WO2016197905A1 - 切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法 - Google Patents

切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法 Download PDF

Info

Publication number
WO2016197905A1
WO2016197905A1 PCT/CN2016/085045 CN2016085045W WO2016197905A1 WO 2016197905 A1 WO2016197905 A1 WO 2016197905A1 CN 2016085045 W CN2016085045 W CN 2016085045W WO 2016197905 A1 WO2016197905 A1 WO 2016197905A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
involute
tooth profile
gear
hob
Prior art date
Application number
PCT/CN2016/085045
Other languages
English (en)
French (fr)
Inventor
颜力
吴全衡
刘忠伟
文超
Original Assignee
中车戚墅堰机车车辆工艺研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510309900.9A external-priority patent/CN104889505B/zh
Priority claimed from CN201510309977.6A external-priority patent/CN104889501B/zh
Application filed by 中车戚墅堰机车车辆工艺研究所有限公司 filed Critical 中车戚墅堰机车车辆工艺研究所有限公司
Publication of WO2016197905A1 publication Critical patent/WO2016197905A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/20Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling

Definitions

  • the invention relates to the technical field of involute gears, relating to a non-completely symmetric involute gear, a cutter tooth hob for hobbing and machining the incompletely symmetric involute gear, and the non-completely symmetric involute based on machining of the cutter hob
  • Gear transmission systems are commonly used for gears that mesh with two gears at the same time, such as intermediate idlers or planetary gears. Since their teeth are subjected to biaxial bending loads, the roots of the gears are most prone to bending and breaking, for example in GB/T 3480. -1997 "Involute Cylindrical Gear Load Capacity Calculation Method" P56 stipulates: For gears that are symmetrically bi-directionally curved (such as intermediate wheels or planetary gears), the bending fatigue limit of the gear should be multiplied by a factor of 0.7 when designing. The bending fatigue limit that such gears can withstand.
  • the left and right tooth surfaces of the intermediate idler gear or the planetary gear are respectively meshed with two different gears. Therefore, the bending strengths of the left and right tooth surfaces of the intermediate idler gear or the planetary gear are respectively different, and the tooth surface involute is required for meshing. The starting point is also different.
  • the traditional involute gear does not consider the difference between the starting point of the involute of the left and right tooth surfaces.
  • the designed tooth profile is completely symmetrical for the left and right tooth faces and the tooth root. See GB/T 1356-2001 "General Machinery and The standard basic rack tooth profile of cylindrical gears for heavy machinery, which reveals that the involute gear has a completely symmetrical tooth profile, therefore, in order to ensure that the starting points of the left and right flank involutes are the same and have sufficient involute length to participate Engagement makes the curvature radius of the left and right tooth root curve small, which further reduces the root bending strength of the intermediate idler or planetary gear.
  • a non-fully symmetric involute gear having a tooth profile of a face tooth groove by a first side tooth profile (310, 410) and with the first side tooth a profile (310, 410) of opposing second side tooth profiles (330, 430), the first side tooth profile (310, 410) comprising an involute segment AB and a root curve segment BG, the second side tooth Profile (330, 430) includes an involute segment FE and a root curve segment EG;
  • connection point of the involute segment AB and the root curve segment BG is the involute starting point B of the involute segment AB
  • connection point between the involute segment FE and the root curve segment EG is
  • the involute starting point E of the involute segment FE, the involute starting point B and the involute starting point E respectively have different involute starting point diameters d b and involute starting point diameters d e ,
  • the radius of curvature of the root curve segment BG is not equal to the radius of curvature of the root curve segment EG, and the root curve segment BG and the root curve segment EG are related to the first axis (III) Asymmetrically set;
  • the first axis (III) is an angle bisector of a central angle corresponding to a face groove width of the incompletely symmetric involute gear (300, 400).
  • the tooth blank is hobbed using the incisor hob (100) until the hobbing is completed and a hobbing gear (390) is formed; wherein the tooth profile of the face tooth groove of the hobbing gear (390) is a third side tooth profile and a fourth side tooth profile opposite the third side tooth profile, the third side tooth profile comprising an involute segment QS and a root curve segment SG, the fourth side tooth profile comprising An involute segment UT and a root curve segment TG, the radius of curvature of the root curve segment SG is not equal to the radius of curvature of the root curve segment TG, and the root curve segment SG and the root curve segment TG is asymmetrically disposed about the first axis (III);
  • a tooth cutting hob (100) for hobbing a gear having an axial tooth profile from a fifth side tooth profile (110) and a fifth side tooth profile (110) a sixth side tooth profile (130), the fifth side tooth profile (110) comprising a straight line segment HI, a circular arc segment JK, and a transition connecting the straight line segment HI and the arc segment JK with the circle a straight line segment IJ tangent to the arc segment JK, the sixth side tooth profile (130) comprising a straight line segment PO, a circular arc segment NM, and a transition connecting the straight line segment PO and the arc segment NM with the arc segment NM Tangent straight line segment ON;
  • the straight line segment HI and the straight line segment PO respectively form a major cutting edge tooth angle with the second axis (I), and the second axis (I) is processed during the tool setting.
  • the indexing circle of the gear is centered and perpendicular to the axis of the indexing hob (100) indexing line (II);
  • the radius R 1 of the arc segment JK is not equal to the radius R 2 of the arc segment NM, so that the arc segment JK and the arc segment NM are not related to the second axis (I) Arranged symmetrically, and the straight line segment HI and the straight line segment PO are not completely symmetrical about the second axis (I).
  • a hobbing forming gear (390) formed by directly hobbing a tooth blank using the above-described cutting tooth hob (100).
  • a non-fully symmetric involute gear (300, 400) formed by grinding a tooth surface of the hobbing gear (390) described above;
  • tooth profile of the face tooth groove of the hobbing forming gear (390) is composed of a third side tooth profile and a fourth side tooth profile opposite to the third side tooth profile;
  • the third side tooth profile includes an involute segment QS and a root curve segment SG, the fourth side tooth profile including an involute segment UT and a root curve segment TG;
  • the radius of curvature of the root curve segment SG is not equal to the radius of curvature of the root curve segment TG, and the root curve segment SG and the root curve segment TG are asymmetric with respect to the first axis (III) Provided, wherein the first axis (III) corresponds to a face groove width of a non-fully symmetric involute gear (300, 400) formed by grinding a tooth surface of the hobbing gear (390) An angle bisector of the central angle;
  • the involute segment QS is ground to form an involute segment AB of the first side tooth profile (310, 410) of the face tooth slot of the incompletely symmetric involute gear (300, 400)
  • the open line segment UT is ground to form an involute segment FE of the second side tooth profile (330, 430) of the face tooth slot of the incompletely symmetric involute gear (300, 400), the involute segment AB and The open line segment FE is not completely symmetrical about the first axis (III).
  • a sixth aspect of the invention there is provided a method of designing the above-described incisor hob (100), comprising the steps of:
  • the basic parameters of the hobbing gear (390) to be directly hobbed by the cutter hob (100) are set, and the basic parameters include the modulus m of the hobbing gear (390). , the number of teeth z, the pressure angle ⁇ n and the displacement coefficient x;
  • q 1 and q 2 are the remaining grinding amount corresponding to the fifth side tooth profile (110) and the sixth side tooth profile (130), respectively;
  • a fifth tooth profile side (110) of the lobe side thickness H 1 and the sixth tooth profile (130) of each lobe and the thickness H 2 (10) is determined by the following formula (9):
  • w is the depth of sinking of the root
  • q 1 and q 2 are the amount of grinding corresponding to the fifth side tooth profile (110) and the sixth side tooth profile (130), respectively;
  • FIG. 1 is a schematic view showing the axial tooth profile of a tooth cutting hob according to an embodiment of the present invention.
  • Figure 2 is a schematic view of the left side profile of the axial profile of the incisor hob of the embodiment of Figure 1.
  • Figure 3 is a schematic view of the right side profile of the axial profile of the incisor hob of the embodiment of Figure 1.
  • Fig. 4 is a schematic view showing the tooth profile of the end face when the tooth blank is rolled by the cutting tooth hob of the embodiment shown in Fig. 1.
