WO2016197919A1 - 预制装配轻钢混凝土板柱结构及其施工方法 - Google Patents
预制装配轻钢混凝土板柱结构及其施工方法 Download PDFInfo
- Publication number
- WO2016197919A1 WO2016197919A1 PCT/CN2016/085141 CN2016085141W WO2016197919A1 WO 2016197919 A1 WO2016197919 A1 WO 2016197919A1 CN 2016085141 W CN2016085141 W CN 2016085141W WO 2016197919 A1 WO2016197919 A1 WO 2016197919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prefabricated light
- column
- steel concrete
- light steel
- steel
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/30—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/43—Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/34—Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/02—Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
- E04C5/03—Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/06—Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
- E04C5/0645—Shear reinforcements, e.g. shearheads for floor slabs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/20—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
- E04B1/21—Connections specially adapted therefor
- E04B1/215—Connections specially adapted therefor comprising metallic plates or parts
Definitions
- the invention relates to the field of architectural design, in particular to a prefabricated light steel concrete slab column structure and a construction method thereof.
- the prefabricated light steel concrete structure is a structural type that conforms to the industrialized production mode of the building, and has the outstanding advantages of standardized design, prefabricated production and assembly construction.
- the application of the current fabricated concrete slab column structure has alleviated the above contradiction to a certain extent, but since the joints of the prefabricated plate and the prefabricated column require sufficient rigidity to improve the lateral resistance of the structure, the joints of the prefabricated plate and the prefabricated column are stressed. It is more complicated, and the assembly design and construction are more difficult.
- the existing slab-column structure has limited anti-side capability and is not suitable for building high-rise buildings. Its promotion and application have obvious limitations.
- the invention provides a prefabricated light steel concrete slab column structure and a construction method thereof, so as to have high prefabrication rate, low construction cost, less wet work on site and strong building adaptability.
- the present invention provides a prefabricated light steel concrete slab column structure
- the prefabricated light steel concrete slab column structure is a single layer or a multi-layer structure, and a plurality of prefabricated light steel coagulation
- the soil column is vertically disposed in the overall structure of the single-layer or multi-layer structure
- each layer of the single-layer or multi-layer structure is provided with prefabricated light steel concrete floor slab and prefabricated light steel concrete wall support, each layer
- the prefabricated light steel concrete floor slabs are divided into a plurality of floor slabs by the plurality of prefabricated light steel concrete columns, and assembled into prefabricated light steel concrete slabs by assembly with the prefabricated light steel concrete columns, prefabricated in each layer
- the light steel concrete wall support is divided by the plurality of precast lightweight steel concrete columns, and each of the precast lightweight steel concrete wall supports is disposed on the prefabricated light steel concrete floor and located in two adjacent prefabricated Between light steel concrete columns.
- the prefabricated light steel concrete column, the prefabricated light steel concrete floor slab or/and the prefabricated light steel concrete wall support are composed of a steel plate member with a shear-resistant structure and a light steel frame thereof, and the concrete is poured out.
- the shear-resistant steel plate member comprises a lightweight steel plate member and a shear-resistant structural member, and the punching structure is formed by performing a punching operation on the light-weight steel plate member.
- the frame of the prefabricated light steel concrete column is composed of four vertical angle lines formed by vertically disposed shear-resistant steel plate members, and is connected to each vertical direction by a laterally disposed shear-resistant steel plate member as a decorative plate.
- a shear-resistant steel plate member is formed.
- the frame of the prefabricated light steel concrete wall support is assembled by assembling a combination of vertical, lateral and obliquely disposed shear-type steel plate members.
- the frame of the non-opened wall support is composed of four vertical members by a vertically disposed shear-resistant steel plate member.
- the angle line is formed by connecting the shear-type steel plate members disposed laterally as the splicing plates to the vertically disposed shear-resistant steel plate members, and forming the oblique-shaped steel plate members obliquely to connect the diagonal lines.
- the frame of the wall support for providing the window hole is divided into a plurality of frame units, and each of the frame units is vertically disposed.
- the shear-resistant steel plate member is composed of four vertical angle lines, and the shear-type steel plate member which is disposed in the lateral direction is used as a splicing plate to connect the vertically-set shear-resistant steel plate members, and the oblique-shaped steel plate member is disposed obliquely
- the diagonal lines are connected as oblique supports to form.
- the frame of the wall support for setting the door hole is divided into a plurality of frame units, and each of the frame units is vertically disposed.
- the shear-resistant steel plate parts are combined, and the shear-type steel plate parts which are arranged laterally are connected as the splicing plates to connect the vertically-set shear-resistant steel plate parts, and the diagonally-set shear steel plate pieces are used as the oblique support connection. Each diagonal line is formed.
- top of the prefabricated light steel concrete wall support and the prefabricated light steel concrete column or between two adjacent precast lightweight steel concrete columns are further provided with seismic resistance near the upper precast lightweight steel concrete floor. Can combine devices.
- the seismic energy consuming combination device comprises a steel sleeve, a steel shaft, a steel ring, a pre-tightening nut and a butterfly spring, wherein the steel shaft is disposed in the steel sleeve, and the two ends of the steel shaft pass the a tightening nut is fixed in the steel sleeve, and a margin is left between the steel sleeve and the inner wall of the steel sleeve, the steel ring is sleeved and fixed on the steel shaft, and the butterfly spring is disposed at both ends thereof
- the butterfly spring has one end resting on the steel shaft and the other end resting on the inner wall of the steel sleeve.
- the steel sleeve of the seismic energy consuming combination device and the prefabrication The light steel concrete wall support is integrally prefabricated and formed, and the steel shaft is rigidly connected or hinged to the prefabricated light steel concrete column through a connecting node at one end of the prefabricated light steel concrete column.
- the seismic energy consuming combination device when the seismic energy consuming combination device is disposed between two adjacent prefabricated light steel concrete columns near the upper prefabricated light steel concrete floor, the seismic energy consuming combination device is disposed obliquely, and the steel sleeve is close to the One end of the prefabricated light steel concrete column is rigidly connected or hinged to the prefabricated light steel concrete column through a connecting node or a rigid support, and a steel shaft is adjacent to one end of the upper prefabricated light steel concrete floor through a connecting node and The upper prefabricated light steel concrete slab is rigidly connected or hinged.
- the number of the seismic energy consuming combined devices disposed between each of the two precast lightweight steel concrete columns is two, which are symmetrically disposed.
- each of the precast lightweight steel concrete columns is prefabricated in one or two layers.
- a steel concrete segment, and the prefabricated light steel concrete columns are vertically joined by the prefabricated light steel concrete segments.
- the prefabricated light steel concrete segment comprises an upper connecting structure and a lower connecting structure, and the upper connecting structure is embedded in the lower connecting structure and welded to join the two precast lightweight steel concrete segments.
- the upper connecting structure comprises a column top steel connecting piece, a guiding steel plate, a column top embedded steel plate and a column top steel node anchoring section, and the column top embedded steel plate is connected with the column top steel node anchoring section and is buried in the a top of the prefabricated light steel concrete segment, the column top steel connecting member is disposed at a top of the precast lightweight steel concrete segment, and the guiding steel plate is disposed at a side of the column top steel connecting member, the column Both the top steel connecting piece and the guiding steel plate are fixedly connected to the column top embedded steel plate.
- the lower connecting structure comprises a column bottom steel node anchoring section, a column bottom embedded steel plate and a column bottom steel connecting piece, and the column bottom embedded steel plate is connected with the anchoring steel node anchoring section and is buried in the The bottom of the prefabricated light steel concrete segment, the column bottom steel connecting member is disposed at the bottom of the prefabricated light steel concrete segment, and is fixedly connected with the column bottom embedded steel plate, the column bottom steel connecting piece and The position of the column top guiding steel plate is corresponding and the shape is matched.
- the plurality of prefabricated light steel concrete columns are arranged in an array, and each of the four precast lightweight steel concrete columns divides the prefabricated light steel concrete floor in each layer into one of the floor plates.
- each floor plate in the prefabricated light steel concrete floor plate is provided with a floor steel connecting line near a corner of the prefabricated light steel concrete column.
- the column steel connecting member comprises an upper flange steel plate, a column connecting unit and a lower flange steel plate
- the column connecting unit comprises two steel plates vertically disposed on the column and the column A column web between the lower flange steel plates and two column slots disposed in the lower flange steel plate, the two vertically disposed column webs are disposed perpendicular to each other.
- the floor steel connecting member comprises a floor flange steel plate, a floor connecting unit and a floor lower flange steel plate
- the floor connecting unit comprises two vertically disposed flange steel plates and the floor plate a slab web between the lower flange steel plates and two slab slots disposed in the flange steel plate of the floor slab
- the two vertically disposed slab webs are perpendicular to each other
- the two column webs are The positions of the two floor slats are correspondingly matched and the shapes are matched
- the two slab webs are corresponding to the positional arrangement of the two column slots and the shapes are matched.
- the prefabricated light steel concrete column connected to the four floor slabs is a middle column, and the number of column connecting units in the column steel connecting piece of the middle column is four, which are respectively adjacent to the four
- the floor joining units of the floor slab joints of the block slabs are embedded therein and welded to join the prefabricated light steel concrete slabs to the center pillars.
- the prefabricated light steel concrete column connected to the two floor slabs is a side column, and the number of column connecting units in the column steel connecting piece of the side column is two, which are respectively adjacent to the two
- the floor joining units of the floor slab joints of the block slabs are embedded therein and welded to interface the prefabricated light steel concrete slabs with the side slabs.
- the prefabricated light steel concrete column connected to the single block of the floor plate is a corner column, and the number of column connecting units in the column steel connecting piece of the corner column is one, and the floor plate of the adjacent one piece of the floor plate
- the floor joining units in the steel bone connectors are embedded therein and welded to join the prefabricated light steel concrete floor panels to the corner posts.
- prefabricated light steel concrete wall support is connected to the prefabricated light steel concrete floor by means of steel structure welding or bolting.
- the prefabricated light steel concrete floor slab is formed by combining a light steel skeleton with a well-shaped distribution and concrete, and the prefabricated light steel concrete floor slabs are integrally formed by welding a light steel skeleton.
- the invention provides a construction method for the above prefabricated light steel concrete slab column structure, which comprises:
- Step 1 hoisting a precast lightweight steel concrete segment of the plurality of precast lightweight steel concrete columns on a structural basis
- Step 2 hoisting the prefabricated light steel concrete wall support and integrating it with the structural foundation Fixed;
- Step 3 hoisting the upper prefabricated light steel concrete floor slab and connecting it with the prefabricated light steel concrete column;
- Step 4 Lifting the prefabricated light steel concrete section of the layer and connecting it to the prefabricated light steel concrete section corresponding to the lower layer;
- Step 5 Lifting the prefabricated light steel concrete wall support of the layer and fixing it with the prefabricated light steel concrete floor of the layer;
- Step 6 Repeat steps three to five until the overall construction of the prefabricated light steel concrete slab column structure is completed.
- the prefabricated light steel concrete wall support comprises an inner wall wall support and an outer wall wall support, and after hoisting a layer of prefabricated light steel concrete column, the inner wall wall support of the layer is hoisted, and While hoisting the upper prefabricated light steel concrete column, the lower wall of the lower wall is supported.
- the third step while the upper prefabricated light steel concrete floor slab is being hoisted, between the prefabricated light steel concrete wall support and the prefabricated light steel concrete column or two adjacent precast lightweight steel concrete The installation of the seismic energy-consuming combined device is carried out between the columns near the upper prefabricated light steel concrete floor.
