WO2016195463A1 - 와이어 그리드 편광판 및 이를 포함한 액정표시장치 - Google Patents

와이어 그리드 편광판 및 이를 포함한 액정표시장치 Download PDF

Info

Publication number
WO2016195463A1
WO2016195463A1 PCT/KR2016/006806 KR2016006806W WO2016195463A1 WO 2016195463 A1 WO2016195463 A1 WO 2016195463A1 KR 2016006806 W KR2016006806 W KR 2016006806W WO 2016195463 A1 WO2016195463 A1 WO 2016195463A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex portion
lattice
wire grid
width
grid polarizer
Prior art date
Application number
PCT/KR2016/006806
Other languages
English (en)
French (fr)
Inventor
남시욱
김시민
채헌승
김경종
황홍구
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP16803816.4A priority Critical patent/EP3373050A4/en
Priority to JP2017563157A priority patent/JP2018517940A/ja
Priority to CN201680032886.5A priority patent/CN108351452A/zh
Priority to US15/579,258 priority patent/US20180136515A1/en
Publication of WO2016195463A1 publication Critical patent/WO2016195463A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a wire grid polarizer, and more particularly to a nanowire grid polarizer capable of achieving a high polarization efficiency and brightness enhancement effect.
  • the polarizing plate transmits or reflects only a specific polarization of electromagnetic waves.
  • one or two polarizing plates are used in a liquid crystal display (LCD), so that liquid crystals in the liquid crystal cell cause optical interaction to realize an image. .
  • the absorption type polarizing film is mainly produced by adsorbing iodine or dichroic dye on a polyvinyl alcohol (PVA) film and stretching it in a certain direction do.
  • PVA polyvinyl alcohol
  • the mechanical strength of the transmission axis itself is weak, shrinks due to heat or moisture, and the polarization function is remarkably deteriorated. Therefore, the efficiency of the polarizing plate is theoretically made because only the light vibrating in a specific direction is made to pass. Since it can not exceed 50%, it is the biggest factor that reduces the efficiency and brightness of the LCD.
  • a wire grid polarizer (hereinafter referred to as WGP) refers to an array in which metal wires are arranged in parallel, and reflect the polarization component (S polarization) parallel to the metal grid and transmit the vertical polarization component (P polarization). By recycling the reflected light, the WGP can be used to manufacture an LCD having high luminance characteristics.
  • WGP light absorption occurs when the arrangement period of the metal lattice, that is, the wire spacing is close to or larger than the wavelength of the incident electromagnetic wave, and the loss of light due to absorption can be minimized only when the arrangement period of the metal lattice is sufficiently small. .
  • the period of the metal wire (the pitch of the pattern) is considerably shorter than about 1/2 of the wavelength of the incident light to increase the polarization extinction ratio.
  • visible light having a wavelength of 400 to 700 nm generated in a backlight used in an LCD.
  • the nano-pattern can be expected polarization characteristics when the pitch of 200nm to 320nm or less.
  • P polarization should be 100% transmitted and S polarization should be 100% absorbed or reflected. Occurs.
  • P-polarized light transmittance an important factor for determining the brightness of a display is a technology for increasing P-polarized light transmittance in WGP.
  • the polarization efficiency to determine the contrast ratio (CR) of the display is calculated from the ratio of the difference between the parallel transmittance T P and the cross transmittance T C of the two polarizing films divided by their sum. The closer it is, the better it is evaluated. Therefore, in order to obtain excellent polarization efficiency, it is preferable to increase T P and lower T C. However, in the case of T C , it may be lowered as the amount of metal laminated increases, but when T P is reversed, T P and the polarization efficiency have a trade-off relationship with each other. Accordingly, in WGP, various studies are being attempted to improve both T P and bias and efficiency.
  • a first lattice layer having at least one first lattice pattern on a substrate and a metal material formed on the first lattice pattern are formed.
  • a WGP that includes a second lattice layer having at least one second lattice pattern, and a light absorbing layer stacked on the second lattice layer to absorb light introduced from the outside, thereby achieving brightness enhancement without deteriorating CR.
  • the shape of the pattern is different for each region, at least one of the period (P), height (H), width (W) and duty cycle (DC) of the pattern.
  • a liquid crystal display device capable of improving polarization performance and light efficiency by including different wire grid polarizers for respective regions.