  • Fig. 5 is a schematic view showing the process of grinding a hobbing gear to obtain a non-completely symmetric involute gear according to an embodiment of the present invention.
  • Fig. 6 is a schematic view showing a tooth profile of a face tooth groove of a non-completely symmetric involute gear according to an embodiment of the present invention.
  • Fig. 7 is a schematic view showing a tooth profile of a face tooth groove of a non-completely symmetric involute gear according to still another embodiment of the present invention.
  • the "left side” of the original incisor will correspond to the new orientation of the incisor " On the right side, the "right side” of the original cutting tooth will correspond to the "left side” of the new orientation of the cutting tooth.
  • incompletely symmetric means that one of the two objects is symmetrically disposed about a portion of the other object, and another portion of the other component is asymmetrically disposed about another portion of the other object.
  • the incisors of the incisor hob 100 of the embodiment of the present invention are asymmetrical to the left and right, and therefore may also be referred to as an "asymmetric hob"; wherein the line II is a sub-tooth cutter 100.
  • the line I is the axis of the indexing circle II passing through the indexing circle of the machined gear and perpendicular to the indexing line II of the incisor hob 100 during tool setting.
  • the axial profile of each incisor of the incisor hob 100 is comprised of a left side profile 110 and a right side profile 130; in one embodiment, the left side profile 110 is primarily comprised of straight segments HI, IJ, KL and arcs.
  • the segment JK is composed, wherein the straight line segment HI, the straight line segment IJ, the arc segment JK and the straight line segment KL are sequentially connected, the connection point between the straight line segment HI and the straight line segment IJ is I, and the connection point between the straight segment IJ and the arc segment JK is J, the connection point of the arc segment JK and the straight line segment KL is K;
  • the right tooth profile 130 is composed of the straight segment PO, ON, ML and the arc segment NM, wherein the straight segment PO, the straight segment ON, the arc segment NM And the straight line segment ML is sequentially connected, the connection point between the straight line segment PO and the straight line segment ON is O, the connection point between the straight line segment ON and the arc segment NM is N, and the connection point between the arc segment NM and the straight line segment ML is M;
  • the straight line segment KL of the tooth profile 110 is connected to the straight line segment ML of the right side tooth profile 130 at point L, and is at the same
  • the angle between the straight line segment HI and the axis I is the main cutting edge tooth angle of the left tooth profile 110; the angle between the straight line segment PO and the axis I is the main cutting edge profile of the right side profile 130 Angles, which have the same angular extent, are labeled as alpha in the figure.
  • the left side profile 110 has a lobe thickness H 1 as shown in FIGS. 1 and 2, respectively, and the right side profile 130 has a convex shape as shown in FIGS. 1 and 3, respectively.
  • An angular thickness H 2 optionally, allows H 1 ⁇ H 2 .
  • the point J 'point of tangency is denoted lobe thickness H 1 and denoted by a straight line parallel to the line HI and JK used arc segment
  • the point N' is marked with a straight line parallel to the dimension line PO lobe thickness H 2 is employed Tangent point with the arc segment NM,
  • the tooth profile of the axial tooth profile of the incisor hob 100 on the index line II is Sn , wherein the thickness of the left tooth profile 110 on the index line II is Sn1.
  • the radius of the arc segment JK of the left tooth profile 110 is R 1 ; the radius of the arc segment NM of the right tooth profile 130 is R 2 ; 0 ⁇ R 1 ⁇ R 2 ⁇ R max , wherein , R max is calculated as shown in the following formula (1):
  • h a is the crest height of the incisor hob 100.
  • the arc segment JK of the left tooth profile 110 in the case where the radius R 1 of the arc segment JK of the left tooth profile 110 is a certain value, the arc segment JK can be directly tangent to the straight line segment LM. Therefore, the straight line segment KL can be omitted; similarly, in the case where the radius R 2 of the arc segment NM of the right tooth profile 130 is a certain value, the arc segment NM can be directly tangent to the straight line segment KL, so that it can be omitted Set the straight line segment ML.
  • the axial profile of the cutter hob 100 is mainly designed as follows.
  • the basic parameters of the gears to be formed by the direct cutting process of the cutter hob 100 are set, and the basic parameters include the modulus m,
  • the tooth number z, the pressure angle ⁇ n , the displacement coefficient x, the involute starting point diameter of the left side profile QSG of the hobbing forming gear 390 is d Ff1 , and the right side tooth profile UTG of the hobbing forming gear 390 is gradually formed.
  • the starting point of the opening line is d Ff2 (as shown in Figure 4).
  • the following tooth profile parameters of the incisor hob 100 are determined according to the following formula.
  • h a * is the tip height coefficient of the incisor hob 100
  • h a * 1.30 to 1.45
  • m is the modulus of the hobbing gear 390.
  • h f * is the root height coefficient of the incisor hob 100
  • h f * 1.2 to 1.25
  • m is the modulus of the roll-cut forming gear 390.
  • q 1 and q 2 are the remaining grinding amount corresponding to the left tooth profile 110 and the right tooth profile 130 respectively, and the values may refer to Table 1 below, allowing q 1 ⁇ q 2 .
  • the non-shaped cutting edge tooth angle ⁇ 1 of the left side profile 110 of the incisor hob 100 and the non-shaped cutting edge tooth angle ⁇ 2 of the right side profile 130 of the incisor hob 100 satisfy the following requirements:
  • w is the depth of sinking of the root, and the value can be referred to Table 2.
  • the radius R 1 of the arc segment JK of the left tooth profile 110 can be determined by the following method:
  • the grinding amount q 1 , the tip height coefficient h a * , the root height coefficient h f * , the left tooth profile 110 bulge thickness H are input in a tool module such as computer software.
  • the non-shaped cutting edge tooth angle ⁇ 1 of the left tooth profile 110 of the tooth cutting hob 100 is determined by the radius R 1 , the lobe thickness H 1 and the non-shaped cutting edge tooth angle ⁇ 1 to determine the hobbing gear 390
  • the involute starting point diameter d Ff1 of the left tooth profile QSG is calculated and the value of the radius R 1 is obtained.
  • the radius R 2 of the arc segment NM of the right tooth profile 130 can be determined by the following method:
  • the grinding amount q 2 , the tip height coefficient h a * , the root height coefficient h f * , the right tooth profile 130 bulge thickness H are input in a tool module such as computer software.
  • the non-shaped cutting edge tooth angle ⁇ 2 of the right tooth profile 130 of the tooth hob 100, the roll cutting gear 390 is determined by the radius R 2 , the bulge thickness H 2 and the non-shaped cutting edge tooth angle ⁇ 2
  • the involute starting point diameter d Ff2 of the right tooth profile UTG is calculated to obtain the value of the radius R 2 .
  • the basic type of the incisor hob 100 of the embodiment of the present invention and other dimensions besides the axial tooth shape can be referred to the basic type and size of "GB 8062.1-87 Pre-grinding gear roller basic type and size". To design ok.
  • the incisor hob 100 of the embodiment of the present invention has been designed and determined, wherein various parameters of the axial profile as shown in FIG. 1 are also substantially determined.
  • the incisor hob 100 of the embodiment of the present invention can be specifically used for direct hobbing processing to form the hobbing gear 390 of an embodiment of the present invention.
  • a tooth blank that can be used for the hobbing forming gear 390 is prepared.
  • the cutter hob 100 of the above embodiment is selected.
  • the specific mounting and use of the incisor hob 100 is not limiting, such as mounting the incisor hob 100 on a hobbing machine for use.
  • the tooth blank is hobbed using a cutter hob 100 to form a hobbing gear 390 as shown in FIG.
  • the tool segment where the straight section HI of the left tooth profile 110 of the incisor hob 100 is located is used to roll the left side of the tooth blank, thereby forming an involute segment QS of the left tooth profile QSG of the hobbing forming gear 390
  • the tool segment where the straight segment IJ, the arc segment JK and the straight segment KL of the left tooth profile 110 are located is used to roll the left side of the tooth blank, thereby forming the root curve segment SG of the left tooth profile QSG of the hobbing gear 390.
  • the tool segment where the straight section PO of the right side tooth profile 130 of the cutting tooth hob 100 is located cuts the right side of the tooth blank, thereby forming an involute section UT of the right side tooth profile UTG of the hobbing forming gear 390, and the right side tooth profile
