを、メカニカルリレー3の接点部32がオンからオフになるタイミングよりも遅らせるように構成されている。 The semiconductor relay 2 has a semiconductor switch 2B. The semiconductor switch 2B opens and closes the power feeding path by turning on / off according to the electric charge accumulated in the capacitance component (capacitor 42). The control circuit 4 is configured to control the semiconductor switch 2B so that the timing at which the semiconductor switch 2B is turned off is delayed from the timing at which the contact portion 32 of the mechanical relay 3 is turned off.
 <構成>
 以下、本実施形態のスイッチ装置1について詳細に説明する。以下の説明では、「制御信号のうちオン信号が入力される」とは「制御信号がハイレベルになる」ことを意味する。また、「制御信号のうちオフ信号が入力される」とは「制御信号がローレベルになる」ことを意味する。
<Configuration>
Hereinafter, the switch device 1 of the present embodiment will be described in detail. In the following description, “the ON signal among the control signals is input” means “the control signal becomes high level”. Further, “an OFF signal is input from among the control signals” means “the control signal becomes low level”.
 本実施形態のスイッチ装置1は、図1に示すように、一対の入力端子101,102(第1入力端子101、第2入力端子102)と、一対の出力端子111,112(第1出力端子111、第2出力端子112)とを備えている。一対の入力端子101,102には、制御回路4を介して、半導体リレー2の一対の入力端201,202(第1入力端201、第2入力端202)が電気的に接続されている。また、一対の入力端子101,102には、メカニカルリレー3の一対の入力端301,302(第1入力端301、第2入力端302)が電気的に接続されている。また、一対の出力端子111,112には、半導体リレー2の一対の出力端211,212(第1出力端211、第2出力端212)と、メカニカルリレー3の一対の出力端311,312(第1出力端311、第2出力端312)とが電気的に接続されている。つまり、メカニカルリレー3は、半導体リレー2に並列に電気的に接続されている。 As shown in FIG. 1, the switch device 1 according to the present embodiment includes a pair of input terminals 101 and 102 (first input terminal 101 and second input terminal 102) and a pair of output terminals 111 and 112 (first output terminal). 111 and a second output terminal 112). A pair of input terminals 201 and 202 (first input terminal 201 and second input terminal 202) of the semiconductor relay 2 are electrically connected to the pair of input terminals 101 and 102 via the control circuit 4. A pair of input terminals 301 and 302 (first input terminal 301 and second input terminal 302) of the mechanical relay 3 are electrically connected to the pair of input terminals 101 and 102. The pair of output terminals 111 and 112 include a pair of output terminals 211 and 212 (first output terminal 211 and second output terminal 212) of the semiconductor relay 2 and a pair of output terminals 311 and 312 (mechanical relay 3). The first output terminal 311 and the second output terminal 312) are electrically connected. That is, the mechanical relay 3 is electrically connected to the semiconductor relay 2 in parallel.
 本実施形態のスイッチ装置1は、半導体リレー2及びメカニカルリレー3の少なくともいずれか一方がオンすることでオンになる。また、本実施形態のスイッチ装置1は、半導体リレー2及びメカニカルリレー3の両方がオフすることでオフになる。 The switch device 1 of this embodiment is turned on when at least one of the semiconductor relay 2 and the mechanical relay 3 is turned on. Moreover, the switch apparatus 1 of this embodiment is turned off when both the semiconductor relay 2 and the mechanical relay 3 are turned off.
 一対の入力端子101,102には、たとえばマイコン(マイクロコンピュータ)から制御信号が入力される。また、一対の入力端子101,102間には、過大な電圧が入力されないように、ツェナーダイオードZD1が電気的に接続されている。 A control signal is input to the pair of input terminals 101 and 102 from, for example, a microcomputer. A Zener diode ZD1 is electrically connected between the pair of input terminals 101 and 102 so that an excessive voltage is not input.
 一対の出力端子111,112には、図2に示すように、電源A1及び負荷B1が電気的に接続されている。したがって、一対の出力端子111,112間が非導通(スイッチ装置1がオフ)であれば、電源A1から負荷B1には電力が供給されない。また、一対の出力端子111,112間が導通(スイッチ装置1がオン)すると、電源A1から負荷B1に電力が供給される。つまり、本実施形態のスイッチ装置1は、電源A1から負荷B1への給電路を開閉する。なお、本実施形態のスイッチ装置1では、電源A1として直流電源を用いているが、交流電源を用いてもよい。 As shown in FIG. 2, a power source A1 and a load B1 are electrically connected to the pair of output terminals 111 and 112. Therefore, if the pair of output terminals 111 and 112 are non-conductive (switch device 1 is off), power is not supplied from the power source A1 to the load B1. Further, when the pair of output terminals 111 and 112 are electrically connected (the switch device 1 is turned on), power is supplied from the power source A1 to the load B1. That is, the switch device 1 of the present embodiment opens and closes the power feeding path from the power source A1 to the load B1. In the switch device 1 of the present embodiment, a DC power source is used as the power source A1, but an AC power source may be used.
 負荷B1は、たとえば電気自動車(Electric Vehicle:EV)である。その他、負荷B1は、たとえばセキュリティ機器、アミューズメント機器、医療機器や蓄電池システム、ヒータ、DCモータなどであってもよい。負荷B1は、電源A1が交流電源であれば、交流電力を供給されることにより動作する負荷で構成される。また、負荷B1は、電源A1が直流電源であれば、直流電力を供給されることにより動作する負荷で構成される。また、負荷B1は、抵抗負荷であってもよいし、誘導性負荷であってもよい。本実施形態では、負荷B1は、たとえば開閉器の有するコイルであり、誘導性負荷である。 The load B1 is, for example, an electric vehicle (Electric Vehicle: EV). In addition, the load B1 may be, for example, a security device, an amusement device, a medical device, a storage battery system, a heater, a DC motor, or the like. If the power source A1 is an AC power source, the load B1 is configured by a load that operates by being supplied with AC power. Further, if the power source A1 is a DC power source, the load B1 is configured by a load that operates by being supplied with DC power. Further, the load B1 may be a resistance load or an inductive load. In this embodiment, load B1 is a coil which a switch has, for example, and is an inductive load.
 半導体リレー2は、いわゆる無接点リレーであり、発光素子2Aと、半導体スイッチ2Bと、受光素子2Cとを備えている。発光素子2Aと、半導体スイッチ2Bとは、互いに電気的に絶縁されている。つまり、本実施形態のスイッチ装置1では、半導体リレー2は、発光素子2A及び受光素子2Cを用いることで、一対の入力端201,202と一対の出力端211,212との間を電気的に絶縁している。言い換えれば、半導体リレー2は、1次側(一対の入力端子101,102側)と2次側(一対の出力端子111,112側)とを電気的に絶縁する絶縁部2A,2Cを備えているといえる。 The semiconductor relay 2 is a so-called non-contact relay and includes a light emitting element 2A, a semiconductor switch 2B, and a light receiving element 2C. The light emitting element 2A and the semiconductor switch 2B are electrically insulated from each other. That is, in the switch device 1 of this embodiment, the semiconductor relay 2 uses the light emitting element 2A and the light receiving element 2C to electrically connect the pair of input ends 201 and 202 and the pair of output ends 211 and 212. Insulated. In other words, the semiconductor relay 2 includes insulating portions 2A and 2C that electrically insulate the primary side (the pair of input terminals 101 and 102 side) from the secondary side (the pair of output terminals 111 and 112 side). It can be said that.
 この絶縁部2A,2Cは、他の構成であってもよい。たとえば、半導体リレー2は、発光素子2A及び受光素子2Cの代わりにキャパシタを用いることで、一対の入力端201,202と一対の出力端211,212との間を電気的に絶縁する構成であってもよい。なお、キャパシタを用いる場合、半導体リレー2は、半導体スイッチ2Bを駆動するためのドライブ回路をさらに備える必要がある。 The insulating portions 2A and 2C may have other configurations. For example, the semiconductor relay 2 is configured to electrically insulate between the pair of input ends 201 and 202 and the pair of output ends 211 and 212 by using a capacitor instead of the light emitting element 2A and the light receiving element 2C. May be. When using a capacitor, the semiconductor relay 2 needs to further include a drive circuit for driving the semiconductor switch 2B.
 発光素子2Aは、一対の入力端201,202に入力される電気信号を光に変換するように構成されている。本実施形態では、発光素子2Aは、発光ダイオードである。発光ダイオードは、アノードが第1入力端201に、カソードが第2入力端202に電気的に接続されている。発光素子2Aは、一対の入力端201,202に入力される制御信号のうちオン信号を受けて発光する。また、発光素子2Aは、制御信号のうちオフ信号を受けている間は発光しない。なお、発光素子2Aを構成する発光ダイオードの数は1つに限定されず、複数であってもよい。 The light emitting element 2A is configured to convert an electric signal input to the pair of input ends 201 and 202 into light. In the present embodiment, the light emitting element 2A is a light emitting diode. The light emitting diode has an anode electrically connected to the first input end 201 and a cathode electrically connected to the second input end 202. The light emitting element 2 </ b> A emits light upon receiving an ON signal among control signals input to the pair of input terminals 201 and 202. Further, the light emitting element 2A does not emit light while receiving an off signal among the control signals. Note that the number of light emitting diodes constituting the light emitting element 2A is not limited to one, and may be plural.
 ここで、メカニカルリレー3を駆動するための制御信号のうちオン信号を半導体リレー2にそのまま入力すると、過大な電流が発光素子2Aに流れてしまう虞がある。そこで、本実施形態のスイッチ装置1では、電流調整用の抵抗11が発光素子2Aに直列に電気的に接続されている。この抵抗11により、発光素子2Aに過大な電流が流れるのを防止している。 Here, if an ON signal among the control signals for driving the mechanical relay 3 is input to the semiconductor relay 2 as it is, an excessive current may flow to the light emitting element 2A. Therefore, in the switch device 1 of the present embodiment, the current adjusting resistor 11 is electrically connected in series to the light emitting element 2A. This resistor 11 prevents an excessive current from flowing through the light emitting element 2A.
 受光素子2Cは、発光素子2Aが発する光を受けて光起電力を発生するように構成されている。本実施形態では、受光素子2Cは、複数のフォトダイオードを直列に電気的に接続してなるフォトダイオードアレイで構成されている。 The light receiving element 2C is configured to receive a light emitted from the light emitting element 2A and generate a photovoltaic power. In the present embodiment, the light receiving element 2C is configured by a photodiode array formed by electrically connecting a plurality of photodiodes in series.
 半導体スイッチ2Bは、nチャネルのエンハンスメント型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。半導体スイッチ2Bのゲートは、受光素子2Cの高電位側の一端に電気的に接続されている。また、半導体スイッチ2Bのドレインは、第1出力端子111に電気的に接続されている。また、半導体スイッチ2Bのソースは、受光素子2Cの低電位側の一端及び第2出力端子112に電気的に接続されている。半導体スイッチ2Bは、ゲート容量に蓄積される電荷に応じてオン/オフするように構成される。なお、「ゲート容量」とは、半導体スイッチ2Bのゲート-ソース間に存在するキャパシタ(一般的に、「ゲート入力容量」という)、及びゲート-ドレイン間に存在するキャパシタ(一般的に、「ゲート出力容量」という)である。 The semiconductor switch 2B is an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor). The gate of the semiconductor switch 2B is electrically connected to one end on the high potential side of the light receiving element 2C. The drain of the semiconductor switch 2B is electrically connected to the first output terminal 111. The source of the semiconductor switch 2B is electrically connected to one end on the low potential side of the light receiving element 2C and the second output terminal 112. The semiconductor switch 2B is configured to be turned on / off according to the charge accumulated in the gate capacitance. The “gate capacitance” means a capacitor (generally referred to as “gate input capacitance”) existing between the gate and source of the semiconductor switch 2B and a capacitor (generally referred to as “gate capacitance”) between the gate and drain. Output capacity).
 なお、本実施形態では、半導体スイッチ2Bは1つであるが、2つであってもよい。つまり、電源A1が交流電源である場合、スイッチ装置1は、2つの半導体スイッチ2Bを必要とする。また、本実施形態では、半導体スイッチ2Bはエンハンスメント型MOSFETであるが、たとえばIGBT(Insulated Gate Bipolar Transistor)等の半導体素子であってもよい。 In the present embodiment, there is one semiconductor switch 2B, but two semiconductor switches may be used. That is, when the power source A1 is an AC power source, the switch device 1 requires two semiconductor switches 2B. In the present embodiment, the semiconductor switch 2B is an enhancement type MOSFET, but may be a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor).
 半導体リレー2は、半導体スイッチ2Bのゲート容量を充電及び放電するための充放電経路として、半導体素子2Dと、抵抗2Eとをさらに備えている。半導体素子2Dは、nチャネルのデプレッション型MOSFETである。半導体素子2Dのドレインは、受光素子2Cの高電位側の一端に電気的に接続されている。半導体素子2Dのゲートは、受光素子2Cの低電位側の一端に電気的に接続されている。また、半導体素子2Dのソースは、抵抗2Eを介して受光素子2Cの低電位側の一端に電気的に接続されている。言い換えれば、抵抗2Eは、半導体素子2Dのゲート-ソース間に電気的に接続されている。 The semiconductor relay 2 further includes a semiconductor element 2D and a resistor 2E as a charge / discharge path for charging and discharging the gate capacitance of the semiconductor switch 2B. The semiconductor element 2D is an n-channel depletion type MOSFET. The drain of the semiconductor element 2D is electrically connected to one end on the high potential side of the light receiving element 2C. The gate of the semiconductor element 2D is electrically connected to one end on the low potential side of the light receiving element 2C. The source of the semiconductor element 2D is electrically connected to one end on the low potential side of the light receiving element 2C via the resistor 2E. In other words, the resistor 2E is electrically connected between the gate and source of the semiconductor element 2D.
 スイッチ装置1は、制御回路4と、バリスタ(Varistor)VR1とをさらに備えている。バリスタVR1は、一対の出力端211,212間に電気的に接続されている。バリスタVR1は、スイッチ装置1がオフするときに一対の出力端211,212間に印加される過大な逆起電力から半導体スイッチ2Bを保護している。なお、バリスタVR1は、負荷B1が抵抗負荷である場合、不要である。 The switch device 1 further includes a control circuit 4 and a varistor VR1. The varistor VR1 is electrically connected between the pair of output ends 211 and 212. The varistor VR1 protects the semiconductor switch 2B from an excessive back electromotive force applied between the pair of output terminals 211 and 212 when the switch device 1 is turned off. The varistor VR1 is not necessary when the load B1 is a resistance load.