- the present invention has the following beneficial effects:
- the prefabricated light steel concrete slab column structure and the construction method thereof provided by the invention divide the prefabricated light steel concrete floor slab of each layer into a plurality of slab slabs according to the columns of the prefabricated light steel concrete columns, and connect with them to form a main structure, and simultaneously
- the prefabricated light steel concrete wall support is placed between two precast lightweight steel concrete columns in each layer.
- the prefabricated light steel concrete floor slab is subjected to vertical loads while providing sufficient horizontal stiffness for prefabricated light steel concrete.
- the column is subjected to the vertical load transmitted by the prefabricated light steel concrete slab.
- the prefabricated light steel concrete wall support only bears the lateral load, and provides the structural lateral stiffness under normal use conditions, which can play the role of energy dissipation under earthquake action. .
- the structural system is clearly and directly stressed, the node transmission force is simple, and the assembly node structure is easy to implement;
- the structural system is subjected to stress in two stages.
- the wall support provides the required lateral stiffness of the structure, and the wall support is energy-consuming by the seismic energy-consuming combination device under the action of the extraordinary load (earthquake, etc.), so
- the structure is especially suitable for multi-storey and high-rise building structures;
- the weight and size of prefabricated components can achieve a variety of architectural requirements while standardizing and modularizing. According to the structural arrangement, the number of layers and the load requirements, the modules, specifications and supporting connection nodes of the prefabricated components can be quickly selected through the design atlas or standard to truly realize “standardized design, factory prefabrication and assembly construction”.
- FIG. 1 is a schematic structural view of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 2 is a schematic structural view of a shear-resistant steel plate member in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 3 is another schematic structural view of a shear-resistant steel plate member in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 4 is a side view of a prefabricated light steel concrete column in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 5 is a top plan view of a prefabricated light steel concrete column in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 6 is a schematic structural view of a prefabricated light steel concrete wall support in a prefabricated light steel concrete slab column structure provided with a wall support without a hole according to an embodiment of the present invention
- FIG. 7 is a schematic structural view of a prefabricated light steel concrete wall support in a prefabricated light steel concrete slab column structure provided with a wall support for providing a window hole according to an embodiment of the present invention
- FIG. 8 is a schematic structural view of a prefabricated light steel concrete wall support in a prefabricated light steel concrete slab column structure provided with a wall support for providing a door hole according to an embodiment of the present invention
- FIG. 9 is a schematic structural view of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention.
- FIG. 10 is a schematic view showing the installation of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 11 is another schematic diagram of installation of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention.
- FIG. 12 is a third installation schematic diagram of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention.
- FIG. 13 is a schematic structural view of a prefabricated light steel concrete segment in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention.
- FIG. 14 is a schematic view showing the installation of a precast lightweight steel concrete segment in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 15 is a schematic structural view of a column steel connecting member in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention.
- 16 is a schematic structural view of a steel plate connecting member of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 17 is a schematic view showing the installation of a column steel connecting member and a floor steel connecting member in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 18 is a schematic view showing the positional structure of a middle column, a side column and a corner column in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 19 is a schematic view showing the installation of a wall-type support and a prefabricated light steel concrete floor in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 20 is a schematic view showing the installation of a wall support and a prefabricated light steel concrete floor in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 21 is a schematic view showing the installation of a wall support and a prefabricated light steel concrete floor in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- step 1 is a schematic flow chart of step 1 in a construction method of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 23 is a schematic flow chart of the second step in the construction method of the prefabricated light steel concrete slab column structure according to the embodiment of the present invention.
- step 3 is a schematic flow chart of step 3 in a construction method of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- step 25 is a schematic flow chart of step 4 in a method for constructing a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- 26 is a schematic flow chart of the fifth step in the construction method of the prefabricated light steel concrete slab column structure according to the embodiment of the present invention.
- the core idea of the invention is to provide a prefabricated light steel concrete slab column structure and a construction method thereof, which divides prefabricated light steel concrete floor slabs of each layer into a plurality of slab plates according to the columns of the prefabricated light steel concrete columns, and The joints form the main structure, and the prefabricated light steel concrete wall support is placed between the two precast lightweight steel concrete columns in each layer.
- the prefabricated light steel concrete floor slab is subjected to vertical loads while providing sufficient
- the horizontal stiffness the prefabricated light steel concrete column is subjected to the vertical load transmitted by the prefabricated light steel concrete slab.
- the prefabricated light steel concrete wall support only bears the lateral load and provides the structural lateral stiffness under normal use.
- the utility model has the functions of energy dissipation and shock absorption, and the prefabricated light steel concrete slab column structure and the construction method thereof have high prefabrication assembly rate, low construction cost, less wet work on site and strong building adaptability.
- FIG. 1 is a schematic structural view of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 2 is a shear-resistant steel plate in a prefabricated light steel reinforced concrete slab column structure according to an embodiment of the present invention
- FIG. 3 is a schematic view showing another structure of a shear-resistant steel plate member in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 4 is a prefabricated assembly light steel according to an embodiment of the present invention
- FIG. 5 is a plan view of a prefabricated light steel concrete column in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 6 is a prefabrication provided by an embodiment of the present invention.
- the schematic diagram of the prefabricated light steel concrete wall support in the assembly of the light steel concrete slab column structure is a wall support without opening the hole;
- FIG. 7 is a prefabricated light in the prefabricated light steel concrete slab column structure provided by the embodiment of the present invention.
- the steel concrete wall support is a structural schematic diagram when the wall-type support of the window hole is provided;
- FIG. 8 is a prefabricated light steel concrete slab column structure provided by an embodiment of the present invention.
- FIG. 9 is a structural schematic view of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention;
- FIG. 10 is a schematic structural view of a light steel concrete wall support; Prefabricated light steel mixing provided by embodiments of the invention FIG.
- FIG. 11 is a schematic view showing another installation of a seismic energy-consuming combined device in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 13 is a prefabricated light steel concrete section in the prefabricated light steel concrete slab column structure provided by the embodiment of the present invention
- FIG. 14 is a schematic view showing the installation of a prefabricated light steel concrete segment in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 15 is a prefabricated assembly light steel slab column structure according to an embodiment of the present invention
- FIG. 16 is a schematic structural view of a slab steel connecting member in a prefabricated light steel reinforced concrete slab column structure according to an embodiment of the present invention
- FIG. 17 is a prefabricated assembly light steel according to an embodiment of the present invention
- FIG. 18 is a prefabrication provided by an embodiment of the present invention
- FIG. 19 is a schematic view showing the positional structure of a middle column, a side column and a corner column in a light steel concrete slab column structure
- FIG. 19 is a prefabricated light steel slab column structure without pre-opening wall support and prefabricated light steel concrete according to an embodiment of the present invention
- FIG. 20 is a schematic view showing the installation of a wall support and a prefabricated light steel concrete floor in a prefabricated light steel concrete slab column structure according to an embodiment of the present invention
- FIG. 21 is a prefabricated light steel provided by an embodiment of the present invention
- FIG. 22 is a schematic view showing the flow of the first step in the construction method of the prefabricated light steel concrete slab column structure according to the embodiment of the present invention
- FIG. 23 is a schematic view showing the installation of the wall support of the prefabricated light steel concrete slab in the concrete slab column structure;
- FIG. 24 is a schematic flow chart of the third step in the construction method of the prefabricated light steel reinforced concrete slab column structure according to the embodiment of the present invention.
- FIG. 25 is a construction method of a prefabricated light steel concrete slab column structure according to an embodiment of the present invention; Step four schematic flow;
- FIG. 26 a schematic flow chart of construction method of pillar structures prefabricated concrete slabs Strut provided in step five embodiment of the present invention.
- an embodiment of the present invention provides a prefabricated light steel concrete slab column structure, wherein the prefabricated light steel concrete slab column structure is a single layer or a multi-layer structure, and a plurality of prefabricated light steel concrete columns 1 vertically Provided in the monolithic structure of the single-layer or multi-layer structure, each layer of the single-layer or multi-layer structure is provided with prefabricated light steel concrete floor 2 and prefabricated light steel concrete wall support 3, in each layer
- the prefabricated light steel concrete floor slab 2 is divided into a plurality of floor slabs 21 by the plurality of prefabricated light steel concrete columns 1 and assembled into prefabricated light steel concrete slabs 2 by means of the assembly with the prefabricated light steel concrete columns 1
- the prefabricated light steel concrete wall support 3 is divided by the plurality of precast lightweight steel concrete columns 1 , and each of the precast lightweight steel concrete wall supports 3 is disposed on the prefabricated light steel concrete floor 2 . It is located between two adjacent precast lightweight steel concrete columns 1.
- the prefabricated light steel concrete slab column structure provided by the embodiment of the present invention divides the prefabricated light steel concrete floor slab 2 of each layer into a plurality of slab slabs 21 according to the columns of the prefabricated light steel concrete column 1, and is connected to form a main structure.
- the prefabricated light steel concrete wall support 3 is placed between the two precast lightweight steel concrete columns 1 in each layer.
- the prefabricated light steel concrete floor slab 2 is subjected to vertical loads while providing sufficient horizontal rigidity.
- the prefabricated light steel concrete column 1 bears the vertical load transmitted by the prefabricated light steel concrete floor slab 2, and the prefabricated light steel concrete wall support 3 only bears the lateral load, and provides the structural lateral stiffness under normal use conditions, which can be used under earthquake action.
- the prefabricated light steel concrete slab column structure has high prefabrication rate, low construction cost, less wet work on site and strong building adaptability.
- the prefabricated light steel concrete column 1, the prefabricated light steel concrete floor 2 and the prefabricated light steel concrete wall support 3 are all formed of a light steel frame by a steel plate member 4 with a shear structure, and the concrete is overwrapped. Pouring.
- the shear-resistant steel plate member 4 includes a lightweight steel plate member 41 and a shear-resistant structural member 42, which is punched through the light-type steel plate member 41 and passed through Hot-rolling, hot-pressing or cold-pressing to form the shear-resistant structural member 42 which is a convex formed by the light-type steel plate member 41 at the punching position on the lightweight steel plate member 41 after the punching operation.
- the structure is arranged uniformly along the longitudinal direction of the lightweight steel plate member 41.
- the punching position on the light-weight steel plate member 41 and the convex structure at the position thereof may be evenly distributed in the other laws.
- the light-duty steel plate member 41 is used for its shearing action, and the present invention is also intended to encompass these technical solutions.
- the frame of the prefabricated light steel concrete column 1 is composed of four vertical angle lines of the shear-type steel plate member 4 disposed vertically, and is provided with a transversely-set shear type.
- the steel plate member 4 is formed as a splicing plate to connect the vertically disposed shear-resistant steel plate members.
- the frame of the prefabricated light steel concrete wall support 3 is assembled by a combination of vertical, lateral and obliquely disposed shear-type steel plate members 4.
- the prefabricated light steel concrete wall support 3 has a wall support without a hole, a wall support for providing a window hole, and a wall support for setting a door hole.
- the frame of the non-opened wall support is composed of a vertically disposed shear-resistant steel plate member 4.
- the four vertical angle lines are connected to the vertically disposed shear-resistant steel plate members 4 by the transversely disposed shear-type steel plate members 4, and are obliquely supported by the obliquely disposed shear-type steel plate members 4. Connecting diagonal lines to form;
- the frame of the wall support for providing the window hole is divided into a plurality of frame units 31, and each of the frame units 31 are respectively composed of four vertical angle lines of the shear-type steel plate member 4 disposed vertically, and the shearing-type steel plate 4 which is disposed vertically is connected as a splicing plate to connect the vertically-set shear-resistant steel plate members 4 and pass through
- An obliquely disposed shear-type steel plate member 4 is formed as an oblique support connecting the diagonal lines;
- the frame of the wall support for providing the door opening is divided into a plurality of frame units 31, and each of the frame units 31 are respectively formed by combining the shear-type steel plate members 4 arranged vertically, and the shear-type steel plate members 4 disposed laterally are used as the splicing plates to connect the vertically-set shear-type steel plate members 4, and the anti-slanting plate members are disposed.