  • the tool segment where the straight line segment ON, the arc segment NM, and the straight line segment ML of 130 is hobbed to the right side of the tooth blank, thereby forming the root curve segment TG of the right side tooth profile UTG of the hobbing forming gear 390.
  • Point S is the involute starting point of the left tooth profile QSG of the end face groove of the hobbing forming gear 390
  • d Ff1 is the starting point diameter of the left involute of the face groove of the hobbing forming gear 390
  • point T The involute starting point of the right side tooth profile UTG of the face groove of the hobbing gear 390
  • d Ff2 is the involute starting point diameter of the right side tooth profile UTG of the face cutting gear 390.
  • the radius of curvature of the root curve segment SG is not equal to the radius of curvature of the root curve segment TG, and the root curve segment SG and the root curve segment TG are iii asymmetrically axis; further provided is not equal to d Ff1 d Ff2, and QS involute involute line length of the line is not equal to the UT, and so QS involute sections of non-involute sections UT iii completely symmetrical axis.
  • the hobbing gear 390 of the embodiment of the present invention is obtained by the hobbing process of the cutter hob 100.
  • gear cutting hob embodiment of the present invention by using a disposable 100 can be obtained hobbing cut roller gear 390, the left and right side tooth profile of involute obtain different starting diameter (d Ff1 and d Ff2) and
  • the root curve segments (SG and TG) are very advantageous for machining intermediate idlers or planet wheels for bidirectional meshing, increasing their strength and reliability.
  • the incompletely symmetrical involute gear 300 of one embodiment of the present invention can be processed by continuing the next step. Therefore, the hobbing gear 390 can be understood as an intermediate product of the non-completely symmetrical involute gear 300.
  • the hobbing gear 390 having the QS, SG, TG, and UT end face profiles obtained in the third step is heat-treated, so that the tooth surface has a heat treatment strengthening layer, for example, the tooth surface hardness is relatively improved.
  • the heat treatment method specifically employed is not limitative.
  • the tooth surface is ground to make the involute segment QS and the involute segment UT to the end surface involute segment AB and the involute segment FE of the incompletely symmetric involute gear 300;
  • the gear grinding machine grinds according to the parameter grinding amount q 1 to obtain the end face involute section AB; when grinding the tooth surface corresponding to the involute section UT, the gear grinding machine keeps the parameters according to the parameters.
  • the amount q 2 is subjected to a grinding process to obtain an end face involute line FE.
  • the grinding can be performed, for example, but not limited to, a finishing method such as grinding with a grinding wheel.
  • the involute segment FE of the predetermined involute segment AB can be obtained, so that it is advantageous to avoid excessive or insufficient grinding due to factors such as different deformation of the heat treatment of the left and right tooth profiles, and a grinding boss is generated on the tooth surface, and the involute is opened.
  • the length of the line segments and the like are also relatively accurate, and it is also advantageous to improve the uniformity of the depth of the hardened layer on the left and right tooth faces of the slots of the incompletely symmetric involute gear 300.
  • the incompletely symmetrical involute gear 300 of the embodiment shown in FIG. 6 is formed, and the tooth profile of the face tooth groove of the incompletely symmetric involute gear 300 is AB, BG, EG as shown in FIG. And FE, wherein point B is the involute starting point of the left side tooth profile 310 of the face tooth groove of the incompletely symmetric involute gear 300, and d b is the left side of the face tooth groove of the incompletely symmetric involute gear 300
  • the involute starting point diameter of the side profile 310, the point E is the involute starting point of the right side tooth profile 330 of the face tooth slot of the incompletely symmetric involute gear 300, and d e is a non-completely symmetric involute gear
  • the tooth surfaces corresponding to the left root root curve segment BG and the right root root curve segment GE are not ground, and the heat treatment strengthening layer is retained, and therefore, is not completely symmetrical.
  • the root portion of the end face groove of the involute gear 300 has high strength and good surface properties.
  • the tooth flanks corresponding to the in-slot involute segments AB and FE of the incompletely symmetric involute gear 300 can be formed by grinding finishing, and the gear precision is also ensured.
  • the method of processing the above embodiment to prepare the incompletely symmetric involute gear 300 as shown in FIG. 6 can repeatedly prepare the incompletely symmetric involute gear 300 in batches, and is particularly suitable for preparing non-completely symmetric involute gears in large quantities. 300, and the preparation cycle is short.
  • the face tooth profile of the incompletely symmetric involute gear 300 includes an involute segment AB, an involute segment EF, a tooth root curve segment BG on the left side of the tooth groove, and a tooth root curve segment on the right side of the tooth groove.
  • GE wherein, point A and point F are the tooth vertices of the left and right tooth faces of the face tooth groove of the incompletely symmetric involute gear 300, respectively, and the point E' is the boundary point of the circle corresponding to the diameter of the involute segment AB and the diameter d e .
  • the involute segment AE' and the involute segment EF are completely symmetrical about the axis of symmetry III of the slot, but the involute segment E'B does not have a symmetric involute segment on the right side, so The involute segment AB and the involute segment EF are not completely symmetrical with respect to the axis III.
  • the axis III is an angle bisector of the central angle corresponding to the face groove width V ⁇ Z of the incompletely symmetric involute gear 300.
  • the left root root curve segment BG is the root curve formed by the hobbing of the tool segment where the straight segment IJ, the arc segment JK and the straight segment KL of the left tooth profile 110 of the incisor hob 100 are located
  • the segment GE is the root curve formed by the hobbing of the tool segment where the straight segment ON, the arc segment NM and the straight segment ML of the right tooth profile 130 of the tooth cutting hob 100 are tangential, and the straight segment IJ, the arc segment JK and the straight segment KL are relatively
  • the asymmetrical design of the straight line segment ON, the arc segment NM and the straight line segment ML causes the left tooth root curve segment BG and the tooth groove right tooth root curve segment GE formed by the hobbing to be asymmetrical about the axis III, for example
  • the left root root curve segment BG and the right side root root curve segment GE have different radii of curvature, respectively.
  • the left and right sides of the teeth of the incompletely symmetric involute gear 300 can obtain different root bending strengths, for example, a larger root bending strength on the side having a larger radius of curvature, which is very suitable for the left and right tooth surfaces.
  • the intermediate idler or planet gear that respectively engages two different gears helps to increase its strength and reliability.
  • the incompletely symmetric involute gear 400 can also be finally obtained by machining the incisor hob 100.
  • the tooth profile of the face groove of the incompletely symmetric involute gear 400 is as shown in the figure. 7 shows AB, BG, EG and FE, wherein the left tooth profile 410 comprises an involute segment AB and a left root root curve segment BG, and the right tooth profile 430 comprises an involute segment FEB and a left root root curve segment EG
  • Point B is the involute starting point of the left side profile 410 of the face groove of the incompletely symmetric involute gear 400, and d b is the left side profile 410 of the face groove of the incompletely symmetric involute gear 400
  • the involute starting point diameter, point E is the involute starting point of the right side tooth profile 430 of the face tooth slot of the incompletely symmetric involute gear 400, and d e is the face tooth of the incompletely symmetric involute gear 400
  • the right side tooth profile 430 of the face tooth groove of the incompletely symmetric involute gear 400 and the face tooth groove of the incompletely symmetric involute gear 300 are compared.
  • the linear shape of the left side profile 310 is substantially uniform, and the left side profile 410 of the end face slot of the incompletely symmetric involute gear 400 and the right side profile 330 of the face groove of the incompletely symmetric involute gear 300 are linear. Basically consistent. Therefore, in the embodiment shown in Fig.
  • the involute segment EF is composed of the involute segment EB' and the involute segment FB', and the involute segment AB and the involute segment FB' are completely related to the axis III. symmetry.
  • the root curve BG and the root curve GE are both subjected to surface grinding treatment, and specifically may be an extended involute formed by the cutting of the cutting tooth hob 100 .
  • the isometric curve of the line is also considered.