 制御回路4は、遅延回路5と、バッファ回路6とを有している。遅延回路5は、抵抗41と、キャパシタ42とを備えている。抵抗41は、第1入力端子101とバッファ回路6の入力端との間に電気的に接続されている。キャパシタ42は、抵抗41及びバッファ回路6の入力端の接続点と、第2入力端子102との間に電気的に接続されている。遅延回路5は、一対の入力端子101,102に入力される制御信号を遅延させ、遅延した制御信号を半導体リレー2の一対の入力端201,202に入力するように構成されている。このため、本実施形態のスイッチ装置1では、制御信号が半導体リレー2に入力されるタイミングを、制御信号がメカニカルリレー3に入力されるタイミングよりも遅らせることができる。 The control circuit 4 has a delay circuit 5 and a buffer circuit 6. The delay circuit 5 includes a resistor 41 and a capacitor 42. The resistor 41 is electrically connected between the first input terminal 101 and the input terminal of the buffer circuit 6. The capacitor 42 is electrically connected between the connection point between the resistor 41 and the input end of the buffer circuit 6 and the second input terminal 102. The delay circuit 5 is configured to delay a control signal input to the pair of input terminals 101 and 102 and input the delayed control signal to the pair of input terminals 201 and 202 of the semiconductor relay 2. For this reason, in the switch apparatus 1 of this embodiment, the timing at which the control signal is input to the semiconductor relay 2 can be delayed from the timing at which the control signal is input to the mechanical relay 3.
 バッファ回路6は、遅延回路5の高圧側の出力端と、半導体リレー2の第1入力端201との間に電気的に接続されている。バッファ回路6には、遅延回路5により遅延した制御信号が入力される。そして、バッファ回路6は、入力された制御信号の電圧が閾値電圧に達するまでは制御信号を出力せず、閾値電圧に達すると制御信号を出力する。たとえば、制御信号のうちオン信号がバッファ回路6に入力される場合、オン信号の電圧が閾値電圧を上回ると、バッファ回路6がオン信号を出力する。また、制御信号のうちオフ信号がバッファ回路6に入力される場合、オフ信号の電圧が閾値電圧を下回ると、バッファ回路6がオフ信号を出力する。 The buffer circuit 6 is electrically connected between the output terminal on the high voltage side of the delay circuit 5 and the first input terminal 201 of the semiconductor relay 2. A control signal delayed by the delay circuit 5 is input to the buffer circuit 6. The buffer circuit 6 does not output the control signal until the voltage of the input control signal reaches the threshold voltage, and outputs the control signal when the threshold voltage is reached. For example, when an ON signal among the control signals is input to the buffer circuit 6, the buffer circuit 6 outputs an ON signal when the voltage of the ON signal exceeds the threshold voltage. In addition, when an off signal among the control signals is input to the buffer circuit 6, the buffer circuit 6 outputs an off signal when the voltage of the off signal falls below the threshold voltage.
 つまり、バッファ回路6は、遅延回路5を介して制御信号が入力され、制御信号の電圧が閾値電圧に達すると制御信号を出力するように構成されている。したがって、バッファ回路6は、遅延回路5の時定数に応じて緩やかに電圧が変化する制御信号を、矩形波状の制御信号に変換し、変換した制御信号を発光素子2Aへ出力する。このため、本実施形態のスイッチ装置1では、半導体リレー2に時間経過に伴って緩やかに電圧が変化する制御信号が入力されないので、半導体スイッチ2Bが能動領域で動作する時間を短くすることができる。その結果、本実施形態のスイッチ装置1では、半導体スイッチ2Bの動作の安定性を向上させることができる。 That is, the buffer circuit 6 is configured to receive a control signal via the delay circuit 5 and output the control signal when the voltage of the control signal reaches the threshold voltage. Therefore, the buffer circuit 6 converts the control signal whose voltage gradually changes according to the time constant of the delay circuit 5 into a rectangular wave control signal, and outputs the converted control signal to the light emitting element 2A. For this reason, in the switch device 1 of the present embodiment, since the control signal whose voltage gradually changes with the passage of time is not input to the semiconductor relay 2, the time for which the semiconductor switch 2B operates in the active region can be shortened. . As a result, in the switch device 1 of the present embodiment, the stability of the operation of the semiconductor switch 2B can be improved.
 以下、半導体リレー2の動作について説明する。一対の入力端子101,102に制御信号のうちオン信号が入力されると、遅延回路5のキャパシタ42に電荷が蓄積され始める。このため、遅延回路5を介した制御信号の電圧は、ローレベルからハイレベルへと時間経過に伴って緩やかに上昇する。そして、キャパシタ42に電荷が十分に蓄積され、遅延回路5を介したオン信号の電圧がバッファ回路6の閾値電圧に達すると、バッファ回路6がオン信号を出力することにより、発光素子2Aが発光する。 Hereinafter, the operation of the semiconductor relay 2 will be described. When an ON signal among the control signals is input to the pair of input terminals 101 and 102, charge starts to be accumulated in the capacitor 42 of the delay circuit 5. For this reason, the voltage of the control signal via the delay circuit 5 gradually increases from the low level to the high level as time elapses. When the charge is sufficiently accumulated in the capacitor 42 and the voltage of the ON signal through the delay circuit 5 reaches the threshold voltage of the buffer circuit 6, the buffer circuit 6 outputs the ON signal, whereby the light emitting element 2A emits light. To do.
 すると、発光素子2Aの発する光を受けて受光素子2Cが光起電力を発生する。そして、受光素子2Cから半導体素子2D及び抵抗2Eに電流が流れることで、抵抗2Eにおいて電圧降下が生じ、この電圧降下により半導体素子2Dがオフする。このため、受光素子2Cから半導体スイッチ2Bのゲートに電流が流れ込み、半導体スイッチ2Bのゲート容量が充電され、半導体スイッチ2Bがオンする。これにより、一対の出力端子111,112間が導通する。 Then, in response to the light emitted from the light emitting element 2A, the light receiving element 2C generates a photovoltaic power. Then, when a current flows from the light receiving element 2C to the semiconductor element 2D and the resistor 2E, a voltage drop occurs in the resistor 2E, and the semiconductor element 2D is turned off by this voltage drop. For this reason, a current flows from the light receiving element 2C to the gate of the semiconductor switch 2B, the gate capacitance of the semiconductor switch 2B is charged, and the semiconductor switch 2B is turned on. As a result, the pair of output terminals 111 and 112 are electrically connected.
 一対の入力端子101,102に制御信号のうちオフ信号が入力されると、遅延回路5のキャパシタ42が放電し始める。このため、遅延回路5を介した制御信号の電圧は、ハイレベルからローレベルへと時間経過に伴って緩やかに下降する。そして、キャパシタ42が十分に放電され、遅延回路5を介したオフ信号の電圧がバッファ回路6の閾値電圧に達すると、バッファ回路6がオフ信号を出力することにより、発光素子2Aが発光しなくなる。 When an off signal of the control signals is input to the pair of input terminals 101 and 102, the capacitor 42 of the delay circuit 5 starts to discharge. For this reason, the voltage of the control signal via the delay circuit 5 gradually decreases from the high level to the low level as time elapses. When the capacitor 42 is sufficiently discharged and the voltage of the off signal through the delay circuit 5 reaches the threshold voltage of the buffer circuit 6, the buffer circuit 6 outputs the off signal, so that the light emitting element 2A does not emit light. .
 すると、受光素子2Cが光起電力を発生しなくなるため、抵抗2Eでの電圧降下が生じなくなり、半導体素子2Dがオンする。これにより、半導体スイッチ2Bのゲート容量が、半導体素子2Dを介した経路で放電されるため、半導体スイッチ2Bがオフする。これにより、一対の出力端子111,112間が非導通となる。 Then, since the light receiving element 2C does not generate photovoltaic power, a voltage drop at the resistor 2E does not occur, and the semiconductor element 2D is turned on. As a result, the gate capacitance of the semiconductor switch 2B is discharged through the path through the semiconductor element 2D, and the semiconductor switch 2B is turned off. As a result, the pair of output terminals 111 and 112 become non-conductive.
 つまり、半導体スイッチ2Bは、容量成分(キャパシタ42)に蓄積される電荷に応じてオン/オフすることにより、電源A1から負荷B1への給電路を開閉する。言い換えれば、半導体リレー2は、外部から入力される制御信号に応じて、電源A1から負荷B1への給電路を開閉する。 That is, the semiconductor switch 2B opens and closes the power supply path from the power source A1 to the load B1 by turning on / off according to the charge accumulated in the capacitance component (capacitor 42). In other words, the semiconductor relay 2 opens and closes the power feeding path from the power source A1 to the load B1 in accordance with a control signal input from the outside.
 上述のように、半導体リレー2は、発光素子2Aと、受光素子2Cとを備えている。そして、半導体スイッチ2Bは、受光素子2Cの発生する光起電力によりオン/オフするように構成されている。このため、本実施形態のスイッチ装置1では、入出力間の電位差が半導体スイッチ2Bのオン/オフに影響し難いという利点がある。なお、半導体リレー2に当該構成を採用するか否かは任意である。 As described above, the semiconductor relay 2 includes the light emitting element 2A and the light receiving element 2C. The semiconductor switch 2B is configured to be turned on / off by the photovoltaic force generated by the light receiving element 2C. For this reason, the switch device 1 according to the present embodiment has an advantage that the potential difference between the input and the output hardly affects the on / off of the semiconductor switch 2B. Note that whether or not to adopt the configuration for the semiconductor relay 2 is arbitrary.
 なお、半導体リレー2は、図1に示す回路構成に限定されない。たとえば、半導体リレー2においては、半導体スイッチ2Bは、発光素子2Aの発する光の有無に応じてオン/オフするように構成されていればよい。 The semiconductor relay 2 is not limited to the circuit configuration shown in FIG. For example, in the semiconductor relay 2, the semiconductor switch 2B may be configured to be turned on / off according to the presence or absence of light emitted from the light emitting element 2A.
 メカニカルリレー3は、いわゆる有接点リレー(たとえば、電磁リレー)であり、コイル31と、接点部32とを備えている。コイル31は、その第1端が第1入力端301に、第2端が第2入力端302に電気的に接続されている。コイル31は、一対の入力端301,302に制御信号が入力されると励磁する。 The mechanical relay 3 is a so-called contact relay (for example, an electromagnetic relay), and includes a coil 31 and a contact portion 32. The coil 31 has a first end electrically connected to the first input end 301 and a second end electrically connected to the second input end 302. The coil 31 is excited when a control signal is input to the pair of input ends 301 and 302.
 接点部32は、その第1端が第1出力端311に、第2端が第2出力端312に電気的に接続されている。接点部32は、固定接点と、可動接点とを備えている。固定接点と可動接点との間は、コイル31の励磁・非励磁に応じて開閉する。本実施形態では、接点部32は、コイル31が励磁されていないときは、可動接点が固定接点から離れているためにオフである。そして、接点部32は、コイル31が励磁されると、可動接点が固定接点に接触することにより、オンに切り替わるように構成されている。 The contact portion 32 has a first end electrically connected to the first output end 311 and a second end electrically connected to the second output end 312. The contact part 32 includes a fixed contact and a movable contact. The fixed contact and the movable contact are opened and closed according to the excitation / de-excitation of the coil 31. In this embodiment, when the coil 31 is not excited, the contact part 32 is off because the movable contact is away from the fixed contact. And the contact part 32 is comprised so that when the coil 31 is excited, a movable contact contacts a fixed contact, and it switches on.
 つまり、メカニカルリレー3は、一対の入力端301,302に入力される制御信号に応じて接点部32のオン/オフを機械的に切り替えることで、一対の出力端子111,112間の導通・非導通を切り替える。言い換えれば、メカニカルリレー3は、制御信号に応じて接点部32がオン/オフすることで、電源A1から負荷B1への給電路を開閉する。 In other words, the mechanical relay 3 mechanically switches on / off of the contact portion 32 in accordance with a control signal input to the pair of input terminals 301 and 302, thereby connecting or not connecting the pair of output terminals 111 and 112. Switch continuity. In other words, the mechanical relay 3 opens and closes the power feeding path from the power source A1 to the load B1 by turning on / off the contact portion 32 according to the control signal.
 <動作>
 以下、本実施形態のスイッチ装置1の動作について図3を用いて説明する。ここで、図3に示す「接点電圧」は、一対の出力端子111,112間に印加される電圧である。また、図3に示す「第1電流」は、半導体リレー2の一対の出力端211,212を流れる電流である。そして、図3に示す「第2電流」は、メカニカルリレー3の一対の出力端311,312を流れる電流である。
<Operation>
Hereinafter, the operation of the switch device 1 of the present embodiment will be described with reference to FIG. Here, the “contact voltage” shown in FIG. 3 is a voltage applied between the pair of output terminals 111 and 112. Further, the “first current” shown in FIG. 3 is a current flowing through the pair of output terminals 211 and 212 of the semiconductor relay 2. The “second current” shown in FIG. 3 is a current flowing through the pair of output terminals 311 and 312 of the mechanical relay 3.
 まず、時刻t10において、一対の入力端子101,102に制御信号のうちオン信号が入力されると、時刻t10から所定時間後である時刻t11(>t10)において、メカニカルリレー3の接点部32がオンする。このため、一対の出力端311,312間が導通し、第2電流が流れる。すると、一対の出力端子111,112間も導通するため、電源A1から負荷B1への給電路が閉じ、負荷B1に電流が流れる。本実施形態では、負荷B1が誘導性負荷であるため、第2電流は、時刻t11から時刻t12(>t11)にかけて徐々に増大する。なお、負荷B1が抵抗負荷である場合、第2電流は、時刻t11において急峻に立ち上がる。 First, when an ON signal among the control signals is input to the pair of input terminals 101 and 102 at time t10, the contact portion 32 of the mechanical relay 3 is turned on at time t11 (> t10) after a predetermined time from time t10. Turn on. For this reason, between the pair of output terminals 311 and 312 is conducted, the second current flows. Then, since the pair of output terminals 111 and 112 are also connected, the power supply path from the power source A1 to the load B1 is closed, and a current flows through the load B1. In the present embodiment, since the load B1 is an inductive load, the second current gradually increases from time t11 to time t12 (> t11). When the load B1 is a resistance load, the second current rises sharply at time t11.