- the scissor-shaped steel sheet member 4 is formed as an oblique support connecting the diagonal lines.
- the prefabricated light steel concrete wall support 3 when the prefabricated light steel concrete wall support 3 is a wall support without a hole, it passes through the connecting device 32 at the bottom sides thereof and the prefabricated light steel concrete floor 2 Connected by welding or bolting;
- the prefabricated light steel concrete wall support 3 is a wall support with a window hole At the same time, it is welded or bolted to the prefabricated light steel concrete floor 2 by means of connecting means 32 at the bottoms of the two sides and at the bottoms of the sides of the window;
- the prefabricated light steel concrete wall support 3 is a wall support for providing a door opening, it passes through the connecting device 32 at the bottom sides thereof and at the bottom sides of the door opening, and the prefabricated light steel.
- the concrete floor 2 is joined by welding or bolting.
- a seismic energy absorbing device 5 is provided between the top of the prefabricated light steel concrete wall support 3 and the precast lightweight steel concrete column 1 and between two adjacent precast lightweight steel concrete columns 1.
- the seismic energy consuming combination device includes a steel sleeve 51, a steel shaft 52, a steel ring 53, a pre-tightening nut 54, and a butterfly spring 55.
- the steel shaft 52 is disposed at the In the steel sleeve 51, both ends of the steel shaft 52 are fixed in the steel sleeve 51 by the pre-tightening nut 53, and a margin is left between the steel sleeve 51 and the inner wall of the steel sleeve 51.
- the butterfly shaft 55 is sleeved and fixed on both ends of the steel shaft 52.
- the butterfly spring 55 has one end resting on the steel shaft 52 and the other end resting on the steel sleeve 51.
- the seismic energy consuming combination device 5 when the seismic energy consuming combination device 5 is disposed between the top of the prefabricated light steel concrete wall support 3 and the precast lightweight steel concrete column 1, the seismic energy dissipation
- the steel sleeve 51 of the assembly device 5 is integrally prefabricated with the prefabricated light steel concrete wall support 3, and the steel shaft 52 is adjacent to one end of the precast lightweight steel concrete column 1 through a connecting node 56 and the precast lightweight steel concrete.
- the column 1 is rigidly connected or hinged;
- the seismic energy consuming combination device 5 is disposed in two adjacent prefabrication.
- the light steel concrete columns 1 are adjacent to the upper prefabricated light steel concrete floor 2, and the seismic energy dissipation assembly 5 is disposed obliquely, and the steel sleeve 51 is adjacent to one end of the prefabricated light steel concrete column 1 through a connecting node 56 and
- the prefabricated light steel concrete column 1 is rigidly connected or hinged, and its steel shaft 52 is adjacent to the One end of the upper prefabricated light steel concrete floor 2 is rigidly connected or hinged to the upper prefabricated light steel concrete floor 2 through a connecting node 56;
- a rigid support 57 may be connected to the end of the steel sleeve 51 of the seismic energy absorbing device 5 near the prefabricated light steel concrete column 1, and the rigid support 57 and the prefabricated light steel concrete column 1 Rigid connection or articulation.
- the number of the seismic energy consuming combination devices disposed between each of the two precast lightweight steel concrete columns is two, and the two seismic energy consuming combination devices are symmetrically arranged to realize the combination thereof. use.
- each of the precast lightweight steel concrete columns 1 is a prefabricated light steel concrete segment 11 in one or two layers, and the prefabricated light steel concrete segments 11 are vertically joined to form the prefabrication.
- the prefabricated light steel concrete section 11 comprises an upper connecting structure 6 and a lower connecting structure 7, by which the upper connecting structure 6 is embedded in the lower connecting structure 7 and welded to the upper and lower two The prefabricated light steel concrete sections 11 are connected.
- the upper connecting structure 6 includes a column top steel connecting member 61, a guiding steel plate 62, a column top embedded steel plate 63, and a column top steel node anchoring portion 64, and the column top embedded steel plate 63 Connected to the column top steel node anchoring section 64 and embedded in the top of the precast lightweight steel concrete section 11, the column top steel connecting piece 61 is disposed on the top of the precast lightweight steel concrete section 11, the guiding A steel plate 62 is disposed on a side surface of the column top steel connecting member 61, and the column top steel connecting member 61 and the guiding steel plate 62 are fixedly coupled to the column top embedded steel plate 63.
- the lower connecting structure 7 includes a column bottom steel node anchoring section 71, a column bottom embedded steel plate 72 and a column bottom steel connecting piece 73, and the column bottom embedded steel plate 72 is connected with the column bottom steel node anchoring section 71 and both Buried at the bottom of the prefabricated light steel concrete segment 11, the column bottom steel connecting member 73 is disposed at the bottom of the prefabricated light steel concrete segment 11 and is fixedly connected with the column bottom embedded steel plate 72.
- the column bottom steel connecting piece 73 and the column top guiding steel plate 62 The set positions correspond and the shapes match.
- the plurality of precast lightweight steel concrete columns 1 are arranged in an array, and each of the four precast lightweight steel concrete columns 1 divides the prefabricated light steel concrete floor 2 in each layer into A piece of said floor slab 21 .
- the circumferential side of the prefabricated light steel concrete column 1 is provided with a column steel connecting member 8 , and each floor plate 21 of the prefabricated light steel concrete floor 2 is adjacent to the prefabricated light steel concrete column 1 a slab steel connecting piece 9 is disposed at a corner, and the precast steel reinforced concrete floor 2 and the prefabricated light steel are embedded by the column steel connecting piece 8 and the floor steel connecting piece 9 The concrete columns 1 are connected.
- the column steel connecting member 8 includes an upper flange steel plate 81, a column connecting unit 82, and a column lower flange steel plate 83.
- the column connecting unit 82 includes two vertical members. a column web 821 between the column flange steel plate 81 and the column lower flange steel plate 83 and two column slots 822 disposed in the column lower flange steel plate 83, the two vertical directions
- the column webs 821 are arranged perpendicular to each other.
- the floor steel connecting member 9 includes a floor flange steel plate 91, a floor connecting unit 92, and a floor lower flange steel plate 93.
- the floor connecting unit 92 includes two vertically disposed on the floor.
- the two column webs 821 in the upper column connecting unit 82 are respectively inserted into the two floor slabs 922 in the upper floor connecting unit 92 of the corresponding floor slabs 21, and the two slabs in the slab connecting unit 92 at the corner of the floor slabs 21 are respectively.
- the webs 921 are respectively inserted into the two column slots 821 of the upper column connecting unit 82 of the prefabricated light steel concrete column 1, and the joints are welded and connected, and the column flange steel plates 81 on the prefabricated light steel concrete column 1 are respectively connected.
- the lower flange steel plate 83 is respectively connected to the floor flange steel plate 91 and the lower flange steel plate 93 at the corner of the floor plate 21 to complete the connection between the prefabricated light steel concrete column 1 and the corresponding floor plate 21. connection.
- the prefabricated light steel concrete column 1 is divided into three types: a middle column 12, a side column 13, and a corner column 14.
- the prefabricated light steel concrete column 1 connected to the four floor slabs 21 is the center pillar 12, and the number of the column connecting units 82 in the column steel connecting member 8 of the center pillar 12 is four.
- the floor connection units 92 of the floor steel connecting members 9 of the adjacent four floor slabs 21 are respectively embedded therein and welded to connect the prefabricated light steel concrete floor 2 to the center column 12;
- the prefabricated light steel concrete column 1 connected to the two floor slabs 21 is a side column 13, and the number of column connecting units 82 in the column steel connecting member 8 of the side column 13 is two, respectively
- the floor connecting units 92 of the slab steel connecting members 9 of the adjacent two floor slabs 21 are embedded in each other and welded to connect the prefabricated light steel concrete floor slab 2 with the side sills 13;
- the prefabricated light steel concrete column 1 connected to the single floor slab 21 is a corner column 14, and the number of column connecting units 82 in the column steel connecting member 8 of the corner column 14 is one, which is adjacent to a slab
- the floor joining units 92 of the floor steel connecting members 9 of the blocks 21 are embedded therein and welded to join the prefabricated light steel concrete floor 2 to the corner posts 14.
- the prefabricated light steel concrete floor slab 2 is formed by combining a light steel skeleton with a well-shaped distribution and concrete, and the prefabricated light steel concrete floor slab 2 is integrally formed by welding a light steel skeleton.
- the embodiment of the present invention provides a construction method for the prefabricated light steel slab column structure.
- the prefabricated light steel slab column structure is a multi-layer structure, and the construction method includes:
- Step 1 hoisting a precast lightweight steel concrete section 11 of the plurality of precast lightweight steel concrete columns 1 on the structural foundation 10;
- Step 2 hoisting the prefabricated light steel concrete wall support 3 and fixing it to the structural foundation 10;
- Step 3 hoisting the upper prefabricated light steel concrete floor 2 and connecting it with the prefabricated light steel concrete column 1;
- Step 4 hoisting the prefabricated light steel concrete section 11 of the layer and connecting it with the precast lightweight steel concrete section 11 corresponding to the lower layer;
- Step 5 hoisting the prefabricated light steel concrete wall support 3 of the layer and fixing it with the prefabricated light steel concrete floor 2 of the layer;
- Step 6 Repeat steps three to five until the overall construction of the prefabricated light steel concrete slab column structure is completed.
- the prefabricated light steel concrete wall support 3 comprises an inner wall wall support 33 and an outer wall support 34, and after hoisting a layer of prefabricated light steel concrete column 1, the inner wall of the layer is hoisted
- the support 33 and the façade wall support 34 of the lower layer are hoisted while the upper prefabricated light steel concrete column 1 is hoisted.
- the prefabricated light steel concrete wall support 3 (interior wall support 33) and the prefabricated light steel concrete column are The installation of the seismic energy absorbing assembly 5 is carried out between 1 or between two adjacent precast lightweight steel concrete columns 1 adjacent to the upper prefabricated light steel concrete floor 2 .
- the prefabricated light steel concrete slab column structure and the construction method thereof provided by the embodiments of the present invention have the following advantages:
- the wall support provides the required lateral stiffness of the structure, in the supernormal load. (Earthquake, etc.)