Abstract

一种切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法,涉及渐开线齿轮技术领域。切齿滚刀(100)的轴向齿廓中,渐开线段AB和渐开线段FE关于轴线Ⅲ非完全对称,齿根曲线段BG的曲率半径不等于齿根曲线段EG的曲率半径,并且齿根曲线段BG和齿根曲线段EG关于轴线Ⅲ非对称地设置。基于以上切齿滚刀(100)加工得到的滚切成型齿轮(390)和非完全对称渐开线齿轮(300)中,其端面齿槽的齿廓的左右齿根曲线段也具有不同的曲率半径并且关于轴线Ⅲ非对称地设置。非完全对称渐开线齿轮(300)的齿牙左右侧可以获得不同的较高的齿根弯曲强度,非常适合用于左右齿面分别啮合两个不同的齿轮。

Description

切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法 技术领域
本发明涉及渐开线齿轮技术领域,涉及非完全对称渐开线齿轮、用来滚切加工该非完全对称渐开线齿轮的切齿滚刀、基于该切齿滚刀的加工该非完全对称渐开线齿轮的方法以及在加工方法过程中获得的通过该切齿滚刀直接滚切加工形成的滚切成型齿轮。
背景技术
齿轮传动系统常用到同时与两个齿轮啮合的齿轮,例如中间惰轮或行星轮,由于它们的齿牙受双向弯曲载荷作用,该齿轮的齿根最容易出现弯曲折断,例如在GB/T 3480-1997《渐开线圆柱齿轮承载能力计算方法》P56中规定:对于受对称双向弯曲的齿轮(如中间轮或行星轮),在设计时,应将齿轮的弯曲疲劳极限值乘上系数0.7作为这类齿轮所能承受的弯曲疲劳极限。
另外,中间惰轮或行星轮的左右齿面分别与两个不同的齿轮啮合,因此,中间惰轮或行星轮的齿牙左右齿面分别承受的弯曲强度不同,啮合所需齿面渐开线的起始点也不同。
然而,传统的渐开线齿轮不考虑左、右齿面渐开线起始点的差异,设计的齿形为左、右齿面及齿根完全对称,参见GB/T 1356-2001《通用机械和重型机械用圆柱齿轮标准基本齿条齿廓》,其揭示的渐开线齿轮具有完全对称齿廓,因此,为了保证左、右齿面渐开线起始点相同且具有足够的渐开线长度参与啮合,使得左右齿廓齿根曲线曲率半径均很小,这进一步降低了中间惰轮或行星轮的齿根弯曲强度。
发明内容
按照本发明的第一方面,提供一种非完全对称渐开线齿轮(300,400),其端面齿槽的齿廓由第一侧齿廓(310,410)和与所述第一侧齿廓(310,410)相对的第二侧齿廓(330,430)组成,所述第一侧齿廓(310,410)包括渐开线段AB和齿根曲线段BG,所述第二侧齿廓(330,430)包括渐开线段FE和齿根曲线段EG;
其中,所述渐开线段AB和齿根曲线段BG的连接点为所述渐开线 段AB的渐开线起始点B,所述渐开线段FE和齿根曲线段EG的连接点为所述渐开线段FE的渐开线起始点E,设置渐开线起始点B和所述渐开线起始点E分别具有不同的渐开线起始点直径db和渐开线起始点直径de,从而使得所述渐开线段AB和渐开线段FE关于所述第一轴线(Ⅲ)非完全对称;
其中,所述齿根曲线段BG的曲率半径不等于所述齿根曲线段EG的曲率半径,并且所述齿根曲线段BG和所述齿根曲线段EG关于所述第一轴线(Ⅲ)非对称地设置;
其中,所述第一轴线(Ⅲ)为所述非完全对称渐开线齿轮(300,400)的端面齿槽宽所对应的圆心角的角平分线。
按照本发明的第二方面,提供一种上述非完全对称渐开线齿轮(300,400)的加工方法,包括步骤:
提供齿坯;
提供并安装切齿滚刀(100);
使用所述切齿滚刀(100)滚切所述齿坯直至滚切完成并形成滚切成型齿轮(390);其中,所述滚切成型齿轮(390)的端面齿槽的齿廓由第三侧齿廓和与所述第三侧齿廓相对的第四侧齿廓组成,所述第三侧齿廓包括渐开线段QS和齿根曲线段SG,所述第四侧齿廓包括渐开线段UT和齿根曲线段TG,所述齿根曲线段SG的曲率半径不等于所述齿根曲线段TG的曲率半径,并且,所述齿根曲线段SG和所述齿根曲线段TG关于第一轴线(Ⅲ)非对称地设置;以及
磨削所述滚切成型齿轮(390)的齿面直至其渐开线段QS和渐开线段UT分别被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第一侧齿廓(310,410)的渐开线段AB和第二侧齿廓(320,420)的渐开线段FE。
按照本发明的第三方面,提供一种切齿滚刀(100),用于滚切加工齿轮,其轴向齿廓由第五侧齿廓(110)和与所述第五侧齿廓(110)相对的第六侧齿廓(130)组成,所述第五侧齿廓(110)包括直线段HI、圆弧段JK以及过渡连接所述直线段HI和圆弧段JK且与所述圆弧段JK相切的直线段IJ,所述第六侧齿廓(130)包括直线段PO、圆弧段NM以及过渡连接所述直线段PO和圆弧段NM且与所述圆弧段NM相切的直线段ON;
其中,所述直线段HI和所述直线段PO分别与第二轴线(Ⅰ)的形成的主切削刃齿形角均为α,所述第二轴线(Ⅰ)为在对刀时通过被加工的齿轮的分度圆圆心且垂直于所述切齿滚刀(100)分度线(Ⅱ)的轴线;
其中,设置所述圆弧段JK的半径R1不等于所述圆弧段NM的半径R2,以至于使所述圆弧段JK和圆弧段NM关于所述第二轴线(Ⅰ)非对称地设置,并且使所述直线段HI和直线段PO关于所述第二轴线(Ⅰ)非完全对称。
按照本发明的第四方面,提供一种滚切成型齿轮(390),采用以上所述切齿滚刀(100)对齿坯直接滚切加工形成。
按照本发明的第五方面,提供一种非完全对称渐开线齿轮(300,400),其通过磨削以上所述的滚切成型齿轮(390)的齿面而形成;
其中,所述滚切成型齿轮(390)的端面齿槽的齿廓由第三侧齿廓和与所述第三侧齿廓相对的第四侧齿廓组成;
所述第三侧齿廓包括渐开线段QS和齿根曲线段SG,所述第四侧齿廓包括渐开线段UT和齿根曲线段TG;
所述齿根曲线段SG的曲率半径不等于所述齿根曲线段TG的曲率半径,并且,所述齿根曲线段SG和所述齿根曲线段TG关于第一轴线(Ⅲ)非对称地设置,其中,所述第一轴线(Ⅲ)为磨削所述滚切成型齿轮(390)的齿面形成的非完全对称渐开线齿轮(300,400)的端面齿槽宽所对应的圆心角的角平分线;
其中,所述渐开线段QS被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第一侧齿廓(310,410)的渐开线段AB,所述渐开线段UT被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第二侧齿廓(330,430)的渐开线段FE,所述渐开线段AB和渐开线段FE关于所述第一轴线(Ⅲ)非完全对称。
按照本发明的第六方面,提供一种以上所述切齿滚刀(100)的设计方法,包括步骤:
第一步,设定欲通过该切齿滚刀(100)直接滚切加工形成的滚切成型齿轮(390)的基本参数,该基本参数包括为滚切成型齿轮(390)的模数m、齿数z、压力角αn和变位系数x;
第二步,按以下步骤确定切齿滚刀(100)的以下齿形参数:
(a)根据以下公式(2),确定切齿滚刀(100)的齿顶高ha
ha=ha *m     (2)
其中,ha *为切齿滚刀(100)的齿顶高系数,ha *=1.30~1.45,m为滚切成型齿轮(390)的模数;
(b)根据以下公式(3),确定切齿滚刀(100)的齿根高hf
hf=hf *m      (3),
其中,hf *为切齿滚刀(100)的齿根高系数,hf *=1.2~1.25,m为滚切成型齿轮(390)的模数;
(c)根据以下公式(4),确定切齿滚刀(100)的全齿高h,
h=ha+hf      (4);
(d)根据以下公式(5),确定切齿滚刀(100)的轴向齿廓在分度线(Ⅱ)上的齿距Pn
Pn=πm     (5);
(e)确定切齿滚刀(100)的第五侧齿廓(110)的主切削刃齿形角和切齿滚刀(100)的第六侧齿廓(130)的主切削刃齿形角均为α,其等于压力角αn
(f)根据以下公式(6)至(8),确定切齿滚刀(100)的轴向齿廓在分度线(Ⅱ)上的齿厚Sn
Sn1=0.25πm-xtanα-q1     (6)
Sn2=0.25πm-xtanα-q2      (7)
Sn=Sn1+Sn2      (8)
其中,q1和q2分别为第五侧齿廓(110)和第六侧齿廓(130)对应的留磨量;
(g)切齿滚刀(100)的第五侧齿廓(110)的非造型切削刃齿形角β1和切齿滚刀(100)的第六侧齿廓(130)的非造型切削刃齿形角β2分别满足如下要求来确定:β1<α,β2<α,其中,推荐β1和β2取值范围为7°~14°;
(h)第五侧齿廓(110)的凸角厚度H1和第六侧齿廓(130)的凸角厚度H2分别按以下公式(9)和(10)确定:
H1=q1+w     (9)
H2=q2+w     (10)
其中,w为齿根的沉切深度,q1和q2分别为第五侧齿廓(110)和第六侧齿廓(130)对应的留磨量;
(i)确定第五侧齿廓(110)的圆弧段JK的半径R1和第六侧齿廓(130)的圆弧段NM的半径R2