 時刻t12では、制御回路4によりオン信号が遅延していることから、半導体リレー2にオン信号が未だ入力されておらず、半導体リレー2の半導体スイッチ2Bはオンしていない。その後、時刻t12から、さらに時間が経過した時刻t13(>t12)になると、制御回路4を介して半導体リレー2にオン信号が入力されることにより、半導体リレー2の半導体スイッチ2Bがオンする。このとき、接点部32の接触抵抗は、半導体スイッチ2Bのオン抵抗と比較して小さいため、電源A1から負荷B1へ流れる電流の殆どが接点部32を介して流れる。このため、本実施形態のスイッチ装置1では、メカニカルリレー3を用いずに半導体リレー2のみで給電路を閉じる場合と比較して、半導体スイッチ2Bのオン抵抗での電力損失及び発熱が小さくなり、通電電流を大きくすることができる。なお、「通電電流」とは、電源A1から負荷B1への給電路が閉じているときに、一対の出力端子111,112間を流れる電流である。 At time t12, since the ON signal is delayed by the control circuit 4, the ON signal is not yet input to the semiconductor relay 2, and the semiconductor switch 2B of the semiconductor relay 2 is not ON. Thereafter, at time t13 (> t12) when a further time elapses from time t12, an on signal is input to the semiconductor relay 2 via the control circuit 4, whereby the semiconductor switch 2B of the semiconductor relay 2 is turned on. At this time, since the contact resistance of the contact portion 32 is smaller than the on-resistance of the semiconductor switch 2B, most of the current flowing from the power source A1 to the load B1 flows through the contact portion 32. For this reason, in the switch device 1 of this embodiment, compared with the case where the power supply path is closed only by the semiconductor relay 2 without using the mechanical relay 3, the power loss and heat generation at the on-resistance of the semiconductor switch 2B are reduced. The energization current can be increased. The “energization current” is a current that flows between the pair of output terminals 111 and 112 when the power supply path from the power source A1 to the load B1 is closed.
 次に、時刻t14(>t13)において、一対の入力端子101,102に制御信号のうちオフ信号が入力されると、時刻t14から所定時間後である時刻t15(>t14)にメカニカルリレー3の接点部32がオフする。すると、一対の出力端311,312間が非導通になることから、第2電流が流れなくなり、第1電流が流れる。この時点では、制御回路4によりオフ信号が遅延していることから、半導体リレー2にオフ信号が未だ入力されておらず、半導体リレー2の半導体スイッチ2Bはオフしていない。 Next, at time t14 (> t13), when an off signal of the control signals is input to the pair of input terminals 101 and 102, the mechanical relay 3 is turned on at time t15 (> t14), which is a predetermined time after time t14. The contact part 32 is turned off. Then, since the pair of output terminals 311 and 312 becomes non-conductive, the second current does not flow and the first current flows. At this time, since the off signal is delayed by the control circuit 4, the off signal is not yet input to the semiconductor relay 2, and the semiconductor switch 2B of the semiconductor relay 2 is not off.
 その後、時刻t15から、さらに時間が経過した時刻t16(>t15)になると、制御回路4を介して半導体リレー2にオフ信号が入力されることにより、半導体リレー2の半導体スイッチ2Bがオフする。すると、一対の出力端子111,112間が非導通になるため、電源A1から負荷B1への給電路が開き、負荷B1に電流が流れなくなる。本実施形態では、負荷B1が誘導性負荷であるため、瞬間的に逆起電力が発生するが、時刻t16から時刻t17(>t16)にかけてバリスタVR1が機能することにより、接点電圧は過大な電圧とはならない。 Thereafter, at time t16 (> t15) when a further time elapses from time t15, an off signal is input to the semiconductor relay 2 via the control circuit 4, whereby the semiconductor switch 2B of the semiconductor relay 2 is turned off. Then, since the pair of output terminals 111 and 112 become non-conductive, the power supply path from the power source A1 to the load B1 is opened, and no current flows through the load B1. In this embodiment, since the load B1 is an inductive load, a counter electromotive force is generated instantaneously. However, the contactor voltage is an excessive voltage due to the function of the varistor VR1 from time t16 to time t17 (> t16). It will not be.
 ここで、メカニカルリレー3の接点部32がオフする際には、半導体スイッチ2Bがオフしていないので、一対の出力端子111,112間には電源電圧が印加されていない。このため、本実施形態のスイッチ装置1では、半導体リレー2の半導体スイッチ2Bがメカニカルリレー3の接点部32よりも先にオフする場合と比較して、接点部32のオフ時にアークが生じ難い。 Here, when the contact portion 32 of the mechanical relay 3 is turned off, the semiconductor switch 2B is not turned off, so that the power supply voltage is not applied between the pair of output terminals 111 and 112. For this reason, in the switch device 1 of the present embodiment, compared to the case where the semiconductor switch 2B of the semiconductor relay 2 is turned off before the contact part 32 of the mechanical relay 3, an arc is less likely to occur when the contact part 32 is turned off.
 上述のように、本実施形態のスイッチ装置1では、一対の入力端子101,102に制御信号のうちオフ信号が入力されるときは、半導体スイッチ2Bよりも先に接点部32がオフするように制御されるのが望ましい。以下では、この制御を「優先オフ制御」という。ここで、通常であれば、半導体スイッチ2Bのターンオフ時間は、接点部32の復帰時間よりも短くなるため、半導体スイッチ2Bが接点部32よりも先にオフしてしまう。 As described above, in the switch device 1 according to the present embodiment, when the off signal among the control signals is input to the pair of input terminals 101 and 102, the contact portion 32 is turned off before the semiconductor switch 2B. It is desirable to be controlled. Hereinafter, this control is referred to as “priority off control”. Here, normally, since the turn-off time of the semiconductor switch 2B is shorter than the return time of the contact part 32, the semiconductor switch 2B is turned off before the contact part 32.
 そこで、本実施形態では、制御回路4は、半導体スイッチ2Bを制御することで、半導体スイッチ2Bがオンからオフになるタイミングを、メカニカルリレー3の接点部32がオンからオフになるタイミングよりも遅らせるように構成されている。このため、本実施形態のスイッチ装置1では、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号により優先オフ制御を実現することができる。 Therefore, in this embodiment, the control circuit 4 controls the semiconductor switch 2B to delay the timing at which the semiconductor switch 2B is turned off from the timing at which the contact portion 32 of the mechanical relay 3 is turned from on to off. It is configured as follows. For this reason, in the switch apparatus 1 of this embodiment, priority OFF control is realizable by one control signal, without controlling the semiconductor relay 2 and the mechanical relay 3 separately.
 また、本実施形態では、制御回路4は、半導体スイッチ2Bを制御することで、半導体スイッチ2Bがオフからオンになるタイミングを、メカニカルリレー3の接点部32がオフからオンになるタイミングよりも遅らせるように構成されている。このため、本実施形態のスイッチ装置1では、一対の出力端子111,112間が導通する際に、半導体スイッチ2Bに瞬間的に過大な電流が流れるのを防ぐことができる。なお、当該構成を採用するか否かは任意である。 In the present embodiment, the control circuit 4 controls the semiconductor switch 2B to delay the timing at which the semiconductor switch 2B is turned on from the timing at which the contact portion 32 of the mechanical relay 3 is turned on from off. It is configured as follows. For this reason, in the switch apparatus 1 of this embodiment, when a pair of output terminals 111 and 112 conduct | electrically_connect, it can prevent that an excessive electric current flows into the semiconductor switch 2B instantaneously. Note that whether or not to adopt the configuration is arbitrary.
 <効果>
 上述のように、本実施形態のスイッチ装置1では、制御回路4を備えていることから、半導体リレー2及びメカニカルリレー3を個別に制御して各々のオフタイミングをずらすといった複雑な制御が不要である。つまり、本実施形態のスイッチ装置1は、半導体リレー2及びメカニカルリレー3を組み合わせたハイブリッドリレーを、1つの制御信号により容易に制御することができる。
<Effect>
As described above, since the switch device 1 according to the present embodiment includes the control circuit 4, complicated control such as individually controlling the semiconductor relay 2 and the mechanical relay 3 and shifting the respective off timings is unnecessary. is there. That is, the switch device 1 of the present embodiment can easily control a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined with one control signal.
 なお、本実施形態のスイッチ装置1は、制御信号がハイレベルのときに半導体スイッチ2B(接点部32)がオンする構成であるが、他の構成であってもよい。すなわち、本実施形態のスイッチ装置1は、制御信号がローレベルのときに半導体スイッチ2B(接点部32)がオンするように構成されていてもよい。この場合、「制御信号のうちオン信号が入力される」とは「制御信号がローレベルになる」ことを意味する。さらに、「制御信号のうちオフ信号が入力されなくなる」とは「制御信号がハイレベルになる」ことを意味する。 In addition, although the switch apparatus 1 of this embodiment is the structure which the semiconductor switch 2B (contact part 32) turns on when a control signal is a high level, another structure may be sufficient. That is, the switch device 1 of the present embodiment may be configured such that the semiconductor switch 2B (contact portion 32) is turned on when the control signal is at a low level. In this case, “the ON signal among the control signals is input” means “the control signal becomes low level”. Further, “the OFF signal of the control signal is not input” means “the control signal becomes high level”.
 (実施形態1の変形例)
 以下、本発明の実施形態1の変形例に係るスイッチ装置1Aについて図4を用いて説明する。本変形例のスイッチ装置1Aは、制御回路4の代わりに、制御回路4Aを備えている点で実施形態1のスイッチ装置1と相違している。なお、本変形例のスイッチ装置1Aのうち制御回路4Aを除く構成は、実施形態1のスイッチ装置1と同じであるので、ここでは説明を省略する。
(Modification of Embodiment 1)
Hereinafter, a switch device 1A according to a modification of the first embodiment of the present invention will be described with reference to FIG. The switch device 1 </ b> A of this modification is different from the switch device 1 of the first embodiment in that a control circuit 4 </ b> A is provided instead of the control circuit 4. Since the configuration excluding the control circuit 4A in the switch device 1A of the present modification is the same as that of the switch device 1 of the first embodiment, the description thereof is omitted here.
 <構成>
 図4に示すように、制御回路4Aは、遅延回路5の代わりに、遅延回路5Aを有している。遅延回路5Aは、遅延回路5の抵抗41と、キャパシタ42とに加え、ダイオード43と、抵抗44,45とをさらに備えている。また、遅延回路5Aにおいて、抵抗41の抵抗値は、実施形態1の遅延回路5における抵抗41の抵抗値よりも小さくなっている。ダイオード43は、アノードが第1入力端子101に、カソードが抵抗41に電気的に接続されている。抵抗44は、キャパシタ42に並列に電気的に接続されている。抵抗44の抵抗値は、抵抗41の抵抗値よりも大きくなっている。抵抗45は、キャパシタ42に直列に電気的に接続されている。抵抗45の抵抗値は、抵抗41の抵抗値と同程度である。
<Configuration>
As shown in FIG. 4, the control circuit 4 </ b> A has a delay circuit 5 </ b> A instead of the delay circuit 5. The delay circuit 5A further includes a diode 43 and resistors 44 and 45 in addition to the resistor 41 and the capacitor 42 of the delay circuit 5. In the delay circuit 5A, the resistance value of the resistor 41 is smaller than the resistance value of the resistor 41 in the delay circuit 5 of the first embodiment. The diode 43 has an anode electrically connected to the first input terminal 101 and a cathode electrically connected to the resistor 41. The resistor 44 is electrically connected to the capacitor 42 in parallel. The resistance value of the resistor 44 is larger than the resistance value of the resistor 41. The resistor 45 is electrically connected to the capacitor 42 in series. The resistance value of the resistor 45 is approximately the same as the resistance value of the resistor 41.
 ここで、一対の入力端子101,102間に制御信号のうちオン信号が入力されるとき、遅延回路5Aでは、抵抗41の抵抗値が実施形態1の遅延回路5における抵抗41の抵抗値よりも小さくなっていることから、遅延回路5よりも時定数が小さい。したがって、制御回路4Aによるオン信号の遅延時間は、実施形態1の制御回路4によるオン信号の遅延時間よりも短くなっている。 Here, when an ON signal among the control signals is input between the pair of input terminals 101 and 102, in the delay circuit 5A, the resistance value of the resistor 41 is greater than the resistance value of the resistor 41 in the delay circuit 5 of the first embodiment. Since it is small, the time constant is smaller than that of the delay circuit 5. Therefore, the delay time of the on signal by the control circuit 4A is shorter than the delay time of the on signal by the control circuit 4 of the first embodiment.
 また、一対の入力端子101,102間に制御信号のうちオフ信号が入力されるとき、遅延回路5Aでは、キャパシタ42に蓄積された電荷がメカニカルリレー3へと放電するのをダイオード43により防止している。さらに、遅延回路5Aでは、キャパシタ42に並列に接続された抵抗44、及びキャパシタ42に直列に接続された抵抗45により、キャパシタ42に蓄積された電荷が放電する時間を比較的長くしている。したがって、制御回路4Aによるオフ信号の遅延時間は、制御回路4Aによるオン信号の遅延時間よりも長くなっている。 Also, when an off signal of the control signals is input between the pair of input terminals 101 and 102, the delay circuit 5A prevents the charge accumulated in the capacitor 42 from being discharged to the mechanical relay 3 by the diode 43. ing. Further, in the delay circuit 5A, the time for discharging the charge accumulated in the capacitor 42 is made relatively long by the resistor 44 connected in parallel to the capacitor 42 and the resistor 45 connected in series to the capacitor 42. Therefore, the delay time of the off signal by the control circuit 4A is longer than the delay time of the on signal by the control circuit 4A.