  • the present invention applies a structure of a pattern in which more metals can be stacked relative to a pattern of a conventional WGP having a line width and pitch of the same range, thereby providing a P-polarized light transmittance and a polarized light in a trade-off relationship.
  • An object of the present invention is to provide a polarizer and a liquid crystal display including the same, which can improve efficiency.
  • a first preferred embodiment according to the present invention for achieving the above object is a resin layer comprising a concave-convex pattern by the lattice-shaped convex portion 110; And a metal lattice 120 pattern layer formed on the concave-convex pattern, wherein the lattice-shaped convex portion has at least one section of an inclined section so that a side portion in at least one direction of the left side and the right side of the convex portion is curved or formed at an acute angle with the ground.
  • It is a wire grid polarizing plate characterized by having an irregular shape to be included.
  • the grid-shaped convex portions include at least one side protrusion and side depressions, respectively, by side portions including at least one section of an inclined or curved section, and the side protrusions and side depressions are based on the same direction.
  • the distance between may be 1 to 30nm.
  • the metal grid pattern in the wire grid polarizer is formed in contact with the lattice-shaped convex portion, so that the lamination width 121 formed in the horizontal direction at the largest protrusion by filling the metal from the maximum depression point of the lattice-shaped convex portion is 10 nm to 100 nm. Can be formed.
  • the metal may be formed to abut the lattice convex portion to have a thickness 122 of 10 nm to 200 nm in the vertical direction from the uppermost end of the lattice convex portion.
  • the lattice-shaped convex portion has a shape in which a side portion includes a curved section, and a section in which the width of the convex portion increases and decreases in relation to the ground and the horizontal direction on the basis of the convex cross-sectional shape is increased. Sections that increase and become constant, sections where the width of the convexity decreases and increase, sections where the width of the convexity decreases, the section that becomes constant, the width of the convexity is constant
  • the convex portion may have a shape including at least one curved section of the section in which the inclined direction is changed, wherein the curved section may be pointed or curved.
  • the grid-shaped convex portion has a shape in which the side portion is inclined to form an acute angle with the ground, and the width of the convex portion from the upper portion to the lower portion in the horizontal direction with respect to the ground based on the convex cross-sectional shape.
  • the shape or the convex portion decreasing at a constant ratio may be a shape inclined to one side while maintaining a constant width.
  • the line width may be 5 to 100 nm.
  • the height 114 formed in the direction perpendicular to the ground may be 10 to 500 nm.
  • the grid-shaped convex portion when the grid-shaped convex portion abuts the outer edge of the convex portion and draws an imaginary vertical line perpendicular to the ground, from the leftmost vertical line drawn at any convex portion to the leftmost vertical line drawn at the next convex portion Pitch (115) value defined by the distance may be preferably 20 to 200nm.
  • the wire grid polarizer of the first embodiment may have a P polarization transmittance of 50 to 100%, a polarization efficiency of 99.0000 to 99.9999%, and a luminance of 100 to 200%.
  • the present invention makes the liquid crystal display device including the wire grid polarizer of the first embodiment the second preferred embodiment of the present invention.
  • the polarization efficiency can be improved without decreasing the P polarization transmittance.
  • FIG. 1 is a cross-sectional view showing the relationship between the maximum protrusion 111 and the maximum depression 112 in any of the grid-shaped convex portion and the various shapes of the grid-shaped convex portion 110 of the present invention.
  • FIG. 2 is a cross-sectional view showing the thicknesses 121 and 122 of the metal lattice formed in contact with the lattice-shaped convex portions together with the line width 113 and the height 114 of the lattice-shaped convex portions of the present invention.
  • FIG. 3 is a cross-sectional view showing various examples of the shape of the lattice-shaped convex portion of the present invention including a curved section of the side portion.
  • Figure 4 is a cross-sectional view showing various examples of the shape of the grid-shaped convex portion of the present invention including a section inclined so that the side surface is an acute angle from the ground.
  • 5 is a cross-sectional view showing the pitch 115 between the lattice protrusions of the present invention.
  • the present invention is a resin layer including an uneven pattern by the grid-shaped convex portion 110; And a metal lattice 120 pattern layer formed on the concave-convex pattern, wherein the lattice-shaped convex portion has at least one section of an inclined section so that a side portion in at least one direction of the left side and the right side of the convex portion is curved or formed at an acute angle with the ground.