(j)根据以下公式(11)和(12),分别确定第五侧齿廓(110)的凸角高度hi和第六侧齿廓(130)的凸角高度ho
Figure PCTCN2016085045-appb-000001
Figure PCTCN2016085045-appb-000002
根据以下描述和附图本发明的以上特征和操作将变得更加显而易见。
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1是按照本发明一实施例的切齿滚刀的轴向齿廓示意图。
图2是图1所示实施例的切齿滚刀的轴向齿廓的左侧齿廓型线示意图。
图3是图1所示实施例的切齿滚刀的轴向齿廓的右侧齿廓型线示意图。
图4是采用图1所示实施例的切齿滚刀滚切齿坯时的端面齿廓示意图。
图5是示意磨削滚切成型齿轮加工得到本发明一实施例的非完全对称渐开线齿轮的过程示意图。
图6是本发明一实施例的非完全对称渐开线齿轮的端面齿槽的齿廓型线示意图。
图7是本发明又一实施例的非完全对称渐开线齿轮的端面齿槽的齿廓型线示意图。
具体实施方式
下面介绍的是本发明的多个可能实施例中的一些,旨在提供对本发明的基本了解,并不旨在确认本发明的关键或决定性的要素或限定所要保护的范围。容易理解,根据本发明的技术方案,在不变更本发明的实质精神下,本领域的一般技术人员可以提出可相互替换的其他实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
在描述中,使用方向性术语(例如“左”、“右”等)以及类似术语描述的各种实施方式的部件表示附图中示出的方向或者能被本领域技术人员理解的方向。这些方向性术语用于相对的描述和澄清,而不是要将任何实施例的定向限定到具体的方向或定向,其可以随着滚刀或齿轮的所放置的方位的变化而相应地发生变化,例如,切齿滚刀的切齿按附图中方位定义“左侧”和“右侧”,在切齿滚刀沿轴向掉头后,原来的切齿的“左侧”将对应新的方位的切齿的“右侧”,原来的切齿的“右侧”将对应新的方位的切齿的“左侧”。
在本文中,“非完全对称”是指两个对象中其中一个对象的一部分是关于另一对象的一部分是对称设置的、一个对象的另一部分是关于另一对象的另一部分是不对称设置的。
如图1至图3所示,本发明实施例的切齿滚刀100的切齿是左右不对称的,因此,也可以称为“非对称滚刀”;其中,线Ⅱ为切齿滚刀100的分度线,线Ⅰ为在对刀时通过被加工的齿轮的分度圆圆心且垂直于切齿滚刀100的分度线Ⅱ的轴线。切齿滚刀100的每个切齿的轴向齿廓由左侧齿廓110和右侧齿廓130组成;在一实施例中,左侧齿廓110主要由直线段HI、IJ、KL和圆弧段JK组成,其中,直线段HI、直线段IJ、圆弧段JK和直线段KL依次连接,直线段HI与直线段IJ的连接点为I,直线段IJ与圆弧段JK的连接点为J,圆弧段JK与直线段KL的连接点为K;右侧齿廓130由直线段PO、ON、ML和圆弧段NM组成,其中,直线段PO、直线段ON、圆弧段NM和直线段ML依次连接,直线段PO与直线段ON的连接点为O,直线段ON与圆弧段NM的连接点为N,圆弧段NM与直线段ML的连接点为M;左侧齿廓110的直线段KL与右侧齿廓130的直线段ML在L点连接,并且在同一直线水平上且平行于分度线Ⅱ。
在一实施例中,直线段HI与轴线Ⅰ的夹角为左侧齿廓110的主切削刃齿形角;直线段PO与轴线Ⅰ的夹角为右侧齿廓130的主切削刃齿形角,它们具有相同的角度大小,在图中同一标示为α。
继续如图1和图2所示,左侧齿廓110的直线段IJ与轴线Ⅰ的夹角为左侧齿廓110的非造型切削刃齿形角β1,β1<α,且β1=7°~14°,即7°≤β1≤14°(例如β1=10°);圆弧段JK与直线段IJ和KL分别相切于点J和点K。
继续如图1和图3所示,右侧齿廓130的直线段ON与轴线Ⅰ的夹角为右侧齿廓130的非造型切削刃齿形角β2,β2<α,且β2=7°~14°,即7°≤β2≤14°(例如β2=10°);圆弧段NM与直线段ON和ML分别相切于点N和点M。
因此,在该实施例中,左侧齿廓110相应地具有如图1和图2所示的凸角厚度H1,右侧齿廓130相应地具有如图1和图3所示的具有凸角厚度H2,可选地,允许H1≠H2。其中,点J'是标注凸角厚度H1采用的与直线HI平行的标注线与圆弧段JK的相切点,点N'是标注凸角厚度H2采用的与直线PO平行的标注线与圆弧段NM的相切点,
继续如图1至图3所示,切齿滚刀100的轴向齿廓在分度线Ⅱ上的齿厚为Sn,其中,左侧齿廓110在分度线Ⅱ上的厚度为Sn1,右侧齿廓130在分度线Ⅱ上的厚度Sn2,Sn=Sn1+Sn2,可选地,允许Sn1≠Sn2
在一实施例中,左侧齿廓110的圆弧段JK的半径为R1;右侧齿廓130的圆弧段NM的半径为R2;0<R1<R2≤Rmax,其中,Rmax按如下公式(1)计算:
Figure PCTCN2016085045-appb-000003
其中,ha为切齿滚刀100的齿顶高。
需要说明的是,在其他可替换的实施例中,在左侧齿廓110的圆弧段JK的半径R1为某一值的情况下,圆弧段JK可以直接与直线段LM相切,从而可以省略设置直线段KL;同样地,在右侧齿廓130的圆弧段NM的半径R2为某一值的情况下,圆弧段NM可以直接与直线段KL相切,从而可以省略设置直线段ML。
结合如图1至图5所示,以下示例揭示切齿滚刀100的设计方法,切齿滚刀100的轴向齿廓主要按以下步骤进行设计。
第一步,设定欲通过该切齿滚刀100直接滚切加工形成的齿轮(即如4和图5所示的滚切成型齿轮390)的基本参数,该基本参数包括为模数m、齿数z、压力角αn、变位系数x,滚切成型齿轮390的左侧齿廓QSG的渐开线起始点直径为dFf1,滚切成型齿轮390的右侧齿廓UTG的渐开线起始点直径为dFf2(如图4所示)。
第二步,按以下公式分别确定切齿滚刀100的以下齿形参数。
1)根据以下公式(2),确定切齿滚刀100的齿顶高ha
ha=ha *m      (2);
其中,ha *为切齿滚刀100的齿顶高系数,ha *=1.30~1.45,m为滚切成型齿轮390的模数。
2)根据以下公式(3),确定切齿滚刀100的齿根高hf
hf=hf *m       (3);
其中,hf *为切齿滚刀100的齿根高系数,hf *=1.2~1.25,m为滚切成型齿轮390的模数。
3)根据以下公式(4),确定切齿滚刀100的全齿高h;
h=ha+hf      (4)。
4)根据以下公式(5),确定切齿滚刀100的轴向齿廓在分度线Ⅱ上的齿距Pn
Pn=πm     (5)。
5)确定切齿滚刀100的左侧齿廓110的主切削刃齿形角和切齿滚刀100的右侧齿廓130的主切削刃齿形角均为α,其等于压力角αn
6)根据以下公式(6)至(8),确定切齿滚刀100的轴向齿廓在分
度线Ⅱ上的齿厚Sn
Sn1=0.25πm-xtanα-q1     (6);
Sn2=0.25πm-xtanα-q2     (7);
Sn=Sn1+Sn2       (8);
其中:q1和q2分别为左侧齿廓110和右侧齿廓130对应的留磨量,取值可参考以下表1,允许q1≠q2
表1齿轮单侧留磨量推荐值
Figure PCTCN2016085045-appb-000004
Figure PCTCN2016085045-appb-000005
7)切齿滚刀100的左侧齿廓110的非造型切削刃齿形角β1和切齿滚刀100的右侧齿廓130的非造型切削刃齿形角β2分别满足如下要求:
β1<α,β2<α,推荐β1和β2取值范围为7°~14°,需要说明的是,β12的取值范围并不限于以上实施例,例如,其还可以为6.5°。
8)左侧齿廓110的凸角厚度H1和右侧齿廓130的凸角厚度H2分别按以下公式(9)和(10)确定:
H1=q1+w      (9);
H2=q2+w      (10);
其中,w为齿根的沉切深度,取值可参考表2。
表2沉切深度推荐值  (mm)
模数 ≤3 3~5 5~7 7~10 10~12 >12
沉切深度w 0.02 0.05 0.1 0.12 0.18 0.2
9)左侧齿廓110的圆弧段JK的半径R1可由下述方法确定:
根据滚切成型齿轮390的参数,在例如计算机软件的刀具模块中输入留磨量q1、齿顶高系数ha *、齿根高系数hf *、左侧齿廓110凸角厚度H1、切齿滚刀100左侧齿廓110的非造型切削刃齿形角β1,由半径R1、凸角厚度H1和非造型切削刃齿形角β1共同确定滚切成型齿轮390的左侧齿廓QSG的渐开线起始点直径dFf1,并计算获得半径R1的值。
10)右侧齿廓130的圆弧段NM的半径R2可由下述方法确定:
根据滚切成型齿轮390的参数,在例如计算机软件的刀具模块中输入留磨量q2、齿顶高系数ha *、齿根高系数hf *、右侧齿廓130凸角厚 度H2、切齿滚刀100右侧齿廓130的非造型切削刃齿形角β2,由半径R2、凸角厚度H2和非造型切削刃齿形角β2共同确定滚切成型齿轮390右侧齿廓UTG的渐开线起始点直径dFf2,计算获得半径R2的值。