 本変形例のスイッチ装置1Aでは、半導体リレー2の半導体スイッチ2Bのターンオン時間が、メカニカルリレー3の接点部32の動作時間と比較して短いという特性を利用している。つまり、制御回路4Aによるオン信号の遅延時間を、半導体スイッチ2Bのターンオン時間と接点部32の動作時間との差分よりも短くしている。このため、本変形例のスイッチ装置1Aでは、オン信号が制御回路4Aにより遅延しても、半導体スイッチ2Bがオフからオンになるタイミングを、接点部32がオフからオンになるタイミングよりも早めることが可能である。また、本変形例のスイッチ装置1Aでは、制御回路4Aにより、オン信号の遅延時間よりもオフ信号の遅延時間を長くしている。このため、本変形例のスイッチ装置1Aでは、実施形態1の制御回路4と同様に、半導体スイッチ2Bがオンからオフになるタイミングを、接点部32がオンからオフになるタイミングよりも遅らせることが可能である。 The switch device 1A of the present modification utilizes the characteristic that the turn-on time of the semiconductor switch 2B of the semiconductor relay 2 is shorter than the operation time of the contact part 32 of the mechanical relay 3. That is, the delay time of the ON signal by the control circuit 4A is made shorter than the difference between the turn-on time of the semiconductor switch 2B and the operation time of the contact part 32. For this reason, in the switch device 1A of the present modification, even when the ON signal is delayed by the control circuit 4A, the timing at which the semiconductor switch 2B is turned from OFF to ON is made earlier than the timing at which the contact portion 32 is turned from OFF to ON. Is possible. In the switch device 1A of the present modification, the delay time of the off signal is made longer than the delay time of the on signal by the control circuit 4A. For this reason, in the switch device 1A of the present modification, as with the control circuit 4 of the first embodiment, the timing at which the semiconductor switch 2B is turned from on to off can be delayed from the timing at which the contact portion 32 is turned from on to off. Is possible.
 <動作>
 以下、本変形例のスイッチ装置1Aの動作について図5を用いて説明する。まず、時刻t20において、一対の入力端子101,102に制御信号のうちオン信号が入力されると、時刻t20から所定時間後である時刻t21(>t20)において、半導体リレー2の半導体スイッチ2Bがオンする。このため、一対の出力端311,312間が導通し、第1電流が流れる。すると、一対の出力端子111,112間も導通するため、電源A1から負荷B1への給電路が閉じ、負荷B1に電流が流れる。本実施形態では、負荷B1が誘導性負荷であるため、第1電流は、時刻t21から時刻t22(>t21)にかけて徐々に増大する。なお、負荷B1が抵抗負荷である場合、第1電流は、時刻t21において急峻に立ち上がる。
<Operation>
Hereinafter, the operation of the switch device 1A of the present modification will be described with reference to FIG. First, when an ON signal among the control signals is input to the pair of input terminals 101 and 102 at time t20, the semiconductor switch 2B of the semiconductor relay 2 is turned on at time t21 (> t20), which is a predetermined time after time t20. Turn on. For this reason, between the pair of output terminals 311 and 312 is conducted, the first current flows. Then, since the pair of output terminals 111 and 112 are also connected, the power supply path from the power source A1 to the load B1 is closed, and a current flows through the load B1. In the present embodiment, since the load B1 is an inductive load, the first current gradually increases from time t21 to time t22 (> t21). When the load B1 is a resistance load, the first current rises sharply at time t21.
 この時点では、メカニカルリレー3の接点部32はオンしていない。その後、時刻t22から所定時間後である時刻t23(>t22)において、メカニカルリレー3の接点部32がオンする。ここで、メカニカルリレー3の接点部32がオンする際に、接点電圧は、半導体スイッチ2Bのドレイン-ソース間のオン抵抗での電圧降下に応じた電圧となるため、電源電圧の最大電圧と比較して小さい。このため、本変形例のスイッチ装置1Aでは、半導体リレー2を用いずにメカニカルリレー3のみで給電路を閉じる場合と比較して、接点部32のオン時に生じ得る突入電流を小さくすることができる。 At this time, the contact portion 32 of the mechanical relay 3 is not turned on. Thereafter, at time t23 (> t22), which is a predetermined time after time t22, the contact portion 32 of the mechanical relay 3 is turned on. Here, when the contact portion 32 of the mechanical relay 3 is turned on, the contact voltage becomes a voltage corresponding to the voltage drop due to the on-resistance between the drain and source of the semiconductor switch 2B, so it is compared with the maximum voltage of the power supply voltage. And small. For this reason, in the switch device 1A of the present modification, the inrush current that can be generated when the contact portion 32 is turned on can be reduced as compared with the case where the power supply path is closed only by the mechanical relay 3 without using the semiconductor relay 2. .
 次に、時刻t24(>t23)において、一対の入力端子101,102に制御信号のうちオフ信号が入力されると、時刻t24から所定時間後である時刻t25(>t24)にメカニカルリレー3の接点部32がオフする。すると、一対の出力端311,312間が非導通になることから、第2電流が流れなくなり、第1電流が流れる。この時点では、制御回路4Aによりオフ信号が遅延していることから、半導体リレー2にオフ信号が未だ入力されておらず、半導体リレー2の半導体スイッチ2Bはオフしていない。 Next, at time t24 (> t23), when an off signal of the control signals is input to the pair of input terminals 101 and 102, the mechanical relay 3 is turned on at time t25 (> t24), which is a predetermined time after time t24. The contact part 32 is turned off. Then, since the pair of output terminals 311 and 312 becomes non-conductive, the second current does not flow and the first current flows. At this time, since the OFF signal is delayed by the control circuit 4A, the OFF signal is not yet input to the semiconductor relay 2, and the semiconductor switch 2B of the semiconductor relay 2 is not OFF.
 その後、時刻t25から、さらに時間が経過した時刻t26(>t25)になると、制御回路4Aを介して半導体リレー2にオフ信号が入力されることにより、半導体リレー2の半導体スイッチ2Bがオフする。すると、一対の出力端子111,112間が非導通になるため、電源A1から負荷B1への給電路が開き、負荷B1に電流が流れなくなる。なお、時刻t26から時刻27(>t26)までは、バリスタVR1が機能している時間である。 Thereafter, at time t26 (> t25) when a further time elapses from time t25, the semiconductor switch 2B of the semiconductor relay 2 is turned off by inputting an off signal to the semiconductor relay 2 via the control circuit 4A. Then, since the pair of output terminals 111 and 112 become non-conductive, the power supply path from the power source A1 to the load B1 is opened, and no current flows through the load B1. Note that the time from time t26 to time 27 (> t26) is the time during which the varistor VR1 is functioning.
 上述のように、本変形例のスイッチ装置1Aでは、一対の入力端子101,102に制御信号のうちオン信号を入力するときは、メカニカルリレー3の接点部32よりも先に半導体リレー2の半導体スイッチ2Bがオンするように制御されるのが望ましい。以下では、この制御を「優先オン制御」という。 As described above, in the switch device 1 </ b> A according to the present modification, when the ON signal among the control signals is input to the pair of input terminals 101 and 102, the semiconductor of the semiconductor relay 2 is preceded by the contact portion 32 of the mechanical relay 3. It is desirable to control the switch 2B to be turned on. Hereinafter, this control is referred to as “priority on control”.
 本変形例のスイッチ装置1Aでは、半導体スイッチ2Bのターンオン時間が接点部32の動作時間と比較して短いという特性を利用しつつ、制御回路4Aを用いることで、優先オン制御を実現している。つまり、本変形例では、制御回路4Aは、半導体スイッチ2Bを制御することで、半導体スイッチ2Bがオフからオンになるタイミングを、メカニカルリレー3の接点部32がオフからオンになるタイミングよりも早めるように構成されている。このため、本変形例のスイッチ装置1Aでは、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号により優先オン制御を実現することができる。また、本変形例のスイッチ装置1Aでは、実施形態1の制御回路4と同様に、制御回路4Aを用いることで、優先オフ制御も実現している。 In the switch device 1A of the present modification, priority on control is realized by using the control circuit 4A while utilizing the characteristic that the turn-on time of the semiconductor switch 2B is shorter than the operation time of the contact part 32. . In other words, in the present modification, the control circuit 4A controls the semiconductor switch 2B so that the timing at which the semiconductor switch 2B is turned on is earlier than the timing at which the contact portion 32 of the mechanical relay 3 is turned on. It is configured as follows. For this reason, in the switch device 1A of the present modification, priority on control can be realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3. Further, in the switch device 1A of the present modification example, the priority off control is also realized by using the control circuit 4A as in the control circuit 4 of the first embodiment.
 <効果>
 上述のように、本変形例のスイッチ装置1Aでは、制御回路4Aを備えていることから、半導体リレー2及びメカニカルリレー3を個別に制御して各々のオン/オフのタイミングをずらすといった複雑な制御が不要である。つまり、本変形例のスイッチ装置1Aは、半導体リレー2及びメカニカルリレー3を組み合わせたハイブリッドリレーを、1つの制御信号で容易に制御することができる。
<Effect>
As described above, since the switch device 1A of the present modification includes the control circuit 4A, complicated control such as individually controlling the semiconductor relay 2 and the mechanical relay 3 to shift the on / off timings. Is unnecessary. That is, the switch device 1 </ b> A of the present modification can easily control a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined with one control signal.
 (実施形態2)
 本発明の実施形態2に係るスイッチ装置1Bは、図6に示すように、半導体リレー2と、メカニカルリレー3と、制御回路4Bとを備える。半導体リレー2は、電源A1から負荷B1への給電路に電気的に接続され、外部から入力される第1制御信号に応じて給電路を開閉する。メカニカルリレー3は、半導体リレー2と並列に電気的に接続され、外部から入力される第2制御信号に応じて給電路を開閉する。
(Embodiment 2)
As shown in FIG. 6, the switch device 1B according to the second embodiment of the present invention includes a semiconductor relay 2, a mechanical relay 3, and a control circuit 4B. The semiconductor relay 2 is electrically connected to a power feeding path from the power source A1 to the load B1, and opens and closes the power feeding path according to a first control signal input from the outside. The mechanical relay 3 is electrically connected in parallel with the semiconductor relay 2 and opens and closes the power feeding path according to a second control signal input from the outside.
 半導体リレー2は、半導体スイッチ23,24を有する。半導体スイッチ23,24は、第1制御信号に応じてオン/オフすることで給電路を開閉する。また、半導体スイッチ23,24は、容量成分(ゲート容量)に蓄積される電荷に応じてオン/オフするように構成される。 The semiconductor relay 2 has semiconductor switches 23 and 24. The semiconductor switches 23 and 24 open and close the power supply path by being turned on / off according to the first control signal. Further, the semiconductor switches 23 and 24 are configured to be turned on / off according to the electric charge accumulated in the capacitance component (gate capacitance).
 制御回路4Bは、充放電経路25と、インピーダンス回路26とを有する。充放電経路25は、半導体スイッチ23,24のゲート容量を充電及び放電する。インピーダンス回路26は、充放電経路25に電気的に接続される。また、インピーダンス回路26は、インピーダンス素子261を有し、制御信号(第1制御信号)のうちオン信号が入力されると充放電経路25に第1経路S1を接続するように構成される。さらに、インピーダンス回路26は、制御信号(第1制御信号)のうちオフ信号が入力されると充放電経路25をインピーダンス素子261を含む第2経路S2に接続するように構成される。 The control circuit 4B includes a charge / discharge path 25 and an impedance circuit 26. The charge / discharge path 25 charges and discharges the gate capacitance of the semiconductor switches 23 and 24. The impedance circuit 26 is electrically connected to the charge / discharge path 25. The impedance circuit 26 includes an impedance element 261 and is configured to connect the first path S1 to the charge / discharge path 25 when an ON signal is input from among the control signals (first control signals). Furthermore, the impedance circuit 26 is configured to connect the charge / discharge path 25 to the second path S2 including the impedance element 261 when an off signal is input from among the control signals (first control signals).
 <構成>
 以下、本実施形態のスイッチ装置1Bについて詳細に説明する。ただし、本実施形態のスイッチ装置1Bにおいて、実施形態1のスイッチ装置1と共通する部分については、説明を省略する。なお、本実施形態のスイッチ装置1Bでは、電源A1として交流電源を用いているが、直流電源を用いてもよい。
<Configuration>
Hereinafter, the switch device 1B of the present embodiment will be described in detail. However, in the switch device 1B of the present embodiment, the description of the parts common to the switch device 1 of the first embodiment is omitted. In the switch device 1B of the present embodiment, an AC power source is used as the power source A1, but a DC power source may be used.
 また、以下の説明では、「第1制御信号(第2制御信号)のうちオン信号が入力される」とは「第1制御信号(第2制御信号)がハイレベルになる」ことを意味する。さらに、「第1制御信号(第2制御信号)のうちオフ信号が入力される」とは「第1制御信号(第2制御信号)がローレベルになる」ことを意味する。 Further, in the following description, “the ON signal is input from among the first control signals (second control signals)” means “the first control signal (second control signal) becomes high level”. . Furthermore, “the off signal of the first control signal (second control signal) is input” means that “the first control signal (second control signal) becomes low level”.
 本実施形態では、制御信号は、半導体リレー2の一対の入力端201,202に第1制御信号として入力される。また、本実施形態では、制御信号は、メカニカルリレー3の一対の入力端301,302に第2制御信号として入力される。つまり、本実施形態のスイッチ装置1Bでは、第1制御信号と第2制御信号とは、同じである。言い換えれば、第1制御信号及び第2制御信号は、周期が互いに同一であり、かつ位相が互いに同一である。もちろん、第1制御信号と第2制御信号とは、互いに異なる制御信号であってもよい。 In the present embodiment, the control signal is input to the pair of input terminals 201 and 202 of the semiconductor relay 2 as the first control signal. In the present embodiment, the control signal is input to the pair of input terminals 301 and 302 of the mechanical relay 3 as the second control signal. That is, in the switch device 1B of the present embodiment, the first control signal and the second control signal are the same. In other words, the first control signal and the second control signal have the same period and the same phase. Of course, the first control signal and the second control signal may be different control signals.
 半導体リレー2は、いわゆる無接点リレーであり、発光素子21と、受光素子22と、2つの半導体スイッチ23,24とを有している。 The semiconductor relay 2 is a so-called non-contact relay, and has a light emitting element 21, a light receiving element 22, and two semiconductor switches 23 and 24.