- the wall support is energy-consuming through the seismic energy-consuming combination device, so the structure is especially suitable for multi-story and high-rise building structures;
- the weight and size of prefabricated components can achieve a variety of architectural requirements while standardizing and modularizing. According to the structural arrangement, the number of layers and the load requirements, the modules, specifications and supporting connection nodes of the prefabricated components can be quickly selected through the design atlas or standard to truly realize “standardized design, factory prefabrication and assembly construction”.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Rod-Shaped Construction Members (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Load-Bearing And Curtain Walls (AREA)
Abstract
一种预制装配轻钢混凝土板柱结构,为单层或多层结构,包括若干根预制轻钢混凝土柱(1)竖向设置于整体结构中,每层中均设有预制轻钢混凝土楼板(2)及预制轻钢混凝土墙式支撑(3),每层中的预制轻钢混凝土楼板(2)均通过柱划分为若干楼板板块(21),与柱装配组装而成楼板,每层中的预制轻钢混凝土墙式支撑(3)均通过柱分割,设置于预制轻钢混凝土楼板(2)上,并位于两根相邻预制轻钢混凝土柱(1)之间。还包括该预制装配轻钢混凝土板柱结构的施工方法。该板柱结构预制装配率高、施工成本低、现场湿作业少且建筑适应性强。
Description
本发明涉及建筑设计领域,尤其涉及一种预制装配轻钢混凝土板柱结构及其施工方法。
预制轻钢混凝土结构是一种符合建筑工业化生产方式的结构型式,具有标准化设计、预制化生产、装配化施工的突出优点。
目前应用较为普遍的装配整体式混凝土框架、混凝土框架—剪力墙、混凝土全剪力墙等结构体系存在如下的缺点或问题:
1)施工过程存在大量的混凝土现浇湿作业,工艺繁复,建造效率不高;
2)构件预制率过低(15%~40%),且较难提高;
3)预制构件的种类和规格偏多,相应增加了工厂预制费用,建造成本居高不下,难以推广。
目前的装配式混凝土板柱结构型式的应用一定程度地缓解了上述矛盾,但是由于预制板与预制柱的节点需要足够的刚度以提高结构的抗侧能力,所以预制板与预制柱的节点受力较为复杂,装配化设计和施工难度较大;另外,现有的板柱结构抗侧能力有限,不适宜建造高层建筑,其推广和应用具有明显的局限性。
发明内容
本发明提供一种预制装配轻钢混凝土板柱结构及其施工方法,以使其预制装配率高、施工成本低、现场湿作业少且建筑适应性强。
为了达到上述技术目的,本发明提供一种预制装配轻钢混凝土板柱结构,所述预制装配轻钢混凝土板柱结构为单层或多层结构,若干根预制轻钢混凝
土柱竖向设置于所述单层或多层结构的整体结构中,所述单层或多层结构的每层中均设有预制轻钢混凝土楼板及预制轻钢混凝土墙式支撑,每层中的预制轻钢混凝土楼板均通过所述若干根预制轻钢混凝土柱划分为若干楼板板块,并通过其与所述预制轻钢混凝土柱的装配组装成预制轻钢混凝土楼板,每层中的预制轻钢混凝土墙式支撑均通过所述若干根预制轻钢混凝土柱所分割,每块所述预制轻钢混凝土墙式支撑均设置于所述预制轻钢混凝土楼板上,并位于两根相邻预制轻钢混凝土柱之间。
进一步的,所述预制轻钢混凝土柱、预制轻钢混凝土楼板或/和预制轻钢混凝土墙式支撑由带抗剪构造的型钢板件组成其轻钢框架,并对其进行外包混凝土浇筑。
进一步的,所述抗剪型钢板件包括轻型型钢板件和抗剪构造件,通过在所述轻型型钢板件上进行冲孔作业,以形成所述抗剪构造件。
进一步的,所述预制轻钢混凝土柱的框架通过竖向设置的抗剪型钢板件组成其四个竖向角线,并通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件以形成。
进一步的,所述预制轻钢混凝土墙式支撑的框架通过竖向、横向及斜向设置的抗剪型钢板件组合装配以形成。
进一步的,当所述预制轻钢混凝土墙式支撑为不开洞的墙式支撑时,所述不开洞的墙式支撑的框架通过竖向设置的抗剪型钢板件组成其四个竖向角线,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
进一步的,当所述预制轻钢混凝土墙式支撑为设置窗洞的墙式支撑时,所述设置窗洞的墙式支撑的框架分为多个框架单元,每个所述框架单元均通过竖向设置的抗剪型钢板件组成其四个竖向角线,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
进一步的,当所述预制轻钢混凝土墙式支撑为设置门洞的墙式支撑时,所述设置门洞的墙式支撑的框架分为多个框架单元,每个所述框架单元均通过竖向设置的抗剪型钢板件组合而成,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
进一步的,所述预制轻钢混凝土墙式支撑的顶部与所述预制轻钢混凝土柱之间或/和两根相邻预制轻钢混凝土柱之间靠近上层预制轻钢混凝土楼板处还设有抗震耗能组合装置。
进一步的,所述抗震耗能组合装置包括钢套、钢轴、钢圈、预紧螺母和蝶形弹簧,所述钢轴设置于所述钢套中,所述钢轴两端通过所述预紧螺母固定于所述钢套中,并与所述钢套的内壁之间留有余量,所述钢圈套设并固定于所述钢轴上,其两端均设有所述蝶形弹簧,所述蝶形弹簧一端靠在所述钢轴上,另一端靠在所述钢套的内壁上。
进一步的,当所述抗震耗能组合装置设置于所述预制轻钢混凝土墙式支撑的顶部与所述预制轻钢混凝土柱之间时,所述抗震耗能组合装置的钢套与所述预制轻钢混凝土墙式支撑整体预制加工成型,其钢轴靠近所述预制轻钢混凝土柱的一端通过一连接节点与所述预制轻钢混凝土柱刚性连接或铰接。
进一步的,当所述抗震耗能组合装置设置于两根相邻预制轻钢混凝土柱之间靠近上层预制轻钢混凝土楼板处时,所述抗震耗能组合装置斜向设置,其钢套靠近所述预制轻钢混凝土柱的一端通过一连接节点或一刚性支撑与所述预制轻钢混凝土柱刚性连接或铰接,其钢轴靠近所述上层预制轻钢混凝土楼板的一端通过一连接节点与所述上层预制轻钢混凝土楼板刚性连接或铰接。
进一步的,每两根所述预制轻钢混凝土柱之间设置的所述抗震耗能组合装置的数量为两个,其均对称设置。
进一步的,每根所述预制轻钢混凝土柱均以一层或两层高度为一预制轻
钢混凝土节段,并由所述预制轻钢混凝土节段竖向相接组成所述预制轻钢混凝土柱。
进一步的,所述预制轻钢混凝土节段包括上连接结构和下连接结构,通过所述上连接结构嵌入所述下连接结构中并焊接以将两根所述预制轻钢混凝土节段相接。
进一步的,所述上连接结构包括柱顶钢连接件、导向钢板、柱顶埋件钢板和柱顶钢节点锚固段,所述柱顶埋件钢板与柱顶钢节点锚固段相连并均埋设于所述预制轻钢混凝土节段的顶部,所述柱顶钢连接件设置于所述预制轻钢混凝土节段的顶部,所述导向钢板设置于所述柱顶钢连接件的侧面,所述柱顶钢连接件和导向钢板均与所述柱顶埋件钢板固定连接。
进一步的,所述下连接结构包括柱底钢节点锚固段、柱底埋件钢板和柱底钢连接件,所述柱底埋件钢板与所述柱底钢节点锚固段相连并均埋设于所述预制轻钢混凝土节段的底部,所述柱底钢连接件设置于所述预制轻钢混凝土节段的底部,并与所述柱底埋件钢板固定连接,所述柱底钢连接件与所述柱顶导向钢板的设置位置相对应且形状相匹配。
进一步的,所述若干根预制轻钢混凝土柱呈阵列式分布,每四根所述预制轻钢混凝土柱将每层中的所述预制轻钢混凝土楼板划分为一块所述楼板板块。
进一步的,所述预制轻钢混凝土柱的周侧设有柱钢骨连接件,所述预制轻钢混凝土楼板中的各楼板板块靠近所述预制轻钢混凝土柱的一角上设有楼板钢骨连接件,通过所述柱钢骨连接件与所述楼板钢骨连接件相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述预制轻钢混凝土柱相接。
进一步的,所述柱钢骨连接件包括柱上翼缘钢板、柱连接单元和柱下翼缘钢板,所述柱连接单元包括两块竖向设置于所述柱上翼缘钢板与所述柱下翼缘钢板之间的柱腹板和两个设置于所述柱下翼缘钢板中的柱槽口,所述两块竖向设置的柱腹板相互垂直设置。
进一步的,所述楼板钢骨连接件包括楼板上翼缘钢板、楼板连接单元和楼板下翼缘钢板,所述楼板连接单元包括两块竖向设置于所述楼板上翼缘钢板与所述楼板下翼缘钢板之间的楼板腹板和两个设置于所述楼板上翼缘钢板中楼板槽口,所述两块竖向设置的楼板腹板相互垂直设置,所述两块柱腹板与所述两个楼板槽口的位置设置相对应且形状相匹配,所述两块楼板腹板与所述两个柱槽口的位置设置相对应且形状相匹配。
进一步的,与四块所述楼板板块相接的预制轻钢混凝土柱为中柱,所述中柱的柱钢骨连接件中的柱连接单元的数量为四个,其分别与相邻的四块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述中柱相接。
进一步的,与两块所述楼板板块相接的预制轻钢混凝土柱为边柱,所述边柱的柱钢骨连接件中的柱连接单元的数量为两个,其分别与相邻的两块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述边柱相接。
进一步的,与单块所述楼板板块相接的预制轻钢混凝土柱为角柱,所述角柱的柱钢骨连接件中的柱连接单元的数量为一个,其与相邻的一块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述角柱相接。
进一步的,所述预制轻钢混凝土墙式支撑通过钢结构焊接或栓接方式与所述预制轻钢混凝土楼板相接。
进一步的,所述预制轻钢混凝土楼板由井字型分布的轻钢骨架与混凝土组合而成,所述预制轻钢混凝土楼板之间通过轻钢骨架焊接形成整体。
本发明提供一种上述预制装配轻钢混凝土板柱结构的施工方法,其包括:
步骤一:在结构基础上吊装所述若干根预制轻钢混凝土柱中的一个预制轻钢混凝土节段;
步骤二:吊装所述预制轻钢混凝土墙式支撑,并将之与所述结构基础进
行固定;
步骤三:吊装上层的预制轻钢混凝土楼板,并将之与所述预制轻钢混凝土柱连接;
步骤四:吊装该层的预制轻钢混凝土节段,并将之与下层对应的预制轻钢混凝土节段相接;
步骤五:吊装该层的预制轻钢混凝土墙式支撑,并将之与该层的预制轻钢混凝土楼板进行固定;
步骤六:重复步骤三至五,直至完成所述预制装配轻钢混凝土板柱结构的整体施工。
进一步的,所述预制轻钢混凝土墙式支撑包括内墙墙式支撑和外墙墙式支撑,在吊装完一层的预制轻钢混凝土柱后,吊装该层的内墙墙式支撑,并在吊装上层的预制轻钢混凝土柱的同时,吊装下层的外墙墙式支撑。
进一步的,在所述步骤三中,在进行上层预制轻钢混凝土楼板吊装的同时,在所述预制轻钢混凝土墙式支撑与所述预制轻钢混凝土柱之间或两根相邻预制轻钢混凝土柱之间靠近所述上层预制轻钢混凝土楼板处进行抗震耗能组合装置的安装。
与现有技术相比,本发明具有以下有益效果:
本发明提供的预制装配轻钢混凝土板柱结构及其施工方法将每层的预制轻钢混凝土楼板按照预制轻钢混凝土柱的柱间划分成若干楼板板块,并与之相接构成主体结构,同时将预制轻钢混凝土墙式支撑设置于每层中的两根预制轻钢混凝土柱之间,在整体结构中,预制轻钢混凝土楼板承受竖向荷载,同时提供足够的水平刚度,预制轻钢混凝土柱承受预制轻钢混凝土楼板传递的竖向荷载,预制轻钢混凝土墙式支撑仅承受侧向荷载,在正常使用状态下提供结构抗侧刚度,在地震作用下可起到耗能减震的作用。
该预制装配轻钢混凝土板柱结构及其施工方法具有以下优点:
1)该结构体系受力明确直接,节点传力简单,装配节点构造易于实现;
该结构体系分两阶段进行受力,在正常使用状态下墙式支撑提供结构所需抗侧刚度,在超常荷载(地震等)作用下墙式支撑通过抗震耗能组合装置进行耗能,因此该结构尤其适用于多层及高层建筑结构;
2)结构预制率的提高,为实现工厂化大规模生产创造了条件;施工现场取消了大量的湿作业,简化了建造工序;为提高建造速度、降低建造成本提供了可能;