11)根据以下公式(11)和(12),分别确定左侧齿廓110的凸角高度hi和右侧齿廓130的凸角高度ho
Figure PCTCN2016085045-appb-000006
Figure PCTCN2016085045-appb-000007
进一步,需要说明的是,本发明实施例的切齿滚刀100的基本型式和除轴向齿形外的其他尺寸可以参见《GB 8062.1-87磨前齿轮滚基本型式和尺寸》的基本型式和尺寸来设计确定。
至此,本发明实施例的切齿滚刀100被设计确定,其中,如图1所示的轴向齿廓的各个参数也被基本确定。
本发明实施例的切齿滚刀100可以专门用来直接滚切加工形成本发明一实施例的滚切成型齿轮390。
如图4所示,采用上述设计方法形成的切齿滚刀100滚切加工滚切成型齿轮390时,具体包括以下步骤。
第一步,准备能够用于滚齿形成齿轮390的齿坯。
第二步,选用以上实施例的切齿滚刀100。切齿滚刀100的具体安装和使用方法不是限制性的,例如将切齿滚刀100安装在滚齿机上准备使用。
第三步,使用切齿滚刀100滚切齿坯形成如图4所示的滚切成型齿轮390。具体地,切齿滚刀100的左侧齿廓110的直线段HI所在的刀具段用于滚切齿坯的左侧,从而形成滚切成型齿轮390的左侧齿廓QSG的渐开线段QS,左侧齿廓110的直线段IJ、圆弧段JK和直线段KL所在的刀具段用于滚切齿坯左侧,从而形成滚切成型齿轮390的左侧齿廓QSG的齿根曲线段SG;切齿滚刀100的右侧齿廓130的直线段PO所在的刀具段滚切齿坯的右侧,从而形成滚切成型齿轮390的右侧齿廓UTG的渐开线段UT,右侧齿廓130的直线段ON、圆弧段NM和直线段ML所在的刀具段滚切齿坯的右侧,从而形成滚切成型齿轮390的右侧齿廓UTG的齿根曲线段TG。点S为滚切成型齿轮390的端 面齿槽的左侧齿廓QSG的渐开线起始点,dFf1为滚切成型齿轮390的端面齿槽左侧渐开线起始点直径,点T为滚切成型齿轮390的端面齿槽的右侧齿廓UTG的渐开线起始点,dFf2为滚切成型齿轮390的端面齿槽右侧齿廓UTG的渐开线起始点直径。其中,滚切成型齿轮390的端面齿槽的齿廓中,齿根曲线段SG的曲率半径不等于齿根曲线段TG的曲率半径,并且,齿根曲线段SG和齿根曲线段TG关于轴线Ⅲ非对称地设置;进一步,设置dFf1不等于dFf2,渐开线段QS和渐开线段UT的长度也不相等,从而渐开线段QS和渐开线段UT关于轴线Ⅲ非完全对称。
至此,通过切齿滚刀100滚切加工获得了本发明实施例的滚切成型齿轮390。因此,通过采用本发明实施例的切齿滚刀100一次性滚切加工即可获得滚切成型齿轮390,其左右侧齿廓获得不同的渐开线起始点直径(dFf1和dFf2)和齿根曲线段(SG和TG),非常有利于加工用于双向啮合的中间惰轮或行星轮,提高其强度和可靠性。
基于以上实施例的滚切成型齿轮390,通过继续完成下步骤,可以加工形成本发明一实施例的非完全对称渐开线齿轮300。因此,滚切成型齿轮390可以理解为非完全对称渐开线齿轮300的中间产品。
继续地,第四步,对以上第三步获得的具有QS、SG、TG、UT端面齿廓的滚切成型齿轮390进行热处理,从而齿面存在热处理强化层,例如,齿面硬度相对提高。需要说明的是,具体采用的热处理方法不是限制性的。
第五步,如图5所示,磨削齿面使渐开线段QS、渐开线段UT至非完全对称渐开线齿轮300的端面渐开线段AB、渐开线段FE;在磨削渐开线段QS对应的齿面时,磨齿机按参数留磨量q1进行磨削处理,得到端面渐开线段AB;在磨削渐开线段UT对应的齿面时,磨齿机按参数留磨量q2进行磨削处理,得到端面渐开线段FE。具体地,磨削例如可以但不限于采用砂轮磨削等精加工方法进行。
需要说明的是,当有需要时(例如,如果滚切成型齿轮390在热处理后左右齿面存在较大的变形量时),根据左右齿面各自不相等或相等的变形量,可以在设计切齿滚刀100时,考虑其后热处理过程的变形量的大小的影响,从而在确定左侧齿廓110对应的留磨量q1和右侧齿廓130对应的留磨量q2参数时,例如增加或减去变形量对留磨量的影 响,从而使得基于留磨量q1和留磨量q2进行磨削时,可以准确地获得渐开线段AB的渐开线段FE的线轮廓,也即可以获得预定的渐开线段AB的渐开线段FE,这样,有利于避免左右齿廓热处理变形量不同等因素而出现磨削过量或不足而在齿面上产生磨削凸台,渐开线段的长度等也相对精确,也有利于提高非完全对称渐开线齿轮300的齿槽的左右齿面的硬化层深度的均匀性。
至此,形成了如图6所示实施例的非完全对称渐开线齿轮300,该非完全对称渐开线齿轮300的端面齿槽的齿廓形状为如图6所示的AB、BG、EG和FE,其中,点B为非完全对称渐开线齿轮300的端面齿槽的左侧齿廓310的渐开线起始点,db为非完全对称渐开线齿轮300的端面齿槽的左侧齿廓310的渐开线起始点直径,点E为非完全对称渐开线齿轮300的端面齿槽的右侧齿廓330的渐开线起始点,de为非完全对称渐开线齿轮300的端面齿槽的右侧齿廓330的渐开线起始点直径;BG为非完全对称渐开线齿轮300的端面齿槽的左侧齿廓310的左侧齿根曲线段,EG为非完全对称渐开线齿轮300的端面齿槽的右侧齿廓330的右侧齿根曲线段。
以上实施例的非完全对称渐开线齿轮300中,左侧齿根曲线段BG和右侧齿根曲线段GE对应的齿面未经磨削处理,热处理强化层被保留,因此,非完全对称渐开线齿轮300的端面齿槽的齿根部分的强度高、表面性能好。并且,非完全对称渐开线齿轮300的端面齿槽渐开线段AB和FE对应的齿面是可以磨削精加工形成,也保证了齿轮精度。
以上实施例的加工制备如图6所示非完全对称渐开线齿轮300的方法,可以重复地批量制备非完全对称渐开线齿轮300,尤其适合于大批量地制备非完全对称渐开线齿轮300,并且制备周期短。
继续如图6所示,非完全对称渐开线齿轮300的端面齿槽齿形包括渐开线段AB、渐开线段EF、齿槽左侧齿根曲线段BG和齿槽右侧齿根曲线段GE;其中,点A和点F分别是非完全对称渐开线齿轮300的端面齿槽的左、右齿面的齿顶点,点E'是渐开线段AB与直径de对应的圆周的交界点,在该实施例中,渐开线段AE'与渐开线段EF是关于齿槽的对称轴线Ⅲ完全对称的,但是,渐开线段E'B在右侧并不存在对称的渐开线段,因此,渐开线段AB和渐开线段EF相对于轴线Ⅲ不 完全对称。其中,轴线Ⅲ为非完全对称渐开线齿轮300的端面齿槽宽V⌒Z所对应的圆心角的角平分线。
并且,左侧齿根曲线段BG为切齿滚刀100的左侧齿廓110的直线段IJ、圆弧段JK和直线段KL所在的刀具段滚切形成的齿根曲线,右侧齿根曲线段GE为切齿滚刀100右侧齿廓130的直线段ON、圆弧段NM和直线段ML所在的刀具段滚切形成的齿根曲线,直线段IJ、圆弧段JK和直线段KL相对直线段ON、圆弧段NM和直线段ML的不对称设计,导致它们滚切形成的齿槽左侧齿根曲线段BG和齿槽右侧齿根曲线段GE也关于轴线Ⅲ不对称,例如,左侧齿根曲线段BG和齿槽右侧齿根曲线段GE分别具有不同的曲率半径。因此,非完全对称渐开线齿轮300的齿牙左右侧可以获得不同的齿根弯曲强度,例如,曲率半径较大一侧的具有更大的齿根弯曲强度,其非常适合用于左右齿面分别啮合两个不同的齿轮的中间惰轮或行星轮,有利于提高其强度和可靠性。
在又一实施例中,参见图7,非完全对称渐开线齿轮400也同样可以通过切齿滚刀100加工最终获得,非完全对称渐开线齿轮400的端面齿槽的齿廓形状为如图7所示AB、BG、EG和FE,其中,左侧齿廓410包括渐开线段AB和左侧齿根曲线段BG,右侧齿廓430包括渐开线段FEB和左侧齿根曲线段EG;点B为非完全对称渐开线齿轮400的端面齿槽的左侧齿廓410的渐开线起始点,db为非完全对称渐开线齿轮400的端面齿槽的左侧齿廓410的渐开线起始点直径,点E为非完全对称渐开线齿轮400的端面齿槽的右侧齿廓430的渐开线起始点,de为非完全对称渐开线齿轮400的端面齿槽的右侧齿廓430的渐开线起始点直径。
相比于图6所示实施例的非完全对称渐开线齿轮300,非完全对称渐开线齿轮400的端面齿槽的右侧齿廓430与非完全对称渐开线齿轮300的端面齿槽的左侧齿廓310的线形基本一致,非完全对称渐开线齿轮400的端面齿槽的左侧齿廓410与非完全对称渐开线齿轮300的端面齿槽的右侧齿廓330的线形基本一致。因此,在图7所示实施例中,db>de时,渐开线段EF由渐开线段EB'和渐开线段FB'组成,渐开线段AB与渐开线段FB'关于轴线Ⅲ完全对称。
需要说明的是,在图6和图7所述实施例中,齿根曲线BG和齿根曲线GE均是未经过表面磨削处理的,具体可以为切齿滚刀100滚切形成的延伸渐开线的等距曲线。
以上例子主要说明了本发明的切齿滚刀及其设计方法、切齿滚刀直接滚切加工得到的滚切成型齿轮、以及继续磨削加工得到的各种非完全对称渐开线齿轮。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (22)