 発光素子21は、一対の入力端201,202に入力される電気信号を光に変換するように構成されている。本実施形態のスイッチ装置1では、発光素子21は発光ダイオードである。発光ダイオードは、アノードが第1入力端201に、カソードが第2入力端202に電気的に接続されている。発光素子21は、一対の入力端201,202に入力される第1制御信号を受けて発光する。なお、発光素子21を構成する発光ダイオードの数は1つに限定されず、複数であってもよい。 The light emitting element 21 is configured to convert an electric signal input to the pair of input ends 201 and 202 into light. In the switch device 1 of the present embodiment, the light emitting element 21 is a light emitting diode. The light emitting diode has an anode electrically connected to the first input end 201 and a cathode electrically connected to the second input end 202. The light emitting element 21 emits light in response to the first control signal input to the pair of input ends 201 and 202. Note that the number of light emitting diodes constituting the light emitting element 21 is not limited to one and may be plural.
 ここで、本実施形態のスイッチ装置1Bでは、上述のように第1制御信号及び第2制御信号が同じである。このため、本実施形態のスイッチ装置1Bでは、第1入力端子101と半導体リレー2の第1入力端201との間に、電流調整用の抵抗11が電気的に接続されている。この抵抗11により、発光素子21に過大な電流が流れるのを防止している。なお、第1制御信号と第2制御信号とを個別に半導体リレー2及びメカニカルリレー3に入力する場合には、抵抗11は不要である。 Here, in the switch device 1B of the present embodiment, the first control signal and the second control signal are the same as described above. For this reason, in the switch device 1 </ b> B of the present embodiment, the current adjusting resistor 11 is electrically connected between the first input terminal 101 and the first input terminal 201 of the semiconductor relay 2. The resistor 11 prevents an excessive current from flowing through the light emitting element 21. Note that when the first control signal and the second control signal are individually input to the semiconductor relay 2 and the mechanical relay 3, the resistor 11 is not necessary.
 受光素子22は、発光素子21が発する光を受けて光起電力を発生するように構成されている。本実施形態のスイッチ装置1Bでは、受光素子22は、複数のフォトダイオードを直列に電気的に接続してなるフォトダイオードアレイで構成されている。フォトダイオードアレイは、アノードが充放電経路25の高電位側の一端に、カソードが充放電経路25の低電位側の一端に電気的に接続されている。 The light receiving element 22 is configured to receive a light emitted from the light emitting element 21 and generate a photovoltaic power. In the switch device 1B of the present embodiment, the light receiving element 22 is configured by a photodiode array in which a plurality of photodiodes are electrically connected in series. In the photodiode array, the anode is electrically connected to one end on the high potential side of the charge / discharge path 25 and the cathode is electrically connected to one end on the low potential side of the charge / discharge path 25.
 半導体スイッチ23,24は、いずれもnチャネルのエンハンスメント型MOSFETである。半導体スイッチ23,24のゲートは、受光素子22の高電位側の一端に電気的に接続されている。半導体スイッチ23,24のソースは、インピーダンス回路26を介して、受光素子22の低電位側の一端に電気的に接続されている。また、半導体スイッチ23のドレインは、第1出力端子111に電気的に接続されている。半導体スイッチ24のドレインは、第2出力端子112に電気的に接続されている。つまり、半導体スイッチ23,24は、一対の出力端子111,112間に直列に電気的に接続されている。 The semiconductor switches 23 and 24 are both n-channel enhancement type MOSFETs. The gates of the semiconductor switches 23 and 24 are electrically connected to one end on the high potential side of the light receiving element 22. The sources of the semiconductor switches 23 and 24 are electrically connected to one end on the low potential side of the light receiving element 22 via the impedance circuit 26. The drain of the semiconductor switch 23 is electrically connected to the first output terminal 111. The drain of the semiconductor switch 24 is electrically connected to the second output terminal 112. That is, the semiconductor switches 23 and 24 are electrically connected in series between the pair of output terminals 111 and 112.
 半導体スイッチ23,24は、いずれも容量成分(ゲート容量)に蓄積される電荷に応じてオン/オフするように構成される。なお、「ゲート容量」とは、半導体スイッチ23,24のゲート-ソース間に存在するキャパシタ、及びゲート-ドレイン間に存在するキャパシタである。 The semiconductor switches 23 and 24 are both configured to be turned on / off according to the electric charge accumulated in the capacitance component (gate capacitance). The “gate capacitance” is a capacitor existing between the gate and the source of the semiconductor switches 23 and 24 and a capacitor existing between the gate and the drain.
 なお、本実施形態のスイッチ装置1Bでは、半導体スイッチ(23,24)は2つであるが、1つであってもよい。つまり、電源A1が交流電源である場合、スイッチ装置1は、2つの半導体スイッチ(23,24)を必要とする。一方、電源A1が直流電源である場合、スイッチ装置1Bは、高電位側の半導体スイッチ(23,24のいずれか)を1つ必要とする。また、本実施形態のスイッチ装置1Bでは、半導体スイッチ(23,24)はエンハンスメント型MOSFETであるが、たとえばIGBT等の半導体素子であってもよい。 In addition, in the switch apparatus 1B of this embodiment, although there are two semiconductor switches (23, 24), there may be one. That is, when the power source A1 is an AC power source, the switch device 1 requires two semiconductor switches (23, 24). On the other hand, when the power source A1 is a DC power source, the switch device 1B requires one high-potential side semiconductor switch (one of 23 and 24). In the switch device 1B of this embodiment, the semiconductor switches (23, 24) are enhancement type MOSFETs, but may be semiconductor elements such as IGBTs.
 制御回路4Bは、充放電経路25と、インピーダンス回路26とを有している。充放電経路25は、半導体スイッチ23,24のゲート容量を充電及び放電するように構成されている。本実施形態のスイッチ装置1Bでは、充放電経路25は、受光素子22と並列に電気的に接続される抵抗251を含んで構成されている。 The control circuit 4B has a charge / discharge path 25 and an impedance circuit 26. The charge / discharge path 25 is configured to charge and discharge the gate capacitance of the semiconductor switches 23 and 24. In the switch device 1B of the present embodiment, the charge / discharge path 25 includes a resistor 251 that is electrically connected in parallel with the light receiving element 22.
 以下、充放電経路25の機能について簡単に説明する。受光素子22に光起電力が発生すると、受光素子22から半導体スイッチ23,24のゲートに電流が流れ込み、半導体スイッチ23,24のゲート容量が充電される。受光素子22に光起電力が発生しなくなると、充放電経路25の抵抗251を介して半導体スイッチ23,24のゲート容量が放電される。 Hereinafter, the function of the charge / discharge path 25 will be briefly described. When a photoelectromotive force is generated in the light receiving element 22, a current flows from the light receiving element 22 to the gates of the semiconductor switches 23 and 24, and the gate capacitances of the semiconductor switches 23 and 24 are charged. When no photoelectromotive force is generated in the light receiving element 22, the gate capacitances of the semiconductor switches 23 and 24 are discharged via the resistor 251 of the charge / discharge path 25.
 ところで、本実施形態のスイッチ装置1Bでは、充放電経路25は抵抗251を含んで構成されているが、他の構成であってもよい。たとえば、充放電経路25は、図7に示すように、半導体素子252と、抵抗253とを含んで構成されていてもよい。半導体素子252は、nチャネルのデプレッション型MOSFETである。半導体素子252のドレインは、受光素子22の高電位側の一端に電気的に接続されている。半導体素子252のゲートは、受光素子22の低電位側の一端に電気的に接続されている。また、半導体素子252のソースは、抵抗253を介して受光素子22の低電位側の一端に電気的に接続されている。言い換えれば、抵抗253は、半導体素子252のゲート-ソース間に電気的に接続されている。 By the way, in the switch apparatus 1B of this embodiment, although the charging / discharging path | route 25 is comprised including the resistance 251, another structure may be sufficient. For example, the charge / discharge path 25 may include a semiconductor element 252 and a resistor 253 as shown in FIG. The semiconductor element 252 is an n-channel depletion type MOSFET. The drain of the semiconductor element 252 is electrically connected to one end on the high potential side of the light receiving element 22. The gate of the semiconductor element 252 is electrically connected to one end on the low potential side of the light receiving element 22. The source of the semiconductor element 252 is electrically connected to one end on the low potential side of the light receiving element 22 through the resistor 253. In other words, the resistor 253 is electrically connected between the gate and source of the semiconductor element 252.
 この充放電経路25の機能について簡単に説明する。受光素子22に光起電力が発生すると、受光素子22から半導体素子252及び抵抗253に電流が流れる。すると、抵抗253において電圧降下が生じ、この電圧降下により半導体素子252がオフする。このため、受光素子22から半導体スイッチ23,24のゲートに電流が流れ込み、半導体スイッチ23,24のゲート容量が充電される。受光素子22に光起電力が発生しなくなると、抵抗253での電圧降下が生じなくなり、半導体素子252がオンする。このため、半導体スイッチ23,24のゲート容量は、半導体素子252を介した経路で放電される。 The function of the charge / discharge path 25 will be briefly described. When a photoelectromotive force is generated in the light receiving element 22, a current flows from the light receiving element 22 to the semiconductor element 252 and the resistor 253. Then, a voltage drop occurs in the resistor 253, and the semiconductor element 252 is turned off by this voltage drop. Therefore, a current flows from the light receiving element 22 to the gates of the semiconductor switches 23 and 24, and the gate capacitances of the semiconductor switches 23 and 24 are charged. When no photoelectromotive force is generated in the light receiving element 22, no voltage drop occurs in the resistor 253, and the semiconductor element 252 is turned on. For this reason, the gate capacitances of the semiconductor switches 23 and 24 are discharged through a path through the semiconductor element 252.
 インピーダンス回路26は、インピーダンス素子261と、スイッチ262とを有している。インピーダンス素子261は、受光素子22の低電位側の一端と、半導体スイッチ23,24のソースとの間に電気的に接続されている。スイッチ262は、インピーダンス素子261に並列に電気的に接続されている。インピーダンス回路26は、一対の入力端201,202に第1制御信号のうちオン信号が入力されると、電流が流れる経路を、スイッチ262を介する第1経路S1に切り替えるように構成されている。また、インピーダンス回路26は、一対の入力端201,202に第1制御信号のうちオフ信号が入力されると、電流が流れる経路を、インピーダンス素子261を介する第2経路S2に切り替えるように構成されている。言い換えれば、インピーダンス回路26は、第1制御信号のうちオン信号が入力されると、半導体スイッチ23,24のゲート容量を充電及び放電する充放電経路25を第1経路S1に接続するように構成されている。また、インピーダンス回路26は、第1制御信号のうちオフ信号が入力されると充放電経路25をインピーダンス素子261を含む第2経路S2に接続するように構成されている。 The impedance circuit 26 includes an impedance element 261 and a switch 262. The impedance element 261 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24. The switch 262 is electrically connected to the impedance element 261 in parallel. The impedance circuit 26 is configured to switch the path through which the current flows to the first path S1 via the switch 262 when an ON signal of the first control signals is input to the pair of input terminals 201 and 202. Further, the impedance circuit 26 is configured to switch the path through which the current flows to the second path S2 via the impedance element 261 when an off signal of the first control signals is input to the pair of input terminals 201 and 202. ing. In other words, the impedance circuit 26 is configured to connect the charge / discharge path 25 that charges and discharges the gate capacitance of the semiconductor switches 23 and 24 to the first path S1 when an ON signal is input from among the first control signals. Has been. The impedance circuit 26 is configured to connect the charge / discharge path 25 to the second path S2 including the impedance element 261 when an off signal is input from the first control signal.
 インピーダンス回路26の具体的な回路構成の一例を図8に示す。このインピーダンス回路26は、抵抗R1(インピーダンス素子261)と、ダイオードD1(スイッチ262)とで構成される。抵抗R1は、受光素子22の低電位側の一端と、半導体スイッチ23,24のソースとの間に電気的に接続される。ダイオードD1は、抵抗R1と並列に電気的に接続される。また、ダイオードD1は、アノードが半導体スイッチ23,24のソースに、カソードが受光素子22の低電位側の一端に電気的に接続される。 An example of a specific circuit configuration of the impedance circuit 26 is shown in FIG. The impedance circuit 26 includes a resistor R1 (impedance element 261) and a diode D1 (switch 262). The resistor R <b> 1 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24. The diode D1 is electrically connected in parallel with the resistor R1. The diode D1 has an anode electrically connected to the sources of the semiconductor switches 23 and 24 and a cathode electrically connected to one end of the light receiving element 22 on the low potential side.
 この構成では、一対の入力端201,202に第1制御信号のうちオン信号が入力されると、半導体スイッチ23,24のゲート容量を充電するように電流が流れるため、ダイオードD1を介する経路(つまり、第1経路S1)に電流が流れる。また、一対の入力端201,202に第1制御信号のうちオフ信号が入力されると、半導体スイッチ23,24のゲート容量を放電するように電流が流れるため、抵抗R1を介する経路(つまり、第2経路S2)に電流が流れる。 In this configuration, when an ON signal of the first control signals is input to the pair of input terminals 201 and 202, a current flows so as to charge the gate capacitances of the semiconductor switches 23 and 24. Therefore, a path through the diode D1 ( That is, a current flows through the first path S1). In addition, when an off signal of the first control signal is input to the pair of input terminals 201 and 202, a current flows so as to discharge the gate capacitance of the semiconductor switches 23 and 24. Therefore, a path through the resistor R1 (that is, A current flows through the second path S2).
 以下、半導体リレー2の動作について説明する。一対の入力端201,202に第1制御信号のうちオン信号が入力されると、発光素子21が発光する。すると、発光素子21の発する光を受けて受光素子22が光起電力を発生する。そして、受光素子22からインピーダンス回路26の第1経路S1を介して半導体スイッチ23,24のゲートに電流が流れ込むことで半導体スイッチ23,24のゲート容量が充電され、半導体スイッチ23,24がオンする。これにより、一対の出力端子111,112間が導通する。 Hereinafter, the operation of the semiconductor relay 2 will be described. When an ON signal among the first control signals is input to the pair of input terminals 201 and 202, the light emitting element 21 emits light. Then, in response to the light emitted from the light emitting element 21, the light receiving element 22 generates photovoltaic power. Then, current flows from the light receiving element 22 to the gates of the semiconductor switches 23 and 24 through the first path S1 of the impedance circuit 26, whereby the gate capacitances of the semiconductor switches 23 and 24 are charged and the semiconductor switches 23 and 24 are turned on. . As a result, the pair of output terminals 111 and 112 are electrically connected.
