WO2016197948A1 - 糊精分子量特征在检测淀粉液化效果上的应用 - Google Patents
糊精分子量特征在检测淀粉液化效果上的应用 Download PDFInfo
- Publication number
- WO2016197948A1 WO2016197948A1 PCT/CN2016/085282 CN2016085282W WO2016197948A1 WO 2016197948 A1 WO2016197948 A1 WO 2016197948A1 CN 2016085282 W CN2016085282 W CN 2016085282W WO 2016197948 A1 WO2016197948 A1 WO 2016197948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dextrin
- starch
- molecular weight
- liquefaction
- ethanol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/40—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
Definitions
- the present invention relates to the field of deep processing of starch, and more particularly to a method for evaluating the effect of starch liquefaction based on molecular characteristics of dextrin.
- starchy material needs to be hydrolyzed by a-amylase before being fermented to cut the macromolecule into a short chain.
- Aspergillus niger saccharifying enzyme is an exo-amylase which has different effects on substrates of different structures.
- Jennylynd A found that Aspergillus niger glucoamylase is more active in long chains.
- K.Hiromi found that the Km value of oligosaccharides of Aspergillus niger saccharification enzyme decreased with the increase of DP (DP ⁇ 7), and the Km value of maltose was 0.18 ⁇ 1.4 mM, while for malto-oligosaccharides Km value is 0.02 ⁇ 0.14
- the present applicant provides a molecular weight characteristic of dextrin in detecting a lake.
- the invention investigates the relationship between the catalytic properties of the saccharification enzyme and the structure of the dextrin, and can comprehensively and scientifically characterize the degree of liquefaction of the starch, realize the fine control of the liquefaction process of the starchy raw material, improve the quality of the liquefaction of the starch, thereby improving the saccharification efficiency and improving the coarseness of the starchy material.
- the same enthalpy helps to drive the starch deep processing industry; the method of the present invention is applicable to all methods for evaluating the liquefaction effect based on the molecular weight characteristics of dextrin.
- the starch liquefaction solution to be tested is prepared by a conventional method.
- the conventional method for preparing the starch liquefaction solution is prepared by dissolving the starch in water, adjusting the pH to 5.8-6.0 with 0.1 mol/L NaOH, and then adding the high-temperature ⁇ -amylase, the amount of which is 10-30 U/g starch. , to obtain a mixed solution; the mixture obtained in the step is placed in a super-quiet water bath at 99 ° C, stirred uniformly, and passed the iodine test to obtain a liquefied liquid, and then the enzyme is inactivated.
- the dextrin components of different molecular weight distributions are prepared by conventional methods.
- the conventional method for separating the dextrin components of different molecular weight distributions is prepared by: taking the starch liquefaction solution to be tested, adding ethanol, adjusting to a final concentration of ethanol of 30% (v/v), and placing it in a refrigerator at 4 ° C for 24 hours. h, centrifugation, the precipitate is washed with the corresponding concentration of ethanol, and dried at low temperature to obtain component 1; the supernatant is slowly added with ethanol to adjust to a final concentration of 30% (v / v), and placed in a refrigerator at 4 ° C for 24 h. After centrifugation, the precipitate is washed with a corresponding concentration of ethanol, and dried at a low temperature to obtain component 2; the above operation is repeated to obtain dextrin components having different molecular weight distributions.
- the present invention is directed to the conventional liquefaction process DE value as an evaluation liquefaction effect, the DE value can not truly reflect the paste
- the sugar composition and molecular weight distribution of the refined mixture are not sufficient as a basis for judging the liquefaction effect, and a method for evaluating the liquefaction effect of starch based on the molecular characteristics of dextrin is provided.
- the present invention is based on the same compositional units of starch liquefied dextrin molecules (both glucose residues); the efficiency of catalyzed hydrolysis by saccharification enzymes varies depending on the molecular weight. Therefore, the molecular weight of dextrin can be used as a reliable indicator of the degree of liquefaction. In order to control the degree of liquefaction under the molecular weight characterization of dextrin, thereby increasing the saccharification efficiency, it is necessary to use kinetic parameters of glucoamylase acting on different molecular weight dextrin.
- the advantages of the present invention over the prior art are:
- the starch hydrolysate was diluted and configured to a dextrin solution having a mass concentration of 7 % (w/w).