  1. 一种非完全对称渐开线齿轮(300,400),其端面齿槽的齿廓由第一侧齿廓(310,410)和与所述第一侧齿廓(310,410)相对的第二侧齿廓(330,430)组成,其特征在于,所述第一侧齿廓(310,410)包括渐开线段AB和齿根曲线段BG,所述第二侧齿廓(330,430)包括渐开线段FE和齿根曲线段EG;
    其中,所述渐开线段AB和齿根曲线段BG的连接点为所述渐开线段AB的渐开线起始点B,所述渐开线段FE和齿根曲线段EG的连接点为所述渐开线段FE的渐开线起始点E,设置渐开线起始点B和所述渐开线起始点E分别具有不同的渐开线起始点直径db和渐开线起始点直径de,从而使得所述渐开线段AB和渐开线段FE关于所述第一轴线(Ⅲ)非完全对称;
    其中,所述齿根曲线段BG的曲率半径不等于所述齿根曲线段EG的曲率半径,并且所述齿根曲线段BG和所述齿根曲线段EG关于所述第一轴线(Ⅲ)非对称地设置;
    其中,所述第一轴线(Ⅲ)为所述非完全对称渐开线齿轮(300,400)的端面齿槽宽所对应的圆心角的角平分线。
  2. 如权利要求1所述的非完全对称渐开线齿轮(300,400),其特征在于,当db<de时,所述渐开线段AB由渐开线段AE'和渐开线段E'B组成,其中所述渐开线段AE'与渐开线段EF关于第一轴线(Ⅲ)完全对称;
    当db>de时,所述渐开线段EF由渐开线段EB'和渐开线段FB'组成,所述渐开线段AB与渐开线段FB'关于第一轴线(Ⅲ)完全对称。
  3. 如权利要求1所述的非完全对称渐开线齿轮(300,400),其特征在于,所述渐开线段AB的点A为所述第一侧齿廓(310,410)的齿顶点,所述渐开线段FE的点F为所述第二侧齿廓(330,430)的齿顶点。
  4. 如权利要求1所述的非完全对称渐开线齿轮(300,400),其特征在于,所述非完全对称渐开线齿轮(300,400)为用于双向啮合的中间惰轮或行星轮。
  5. 一种如权利要求1所述的非完全对称渐开线齿轮(300,400)的加工方法,其特征在于,包括步骤:
    提供齿坯;
    提供并安装切齿滚刀(100);
    使用所述切齿滚刀(100)滚切所述齿坯直至滚切完成并形成滚切成型齿轮(390);其中,所述滚切成型齿轮(390)的端面齿槽的齿廓由第三侧齿廓和与所述第三侧齿廓相对的第四侧齿廓组成,所述第三侧齿廓包括渐开线段QS和齿根曲线段SG,所述第四侧齿廓包括渐开线段UT和齿根曲线段TG,所述齿根曲线段SG的曲率半径不等于所述齿根曲线段TG的曲率半径,并且,所述齿根曲线段SG和所述齿根曲线段TG关于第一轴线(Ⅲ)非对称地设置;以及
    磨削所述滚切成型齿轮(390)的齿面直至其渐开线段QS和渐开线段UT分别被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第一侧齿廓(310,410)的渐开线段AB和第二侧齿廓(320,420)的渐开线段FE。
  6. 如权利要求5所述的加工方法,其特征在于,在所述磨削步骤之前,对所述滚切成型齿轮(390)进行热处理。
  7. 如权利要求6所述的加工方法,其特征在于,在所述磨削步骤中,对应所述滚切成型齿轮(390)的渐开线段UT和齿根曲线段TG的磨削量分别基于所述切齿滚刀(100)的轴向齿廓的第五侧齿廓(110)和第六侧齿廓(130)的留磨量来确定;
    其中,所述第五侧齿廓(110)与所述第六侧齿廓(130)相对,在所述滚切过程中,所述第五侧齿廓(110)用于滚切齿坯形成所述滚切成型齿轮(390)的第三侧齿廓,所述第六侧齿廓(130)用于滚切齿坯形成所述滚切成型齿轮(390)的第四侧齿廓。
  8. 如权利要求7所述的加工方法,其特征在于,所述第五侧齿廓(110)对应的留磨量q1和所述第六侧齿廓(130)对应的留磨量q2是基于所述热处理过程分别对所述滚切成型齿轮(390)的端面齿槽的第三侧齿廓和所述第四侧齿廓的变形量而设置。
  9. 如权利要求5所述的加工方法,其特征在于,所述渐开线段QS和齿根曲线段SG的连接点为所述渐开线段QS的渐开线起始点S,所述渐开线段UT和齿根曲线段TG的连接点为所述渐开线段UT的渐开 线起始点T,设置渐开线起始点S和所述渐开线起始点T分别具有不同的渐开线起始点直径dFf1和渐开线起始点直径dFf2,从而使得所述渐开线段QS和渐开线段UT关于所述第一轴线(Ⅲ)非完全对称。
  10. 一种切齿滚刀(100),用于滚切加工齿轮,其轴向齿廓由第五侧齿廓(110)和与所述第五侧齿廓(110)相对的第六侧齿廓(130)组成,其特征在于,所述第五侧齿廓(110)包括直线段HI、圆弧段JK以及过渡连接所述直线段HI和圆弧段JK且与所述圆弧段JK相切的直线段IJ,所述第六侧齿廓(130)包括直线段PO、圆弧段NM以及过渡连接所述直线段PO和圆弧段NM且与所述圆弧段NM相切的直线段ON;
    其中,所述直线段HI和所述直线段PO分别与第二轴线(Ⅰ)的形成的主切削刃齿形角均为α,所述第二轴线(Ⅰ)为在对刀时通过被加工的齿轮的分度圆圆心且垂直于所述切齿滚刀(100)分度线(Ⅱ)的轴线;
    其中,设置所述圆弧段JK的半径R1不等于所述圆弧段NM的半径R2,以至于使所述圆弧段JK和圆弧段NM关于所述第二轴线(Ⅰ)非对称地设置,并且使所述直线段HI和直线段PO关于所述第二轴线(Ⅰ)非完全对称。
  11. 如权利要求10所述的切齿滚刀(100),其特征在于,0<R1<R2≤Rmax,其中,Rmax按如下公式(1)计算:
    Figure PCTCN2016085045-appb-100001
    其中,α为所述主切削刃齿形角,Sn2为第六侧齿廓(130)在分度线Ⅱ上的厚度,H2为第六侧齿廓(130)的凸角厚度,ha为所述切齿滚刀(100)的齿顶高。
  12. 如权利要求10所述的切齿滚刀(100),其特征在于,所述第五侧齿廓(110)由依次连接直线段HI、直线段IJ、圆弧段JK和直线段KL组成;其中,直线段KL与所述圆弧段JK相切地连接且平行于所述分度线(Ⅱ)。
  13. 如权利要求10或12所述的切齿滚刀(100),其特征在于,所述第六侧齿廓(130)由依次连接直线段PO、直线段ON、圆弧段NM和直线段ML组成;其中,直线段ML与所述圆弧段NM相切地连 接且平行于所述分度线(Ⅱ)。
  14. 如权利要求10所述的切齿滚刀(100),其特征在于,所述直线段IJ与所述第二轴线(Ⅰ)的夹角为第五侧齿廓(110)的非造型切削刃齿形角β1,其中,β1<α,且7°≤β1≤14°;所述直线段ON与所述第二轴线(Ⅰ)的夹角为第六侧齿廓(130)的非造型切削刃齿形角β2,其中,β2<α,且7°≤β2≤14°。
  15. 如权利要求10所述的切齿滚刀(100),其特征在于,所述第五侧齿廓(110)具有凸角厚度H1,所述第六侧齿廓(130)具有凸角厚度H2,其中,H1≠H2
  16. 如权利要求10所述的切齿滚刀(100),其特征在于,所述切齿滚刀(100)的轴向齿廓在所述分度线(Ⅱ)上的齿厚为Sn,其中,第五侧齿廓(110)在所述分度线(Ⅱ)上的厚度为Sn1,所述第六侧齿廓(130)在所述分度线(Ⅱ)上的厚度Sn2,其中,Sn=Sn1+Sn2
  17. 如权利要求16所述的切齿滚刀(100),其特征在于,Sn1≠Sn2
  18. 一种滚切成型齿轮(390),其特征在于,采用如权利要求10至17中任一项所述的切齿滚刀(100)对齿坯直接滚切加工形成。
  19. 如权利要求18所述的滚切成型齿轮(390),其特征在于,所述滚切成型齿轮(390)的端面齿槽的齿廓由第三侧齿廓和与所述第三侧齿廓相对的第四侧齿廓组成;
    所述第三侧齿廓包括渐开线段QS和齿根曲线段SG,所述第四侧齿廓包括渐开线段UT和齿根曲线段TG;
    所述齿根曲线段SG的曲率半径不等于所述齿根曲线段TG的曲率半径,并且,所述齿根曲线段SG和所述齿根曲线段TG关于第一轴线(Ⅲ)非对称地设置,其中,所述第一轴线(Ⅲ)为磨削所述滚切成型齿轮(390)的齿面形成的非完全对称渐开线齿轮(300,400)的端面齿槽宽所对应的圆心角的角平分线。
  20. 如权利要求19所述的滚切成型齿轮(390),其特征在于,所述渐开线段QS和齿根曲线段SG的连接点为所述渐开线段QS的渐开线起始点S,所述渐开线段UT和齿根曲线段TG的连接点为所述渐开线段UT的渐开线起始点T,设置渐开线起始点S和所述渐开线起始点T分别具有不同的渐开线起始点直径dFf1和渐开线起始点直径dFf2,从而使得所述渐开线段QS和渐开线段UT关于所述第一轴线(Ⅲ)非完 全对称。
  21. 一种非完全对称渐开线齿轮(300,400),其特征在于,其通过磨削如权利要求19或20所述的滚切成型齿轮(390)的齿面而形成,其中,所述渐开线段QS被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第一侧齿廓(310,410)的渐开线段AB,所述渐开线段UT被磨削形成所述非完全对称渐开线齿轮(300,400)的端面齿槽的第二侧齿廓(330,430)的渐开线段FE,所述渐开线段AB和渐开线段FE关于所述第一轴线(Ⅲ)非完全对称。
  22. 一种如权利要求10至17中任一项所述切齿滚刀(100)的设计方法,其特征在于,包括步骤:
    第一步,设定欲通过该切齿滚刀(100)直接滚切加工形成的滚切成型齿轮(390)的基本参数,该基本参数包括为滚切成型齿轮(390)的模数m、齿数z、压力角αn和变位系数x;
    第二步,按以下步骤确定切齿滚刀(100)的以下齿形参数:
    (a)根据以下公式(2),确定切齿滚刀(100)的齿顶高ha
    ha=ha *m   (2)
    其中,ha *为切齿滚刀(100)的齿顶高系数,ha *=1.30~1.45,m为滚切成型齿轮(390)的模数;
    (b)根据以下公式(3),确定切齿滚刀(100)的齿根高hf
    hf=hf *m   (3),
    其中,hf *为切齿滚刀(100)的齿根高系数,hf *=1.2~1.25,m为滚切成型齿轮(390)的模数;
    (c)根据以下公式(4),确定切齿滚刀(100)的全齿高h,
    h=ha+hf   (4);
    (d)根据以下公式(5),确定切齿滚刀(100)的轴向齿廓在分度线(Ⅱ)上的齿距Pn
    Pn=πm   (5);
    (e)确定切齿滚刀(100)的第五侧齿廓(110)的主切削刃齿形角和切齿滚刀(100)的第六侧齿廓(130)的主切削刃齿形角均为α,其等于压力角αn
    (f)根据以下公式(6)至(8),确定切齿滚刀(100)的轴向齿廓在分度线(Ⅱ)上的齿厚Sn
    Sn1=0.25πm-xtanα-q1   (6)
    Sn2=0.25πm-xtanα-q2   (7)
    Sn=Sn1+Sn2   (8)
    其中,q1和q2分别为第五侧齿廓(110)和第六侧齿廓(130)对应的留磨量;
    (g)切齿滚刀(100)的第五侧齿廓(110)的非造型切削刃齿形角β1和切齿滚刀(100)的第六侧齿廓(130)的非造型切削刃齿形角β2分别满足如下要求来确定:β1<α,β2<α,其中,β1和β2取值范围为7°~14°;
    (h)第五侧齿廓(110)的凸角厚度H1和第六侧齿廓(130)的凸角厚度H2分别按以下公式(9)和(10)确定:
    H1=q1+w   (9)
    H2=q2+w   (10)
    其中,w为齿根的沉切深度,q1和q2分别为第五侧齿廓(110)和第六侧齿廓(130)对应的留磨量;
    (i)确定第五侧齿廓(110)的圆弧段JK的半径R1和第六侧齿廓(130)的圆弧段NM的半径R2
    (j)根据以下公式(11)和(12),分别确定第五侧齿廓(110)的凸角高度hi和第六侧齿廓(130)的凸角高度ho
    Figure PCTCN2016085045-appb-100002
    Figure PCTCN2016085045-appb-100003
PCT/CN2016/085045 2015-06-08 2016-06-07 切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法 WO2016197905A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510309900.9A CN104889505B (zh) 2015-06-08 2015-06-08 非对称滚刀及其设计方法
CN201510309900.9 2015-06-08
CN201510309977.6A CN104889501B (zh) 2015-06-08 2015-06-08 非完全对称渐开线齿轮及其专用切齿滚刀和加工方法
CN201510309977.6 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016197905A1 true WO2016197905A1 (zh) 2016-12-15