 一対の入力端201,202に第1制御信号のうちオフ信号が入力されると、発光素子21が発光しなくなる。このため、受光素子22が光起電力を発生しなくなる。すると、半導体スイッチ23,24のゲート容量が、充放電経路25の抵抗251及びインピーダンス回路26の第2経路S2を介して放電され、半導体スイッチ23,24がオフする。これにより、一対の出力端子111,112間が非導通となる。 When the off signal of the first control signals is input to the pair of input terminals 201 and 202, the light emitting element 21 does not emit light. For this reason, the light receiving element 22 does not generate photovoltaic power. Then, the gate capacitances of the semiconductor switches 23 and 24 are discharged through the resistor 251 of the charge / discharge path 25 and the second path S2 of the impedance circuit 26, and the semiconductor switches 23 and 24 are turned off. As a result, the pair of output terminals 111 and 112 become non-conductive.
 つまり、半導体リレー2は、一対の入力端201,202に入力される第1制御信号に応じて半導体スイッチ23,24のオン/オフを切り替えることで、一対の出力端子111,112間の導通・非導通を切り替える。言い換えれば、半導体リレー2は、第1制御信号に応じて半導体スイッチ23,24がオン/オフすることで、電源A1から負荷B1への給電路を開閉する。 That is, the semiconductor relay 2 switches on / off of the semiconductor switches 23 and 24 according to the first control signal input to the pair of input terminals 201 and 202, thereby connecting the pair of output terminals 111 and 112. Switch non-conduction. In other words, the semiconductor relay 2 opens and closes the power supply path from the power source A1 to the load B1 by turning on / off the semiconductor switches 23 and 24 according to the first control signal.
 なお、本実施形態のスイッチ装置1Bでは、半導体リレー2は、発光素子21及び受光素子22を用いることで、一対の入力端201,202と一対の出力端211,212との間を電気的に絶縁している。つまり、半導体リレー2は、1次側(一対の入力端子101,102側)と2次側(一対の出力端子111,112側)とを電気的に絶縁する絶縁部21,22を備えているといえる。この絶縁部21,22は、他の構成であってもよい。たとえば、半導体リレー2は、発光素子21及び受光素子22の代わりにキャパシタを用いることで、一対の入力端201,202と一対の出力端211,212との間を電気的に絶縁する構成であってもよい。なお、キャパシタを用いる場合、半導体リレー2は、半導体スイッチ23,24を駆動するためのドライブ回路をさらに備える必要がある。 In the switch device 1B of the present embodiment, the semiconductor relay 2 uses the light emitting element 21 and the light receiving element 22 to electrically connect the pair of input ends 201 and 202 and the pair of output ends 211 and 212. Insulated. That is, the semiconductor relay 2 includes the insulating portions 21 and 22 that electrically insulate the primary side (the pair of input terminals 101 and 102 side) from the secondary side (the pair of output terminals 111 and 112 side). It can be said. The insulating portions 21 and 22 may have other configurations. For example, the semiconductor relay 2 is configured to electrically insulate between the pair of input terminals 201 and 202 and the pair of output terminals 211 and 212 by using a capacitor instead of the light emitting element 21 and the light receiving element 22. May be. When using a capacitor, the semiconductor relay 2 needs to further include a drive circuit for driving the semiconductor switches 23 and 24.
 <動作>
 以下、本実施形態のスイッチ装置1Bの動作について図9を用いて説明する。なお、図10には、電源A1が直流電源である場合における本実施形態のスイッチ装置1Bの動作を示しているが、電源A1が交流電源である場合と同様であるので、ここでは説明を省略する。ここで、図9、図10に示す「電源電圧」は、電源A1の出力電圧である。また、図9、図10に示す「制御信号」は、第1制御信号及び第2制御信号の総称である。
<Operation>
Hereinafter, the operation of the switch device 1B of the present embodiment will be described with reference to FIG. FIG. 10 shows the operation of the switch device 1B of the present embodiment when the power source A1 is a DC power source. However, the operation is the same as that when the power source A1 is an AC power source, and the description thereof is omitted here. To do. Here, the “power supply voltage” shown in FIGS. 9 and 10 is the output voltage of the power supply A1. Moreover, the “control signal” shown in FIGS. 9 and 10 is a generic term for the first control signal and the second control signal.
 まず、時刻t0において、一対の入力端子101,102に制御信号のうちオン信号が入力されると、半導体リレー2の半導体スイッチ23,24がオンする。このため、一対の出力端211,212間が導通し、第1電流が流れる。すると、一対の出力端子111,112間も導通するため、電源A1から負荷B1への給電路が閉じ、負荷B1に電流が流れる。この時点では、メカニカルリレー3の接点部32はオンしていない。その後、時刻t0から所定時間後である時刻t1(>t0)において、メカニカルリレー3の接点部32がオンする。 First, at time t0, when an ON signal among the control signals is input to the pair of input terminals 101 and 102, the semiconductor switches 23 and 24 of the semiconductor relay 2 are turned ON. For this reason, between the pair of output ends 211 and 212 is conducted, the first current flows. Then, since the pair of output terminals 111 and 112 are also connected, the power supply path from the power source A1 to the load B1 is closed, and a current flows through the load B1. At this time, the contact portion 32 of the mechanical relay 3 is not turned on. Thereafter, at time t1 (> t0), which is a predetermined time after time t0, the contact portion 32 of the mechanical relay 3 is turned on.
 ここで、メカニカルリレー3の接点部32がオンする際に、接点電圧は、半導体スイッチ23,24のドレイン-ソース間のオン抵抗での電圧降下に応じた電圧となるため、電源電圧の最大電圧と比較して小さい。このため、本実施形態のスイッチ装置1Bでは、半導体リレー2を用いずにメカニカルリレー3のみで給電路を閉じる場合と比較して、接点部32のオン時に生じ得る突入電流を小さくすることができる。また、接点部32の接触抵抗は、半導体スイッチ23,24のオン抵抗と比較して小さいため、電源A1から負荷B1へ流れる電流の殆どが接点部32を介して流れる。このため、本実施形態のスイッチ装置1Bでは、メカニカルリレー3を用いずに半導体リレー2のみで給電路を閉じる場合と比較して、半導体スイッチ23,24のオン抵抗での電力損失及び発熱が小さくなり、通電電流を大きくすることができる。 Here, when the contact portion 32 of the mechanical relay 3 is turned on, the contact voltage becomes a voltage corresponding to the voltage drop due to the on-resistance between the drain and source of the semiconductor switches 23 and 24. Small compared to For this reason, in the switch device 1B of the present embodiment, the inrush current that can be generated when the contact portion 32 is turned on can be reduced as compared with the case where the power supply path is closed only by the mechanical relay 3 without using the semiconductor relay 2. . Further, since the contact resistance of the contact portion 32 is smaller than the on-resistance of the semiconductor switches 23 and 24, most of the current flowing from the power source A1 to the load B1 flows through the contact portion 32. For this reason, in the switch device 1B of the present embodiment, the power loss and heat generation at the on-resistance of the semiconductor switches 23 and 24 are small compared to the case where the power supply path is closed only by the semiconductor relay 2 without using the mechanical relay 3. Thus, the energization current can be increased.
 次に、時刻t2(>t1)において、一対の入力端子101,102に制御信号のうちオフ信号が入力されると、時刻t2から所定時間後である時刻t3(>t2)にメカニカルリレー3の接点部32がオフする。すると、一対の出力端311,312間が非導通になることから、第2電流が流れなくなり、第1電流が流れる。この時点では、半導体リレー2の半導体スイッチ23,24はオフしていない。その後、時刻t3からさらに所定時間後である時刻t4(>t3)において、半導体リレー2の半導体スイッチ23,24がオフする。すると、一対の出力端子111,112間が非導通になるため、電源A1から負荷B1への給電路が開き、負荷B1に電流が流れなくなる。 Next, when an off signal of the control signals is input to the pair of input terminals 101 and 102 at time t2 (> t1), the mechanical relay 3 is turned on at time t3 (> t2), which is a predetermined time after time t2. The contact part 32 is turned off. Then, since the pair of output terminals 311 and 312 becomes non-conductive, the second current does not flow and the first current flows. At this time, the semiconductor switches 23 and 24 of the semiconductor relay 2 are not turned off. Thereafter, at time t4 (> t3), which is a predetermined time after time t3, the semiconductor switches 23 and 24 of the semiconductor relay 2 are turned off. Then, since the pair of output terminals 111 and 112 become non-conductive, the power supply path from the power source A1 to the load B1 is opened, and no current flows through the load B1.
 ここで、メカニカルリレー3の接点部32がオフする際には、半導体スイッチ23,24がオフしていないので、一対の出力端子111,112間には電源電圧が印加されていない。このため、本実施形態のスイッチ装置1Bでは、半導体リレー2の半導体スイッチ23,24がメカニカルリレー3の接点部32よりも先にオフする場合と比較して、接点部32のオフ時にアークが生じ難い。これは、電源A1が直流電源である場合に、とくに有効である。 Here, when the contact portion 32 of the mechanical relay 3 is turned off, the power supply voltage is not applied between the pair of output terminals 111 and 112 because the semiconductor switches 23 and 24 are not turned off. For this reason, in the switch device 1B of the present embodiment, an arc is generated when the contact portion 32 is turned off, compared to the case where the semiconductor switches 23 and 24 of the semiconductor relay 2 are turned off before the contact portion 32 of the mechanical relay 3. hard. This is particularly effective when the power source A1 is a DC power source.
 上述のように、本実施形態のスイッチ装置1Bは、一対の入力端子101,102に制御信号のうちオン信号を入力するときは、メカニカルリレー3の接点部32よりも先に半導体リレー2の半導体スイッチ23,24がオンするように制御されるのが望ましい。つまり、本実施形態のスイッチ装置1Bは、優先オン制御を実行できるのが望ましい。そこで、本実施形態のスイッチ装置1Bでは、半導体リレー2の半導体スイッチ23,24のターンオン時間が、メカニカルリレー3の接点部32の動作時間と比較して短いという特性を利用している。このため、本実施形態のスイッチ装置1Bでは、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号により優先オン制御を実現することができる。 As described above, the switch device 1 </ b> B of the present embodiment has the semiconductor relay 2 semiconductor prior to the contact portion 32 of the mechanical relay 3 when an ON signal among the control signals is input to the pair of input terminals 101 and 102. It is desirable to control the switches 23 and 24 to be turned on. That is, it is desirable that the switch device 1B of the present embodiment can execute the priority on control. Therefore, the switch device 1B of the present embodiment utilizes the characteristic that the turn-on time of the semiconductor switches 23 and 24 of the semiconductor relay 2 is shorter than the operation time of the contact portion 32 of the mechanical relay 3. For this reason, in the switch device 1B of the present embodiment, the priority on control can be realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3.
 また、本実施形態のスイッチ装置1Bでは、上述のように、一対の入力端子101,102に制御信号のうちオフ信号が入力されるときは、半導体スイッチ23,24よりも先に接点部32がオフするように制御されるのが望ましい。つまり、本実施形態のスイッチ装置1Bは、優先オフ制御を実行できるのが望ましい。ここで、通常であれば、半導体スイッチ23,24のターンオフ時間は、接点部32の復帰時間よりも短くなるため、半導体スイッチ23,24が接点部32よりも先にオフしてしまう。 Further, in the switch device 1B of the present embodiment, as described above, when the off signal among the control signals is input to the pair of input terminals 101 and 102, the contact portion 32 is provided before the semiconductor switches 23 and 24. It is desirable to be controlled to turn off. That is, it is desirable that the switch device 1B of the present embodiment can perform priority off control. Here, normally, since the turn-off time of the semiconductor switches 23 and 24 is shorter than the return time of the contact portion 32, the semiconductor switches 23 and 24 are turned off before the contact portion 32.
 そこで、本実施形態のスイッチ装置1Bでは、制御信号(第1制御信号)のうちオフ信号が入力されると、インピーダンス回路26の第2経路S2を介して半導体スイッチ23,24のゲート容量を放電する。つまり、インピーダンス素子261を介して半導体スイッチ23,24のゲート容量を放電することにより、時定数を大きくし、半導体スイッチ23,24のターンオン時間が接点部32の復帰時間よりも長くなるようにしている。このため、本実施形態のスイッチ装置1Bでは、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号により優先オフ制御を実現することができる。 Therefore, in the switch device 1B of the present embodiment, when an off signal is input from the control signal (first control signal), the gate capacitances of the semiconductor switches 23 and 24 are discharged through the second path S2 of the impedance circuit 26. To do. That is, by discharging the gate capacitances of the semiconductor switches 23 and 24 via the impedance element 261, the time constant is increased so that the turn-on time of the semiconductor switches 23 and 24 is longer than the return time of the contact portion 32. Yes. For this reason, in the switch apparatus 1B of this embodiment, priority off control is realizable by one control signal, without controlling the semiconductor relay 2 and the mechanical relay 3 separately.
 ただし、インピーダンス素子261を介して半導体スイッチ23,24のゲート容量を充電させると、半導体スイッチ23,24のターンオン時間が接点部32の動作時間よりも長くなる虞がある。そこで、本実施形態のスイッチ装置1Bでは、制御信号(第1制御信号)のうちオン信号が入力されるときは、インピーダンス回路26の第1経路S1を介して半導体スイッチ23,24のゲート容量を充電する。つまり、制御信号のうちオン信号が入力されるときは、インピーダンス素子261を介さずに半導体スイッチ23,24のゲート容量が充電されるので、半導体スイッチ23,24のターンオン時間が長くなるのを防ぐことができる。 However, if the gate capacitances of the semiconductor switches 23 and 24 are charged via the impedance element 261, the turn-on time of the semiconductor switches 23 and 24 may be longer than the operation time of the contact part 32. Therefore, in the switch device 1B of the present embodiment, when an ON signal is input from among the control signals (first control signals), the gate capacitances of the semiconductor switches 23 and 24 are set via the first path S1 of the impedance circuit 26. Charge. That is, when an ON signal is input from among the control signals, the gate capacitances of the semiconductor switches 23 and 24 are charged without going through the impedance element 261, so that the turn-on time of the semiconductor switches 23 and 24 is prevented from becoming long. be able to.