- the composition of the dextrin component was analyzed based on size exclusion chromatography, and the molecular weight of the dextrin was calculated.
- the molecular weight information of the five dextrin components was as follows: Dextrin 1 (ie, component 1, the same below) The weight average molecular weight was 21 kDa.
- the dextrin 2 weight average molecular weight is 12 kDa; the dextrin 3 weight average molecular weight is 5.6 kDa; the dextrin 4 weight average molecular weight is 1.9 kDa; the dextrin 5 weight average molecular weight is 1.4 kDa
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
糊精分子量特征在检测淀粉液化效果上的应用,具体步骤如下:(1)在待测淀粉液化液中分离制备不同分子量分布的糊精组分;(2)以步骤(1)制备的糊精组分为底物,进行糖化酶的酶促反应动力学实验,比较不同分子量糊精组分的Km值,以亲和力最高即Km值最小的底物分子量特征为评价指标,评价淀粉质原料液化效果。
Description
糊精分子量特征在检测淀粉液化效果上的应用
技术领域
[0001] 本发明涉及淀粉深加工领域, 尤其是涉及一种基于糊精分子特征评价淀粉液化 效果的方法。
背景技术
[0002] [0002]淀粉质原料在发酵之前需先经 a-淀粉酶水解液化, 将大分子切割成短链
, 形成糊精和少量寡糖, 从而使淀粉的黏度下降, 为糖化酶的作用创造条件。 在当前普遍应用的液化工艺中, 主要使用商品 a-淀粉酶, 依据制造商提供的通用 化反应条件对淀粉质原料进行液化。 然而以上液化条件的设置, 往往只考虑了 酶制剂针对某种特定底物的催化效率和稳定性, 而没有顾及淀粉水解反应链的 其他步骤以及不同发酵产品相异的发酵过程。 尤其在我国特有的粗料发酵模式 中体现出发酵过程不稳定的特点, 这是长期制约发酵行业提升的关键技术问题
[0003] 另一方面, 黑曲霉糖化酶是一种外切型淀粉酶, 它针对不同结构的底物作用效 率不同。 Jennylynd A研究发现黑曲霉糖化酶作用于长链的活性更大。 进一步地 , K.Hiromi研究发现黑曲霉糖化酶对低聚糖的 Km值随着 DP (DP≤7) 的增加而 降低, 对麦芽糖的 Km值为 0.18~ 1.4 mM, 而对麦芽低聚糖的 Km值为 0.02~0.14
[0004] 为了提升淀粉的糖化效率, 需要对液化过程实施理性控制, 全面科学地表征液 化程度就显得十分必要。 当前发酵行业中普遍使用 DE值 (dextrose equvialent value) 作为液化评价指标。 然而 DE值无法真实反映糊精混合物的糖分组成和分 子量分布, 不足以作为判断液化效果的依据。 传统的碘试法检测液化终点又具 有精确度低和波动性大的局限。 基于全面科学表征的精细化控制液化程度是粗 料发酵模式, 乃至整个淀粉深加工行业亟待解决的关键技术问题。
技术问题
[0005] 针对现有技术存在的上述问题, 本申请人提供了一种糊精分子量特征在检测淀
粉液化效果上的应用。 本发明考察糖化酶催化特性与糊精结构的关系, 能够全 面科学表征淀粉液化程度, 实现淀粉质原料液化过程精细化控制; 改善淀粉液 化质量, 进而提高糖化效率, 提升以淀粉质为原料的粗料发酵模式, 同吋有助 于带动淀粉深加工产业; 凡提及基于糊精分子量特征评价液化效果的方法, 均 适用本发明技术。
问题的解决方案
技术解决方案
[0006] [0004]本发明的技术方案如下:
[0007] 糊精分子量特征在检测淀粉液化效果上的应用, 具体步骤如下:
[0008] (1) 在待测淀粉液化液中分离制备不同分子量分布的糊精组分;
[0009] (2) 以步骤 (1) 制备的糊精组分为底物, 进行糖化酶的酶促反应动力学实验 , 比较不同分子量糊精组分的 Km值, 以亲和力最高即 Km值最小的底物分子量 特征为评价指标, 评价淀粉质原料液化效果。
[0010] 所述待测淀粉液化液通过常规方法制备。 所述待测淀粉液化液的常规方法 制备为: 将淀粉溶解在水中, 用 O.lmol/LNaOH调节 pH至 5.8~6.0, 然后加入高温 α-淀粉酶, 其添加量为 10~30U/g淀粉, 得到混合液; 将步骤得到的混合液置于 99 °C超级恒温水浴槽中, 搅拌均匀, 经碘试合格, 得到液化液, 然后进行灭酶。