3)预制构件的重量和尺寸在做到标准化、模块化的同时,可实现多样性的建筑需求。根据结构布置、层数及荷载要求,通过设计图集或标准快速选取预制构件的模块、规格以及配套的连接节点,真正实现“标准化设计、工厂化预制、装配化施工”。
下面结合附图对本发明作进一步说明:
图1为本发明实施例提供的预制装配轻钢混凝土板柱结构的结构示意图;
图2为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗剪型钢板件的一种结构示意图;
图3为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗剪型钢板件的另一种结构示意图;
图4为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土柱的侧视图;
图5为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土柱的俯视图;
图6为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为不开洞的墙式支撑时的结构示意图;
图7为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为设置窗洞的墙式支撑时的结构示意图;
图8为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为设置门洞的墙式支撑时的结构示意图;
图9为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的结构示意图;
图10为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的一种安装示意图;
图11为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的另一种安装示意图;
图12为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的第三种安装示意图;
图13为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土节段的结构示意图;
图14为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土节段的安装示意图;
图15为本发明实施例提供的预制装配轻钢混凝土板柱结构中柱钢骨连接件的结构示意图;
图16为本发明实施例提供的预制装配轻钢混凝土板柱结构中楼板钢骨连接件的结构示意图;
图17为本发明实施例提供的预制装配轻钢混凝土板柱结构中柱钢骨连接件与楼板钢骨连接件的安装示意图;
图18为本发明实施例提供的预制装配轻钢混凝土板柱结构中中柱、边柱及角柱的位置结构示意图;
图19为本发明实施例提供的预制装配轻钢混凝土板柱结构中不开洞的墙式支撑与预制轻钢混凝土楼板安装示意图;
图20为本发明实施例提供的预制装配轻钢混凝土板柱结构中设置窗洞的墙式支撑与预制轻钢混凝土楼板安装示意图;
图21为本发明实施例提供的预制装配轻钢混凝土板柱结构中设置门洞的墙式支撑与预制轻钢混凝土楼板安装示意图;
图22为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤一的流程示意图;
图23为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤二的流程示意图;
图24为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤三的流程示意图;
图25为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤四的流程示意图;
图26为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤五的流程示意图。
在图1至26中,
1:预制轻钢混凝土柱;11:预制轻钢混凝土节段;12:中柱;13:边柱;14:角柱;2:预制轻钢混凝土楼板;21:楼板板块;3:预制轻钢混凝土墙式支撑;31:框架单元;32:连接装置;33:内墙墙式支撑;34:外墙墙式支撑;4:抗剪型钢板件;41:轻型型钢板件;42:抗剪构造件;5:抗震耗能组合装置;51:钢套;52:钢轴;53:钢圈;54:预紧螺母;55:蝶形弹簧;56:连接节点;57:刚性支撑;6:上连接结构;61:柱顶钢连接件;62:导向钢板;63:柱顶埋件钢板;64:柱顶钢节点锚固段;7:下连接结构;71:柱底钢节点锚固段;72:柱底埋件钢板;73:柱底钢连接件;8:柱钢骨连接件;81:柱上翼缘钢板;82:柱连接单元;821:柱腹板;822:柱槽口;83:柱下翼缘钢板;9:楼板钢骨连接件;91:楼板上翼缘钢板;92:楼板连接单元;921:楼板腹板;922:楼板槽口;93:楼板下翼缘钢板;10:结构基础。
以下结合附图和具体实施例对本发明提出的预制装配轻钢混凝土板柱结构及其施工方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,提供一种预制装配轻钢混凝土板柱结构及其施工方法,其将每层的预制轻钢混凝土楼板按照预制轻钢混凝土柱的柱间划分成若干楼板板块,并与之相接构成主体结构,同时将预制轻钢混凝土墙式支撑设置于每层中的两根预制轻钢混凝土柱之间,在整体结构中,预制轻钢混凝土楼板承受竖向荷载,同时提供足够的水平刚度,预制轻钢混凝土柱承受预制轻钢混凝土楼板传递的竖向荷载,预制轻钢混凝土墙式支撑仅承受侧向荷载,在正常使用状态下提供结构抗侧刚度,在地震作用下可起到耗能减震的作用,该预制装配轻钢混凝土板柱结构及其施工方法的预制装配率高、施工成本低、现场湿作业少且建筑适应性强。
请参考图1至26,图1为本发明实施例提供的预制装配轻钢混凝土板柱结构的结构示意图;图2为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗剪型钢板件的一种结构示意图;图3为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗剪型钢板件的另一种结构示意图;图4为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土柱的侧视图;图5为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土柱的俯视图;图6为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为不开洞的墙式支撑时的结构示意图;图7为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为设置窗洞的墙式支撑时的结构示意图;图8为本发明实施例提供的预制装配轻钢混凝土板柱结构中的预制轻钢混凝土墙式支撑为设置门洞的墙式支撑时的结构示意图;图9为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的结构示意图;图10为本发明实施例提供的预制装配轻钢混
凝土板柱结构中抗震耗能组合装置的一种安装示意图;图11为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的另一种安装示意图;图12为本发明实施例提供的预制装配轻钢混凝土板柱结构中抗震耗能组合装置的第三种安装示意图;图13为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土节段的结构示意图;图14为本发明实施例提供的预制装配轻钢混凝土板柱结构中预制轻钢混凝土节段的安装示意图;图15为本发明实施例提供的预制装配轻钢混凝土板柱结构中柱钢骨连接件的结构示意图;图16为本发明实施例提供的预制装配轻钢混凝土板柱结构中楼板钢骨连接件的结构示意图;图17为本发明实施例提供的预制装配轻钢混凝土板柱结构中柱钢骨连接件与楼板钢骨连接件的安装示意图;图18为本发明实施例提供的预制装配轻钢混凝土板柱结构中中柱、边柱及角柱的位置结构示意图;图19为本发明实施例提供的预制装配轻钢混凝土板柱结构中不开洞的墙式支撑与预制轻钢混凝土楼板安装示意图;图20为本发明实施例提供的预制装配轻钢混凝土板柱结构中设置窗洞的墙式支撑与预制轻钢混凝土楼板安装示意图;图21为本发明实施例提供的预制装配轻钢混凝土板柱结构中设置门洞的墙式支撑与预制轻钢混凝土楼板安装示意图;图22为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤一的流程示意图;图23为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤二的流程示意图;图24为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤三的流程示意图;图25为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤四的流程示意图;图26为本发明实施例提供的预制装配轻钢混凝土板柱结构的施工方法中步骤五的流程示意图。
如图1所示,本发明实施例提供一种预制装配轻钢混凝土板柱结构,所述预制装配轻钢混凝土板柱结构为单层或多层结构,若干根预制轻钢混凝土柱1竖向设置于所述单层或多层结构的整体结构中,所述单层或多层结构的每层中均设有预制轻钢混凝土楼板2及预制轻钢混凝土墙式支撑3,每层中的
预制轻钢混凝土楼板2均通过所述若干根预制轻钢混凝土柱1划分为若干楼板板块21,并通过其与所述预制轻钢混凝土柱1的装配组装成预制轻钢混凝土楼板2,每层中的预制轻钢混凝土墙式支撑3均通过所述若干根预制轻钢混凝土柱1所分割,每块所述预制轻钢混凝土墙式支撑3均设置于所述预制轻钢混凝土楼板2上,并位于两根相邻预制轻钢混凝土柱1之间。
本发明实施例提供的预制装配轻钢混凝土板柱结构将每层的预制轻钢混凝土楼板2按照预制轻钢混凝土柱1的柱间划分成若干楼板板块21,并与之相接构成主体结构,同时将预制轻钢混凝土墙式支撑3设置于每层中的两根预制轻钢混凝土柱1之间,在整体结构中,预制轻钢混凝土楼板2承受竖向荷载,同时提供足够的水平刚度,预制轻钢混凝土柱1承受预制轻钢混凝土楼板2传递的竖向荷载,预制轻钢混凝土墙式支撑3仅承受侧向荷载,在正常使用状态下提供结构抗侧刚度,在地震作用下可起到耗能减震的作用,该预制装配轻钢混凝土板柱结构的预制装配率高、施工成本低、现场湿作业少且建筑适应性强。
进一步的,所述预制轻钢混凝土柱1、预制轻钢混凝土楼板2和预制轻钢混凝土墙式支撑3均由带抗剪构造的型钢板件4构成其轻钢框架,并对其进行外包混凝土浇筑。
在本实施例中,如图2所示,所述抗剪型钢板件4包括轻型型钢板件41和抗剪构造件42,通过在所述轻型型钢板件41上进行冲孔作业,并通过热轧、热压或冷压以形成所述抗剪构造件42,所述抗剪构造件42为轻型型钢板件41在冲孔作业后在轻型型钢板件41上的冲孔位置形成的凸起结构,其沿所述轻型型钢板件41的长度方向均匀排布设置。
可以想到的是,如图3所示,所述轻型型钢板件41上的冲孔位置及其位置上的凸起结构(即抗剪构造件42)还可以一定的其他规律均匀分布于所述轻型型钢板件41上,以起到其抗剪作用,故本发明也意图包含这些技术方案在内。
进一步的,如图4和图5所示,所述预制轻钢混凝土柱1的框架通过竖向设置的抗剪型钢板件4组成其四个竖向角线,并通过横向设置的抗剪型钢板件4作为缀板连接各竖向设置的抗剪型钢板件以形成。
进一步的,所述预制轻钢混凝土墙式支撑3的框架通过竖向、横向及斜向设置的抗剪型钢板件4组合装配以形成。
具体的,所述预制轻钢混凝土墙式支撑3分别不开洞的墙式支撑、设置窗洞的墙式支撑以及设置门洞的墙式支撑。
如图6所示,当所述预制轻钢混凝土墙式支撑3为不开洞的墙式支撑时,所述不开洞的墙式支撑的框架通过竖向设置的抗剪型钢板件4组成其四个竖向角线,通过横向设置的抗剪型钢板件4作为缀板连接各竖向设置的抗剪型钢板件4,并通过斜向设置的抗剪型钢板件4作为斜向支撑连接各对角线以形成;
如图7所示,当所述预制轻钢混凝土墙式支撑3为设置窗洞的墙式支撑时,所述设置窗洞的墙式支撑的框架分为多个框架单元31,每个所述框架单元31均通过竖向设置的抗剪型钢板件4组成其四个竖向角线,通过横向设置的抗剪型钢板4材作为缀板连接各竖向设置的抗剪型钢板件4,并通过斜向设置的抗剪型钢板件4作为斜向支撑连接各对角线以形成;
如图8所示,当所述预制轻钢混凝土墙式支撑3为设置门洞的墙式支撑时,所述设置门洞的墙式支撑的框架分为多个框架单元31,每个所述框架单元31均通过竖向设置的抗剪型钢板件4组合而成,通过横向设置的抗剪型钢板件4作为缀板连接各竖向设置的抗剪型钢板件4,并通过斜向设置的抗剪型钢板件4作为斜向支撑连接各对角线以形成。