 つまり、本実施形態では、制御回路4Bは、半導体スイッチ23,24を制御することで、半導体スイッチ23,24がオンからオフになるタイミングを、メカニカルリレー3の接点部32がオンからオフになるタイミングよりも遅らせるように構成されている。また、本実施形態では、制御回路4Bは、半導体スイッチ23,24を制御することで、半導体スイッチ23,24がオフからオンになるタイミングを、メカニカルリレー3の接点部32がオフからオンになるタイミングよりも早めるように構成されている。 That is, in the present embodiment, the control circuit 4B controls the semiconductor switches 23 and 24, so that the contact point 32 of the mechanical relay 3 is turned off from the on time when the semiconductor switches 23 and 24 are turned off. It is configured to be delayed from the timing. In the present embodiment, the control circuit 4B controls the semiconductor switches 23 and 24, so that the contact point 32 of the mechanical relay 3 is turned on from the off time when the semiconductor switches 23 and 24 are turned on. It is configured to be earlier than the timing.
 もちろん、本実施形態のスイッチ装置1Bは、制御信号(第1制御信号)のうちオン信号が入力されるときに、インピーダンス回路26の第2経路S2を介して半導体スイッチ23,24のゲート容量を充電するように構成されていてもよい。この構成では、制御回路4Bは、半導体スイッチ23,24を制御することで、半導体スイッチ23,24がオフからオンになるタイミングを、メカニカルリレー3の接点部32がオフからオンになるタイミングよりも遅らせる構成となる。 Of course, the switch device 1B of the present embodiment has the gate capacitances of the semiconductor switches 23 and 24 via the second path S2 of the impedance circuit 26 when an ON signal is input from among the control signals (first control signals). It may be configured to charge. In this configuration, the control circuit 4B controls the semiconductor switches 23 and 24 so that the timing at which the semiconductor switches 23 and 24 are turned on is set to be higher than the timing at which the contact portion 32 of the mechanical relay 3 is turned on from off. It will be delayed.
 <効果>
 上述のように、本実施形態のスイッチ装置1Bは、充放電経路25及びインピーダンス回路26を有する制御回路4Bを備えている。そして、本実施形態のスイッチ装置1Bでは、制御回路4Bを備えることにより、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号で優先オン制御及び優先オフ制御を実現することができる。そして、本実施形態のスイッチ装置1Bでは、半導体リレー2を第1制御信号で、メカニカルリレー3を第2制御信号で個別に制御してもよい。つまり、本実施形態のスイッチ装置1Bは、制御の自由度を高くすることができる。
<Effect>
As described above, the switch device 1B of the present embodiment includes the control circuit 4B having the charge / discharge path 25 and the impedance circuit 26. In the switch device 1B of the present embodiment, by providing the control circuit 4B, the priority on control and the priority off control are realized by one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3. Can do. In the switch device 1B of the present embodiment, the semiconductor relay 2 may be individually controlled with the first control signal and the mechanical relay 3 may be individually controlled with the second control signal. That is, the switch device 1B of the present embodiment can increase the degree of freedom of control.
 とくに、本実施形態のスイッチ装置1Bでは、半導体リレー2及びメカニカルリレー3は、1つの制御信号により制御される。言い換えれば、本実施形態のスイッチ装置1Bでは、第1制御信号及び第2制御信号が同じである。この構成では、半導体リレー2及びメカニカルリレー3の各々を制御するタイミングをずらすといった複雑な制御が不要であり、制御が容易になるという利点がある。つまり、この構成では、半導体リレー2及びメカニカルリレー3を組み合わせたハイブリッドリレーを、1つの制御信号で容易に制御することができる。なお、当該構成を採用するか否かは任意である。 In particular, in the switch device 1B of the present embodiment, the semiconductor relay 2 and the mechanical relay 3 are controlled by one control signal. In other words, in the switch device 1B of the present embodiment, the first control signal and the second control signal are the same. In this configuration, there is an advantage that complicated control such as shifting the timing of controlling each of the semiconductor relay 2 and the mechanical relay 3 is unnecessary, and control becomes easy. That is, in this configuration, a hybrid relay in which the semiconductor relay 2 and the mechanical relay 3 are combined can be easily controlled with one control signal. Note that whether or not to adopt the configuration is arbitrary.
 また、本実施形態のスイッチ装置1Bでは、半導体リレー2は、発光素子21と、受光素子22とを備えている。そして、半導体スイッチ23,24は、受光素子22の発生する光起電力によりオン/オフするように構成されている。このため、本実施形態のスイッチ装置1Bでは、入出力間の電位差が半導体スイッチ23,24のオン/オフに影響し難いという利点がある。なお、半導体リレー2に当該構成を採用するか否かは任意である。 Further, in the switch device 1B of the present embodiment, the semiconductor relay 2 includes a light emitting element 21 and a light receiving element 22. The semiconductor switches 23 and 24 are configured to be turned on / off by the photovoltaic force generated by the light receiving element 22. For this reason, the switch device 1 </ b> B of this embodiment has an advantage that the potential difference between the input and output hardly affects the on / off of the semiconductor switches 23 and 24. Note that whether or not to adopt the configuration for the semiconductor relay 2 is arbitrary.
 ところで、インピーダンス回路26は、図8に示す構成に限定されず、他の構成であってもよい。たとえば、インピーダンス回路26は、図11に示すように、抵抗R1(インピーダンス素子261)と、スイッチング素子Q1(スイッチ262)とで構成されていてもよい。 Incidentally, the impedance circuit 26 is not limited to the configuration shown in FIG. 8, and may have other configurations. For example, as shown in FIG. 11, the impedance circuit 26 may include a resistor R1 (impedance element 261) and a switching element Q1 (switch 262).
 抵抗R1は、図8に示す構成と同様に、受光素子22の低電位側の一端と、半導体スイッチ23,24のソースとの間に電気的に接続される。スイッチング素子Q1は、nチャネルのエンハンスメント型MOSFETである。スイッチング素子Q1のゲートは、受光素子22の高電位側の一端に電気的に接続されている。スイッチング素子Q1のドレインは、半導体スイッチ23,24のソースに電気的に接続されている。スイッチング素子Q1のソースは、受光素子22の低電位側の一端に電気的に接続されている。 The resistor R1 is electrically connected between one end on the low potential side of the light receiving element 22 and the sources of the semiconductor switches 23 and 24, similarly to the configuration shown in FIG. The switching element Q1 is an n-channel enhancement type MOSFET. The gate of the switching element Q1 is electrically connected to one end of the light receiving element 22 on the high potential side. The drain of the switching element Q1 is electrically connected to the sources of the semiconductor switches 23 and 24. The source of the switching element Q1 is electrically connected to one end of the light receiving element 22 on the low potential side.
 この構成では、一対の入力端201,202に第1制御信号のうちオン信号が入力されると、スイッチング素子Q1がオンするため、スイッチング素子Q1を介する経路(つまり、第1経路S1)に電流が流れる。また、一対の入力端201,202に第1制御信号のうちオフ信号が入力されると、スイッチング素子Q1がオフするため、抵抗R1を介する経路(つまり、第2経路S2)に電流が流れる。 In this configuration, when an ON signal among the first control signals is input to the pair of input terminals 201 and 202, the switching element Q1 is turned on, and thus a current flows through the path through the switching element Q1 (that is, the first path S1). Flows. Further, when an off signal of the first control signals is input to the pair of input terminals 201 and 202, the switching element Q1 is turned off, and thus a current flows through a path via the resistor R1 (that is, the second path S2).
 また、インピーダンス回路26は、たとえば図12に示すように、抵抗R1(インピーダンス素子261)と、キャパシタC1(インピーダンス素子261)と、ダイオードD1(スイッチ262)とで構成されていてもよい。抵抗R1及びダイオードD1は、図8に示す構成と同様である。キャパシタC1は、抵抗R1に並列に電気的に接続される。 Further, as shown in FIG. 12, for example, the impedance circuit 26 may include a resistor R1 (impedance element 261), a capacitor C1 (impedance element 261), and a diode D1 (switch 262). The resistor R1 and the diode D1 are the same as those shown in FIG. Capacitor C1 is electrically connected in parallel with resistor R1.
 つまり、インピーダンス素子261は、容量素子(ここでは、キャパシタC1)を含んでいてもよい。この構成では、インピーダンス素子261を単に抵抗のみで構成する場合と比較して、より効果的に半導体スイッチ23,24のターンオフ時間を長くすることができる。なお、図12に示す構成では、インピーダンス素子261は、抵抗R1及びキャパシタC1で構成されているが、キャパシタC1のみで構成されていてもよい。 That is, the impedance element 261 may include a capacitive element (here, the capacitor C1). In this configuration, the turn-off time of the semiconductor switches 23 and 24 can be more effectively increased as compared with the case where the impedance element 261 is configured only by a resistor. In the configuration shown in FIG. 12, the impedance element 261 is configured by the resistor R1 and the capacitor C1, but may be configured by only the capacitor C1.
 なお、本実施形態のスイッチ装置1Bは、第1制御信号(第2制御信号)がハイレベルのときに半導体スイッチ23,24(接点部32)がオンする構成であるが、他の構成であってもよい。すなわち、本実施形態のスイッチ装置1Bは、第1制御信号(第2制御信号)がローレベルのときに半導体スイッチ23,24(接点部32)がオンするように構成されていてもよい。この場合、「第1制御信号(第2制御信号)のうちオン信号が入力される」とは「第1制御信号(第2制御信号)がローレベルになる」ことを意味する。さらに、「第1制御信号(第2制御信号)のうちオフ信号が入力される」とは「第1制御信号(第2制御信号)がハイレベルになる」ことを意味する。 Note that the switch device 1B of the present embodiment has a configuration in which the semiconductor switches 23 and 24 (contact point portion 32) are turned on when the first control signal (second control signal) is at a high level, but the other configuration. May be. That is, the switch device 1B of the present embodiment may be configured such that the semiconductor switches 23 and 24 (contact points 32) are turned on when the first control signal (second control signal) is at a low level. In this case, “the ON signal is input from among the first control signals (second control signals)” means “the first control signal (second control signal) is at a low level”. Furthermore, “the off signal of the first control signal (second control signal) is input” means “the first control signal (second control signal) becomes high level”.
 ところで、本実施形態のスイッチ装置1Bは、実施形態1の制御回路4や実施形態1の変形例の制御回路4Aをさらに備えていてもよい。この場合も、半導体リレー2及びメカニカルリレー3を個別に制御せずとも、1つの制御信号で優先オン制御及び優先オフ制御を実現することが可能である。 Incidentally, the switch device 1B of the present embodiment may further include the control circuit 4 of the first embodiment and the control circuit 4A of a modification of the first embodiment. Also in this case, it is possible to realize the priority on control and the priority off control with one control signal without individually controlling the semiconductor relay 2 and the mechanical relay 3.
 以上述べた実施形態から明らかなように、本発明の第1の態様に係るスイッチ装置(1,1A,1B)は、半導体リレー(2)と、メカニカルリレー(3)と、制御回路(4,4A,4B)とを備えている。半導体リレー(2)は、電源(A1)から負荷(B1)への給電路を開閉する。メカニカルリレー(3)は、半導体リレー(2)と並列に電気的に接続される接点部(32)を有し、外部から入力される制御信号に応じて接点部(32)をオン/オフすることにより給電路を開閉する。制御回路(4,4A,4B)は、制御信号を受けて半導体リレー(2)を制御する。 As is clear from the embodiment described above, the switch device (1, 1A, 1B) according to the first aspect of the present invention includes a semiconductor relay (2), a mechanical relay (3), a control circuit (4, 4). 4A, 4B). The semiconductor relay (2) opens and closes a power feeding path from the power source (A1) to the load (B1). The mechanical relay (3) has a contact portion (32) electrically connected in parallel with the semiconductor relay (2), and turns on / off the contact portion (32) according to a control signal input from the outside. This opens and closes the feed path. The control circuit (4, 4A, 4B) receives the control signal and controls the semiconductor relay (2).
 半導体リレー(2)は、半導体スイッチ(2B,23,24)を有している。半導体スイッチ(2B,23,24)は、容量成分に蓄積される電荷に応じてオン/オフすることで給電路を開閉する。制御回路(4,4A,4B)は、半導体スイッチ(2B,23,24)を制御することで、半導体スイッチ(2B,23,24)がオンからオフになるタイミングを、メカニカルリレー(3)の接点部(32)がオンからオフになるタイミングよりも遅らせるように構成されている。 The semiconductor relay (2) has semiconductor switches (2B, 23, 24). The semiconductor switches (2B, 23, 24) open / close the power supply path by turning on / off according to the electric charge accumulated in the capacitive component. The control circuit (4, 4A, 4B) controls the semiconductor switch (2B, 23, 24) so that the timing at which the semiconductor switch (2B, 23, 24) is turned off is turned on. The contact portion (32) is configured to be delayed from the timing when the contact portion (32) is turned off.
 また、本発明の第2の態様に係るスイッチ装置(1A,1B)では、第1の態様において、制御回路(4A,4B)は、半導体スイッチ(2B,23,24)を制御することで、半導体スイッチ(2B,23,24)がオフからオンになるタイミングを、メカニカルリレー(3)の接点部(32)がオフからオンになるタイミングよりも早めるように構成されている。 In the switch device (1A, 1B) according to the second aspect of the present invention, in the first aspect, the control circuit (4A, 4B) controls the semiconductor switch (2B, 23, 24), The timing at which the semiconductor switch (2B, 23, 24) is turned on from off is configured to be earlier than the timing at which the contact portion (32) of the mechanical relay (3) is turned on from off.
 また、本発明の第3の態様に係るスイッチ装置(1)では、第1の態様において、制御回路(4)は、半導体スイッチ(2B)を制御することで、半導体スイッチ(2B)がオフからオンになるタイミングを、メカニカルリレー(3)の接点部(32)がオフからオンになるタイミングよりも遅らせるように構成されている。 In the switch device (1) according to the third aspect of the present invention, in the first aspect, the control circuit (4) controls the semiconductor switch (2B) so that the semiconductor switch (2B) is turned off. The timing of turning on is configured to be delayed from the timing of turning on the contact portion (32) of the mechanical relay (3).
 また、本発明の第4の態様に係るスイッチ装置(1,1A,1B)では、第1~第3のいずれかの態様において、半導体リレー(2)は、1次側と2次側とを電気的に絶縁する絶縁部(2A,2C,21,22)をさらに有する。 In the switch device (1, 1A, 1B) according to the fourth aspect of the present invention, in any of the first to third aspects, the semiconductor relay (2) has a primary side and a secondary side. It further has an insulating part (2A, 2C, 21, 22) for electrical insulation.