[0011] 所述不同分子量分布的糊精组分通过常规方法分离制备。 所述不同分子量分布 的糊精组分的常规方法分离制备为: 取待测淀粉液化液, 加入乙醇, 调节至乙 醇终浓度 30% (v/v) , 置于 4 °C冰箱中静置 24 h, 离心, 沉淀经过相应浓度乙醇 洗涤, 低温干燥获得组分 1 ; 上清液中缓慢添加乙醇调节至乙醇终浓度为 30% (v /v) , 置于 4 °C冰箱中静置 24 h, 离心, 沉淀经过相应浓度乙醇洗涤, 低温干燥 获得组分 2; 如此重复上述操作, 得到不同分子量分布的糊精组分。
[0012] 所述碘试合格为浅棕色。
发明的有益效果
有益效果
[0013] [0005]本发明有益的技术效果在于:
[0014] 本发明针对传统液化过程 DE值作为评价液化效果, DE值无法真实反映糊
精混合物的糖分组成和分子量分布, 不足以作为判断液化效果的依据, 提供一 种基于糊精分子特征评价淀粉液化效果的方法。
[0015] 本发明基于淀粉液化糊精分子的组成单元相同 (均为葡萄糖残基) ; 其受 糖化酶催化水解的效率因分子量而异。 因此, 糊精的分子量可作为表征液化程 度的可靠指标。 为了在糊精分子量表征下控制液化程度, 从而提高糖化效率, 需要以糖化酶作用于不同分子量糊精吋的动力学参数为依据。 本发明相比于现 有技术所具有的优点有:
[0016] (1) 基于黑曲霉糖化酶的催化特性与糊精结构的关系, 通过对糊精结构的 精确表征有助于实现淀粉质原料液化组分精细化控制;
[0017] (2) 能够克服传统评价方法不能真实反映糊精混合物的糖分组成和分子量 分布的缺陷, 能够全面科学表征液化程度, 实现液化过程理性控制;
[0018] (3) 改善液化质量, 进而提高糖化效率, 带动以淀粉质为原料的粗料发酵 模式, 同吋有助于提升淀粉深加工产业。
本发明的实施方式
[0019] 下面结合实施例, 对本发明进行具体描述。
[0020] 称取 40g玉米淀粉于烧杯中; 加入 200mL去离子水 (常温) 混合均匀, 用 O.lmol /L NaOH调节 pH至 5.8~6.0; 添加高温 α-淀粉酶 1200U, 搅拌均匀。 置于 99°C超级 恒温水浴槽 (配备磁力搅拌装置) 中, 搅拌均匀, 碘试为浅棕色合格; 立即用 0. lmol/L HCI调节 pH至 3.0, 灭酶终止反应, 平衡 5min后, 用 0.1mol/L NaOH中和
, 调节 pH至中性。 将淀粉水解液稀释, 配置成质量浓度为 7 % (w/w) 的糊精溶 液。
[0021] 取糊精溶液 lOOmL, 缓慢加入乙醇, 并不断搅拌, 调节至乙醇终浓度 30% (v/v ) , 置于 4 °C冰箱中静置 24 h, 离心 (4 °C, 10000 g, 20min) , 沉淀经过相应浓 度乙醇洗涤, 低温干燥获得组分 1 ; 上清液中缓慢添加乙醇调节至乙醇终浓度为 30% (v/v) , 置于 4 °C冰箱中静置 24 h, 离心 (4 °C, 10000 rpm, 20min) , 沉 淀经过相应浓度乙醇洗涤, 低温干燥获得组分 2; 如此重复上述操作, 调节至乙 醇终浓度为 70% (v/v) , 分别获得 1~5醇沉组分, 经体积排阻色谱测定不同组分
分子量分布。
[0022] 基于体积排阻色谱法对糊精组分分析, 计算糊精分子量, 获得 5个糊精组分分 子量信息如下: 糊精 1 (即组分 1, 下同) 重均分子量为 21 kDa; 糊精 2重均分子 量为 12 kDa; 糊精 3重均分子量为 5.6kDa, ; 糊精 4重均分子量为 1.9 kDa; 糊精 5 重均分子量为 1.4 kDa
[0023] 分别考察糊精组分与酶促反应动力学特征, 结果如表 1所示。 从表 1中可以看出 , 糖化酶对应不同分子量糊精的^值是不同的, 即糖化酶与不同分子量糊精亲 和力是不同的, ^值越低即亲和力越高则液化效果越好。 由此可以说明, 糊精 分子量特征可以用于评价淀粉液化效果。
[0024] 表 1不同分子量糊精酶促动力学参数
以上所述仅为本发明的交叉实例, 并不用以限制本发明, 凡在本发明的精神和 原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明保护的范 围之内。 。
Claims
[权利要求 1] 糊精分子量特征在检测淀粉液化效果上的应用, 其特征在于具体步骤 如下:
(1) 在待测淀粉液化液中分离制备不同分子量分布的糊精组分;
(2) 以步骤 (1) 制备的糊精组分为底物, 进行糖化酶的酶促反应动 力学实验, 比较不同分子量糊精组分的 ^值, 以亲和力最高即^ 值最小的底物分子量特征为评价指标, 评价淀粉质原料液化效果。
[权利要求 2] 根据权利要求 1所述的应用, 其特征在于所述待测淀粉液化液通过常 规方法制备。
[权利要求 3] 根据权利要求 1所述的应用, 其特征在于所述不同分子量分布的糊精 组分通过常规方法分离制备。
[权利要求 4] 根据权利要求 2所述的应用, 其特征在于所述待测淀粉液化液的常规 方法制备为: 将淀粉溶解在水中, 用 O.lmol/LNaOH调节 pH至 5.8 6.0 , 然后加入高温 α-淀粉酶, 其添加量为 10~30U/g淀粉, 得到混合液; 将步骤得到的混合液置于 99°C超级恒温水浴槽中, 搅拌均匀, 经碘试 合格, 得到液化液, 然后进行灭酶。