进一步的,如图19所示,当所述预制轻钢混凝土墙式支撑3为不开洞的墙式支撑时,其通过位于其两侧底部的连接装置32与所述预制轻钢混凝土楼板2以焊接或栓接方式相接;
如图20所示,当所述预制轻钢混凝土墙式支撑3为设置窗洞的墙式支撑
时,其通过位于其两侧底部以及位于其窗洞两侧底部的连接装置32与所述预制轻钢混凝土楼板2以焊接或栓接方式相接;
如图21所示,当所述预制轻钢混凝土墙式支撑3为设置门洞的墙式支撑时,其通过位于其两侧底部以及位于其门洞两侧底部的连接装置32与所述预制轻钢混凝土楼板2以焊接或栓接方式相接。
进一步的,所述预制轻钢混凝土墙式支撑3的顶部与所述预制轻钢混凝土柱1之间以及两根相邻预制轻钢混凝土柱1之间靠近上层预制轻钢混凝土楼板2处均还设有抗震耗能组合装置5。
在本实施例中,如图9所示,所述抗震耗能组合装置包括钢套51、钢轴52、钢圈53、预紧螺母54和蝶形弹簧55,所述钢轴52设置于所述钢套51中,所述钢轴52两端通过所述预紧螺母53固定于所述钢套51中,并与所述钢套51的内壁之间留有余量,所述钢圈53套设并固定于所述钢轴52上,其两端均设有所述蝶形弹簧55,所述蝶形弹簧55一端靠在所述钢轴52上,另一端靠在所述钢套51的内壁上。在地震时,钢轴52与钢套51会产生相对移动,此时钢圈53会挤压两侧的蝶形弹簧55,产生微小位移,从而起到避震作用。
具体的,如图10所示,当所述抗震耗能组合装置5设置于所述预制轻钢混凝土墙式支撑3的顶部与所述预制轻钢混凝土柱1之间时,所述抗震耗能组合装置5的钢套51与所述预制轻钢混凝土墙式支撑3整体预制加工成型,其钢轴52靠近所述预制轻钢混凝土柱1的一端通过一连接节点56与所述预制轻钢混凝土柱1刚性连接或铰接;
如图11所示,当两根相邻预制轻钢混凝土柱1之间的距离较短不宜放置预制轻钢混凝土墙式支撑3时,所述抗震耗能组合装置5设置于两根相邻预制轻钢混凝土柱1之间靠近上层预制轻钢混凝土楼板2处,所述抗震耗能组合装置5斜向设置,其钢套51靠近所述预制轻钢混凝土柱1的一端通过一连接节点56与所述预制轻钢混凝土柱1刚性连接或铰接,其钢轴52靠近所述
上层预制轻钢混凝土楼板2的一端通过一连接节点56与所述上层预制轻钢混凝土楼板2刚性连接或铰接;
如图12所示,当所述抗震耗能组合装置5设置于两根相邻预制轻钢混凝土柱1之间靠近上层预制轻钢混凝土楼板2处时,若两根相邻预制轻钢混凝土柱1之间的空间尺寸较大,则可在抗震耗能组合装置5的钢套51靠近预制轻钢混凝土柱1的一端连接一刚性支撑57,在将该刚性支撑57与预制轻钢混凝土柱1刚性连接或铰接。
如图10至12所示,每两根所述预制轻钢混凝土柱之间设置的所述抗震耗能组合装置的数量为两个,两个所述抗震耗能组合装置对称设置以实现其组合使用。
进一步的,每根所述预制轻钢混凝土柱1均以一层或两层高度为一预制轻钢混凝土节段11,并由所述预制轻钢混凝土节段11竖向相接组成所述预制轻钢混凝土柱1。
在本实施例中,所述预制轻钢混凝土节段11包括上连接结构6和下连接结构7,通过所述上连接结构6嵌入所述下连接结构7中并焊接以将上下两根所述预制轻钢混凝土节段11相接。
具体的,如图13所示,所述上连接结构6包括柱顶钢连接件61、导向钢板62、柱顶埋件钢板63和柱顶钢节点锚固段64,所述柱顶埋件钢板63与柱顶钢节点锚固段64相连并均埋设于所述预制轻钢混凝土节段11的顶部,所述柱顶钢连接件61设置于所述预制轻钢混凝土节段11的顶部,所述导向钢板62设置于所述柱顶钢连接件61的侧面,所述柱顶钢连接件61和导向钢板62均与所述柱顶埋件钢板63固定连接。所述下连接结构7包括柱底钢节点锚固段71、柱底埋件钢板72和柱底钢连接件73,所述柱底埋件钢板72与所述柱底钢节点锚固段71相连并均埋设于所述预制轻钢混凝土节段11的底部,所述柱底钢连接件73设置于所述预制轻钢混凝土节段11的底部,并与所述柱底埋件钢板72固定连接,所述柱底钢连接件73与所述柱顶导向钢板62的
设置位置相对应且形状相匹配。在安装上下两根预制轻钢混凝土节段11时,如图14所示,只需将上面一根预制轻钢混凝土节段11的柱底钢连接件73向下沿着下面一根预制轻钢混凝土节段11的导向钢板62移动,使下面一根预制轻钢混凝土节段11的柱顶钢连接件61插入到上面一根预制轻钢混凝土节段11的柱底钢连接件73中,再将接缝处等强焊接连接,便可实现上下两根预制轻钢混凝土节段11的牢固连接。
进一步的,如图18所示,所述若干根预制轻钢混凝土柱1呈阵列式分布,每四根所述预制轻钢混凝土柱1将每层中的所述预制轻钢混凝土楼板2划分为一块所述楼板板块21。
在本实施例中,所述预制轻钢混凝土柱1的周侧设有柱钢骨连接件8,所述预制轻钢混凝土楼板2中的各楼板板块21靠近所述预制轻钢混凝土柱1的一角上设有楼板钢骨连接件9,通过所述柱钢骨连接件8与所述楼板钢骨连接件9相互嵌入其中并焊接以将所述预制轻钢混凝土楼板2与所述预制轻钢混凝土柱1相接。
具体的,如图15所示,所述柱钢骨连接件8包括柱上翼缘钢板81、柱连接单元82和柱下翼缘钢板83,所述柱连接单元82包括两块竖向设置于所述柱上翼缘钢板81与所述柱下翼缘钢板83之间的柱腹板821和两个设置于所述柱下翼缘钢板83中的柱槽口822,所述两块竖向设置的柱腹板821相互垂直设置。如图16所示,所述楼板钢骨连接件9包括楼板上翼缘钢板91、楼板连接单元92和楼板下翼缘钢板93,所述楼板连接单元92包括两块竖向设置于所述楼板上翼缘钢板91与所述楼板下翼缘钢板93之间的楼板腹板921和两个设置于所述楼板上翼缘钢板91中楼板槽口922,所述两块竖向设置的楼板腹板921相互垂直设置,所述两块柱腹板821与所述两个楼板槽口922的位置设置相对应且形状相匹配,所述两块楼板腹板921与所述两个柱槽口822的位置设置相对应且形状相匹配。在连接预制轻钢混凝土楼板2中的楼板板块21与预制轻钢混凝土柱1时,如图17所示,只需将预制轻钢混凝土柱1
上柱连接单元82中的两块柱腹板821分别插入对应楼板板块21一角上楼板连接单元92中的两个楼板槽口922内,将楼板板块21一角上楼板连接单元92中的两个楼板腹板921分别插入对应预制轻钢混凝土柱1上柱连接单元82中的两个柱槽口821内,再将接缝处焊接连接,将预制轻钢混凝土柱1上的柱上翼缘钢板81和柱下翼缘钢板83分别与楼板板块21一角上的楼板上翼缘钢板91和楼板下翼缘钢板93塞焊焊接连接,便可完成预制轻钢混凝土柱1与对应楼板板块21之间的连接。
在本实施例中,如图18所示,所述预制轻钢混凝土柱1分为中柱12、边柱13及角柱14三种。
具体的,与四块所述楼板板块21相接的预制轻钢混凝土柱1为中柱12,所述中柱12的柱钢骨连接件8中的柱连接单元82的数量为四个,其分别与相邻的四块楼板板块21的楼板钢骨连接件9中的楼板连接单元92相互嵌入其中并焊接以将所述预制轻钢混凝土楼板2与所述中柱12相接;
与两块所述楼板板块21相接的预制轻钢混凝土柱1为边柱13,所述边柱13的柱钢骨连接件8中的柱连接单元82的数量为两个,其分别与相邻的两块楼板板块21的楼板钢骨连接件9中的楼板连接单元92相互嵌入其中并焊接以将所述预制轻钢混凝土楼板2与所述边柱13相接;
与单块所述楼板板块21相接的预制轻钢混凝土柱1为角柱14,所述角柱14的柱钢骨连接件8中的柱连接单元82的数量为一个,其与相邻的一块楼板板块21的楼板钢骨连接件9中的楼板连接单元92相互嵌入其中并焊接以将所述预制轻钢混凝土楼板2与所述角柱14相接。
进一步的,预制轻钢混凝土楼板2由井字型分布的轻钢骨架与混凝土组合而成,所述预制轻钢混凝土楼板2之间通过轻钢骨架焊接形成整体。
本发明实施例提供一种上述预制装配轻钢混凝土板柱结构的施工方法,在本实施例中,所述预制装配轻钢混凝土板柱结构为多层结构,所述施工方法包括:
步骤一:在结构基础10上吊装所述若干根预制轻钢混凝土柱1中的一个预制轻钢混凝土节段11;
步骤二:吊装所述预制轻钢混凝土墙式支撑3,并将之与所述结构基础10进行固定;
步骤三:吊装上层的预制轻钢混凝土楼板2,并将之与所述预制轻钢混凝土柱1连接;
步骤四:吊装该层的预制轻钢混凝土节段11,并将之与下层对应的预制轻钢混凝土节段11相接;
步骤五:吊装该层的预制轻钢混凝土墙式支撑3,并将之与该层的预制轻钢混凝土楼板2进行固定;
步骤六:重复步骤三至五,直至完成所述预制装配轻钢混凝土板柱结构的整体施工。
进一步的,所述预制轻钢混凝土墙式支撑3包括内墙墙式支撑33和外墙墙式支撑34,在吊装完一层的预制轻钢混凝土柱1后,吊装该层的内墙墙式支撑33,并在吊装上层的预制轻钢混凝土柱1的同时,吊装下层的外墙墙式支撑34。
进一步的,在所述步骤三中,在进行上层预制轻钢混凝土楼板2吊装的同时,在所述预制轻钢混凝土墙式支撑3(内墙墙式支撑33)与所述预制轻钢混凝土柱1之间或两根相邻预制轻钢混凝土柱1之间靠近所述上层预制轻钢混凝土楼板2处进行抗震耗能组合装置5的安装。
综上所述,本发明实施例提供的预制装配轻钢混凝土板柱结构及其施工方法具有以下优点:
1)该结构体系受力明确直接,节点传力简单,装配节点构造易于实现;该结构体系分两阶段进行受力,在正常使用状态下墙式支撑提供结构所需抗侧刚度,在超常荷载(地震等)作用下墙式支撑通过抗震耗能组合装置进行耗能,因此该结构尤其适用于多层及高层建筑结构;
2)结构预制率的提高,为实现工厂化大规模生产创造了条件;施工现场取消了大量的湿作业,简化了建造工序;为提高建造速度、降低建造成本提供了可能;
3)预制构件的重量和尺寸在做到标准化、模块化的同时,可实现多样性的建筑需求。根据结构布置、层数及荷载要求,通过设计图集或标准快速选取预制构件的模块、规格以及配套的连接节点,真正实现“标准化设计、工厂化预制、装配化施工”。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些改动和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (29)
- 一种预制装配轻钢混凝土板柱结构,其特征在于,所述预制装配轻钢混凝土板柱结构为单层或多层结构,若干根预制轻钢混凝土柱竖向设置于所述单层或多层结构的整体结构中,所述单层或多层结构的每层中均设有预制轻钢混凝土楼板及预制轻钢混凝土墙式支撑,每层中的预制轻钢混凝土楼板均通过所述若干根预制轻钢混凝土柱划分为若干楼板板块,并通过其与所述预制轻钢混凝土柱的装配组装成预制轻钢混凝土楼板,每层中的预制轻钢混凝土墙式支撑均通过所述若干根预制轻钢混凝土柱所分割,每块所述预制轻钢混凝土墙式支撑均设置于所述预制轻钢混凝土楼板上,并位于两根相邻预制轻钢混凝土柱之间。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土柱、预制轻钢混凝土楼板或/和预制轻钢混凝土墙式支撑由带抗剪构造的型钢板件组成其轻钢框架,并对其进行外包混凝土浇筑。
- 根据权利要求2所述的预制装配轻钢混凝土板柱结构,其特征在于,所述抗剪型钢板件包括轻型型钢板件和抗剪构造件,通过在所述轻型型钢板件上进行冲孔作业,以形成所述抗剪构造件。
- 根据权利要求2所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土柱的框架通过竖向设置的抗剪型钢板件组成其四个竖向角线,并通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件以形成。
- 根据权利要求2所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑的框架通过竖向、横向及斜向设置的抗剪型钢板件组合装配以形成。
- 根据权利要求5所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑为不开洞的墙式支撑,所述不开洞的墙式支撑 的框架通过竖向设置的抗剪型钢板件组成其四个竖向角线,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
- 根据权利要求5所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑为设置窗洞的墙式支撑,所述设置窗洞的墙式支撑的框架分为多个框架单元,每个所述框架单元均通过竖向设置的抗剪型钢板件组成其四个竖向角线,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
- 根据权利要求5所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑为设置门洞的墙式支撑,所述设置门洞的墙式支撑的框架分为多个框架单元,每个所述框架单元均通过竖向设置的抗剪型钢板件组合而成,通过横向设置的抗剪型钢板件作为缀板连接各竖向设置的抗剪型钢板件,并通过斜向设置的抗剪型钢板件作为斜向支撑连接各对角线以形成。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑的顶部与所述预制轻钢混凝土柱之间或/和两根相邻预制轻钢混凝土柱之间靠近上层预制轻钢混凝土楼板处还设有抗震耗能组合装置。