Family

ID=57503203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085045 WO2016197905A1 (zh) 2015-06-08 2016-06-07 切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法

Country Status (1)

Country Link
WO (1) WO2016197905A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304524A (zh) * 2018-10-16 2019-02-05 西安法士特汽车传动有限公司 一种凸角型滚刀及其制作方法
CN110052666A (zh) * 2019-04-26 2019-07-26 南京高速齿轮制造有限公司 一种双拼曲线式齿轮滚刀
CN110052667A (zh) * 2019-04-26 2019-07-26 南京高速齿轮制造有限公司 新型三圆弧齿轮滚刀
CN111553037A (zh) * 2020-05-09 2020-08-18 合肥学院 一种基于虚拟范成加工的螺旋转子建模方法
CN113127986A (zh) * 2021-03-30 2021-07-16 南京工业大学 一种刀具误差对加工齿轮齿廓影响分析方法
CN113536472A (zh) * 2021-05-31 2021-10-22 重庆青山工业有限责任公司 一种基于齿廓法线法计算齿轮渐开线起始点的方法
CN114110128A (zh) * 2020-08-26 2022-03-01 加特可株式会社 齿轮机构、齿轮机构的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050536A1 (de) * 2004-05-05 2006-04-20 Lothar Strach Innenrad-Kreisschubgetriebe ohne Zahnreibung mit elastischer Zahnverformung für große Zahnüberdeckung
CN101182879A (zh) * 2007-12-21 2008-05-21 太原理工大学 一种非对称渐开线塑料齿轮
CN103093054A (zh) * 2013-01-29 2013-05-08 福州大学 平面二次包络环面蜗杆传动蜗轮滚刀齿廓建模方法
CN203509232U (zh) * 2013-10-21 2014-04-02 合肥工业大学 用于微线段齿轮加工的磨前滚刀
CN104889501A (zh) * 2015-06-08 2015-09-09 南车戚墅堰机车车辆工艺研究所有限公司 非完全对称渐开线齿轮及其专用切齿滚刀和加工方法
CN104985260A (zh) * 2015-08-10 2015-10-21 武汉理工大学 直齿锥齿轮的连续滚切加工方法
CN204878592U (zh) * 2015-06-08 2015-12-16 南车戚墅堰机车车辆工艺研究所有限公司 非完全对称渐开线齿轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050536A1 (de) * 2004-05-05 2006-04-20 Lothar Strach Innenrad-Kreisschubgetriebe ohne Zahnreibung mit elastischer Zahnverformung für große Zahnüberdeckung
CN101182879A (zh) * 2007-12-21 2008-05-21 太原理工大学 一种非对称渐开线塑料齿轮
CN103093054A (zh) * 2013-01-29 2013-05-08 福州大学 平面二次包络环面蜗杆传动蜗轮滚刀齿廓建模方法
CN203509232U (zh) * 2013-10-21 2014-04-02 合肥工业大学 用于微线段齿轮加工的磨前滚刀
CN104889501A (zh) * 2015-06-08 2015-09-09 南车戚墅堰机车车辆工艺研究所有限公司 非完全对称渐开线齿轮及其专用切齿滚刀和加工方法
CN204878592U (zh) * 2015-06-08 2015-12-16 南车戚墅堰机车车辆工艺研究所有限公司 非完全对称渐开线齿轮
CN104985260A (zh) * 2015-08-10 2015-10-21 武汉理工大学 直齿锥齿轮的连续滚切加工方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304524A (zh) * 2018-10-16 2019-02-05 西安法士特汽车传动有限公司 一种凸角型滚刀及其制作方法
CN109304524B (zh) * 2018-10-16 2024-01-02 西安法士特汽车传动有限公司 一种凸角型滚刀及其制作方法
CN110052666A (zh) * 2019-04-26 2019-07-26 南京高速齿轮制造有限公司 一种双拼曲线式齿轮滚刀
CN110052667A (zh) * 2019-04-26 2019-07-26 南京高速齿轮制造有限公司 新型三圆弧齿轮滚刀
CN110052667B (zh) * 2019-04-26 2024-03-01 南京高速齿轮制造有限公司 新型三圆弧齿轮滚刀
CN110052666B (zh) * 2019-04-26 2024-03-01 南京高速齿轮制造有限公司 一种双拼曲线式齿轮滚刀
CN111553037B (zh) * 2020-05-09 2023-03-14 合肥学院 一种基于虚拟范成加工的螺旋转子建模方法
CN111553037A (zh) * 2020-05-09 2020-08-18 合肥学院 一种基于虚拟范成加工的螺旋转子建模方法
CN114110128A (zh) * 2020-08-26 2022-03-01 加特可株式会社 齿轮机构、齿轮机构的制造方法
US20220065341A1 (en) * 2020-08-26 2022-03-03 Jatco Ltd Gear mechanism and method for manufacturing gear mechanism
CN113127986A (zh) * 2021-03-30 2021-07-16 南京工业大学 一种刀具误差对加工齿轮齿廓影响分析方法
CN113536472B (zh) * 2021-05-31 2023-07-21 重庆青山工业有限责任公司 一种基于齿廓法线法计算齿轮渐开线起始点的方法
CN113536472A (zh) * 2021-05-31 2021-10-22 重庆青山工业有限责任公司 一种基于齿廓法线法计算齿轮渐开线起始点的方法

Similar Documents

Publication Publication Date Title
WO2016197905A1 (zh) 切齿滚刀及其设计方法、非完全对称渐开线齿轮及其加工方法
US11396056B2 (en) Hob peeling method and cutting tool for producing at least partially rounded tooth tips
CN104889501B (zh) 非完全对称渐开线齿轮及其专用切齿滚刀和加工方法
WO2016197909A1 (zh) 非完全对称渐开线齿轮及其加工方法
JP4485362B2 (ja) ヘリングボーンギヤ歯及びその製造方法
CN105156637B (zh) 一种斜线齿面齿轮传动副及齿宽几何设计方法
EP1803974B1 (en) Gear wheel with chamfered portions
US8905819B2 (en) Internal gear machining method
US6939093B2 (en) Chamfer hob and method of use thereof
CN104889505B (zh) 非对称滚刀及其设计方法
KR20130053411A (ko) 정격 부하가 최적화된 베벨 기어 치형
JP6936103B2 (ja) 歯車の製造方法
CN107256300B (zh) 基于齿面应力边棱作用和齿轮歪斜变形的圆柱直齿轮齿向修形方法
CN106735612B (zh) 一种改善珩齿加工的方法
US9120167B2 (en) Method for manufacturing screw-shaped tool
CN110966374A (zh) 高精度机器人用大减比准双曲面齿轮的设计方法
CN204893104U (zh) 一种非对称滚刀
CN202639546U (zh) 一种用于加工相交轴变齿厚齿轮的非对称齿轮滚刀
CN110039123B (zh) 一种变压力角滚刀加工倒锥齿的方法
CN109590553A (zh) 一种淬火前对硬齿面外齿轮齿廓的加工方法
WO2010033090A2 (en) Helical cylindrical gear pair for uniform power transmission
JPH0631533A (ja) 歯車形の仕上げ加工用工具を創成する方法および歯車形の工具
CN105364195A (zh) 一种同廓式单边拉削齿轮拉刀
JP2006297539A (ja) ウォームホイール及びその加工方法
US2362787A (en) Method of finishing gears

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806803

Country of ref document: EP

Kind code of ref document: A1