[权利要求 5] 根据权利要求 3所述的应用, 其特征在于所述不同分子量分布的糊精 组分的常规方法分离制备为: 取待测淀粉液化液, 加入乙醇, 调节至 乙醇终浓度 30% (v/v) , 置于 4 °C冰箱中静置 24 h, 离心, 沉淀经过 相应浓度乙醇洗涤, 低温干燥获得组分 1 ; 上清液中缓慢添加乙醇调 节至乙醇终浓度为 30% (v/v) , 置于 4 °C冰箱中静置 24 h, 离心, 沉 淀经过相应浓度乙醇洗涤, 低温干燥获得组分 2; 如此重复上述操作 , 得到不同分子量分布的糊精组分。
[权利要求 6] 根据权利要求 4所述的应用, 其特征在于所述碘试合格为浅棕色。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510324346.1A CN104862375B (zh) | 2015-06-12 | 2015-06-12 | 糊精分子量特征在检测淀粉液化效果上的应用 |
CN201510324346.1 | 2015-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197948A1 true WO2016197948A1 (zh) | 2016-12-15 |
Family
ID=53908548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/085282 WO2016197948A1 (zh) | 2015-06-12 | 2016-06-08 | 糊精分子量特征在检测淀粉液化效果上的应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104862375B (zh) |
WO (1) | WO2016197948A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104862375B (zh) * | 2015-06-12 | 2018-06-19 | 江南大学 | 糊精分子量特征在检测淀粉液化效果上的应用 |
JP7000632B2 (ja) * | 2019-08-05 | 2022-02-10 | 日本製紙株式会社 | 塗工紙およびその製造方法 |
CN114236064A (zh) * | 2021-12-23 | 2022-03-25 | 浙江华康药业股份有限公司 | 一种糖化用淀粉质量等级的评价方法及快速判定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5248597A (en) * | 1990-04-10 | 1993-09-28 | Kanzaki Paper Mfg. Co., Ltd. | Method and apparatus for analyzing starch and related carbohydrates |
JP5528694B2 (ja) * | 2008-12-19 | 2014-06-25 | 三栄源エフ・エフ・アイ株式会社 | 低タンパク質チーズ様食品 |
CN104862375A (zh) * | 2015-06-12 | 2015-08-26 | 江南大学 | 糊精分子量特征在检测淀粉液化效果上的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103509828B (zh) * | 2013-09-23 | 2015-05-20 | 北京林业大学 | 一种以木薯渣为原料协同糖化发酵制备乙醇的方法 |
CN104263781A (zh) * | 2014-09-29 | 2015-01-07 | 江苏大学 | 一种超声波辅助淀粉双酶水解技术 |
-
2015
- 2015-06-12 CN CN201510324346.1A patent/CN104862375B/zh active Active
-
2016
- 2016-06-08 WO PCT/CN2016/085282 patent/WO2016197948A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5248597A (en) * | 1990-04-10 | 1993-09-28 | Kanzaki Paper Mfg. Co., Ltd. | Method and apparatus for analyzing starch and related carbohydrates |
JP5528694B2 (ja) * | 2008-12-19 | 2014-06-25 | 三栄源エフ・エフ・アイ株式会社 | 低タンパク質チーズ様食品 |
CN104862375A (zh) * | 2015-06-12 | 2015-08-26 | 江南大学 | 糊精分子量特征在检测淀粉液化效果上的应用 |
Non-Patent Citations (1)
Title |
---|