- 根据权利要求9所述的预制装配轻钢混凝土板柱结构,其特征在于,所述抗震耗能组合装置包括钢套、钢轴、钢圈、预紧螺母和蝶形弹簧,所述钢轴设置于所述钢套中,所述钢轴两端通过所述预紧螺母固定于所述钢套中,并与所述钢套的内壁之间留有余量,所述钢圈套设并固定于所述钢轴上,其两端均设有所述蝶形弹簧,所述蝶形弹簧一端靠在所述钢轴上,另一端靠在所述钢套的内壁上。
- 根据权利要求10所述的预制装配轻钢混凝土板柱结构,其特征在于, 当所述抗震耗能组合装置设置于所述预制轻钢混凝土墙式支撑的顶部与所述预制轻钢混凝土柱之间时,所述抗震耗能组合装置的钢套与所述预制轻钢混凝土墙式支撑整体预制加工成型,其钢轴靠近所述预制轻钢混凝土柱的一端通过一连接节点与所述预制轻钢混凝土柱刚性连接或铰接。
- 根据权利要求10所述的预制装配轻钢轻钢混凝土板柱结构,其特征在于,当所述抗震耗能组合装置设置于两根相邻预制轻钢混凝土柱之间靠近上层预制轻钢混凝土楼板处时,所述抗震耗能组合装置斜向设置,其钢套靠近所述预制轻钢混凝土柱的一端通过一连接节点或一刚性支撑与所述预制轻钢混凝土柱刚性连接或铰接,其钢轴靠近所述上层预制轻钢混凝土楼板的一端通过一连接节点与所述上层预制轻钢混凝土楼板刚性连接或铰接。
- 根据权利要求11或12所述的预制装配轻钢混凝土板柱结构,其特征在于,每两根所述预制轻钢混凝土柱之间设置的所述抗震耗能组合装置的数量为两个,其均对称设置。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,每根所述预制轻钢混凝土柱均以一层或两层高度为一预制轻钢混凝土节段,并由所述预制轻钢混凝土节段竖向相接组成所述预制轻钢混凝土柱。
- 根据权利要求14所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土节段包括上连接结构和下连接结构,通过所述上连接结构嵌入所述下连接结构中并焊接以将两根所述预制轻钢混凝土节段相接。
- 根据权利要求15所述的预制装配轻钢混凝土板柱结构,其特征在于,所述上连接结构包括柱顶钢连接件、导向钢板、柱顶埋件钢板和柱顶钢节点锚固段,所述柱顶埋件钢板与柱顶钢节点锚固段相连并均埋设于所述预制轻钢混凝土节段的顶部,所述柱顶钢连接件设置于所述预制轻钢混凝土节段的顶部,所述导向钢板设置于所述柱顶钢连接件的侧面,所述柱顶钢连接件和导向钢板均与所述柱顶埋件钢板固定连接。
- 根据权利要求16所述的预制装配轻钢混凝土板柱结构,其特征在于, 所述下连接结构包括柱底钢节点锚固段、柱底埋件钢板和柱底钢连接件,所述柱底埋件钢板与所述柱底钢节点锚固段相连并均埋设于所述预制轻钢混凝土节段的底部,所述柱底钢连接件设置于所述预制轻钢混凝土节段的底部,并与所述柱底埋件钢板固定连接,所述柱底钢连接件与所述柱顶导向钢板的设置位置相对应且形状相匹配。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,所述若干根预制轻钢混凝土柱呈阵列式分布,每四根所述预制轻钢混凝土柱将每层中的所述预制轻钢混凝土楼板划分为一块所述楼板板块。
- 根据权利要求18所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土柱的周侧设有柱钢骨连接件,所述预制轻钢混凝土楼板中的各楼板板块靠近所述预制轻钢混凝土柱的一角上设有楼板钢骨连接件,通过所述柱钢骨连接件与所述楼板钢骨连接件相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述预制轻钢混凝土柱相接。
- 根据权利要求19所述的预制装配轻钢混凝土板柱结构,其特征在于,所述柱钢骨连接件包括柱上翼缘钢板、柱连接单元和柱下翼缘钢板,所述柱连接单元包括两块竖向设置于所述柱上翼缘钢板与所述柱下翼缘钢板之间的柱腹板和两个设置于所述柱下翼缘钢板中的柱槽口,所述两块竖向设置的柱腹板相互垂直设置。
- 根据权利要求20所述的预制装配轻钢混凝土板柱结构,其特征在于,所述楼板钢骨连接件包括楼板上翼缘钢板、楼板连接单元和楼板下翼缘钢板,所述楼板连接单元包括两块竖向设置于所述楼板上翼缘钢板与所述楼板下翼缘钢板之间的楼板腹板和两个设置于所述楼板上翼缘钢板中楼板槽口,所述两块竖向设置的楼板腹板相互垂直设置,所述两块柱腹板与所述两个楼板槽口的位置设置相对应且形状相匹配,所述两块楼板腹板与所述两个柱槽口的位置设置相对应且形状相匹配。
- 根据权利要求21所述的预制装配轻钢混凝土板柱结构,其特征在于, 与四块所述楼板板块相接的预制轻钢混凝土柱为中柱,所述中柱的柱钢骨连接件中的柱连接单元的数量为四个,其分别与相邻的四块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述中柱相接。
- 根据权利要求21所述的预制装配轻钢混凝土板柱结构,其特征在于,与两块所述楼板板块相接的预制轻钢混凝土柱为边柱,所述边柱的柱钢骨连接件中的柱连接单元的数量为两个,其分别与相邻的两块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述边柱相接。
- 根据权利要求21所述的预制装配轻钢混凝土板柱结构,其特征在于,与单块所述楼板板块相接的预制轻钢混凝土柱为角柱,所述角柱的柱钢骨连接件中的柱连接单元的数量为一个,其与相邻的一块楼板板块的楼板钢骨连接件中的楼板连接单元相互嵌入其中并焊接以将所述预制轻钢混凝土楼板与所述角柱相接。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土墙式支撑通过钢结构焊接或栓接方式与所述预制轻钢混凝土楼板相接。
- 根据权利要求1所述的预制装配轻钢混凝土板柱结构,其特征在于,所述预制轻钢混凝土楼板由井字型分布的轻钢骨架与混凝土组合而成,所述预制轻钢混凝土楼板之间通过轻钢骨架焊接形成整体。
- 一种如权利要求1所述的预制装配轻钢混凝土板柱结构的施工方法,其特征在于,包括:步骤一:在结构基础上吊装所述若干根预制轻钢混凝土柱中的一个预制轻钢混凝土节段;步骤二:吊装所述预制轻钢混凝土墙式支撑,并将之与所述结构基础进行固定;步骤三:吊装上层的预制轻钢混凝土楼板,并将之与所述预制轻钢混凝土柱连接;步骤四:吊装该层的预制轻钢混凝土节段,并将之与下层对应的预制轻钢混凝土节段相接;步骤五:吊装该层的预制轻钢混凝土墙式支撑,并将之与该层的预制轻钢混凝土楼板进行固定;步骤六:重复步骤三至五,直至完成所述预制装配轻钢混凝土板柱结构的整体施工。
- 根据权利要求27所述的预制装配轻钢混凝土板柱结构的施工方法,其特征在于,所述预制轻钢混凝土墙式支撑包括内墙墙式支撑和外墙墙式支撑,在吊装完一层的预制轻钢混凝土柱后,吊装该层的内墙墙式支撑,并在吊装上层的预制轻钢混凝土柱的同时,吊装下层的外墙墙式支撑。
- 根据权利要求27所述的预制装配轻钢混凝土板柱结构的施工方法,其特征在于,在所述步骤三中,在进行上层预制轻钢混凝土楼板吊装的同时,在所述预制轻钢混凝土墙式支撑与所述预制轻钢混凝土柱之间或两根相邻预制轻钢混凝土柱之间靠近所述上层预制轻钢混凝土楼板处进行抗震耗能组合装置的安装。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16806817.9A EP3306000B1 (en) | 2015-06-08 | 2016-06-07 | Prefabricated light steel concrete plate column structure and construction method therefor |
EA201792588A EA034519B1 (ru) | 2015-06-08 | 2016-06-07 | Конструкция из сборных легких сталежелезобетонных плит и колонн и способ ее сборки |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510309746.5 | 2015-06-08 | ||
CN201510309746.5A CN104895229B (zh) | 2015-06-08 | 2015-06-08 | 预制装配式钢节点混凝土板柱结构及其吊装方法 |
CN201510733977.9 | 2015-11-02 | ||
CN201510733977.9A CN105275120B (zh) | 2015-11-02 | 2015-11-02 | 预制装配轻钢混凝土板柱结构及其施工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197919A1 true WO2016197919A1 (zh) | 2016-12-15 |
Family
ID=57502924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/085141 WO2016197919A1 (zh) | 2015-06-08 | 2016-06-07 | 预制装配轻钢混凝土板柱结构及其施工方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3306000B1 (zh) |
EA (1) | EA034519B1 (zh) |
WO (1) | WO2016197919A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106759894A (zh) * | 2017-01-18 | 2017-05-31 | 中国电子工程设计院 | 一种钢支撑等效墙单元及组合墙单元 |
CN107327030A (zh) * | 2017-08-30 | 2017-11-07 | 刘祥锦 | 一种型钢柱的板柱结构节点及其柱帽预制构件和施工方法 |
CN107476440A (zh) * | 2017-09-19 | 2017-12-15 | 贵州大学 | 多层大跨度不规则ii型混凝土空间网格盒式结构及制作方法 |
CN108797890A (zh) * | 2018-08-30 | 2018-11-13 | 天津大学建筑设计研究院 | 轻钢格栅混凝土叠合柱 |
CN109440973A (zh) * | 2018-12-20 | 2019-03-08 | 沈阳建筑大学 | 一种装配式剪力墙竖向连接耗能结构及其施工方法 |
CN110126088A (zh) * | 2019-04-28 | 2019-08-16 | 南通昆腾新材料科技有限公司 | 一种有效克服地震横波的预制柱及其制备方法 |
CN110306664A (zh) * | 2019-06-24 | 2019-10-08 | 上海泰大建筑科技有限公司 | 装配式低层住宅结构体系及其建造方法 |
CN110397164A (zh) * | 2018-04-24 | 2019-11-01 | 中国矿业大学(北京) | 一种双向预应力装配式板柱结构体系及其施工方法 |
CN113216483A (zh) * | 2021-06-02 | 2021-08-06 | 吴乃森 | 一种轻钢轻混凝土组合楼板体系 |
CN113756473A (zh) * | 2021-10-18 | 2021-12-07 | 福建金鼎建筑发展有限公司 | 一种用于装配式建筑转角处的l型自保温剪力墙预制板 |
CN114215270A (zh) * | 2021-12-21 | 2022-03-22 | 浙江恒鸿建设有限公司 | 外凸线条钢筋混凝土景观柱及施工方法 |
CN114590722A (zh) * | 2022-04-21 | 2022-06-07 | 广州市房屋开发建设有限公司 | 一种塔吊附墙固定结构及设计方法 |
CN115217251A (zh) * | 2022-04-12 | 2022-10-21 | 中冶建工集团有限公司 | 自适应找平的装配式楼板系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109440992B (zh) * | 2018-10-16 | 2020-09-25 | 北京工业大学 | 一种全干式预制装配混凝土板柱结构体系 |
CN109736597B (zh) * | 2019-01-18 | 2021-03-26 | 深圳市嘉禾田环境艺术设计有限公司 | 一种别墅式建筑物的建造方法 |