 また、本発明の第5の態様に係るスイッチ装置(1,1A)では、第4の態様において、制御回路(4,4A)は、1次側に設けられて、制御信号を遅延させ、遅延した制御信号を半導体リレー(2)に出力する遅延回路(5,5A)を有する。 In the switch device (1, 1A) according to the fifth aspect of the present invention, in the fourth aspect, the control circuit (4, 4A) is provided on the primary side to delay the control signal, A delay circuit (5, 5A) for outputting the control signal to the semiconductor relay (2).
 また、本発明の第6の態様に係るスイッチ装置(1,1A)では、第5の態様において、制御回路(4,4A)は、遅延回路(5,5A)を介して制御信号が入力され、制御信号の電圧が閾値電圧に達すると制御信号を出力するように構成されているバッファ回路(6)をさらに有する。 In the switch device (1, 1A) according to the sixth aspect of the present invention, in the fifth aspect, the control circuit (4, 4A) receives a control signal via the delay circuit (5, 5A). And a buffer circuit (6) configured to output the control signal when the voltage of the control signal reaches the threshold voltage.
 また、本発明の第7の態様に係るスイッチ装置(1B)は、第4~第6のいずれかの態様において、制御信号に応じて容量成分を充電及び放電する充放電経路(25)をさらに備える。制御回路(4B)は、2次側に設けられて、充放電経路(25)に電気的に接続されるインピーダンス回路(26)を有する。インピーダンス回路(26)は、インピーダンス素子(261)を有する。そして、インピーダンス回路(26)は、制御信号のうちオン信号が入力されると充放電経路(25)を第1経路(S1)に接続し、制御信号のうちオフ信号が入力されると充放電経路(25)をインピーダンス素子(261)を含む第2経路(S2)に接続するように構成されている。 The switch device (1B) according to the seventh aspect of the present invention further includes a charge / discharge path (25) for charging and discharging the capacitive component according to the control signal in any of the fourth to sixth aspects. Prepare. The control circuit (4B) includes an impedance circuit (26) provided on the secondary side and electrically connected to the charge / discharge path (25). The impedance circuit (26) has an impedance element (261). The impedance circuit (26) connects the charge / discharge path (25) to the first path (S1) when an ON signal is input from among the control signals, and charges / discharges when an OFF signal is input from among the control signals. The path (25) is configured to be connected to the second path (S2) including the impedance element (261).
 また、本発明の第8の態様に係るスイッチ装置(1B)では、第7の態様において、インピーダンス素子(261)は、容量素子(キャパシタ(C1))を含む。 In the switch device (1B) according to the eighth aspect of the present invention, in the seventh aspect, the impedance element (261) includes a capacitive element (capacitor (C1)).
 また、本発明の第9の態様に係るスイッチ装置(1B)では、第7又は第8の態様において、絶縁部(21,22)は、制御信号を受けて発光する発光素子(21)と、発光素子(21)の発する光に応じて光起電力を発生する受光素子(22)とを備える。 Further, in the switch device (1B) according to the ninth aspect of the present invention, in the seventh or eighth aspect, the insulating portion (21, 22) receives the control signal and emits light (21), A light receiving element (22) that generates a photovoltaic force in response to light emitted from the light emitting element (21).
 スイッチ装置(1,1A,1B)は、制御回路(4,4A,4B)を備えることにより、半導体リレー(2)とメカニカルリレー(3)とに個別に制御信号を与えずとも、半導体リレー(2)とメカニカルリレー(3)との相互の開閉の時間差を設けることができる。したがって、本発明は、半導体リレー(2)及びメカニカルリレー(3)を組み合わせたハイブリッドリレーを、1つの制御信号で容易に制御することができる。
 
Since the switch device (1, 1A, 1B) includes the control circuit (4, 4A, 4B), the semiconductor relay (2) and the mechanical relay (3) can be provided with a semiconductor relay ( 2) A time difference between opening and closing of the mechanical relay (3) can be provided. Therefore, the present invention can easily control a hybrid relay in which the semiconductor relay (2) and the mechanical relay (3) are combined with one control signal.

Claims (9)

  1.  電源から負荷への給電路を開閉する半導体リレーと、
     前記半導体リレーと並列に電気的に接続される接点部を有し、外部から入力される制御信号に応じて前記接点部をオン/オフすることにより前記給電路を開閉するメカニカルリレーと、
     前記制御信号を受けて前記半導体リレーを制御する制御回路とを備え、
     前記半導体リレーは、
     容量成分に蓄積される電荷に応じてオン/オフすることで前記給電路を開閉する半導体スイッチを有し、
     前記制御回路は、前記半導体スイッチを制御することで、前記半導体スイッチがオンからオフになるタイミングを、前記メカニカルリレーの前記接点部がオンからオフになるタイミングよりも遅らせるように構成されていることを特徴とするスイッチ装置。
    A semiconductor relay that opens and closes the power supply path from the power source to the load;
    A mechanical relay that has a contact portion electrically connected in parallel with the semiconductor relay, and opens and closes the power supply path by turning on and off the contact portion according to a control signal input from the outside;
    A control circuit for receiving the control signal and controlling the semiconductor relay;
    The semiconductor relay is
    A semiconductor switch that opens and closes the power supply path by turning on and off according to the charge accumulated in the capacitive component;
    The control circuit is configured to control the semiconductor switch to delay the timing at which the semiconductor switch is turned on from the timing at which the contact portion of the mechanical relay is turned from on to off. A switch device characterized by.
  2.  前記制御回路は、前記半導体スイッチを制御することで、前記半導体スイッチがオフからオンになるタイミングを、前記メカニカルリレーの前記接点部がオフからオンになるタイミングよりも早めるように構成されていることを特徴とする請求項1記載のスイッチ装置。 The control circuit is configured to control the semiconductor switch so that the timing at which the semiconductor switch is turned on is earlier than the timing at which the contact portion of the mechanical relay is turned on from off. The switch device according to claim 1.
  3.  前記制御回路は、前記半導体スイッチを制御することで、前記半導体スイッチがオフからオンになるタイミングを、前記メカニカルリレーの前記接点部がオフからオンになるタイミングよりも遅らせるように構成されていることを特徴とする請求項1記載のスイッチ装置。 The control circuit is configured to control the semiconductor switch to delay the timing at which the semiconductor switch is turned on from the timing at which the contact portion of the mechanical relay is turned on from off. The switch device according to claim 1.
  4.  前記半導体リレーは、1次側と2次側とを電気的に絶縁する絶縁部をさらに有することを特徴とする請求項1乃至3のいずれか1項に記載のスイッチ装置。 The switch device according to any one of claims 1 to 3, wherein the semiconductor relay further includes an insulating portion that electrically insulates the primary side and the secondary side.
  5.  前記制御回路は、前記1次側に設けられて、前記制御信号を遅延させ、遅延した前記制御信号を前記半導体リレーに出力する遅延回路を有することを特徴とする請求項4記載のスイッチ装置。 5. The switch device according to claim 4, wherein the control circuit includes a delay circuit provided on the primary side, delaying the control signal, and outputting the delayed control signal to the semiconductor relay.
  6.  前記制御回路は、前記遅延回路を介して前記制御信号が入力され、前記制御信号の電圧が閾値電圧に達すると前記制御信号を出力するように構成されているバッファ回路をさらに有することを特徴とする請求項5に記載のスイッチ装置。 The control circuit further includes a buffer circuit configured to receive the control signal via the delay circuit and to output the control signal when the voltage of the control signal reaches a threshold voltage. The switch device according to claim 5.
  7.  前記制御信号に応じて前記容量成分を充電及び放電する充放電経路をさらに備え、
     前記制御回路は、前記2次側に設けられて、前記充放電経路に電気的に接続されるインピーダンス回路を有し、
     前記インピーダンス回路は、インピーダンス素子を有し、前記制御信号のうちオン信号が入力されると前記充放電経路を第1経路に接続し、前記制御信号のうちオフ信号が入力されると前記充放電経路を前記インピーダンス素子を含む第2経路に接続するように構成されていることを特徴とする請求項4乃至6のいずれか1項に記載のスイッチ装置。
    A charge / discharge path for charging and discharging the capacitance component in response to the control signal;
    The control circuit includes an impedance circuit provided on the secondary side and electrically connected to the charge / discharge path;
    The impedance circuit includes an impedance element, and connects the charge / discharge path to the first path when an ON signal is input from among the control signals, and charges / discharges when an OFF signal is input from among the control signals. The switch device according to claim 4, wherein the switch device is configured to connect a route to a second route including the impedance element.
  8.  前記インピーダンス素子は、容量素子を含むことを特徴とする請求項7記載のスイッチ装置。 The switch device according to claim 7, wherein the impedance element includes a capacitive element.
  9.  前記絶縁部は、
     前記制御信号を受けて発光する発光素子と、
     前記発光素子の発する光に応じて光起電力を発生する受光素子とを備えることを特徴とする請求項7又は8に記載のスイッチ装置。
    The insulating part is
    A light emitting element that emits light in response to the control signal;
    The switch device according to claim 7, further comprising: a light receiving element that generates a photovoltaic power according to light emitted from the light emitting element.
PCT/JP2016/002808 2015-06-10 2016-06-10 Switch device WO2016199428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017523115A JP6817582B2 (en) 2015-06-10 2016-06-10 Switch device
CN201680033447.6A CN107710617B (en) 2015-06-10 2016-06-10 Switching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-117671 2015-06-10
JP2015117671 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199428A1 true WO2016199428A1 (en) 2016-12-15

Family

ID=57503330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002808 WO2016199428A1 (en) 2015-06-10 2016-06-10 Switch device

Country Status (3)

Country Link
JP (1) JP6817582B2 (en)
CN (1) CN107710617B (en)
WO (1) WO2016199428A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3915127B1 (en) * 2019-01-21 2022-12-14 Eaton Intelligent Power Limited Direct current circuit breaker device
JP2020160500A (en) * 2019-03-25 2020-10-01 アズビル株式会社 Control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158850A (en) * 1978-06-05 1979-12-15 Nippon Telegr & Teleph Corp <Ntt> Driver circuit of field effect transistor
JP2000036238A (en) * 1998-04-06 2000-02-02 Shigeisa Imoto Switch circuit
JP2003338239A (en) * 2002-04-12 2003-11-28 Lg Industrial Syst Co Ltd Hybrid dc electromagnetic contactor
JP2012028193A (en) * 2010-07-23 2012-02-09 Matsuo Hirofumi Dc switch

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473202A (en) * 1992-06-05 1995-12-05 Brian Platner Control unit for occupancy sensor switching of high efficiency lighting
CN2501255Y (en) * 2001-11-12 2002-07-17 赵洪涛 Electronic switch module
CN2641791Y (en) * 2003-08-08 2004-09-15 王高鹏 Combined overtravel-limit switch
CN2697949Y (en) * 2004-04-27 2005-05-04 蔡建平 Switch control circuit
JP2005331584A (en) * 2004-05-18 2005-12-02 Fujitsu Hitachi Plasma Display Ltd Capacitive load driving circuit and plasma display apparatus
CN2766449Y (en) * 2004-10-14 2006-03-22 赵艳军 Two-wire electronic switch power supply module and two-wire remote control switch
CN2842878Y (en) * 2005-02-01 2006-11-29 美美电子产品有限公司 Telecontrol electronic switch
US8274240B2 (en) * 2010-02-01 2012-09-25 Lutron Electronics Co., Inc. Switching circuit having delay for inrush current protection
JP5501851B2 (en) * 2010-05-12 2014-05-28 Tone株式会社 Phase control device
CN201904953U (en) * 2010-12-14 2011-07-20 西北工业大学 Light emitting diode (LED) illumination state time delay switch
JP5776721B2 (en) * 2013-04-15 2015-09-09 株式会社デンソー Drive circuit for switching element to be driven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158850A (en) * 1978-06-05 1979-12-15 Nippon Telegr & Teleph Corp <Ntt> Driver circuit of field effect transistor
JP2000036238A (en) * 1998-04-06 2000-02-02 Shigeisa Imoto Switch circuit
JP2003338239A (en) * 2002-04-12 2003-11-28 Lg Industrial Syst Co Ltd Hybrid dc electromagnetic contactor
JP2012028193A (en) * 2010-07-23 2012-02-09 Matsuo Hirofumi Dc switch

Also Published As

Publication number Publication date
JP6817582B2 (en) 2021-01-20
CN107710617B (en) 2021-05-18
JPWO2016199428A1 (en) 2018-03-29
CN107710617A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
RU2690017C1 (en) Power supply control device and corresponding method
US20140239911A1 (en) Control circuit and method of battery branch in battery system
JP5206198B2 (en) Driving circuit for power conversion circuit
WO2015001374A1 (en) A gate drive circuit and a method for controlling a power transistor
JP5621605B2 (en) Switching element drive circuit
JP6495554B2 (en) Control system for switching DC-DC voltage converter from buck operation mode to safe operation mode
KR20180117182A (en) Diagnostic system of DC-DC voltage converter
US8988131B2 (en) Transistor switch including independent control of turn-on and slew rate
JP5673634B2 (en) Drive circuit for switching element to be driven
WO2016199428A1 (en) Switch device
CN108475998B (en) Control system for power conversion device
JP6708486B2 (en) Bidirectional MOSFET switch and multiplexer
KR20180115325A (en) Control system for switching DC-DC voltage converter from boost operation mode to safe operation mode
JPWO2018150789A1 (en) Switch circuit
US9768769B2 (en) Power electronic device assembly for preventing parasitic switching-on of feeder circuit-breaker
JP6322123B2 (en) Current limit circuit
US20220029442A1 (en) Assembly for switching a high-voltage battery in a vehicle
JP2017034537A (en) Driver and semiconductor relay using the same
TR201606371A2 (en) Parallel Connected Switches and Switched Power Inverter
KR20180062367A (en) Green car heating system
KR102001073B1 (en) PTC heater
US11831305B2 (en) Circuit arrangement for switching switch elements
CN110365321B (en) Control device for power semiconductor switch
KR102172520B1 (en) Control system to switch DC-DC voltage converter from buck mode of operation to safe mode of operation
US20230198519A1 (en) Relay driving circuit and battery system having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807135

Country of ref document: EP

Kind code of ref document: A1