LIU, ZHONGDONG ET AL.: "Liquefying Technology of Wheat Starch and the Study on Nanostructure of Liquefied Starch", TRANSACTIONS OF THE CHINESE SOCIETY FOR AGRICULTURAL MACHINERY, vol. 39, no. 1, 31 January 2008 (2008-01-31), pages 87 - 90 * |
Also Published As
Publication number | Publication date |
---|---|
CN104862375B (zh) | 2018-06-19 |
CN104862375A (zh) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot water | |
Liu et al. | Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes | |
dos Santos-Rocha et al. | Assessment of different biomass feeding strategies for improving the enzymatic hydrolysis of sugarcane straw | |
WO2016197948A1 (zh) | 糊精分子量特征在检测淀粉液化效果上的应用 | |
CN107177645B (zh) | 利用两性表面活性剂促进木质纤维素酶解及降温回收纤维素酶的方法 | |
Geddes et al. | Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse | |
CN106750388B (zh) | 一种阿拉伯胶空心纳米球的制备方法 | |
CN103833862B (zh) | 一种氧化糯米淀粉及其制备方法与应用 | |
CN1911966A (zh) | 一种淀粉预处理方法 | |
CN106566516B (zh) | 一种结构可控的胍胶压裂液纳米交联剂的制备方法 | |
EP2425024A1 (en) | Process for the hydrolysis of cellulose | |
Jiang et al. | Increased mixing intensity is not necessary for more efficient cellulose hydrolysis at high solid loading | |
CN101891829A (zh) | 一种酸解变性淀粉及其制备方法 | |
JP2017536100A (ja) | 界面活性剤を利用して改良したリグノセルロースの同時糖化発酵方法 | |
WO2009134869A1 (en) | Pretreatment of grain slurry with alpha-amylase and a hemicellulase blend prior to liquefaction | |
JP6114200B2 (ja) | セルロース系バイオマスからの糖及びアルコールの製造方法、並びに該方法に用いられる微生物 | |
WO2019091496A1 (zh) | 一种采用纤维素酶喷雾干燥制备壳寡糖的方法 | |
JP5543359B2 (ja) | ペニシリウム・フニクロサム酵素を使用したバイオ増熱剤の調製 | |
Hao et al. | Sweet potato starch residue as starting material to prepare polyacrylonitrile adsorbent via SI-SET-LRP | |
CN109293836B (zh) | 一种性能可控的多糖类物质改性分散剂的制备方法 | |
CN100436592C (zh) | 一种水溶性淀粉的制备方法 | |
CN109593142A (zh) | 一种减少β-1,3葡聚糖在干燥过程中凝胶强度损失的方法 | |
Rosa et al. | Production of ethanol at high temperatures in the fermentation of Jerusalem artichoke juice and a simple medium by Kluyveromyces marxianus | |
CN109096428B (zh) | 一种单宁酸改性添加剂及在水煤浆制备上的应用 | |
CN110483808A (zh) | 一种快速溶解羧甲基纤维素钠的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16806846 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16806846 Country of ref document: EP Kind code of ref document: A1 |