CN113323308B (zh) * | 2021-04-26 | 2022-10-04 | 中建五局第三建设有限公司 | 一种装配式抗震墙板 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11336327A (ja) * | 1998-05-26 | 1999-12-07 | Daiwa House Ind Co Ltd | 鉄骨造・rc造複合構造建物の構築方法およびその型枠 |
KR20060098218A (ko) * | 2005-03-11 | 2006-09-18 | 삼성물산 주식회사 | 복층건축물에서 상하층 골조의 병행시공방법 및 이를적용한 복층구조의 클린룸 건축물 골조의 시공방법 |
CN103243804A (zh) * | 2013-05-23 | 2013-08-14 | 东北石油大学 | 预应力薄壁型钢—混凝土组合框架及其施工方法 |
CN103696607A (zh) * | 2014-01-14 | 2014-04-02 | 中国矿业大学(北京) | 一种带钢支撑的预应力装配式板柱结构及其施工方法 |
CN204081122U (zh) * | 2014-10-08 | 2015-01-07 | 尤亮 | 一种建筑用抗风减震弹簧阻尼器 |
CN104328839A (zh) * | 2014-08-11 | 2015-02-04 | 美国国绿投资集团 | 柱承式集成建筑模块的连接结构 |
CN104389374A (zh) * | 2014-11-02 | 2015-03-04 | 中国矿业大学(北京) | 组合密肋板及其制作方法、装配式板柱结构 |
CN104428472A (zh) * | 2012-07-05 | 2015-03-18 | 学校法人福冈大学 | 复合结构 |
CN104895229A (zh) * | 2015-06-08 | 2015-09-09 | 上海市机械施工集团有限公司 | 预制装配式钢节点混凝土板柱结构及其吊装方法 |
CN105275120A (zh) * | 2015-11-02 | 2016-01-27 | 上海市机械施工集团有限公司 | 预制装配轻钢混凝土板柱结构及其施工方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11241412A (ja) * | 1998-02-20 | 1999-09-07 | Kai Kenchiku Sekkei Jimusho:Kk | ブレース |
NL1009433C2 (nl) * | 1998-06-18 | 1999-12-21 | L Snijders Beheer B V Ing | Gebouw alsmede balk voor toepassing in het gebouw. |
CN201661086U (zh) * | 2010-03-15 | 2010-12-01 | 中山市快而居房屋预制件有限公司 | 一种全预制装配整体式钢筋混凝土房屋 |
CN201695515U (zh) * | 2010-06-24 | 2011-01-05 | 中国建筑技术集团有限公司 | 轻钢轻混凝土结构体系 |
-
2016
- 2016-06-07 EP EP16806817.9A patent/EP3306000B1/en active Active
- 2016-06-07 EA EA201792588A patent/EA034519B1/ru not_active IP Right Cessation
- 2016-06-07 WO PCT/CN2016/085141 patent/WO2016197919A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11336327A (ja) * | 1998-05-26 | 1999-12-07 | Daiwa House Ind Co Ltd | 鉄骨造・rc造複合構造建物の構築方法およびその型枠 |
KR20060098218A (ko) * | 2005-03-11 | 2006-09-18 | 삼성물산 주식회사 | 복층건축물에서 상하층 골조의 병행시공방법 및 이를적용한 복층구조의 클린룸 건축물 골조의 시공방법 |
CN104428472A (zh) * | 2012-07-05 | 2015-03-18 | 学校法人福冈大学 | 复合结构 |
CN103243804A (zh) * | 2013-05-23 | 2013-08-14 | 东北石油大学 | 预应力薄壁型钢—混凝土组合框架及其施工方法 |
CN103696607A (zh) * | 2014-01-14 | 2014-04-02 | 中国矿业大学(北京) | 一种带钢支撑的预应力装配式板柱结构及其施工方法 |
CN104328839A (zh) * | 2014-08-11 | 2015-02-04 | 美国国绿投资集团 | 柱承式集成建筑模块的连接结构 |
CN204081122U (zh) * | 2014-10-08 | 2015-01-07 | 尤亮 | 一种建筑用抗风减震弹簧阻尼器 |
CN104389374A (zh) * | 2014-11-02 | 2015-03-04 | 中国矿业大学(北京) | 组合密肋板及其制作方法、装配式板柱结构 |
CN104895229A (zh) * | 2015-06-08 | 2015-09-09 | 上海市机械施工集团有限公司 | 预制装配式钢节点混凝土板柱结构及其吊装方法 |
CN105275120A (zh) * | 2015-11-02 | 2016-01-27 | 上海市机械施工集团有限公司 | 预制装配轻钢混凝土板柱结构及其施工方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106759894A (zh) * | 2017-01-18 | 2017-05-31 | 中国电子工程设计院 | 一种钢支撑等效墙单元及组合墙单元 |
CN107327030A (zh) * | 2017-08-30 | 2017-11-07 | 刘祥锦 | 一种型钢柱的板柱结构节点及其柱帽预制构件和施工方法 |
CN107476440A (zh) * | 2017-09-19 | 2017-12-15 | 贵州大学 | 多层大跨度不规则ii型混凝土空间网格盒式结构及制作方法 |
CN110397164A (zh) * | 2018-04-24 | 2019-11-01 | 中国矿业大学(北京) | 一种双向预应力装配式板柱结构体系及其施工方法 |
CN108797890A (zh) * | 2018-08-30 | 2018-11-13 | 天津大学建筑设计研究院 | 轻钢格栅混凝土叠合柱 |
CN108797890B (zh) * | 2018-08-30 | 2023-12-15 | 天津大学建筑设计规划研究总院有限公司 | 轻钢格栅混凝土叠合柱 |
CN109440973B (zh) * | 2018-12-20 | 2023-12-01 | 沈阳建筑大学 | 一种装配式剪力墙竖向连接耗能结构的施工方法 |
CN109440973A (zh) * | 2018-12-20 | 2019-03-08 | 沈阳建筑大学 | 一种装配式剪力墙竖向连接耗能结构及其施工方法 |
CN110126088A (zh) * | 2019-04-28 | 2019-08-16 | 南通昆腾新材料科技有限公司 | 一种有效克服地震横波的预制柱及其制备方法 |
CN110306664A (zh) * | 2019-06-24 | 2019-10-08 | 上海泰大建筑科技有限公司 | 装配式低层住宅结构体系及其建造方法 |
CN110306664B (zh) * | 2019-06-24 | 2024-01-30 | 上海泰大建筑科技有限公司 | 装配式低层住宅结构体系及其建造方法 |
CN113216483A (zh) * | 2021-06-02 | 2021-08-06 | 吴乃森 | 一种轻钢轻混凝土组合楼板体系 |
CN113756473A (zh) * | 2021-10-18 | 2021-12-07 | 福建金鼎建筑发展有限公司 | 一种用于装配式建筑转角处的l型自保温剪力墙预制板 |
CN114215270A (zh) * | 2021-12-21 | 2022-03-22 | 浙江恒鸿建设有限公司 | 外凸线条钢筋混凝土景观柱及施工方法 |
CN115217251A (zh) * | 2022-04-12 | 2022-10-21 | 中冶建工集团有限公司 | 自适应找平的装配式楼板系统 |
CN115217251B (zh) * | 2022-04-12 | 2023-10-17 | 中冶建工集团有限公司 | 自适应找平的装配式楼板系统 |
CN114590722A (zh) * | 2022-04-21 | 2022-06-07 | 广州市房屋开发建设有限公司 | 一种塔吊附墙固定结构及设计方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3306000B1 (en) | 2019-12-18 |
EP3306000A1 (en) | 2018-04-11 |
EA201792588A1 (ru) | 2018-08-31 |
EP3306000A4 (en) | 2018-06-27 |
EA034519B1 (ru) | 2020-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016197919A1 (zh) | 预制装配轻钢混凝土板柱结构及其施工方法 | |
CN108060746B (zh) | 一种装配式预应力混凝土大跨度框架体系及其施工方法 | |
JP3218530U (ja) | 集約型組立式鉄骨建築 | |
CN109072604B (zh) | 使用堆叠结构钢壁桁架的用于构造多层建筑物的方法 | |
CN106013454A (zh) | 基于大空间结构体和独立式外围护结构的建筑及建造方法 | |
CN102251699B (zh) | 现浇梁柱预制夹芯混凝土墙板住宅建筑体系及施工方法 | |
CN108005304B (zh) | 一种装配式预应力混凝土框架体系及其施工方法 | |
HU221798B1 (hu) | Előre gyártott építési rendszer és módszer | |
CN103276809B (zh) | 一种装配式多高层钢异形柱框架-钢板剪力墙结构体系 | |
CN108005410A (zh) | 一种装配式钢-混凝土组合结构住宅体系及其施工方法 | |
CN107989228A (zh) | 一种预制型钢混凝土剪力墙结构及其制备和安装方法 | |
CN202125104U (zh) | 现浇梁柱预制夹芯混凝土墙板住宅建筑体系 | |
CN106939646A (zh) | 一种可重复拆装的钢结构集成房屋建筑体系及装配方法 | |
CN202202412U (zh) | 一种矩形钢管混凝土异形柱与钢梁框架中节点 | |
CN116145857A (zh) | 钢-混凝土组合剪力墙结构的模块单元、建筑及建造方法 | |
CN205134660U (zh) | 预制装配轻钢混凝土板柱结构 | |
CN202202413U (zh) | 一种矩形钢管混凝土异形柱与钢梁框架角节点 | |
CN105275120A (zh) | 预制装配轻钢混凝土板柱结构及其施工方法 | |
CN202202415U (zh) | 一种矩形钢管混凝土异形柱与钢梁框架边节点 | |
KR101902097B1 (ko) | 규격화 모듈화한 건축구조물 | |
CN211143324U (zh) | 适于钢结构模块建筑用连接结构 | |
CN214423572U (zh) | 一种钢框架与混凝土墙板混合的全装配式多层钢结构体系 | |
CN103469892A (zh) | 高层模块建筑空间的主次模块单元组合结构及连接方法 | |
CN114541611A (zh) | 一种预制轻质格构式混凝土墙装配结构体系及其施工方法 | |
CN203066239U (zh) | 一种多层移动组合房屋 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16806817 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201792588 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016806817 Country of ref document: EP |