  • the present invention provides a wire grid polarizer (hereinafter referred to as WGP) and an LCD including the same, wherein the wire grid polarizer has an irregular shape.
  • the grid-shaped convex portion 110 has a monotonous side portion as in the prior art rather than a vertically straight shape is inclined obliquely or curved in the side portion Therefore, the pattern is different from the conventional art.
  • the grid-shaped convex portion forms a valley on at least one side of the left side and the right side by the unique shape of the grid-shaped convex portion, and since the formed valley may be filled with metal, the line width of the relatively same range, Compared with the conventional WGP showing height and pitch, the metal lamination amount can be increased more efficiently, and as a result, the polarization efficiency can be improved without lowering the P polarization transmittance.
  • the grid-shaped convex portion 110 may include at least one of the side protrusions and the side depressions, respectively, by side portions including at least one section of an inclined or curved section.
  • the side protrusions and the side depressions described in the present invention are judged as the side protrusions, and the portions forming the peaks from the side surfaces of the lattice convex portions, respectively, and the side grooves are formed.
  • the depression is located closer to the inward direction of the lattice convex portion, but if the protrusion includes two or more protrusions or depressions, any protrusion is lattice than any depression. It may be located closer to the inward direction of the convex portion. That is, the protrusion and the depression are not necessarily determined according to the relative position, and it is preferable to judge by the shape.
  • the shape of the lattice-shaped convex portion is not necessarily symmetrical, and may have irregularities in the shape of the protrusions and the depressions in the left and right directions or may have the protrusions and the depressions in only one direction.
  • the distance deviation in the horizontal direction between the largest protrusion and the largest depression, that is, the distance between P1 and P2 is less than 1 nm
  • the effect of improving the amount of metal lamination by the depression is insignificant, and the depth is deeply recessed so that the distance exceeds 30 nm.
  • Forming a portion is very difficult to implement in a micropattern and even when formed, it can be difficult to completely fill the metal up to the depth of the indentation.
  • the metal is filled in the depression so that the amount of stacking of the metal can be easily increased as compared with the general pattern having the same line width and pitch.
  • WGP since the polarization and reflection of light are determined by the metal pattern layer, when the stacking amount of metal is increased, the reflectance may be improved and the polarization efficiency may be improved.
  • the amount of stacking of metal is excessively increased to improve the reflectance. In this case, if the light transmission period becomes too narrow, the luminance may be lowered.
  • the metal is filled in the valley formed on the side surface without narrowing the transmission section of the light, the polarization efficiency can be improved without decreasing the luminance in the pitch and line width conditions of the same range.
  • the metal lattice 120 of the metal lattice pattern is formed by contacting a metal layer on the lattice-shaped convex portion in the unit grid 100 of the WGP, wherein the metal lattice is made of metal. It is possible to more effectively improve the polarization efficiency formed from the maximum depression of the lattice-shaped convex portion so that the lamination width from the largest protrusion to the horizontal direction, that is, the thickness 121 of the metal lattice from the largest protrusion of the lattice-shaped convex portion becomes 10 nm to 100 nm. It is preferable from the point of view.
  • the metal lattice is preferably formed in contact with the lattice-shaped convex portion to have a thickness 122 of 10nm to 200m in the vertical direction from the uppermost end of the lattice-shaped convex portion, it is satisfied that the thickness range of the lamination As the amount increases, the polarization efficiency improvement effect may be large.
  • the lattice-shaped convex portions can be prevented from being broken by the metal lattice or the light transmission passage is blocked.
  • the lattice-shaped convex portion has a shape in which the side portion includes a curved section as illustrated in FIG. 3, and the width of the convex portion is based on the ground and the horizontal direction based on the convex cross-sectional shape.
  • It may be a shape including at least one curved section of a constant section and a constant width and a slope in which the inclined direction is changed.
  • the curved section in the present invention may mean both the pointed and curved form connected.
  • the grid-shaped convex portion of the present invention is a shape including a section inclined so that the side portion is acute angle with the ground, as shown in Figure 4 the width of the convex portion relative to the ground and horizontal direction based on the convex cross-sectional shape as shown in FIG.
  • the upper or lower portion may be in a shape that decreases at a constant rate or the convex portion is inclined to one side while maintaining a constant width.
  • all inclined sections of both sides form an acute angle with the ground, and the lattice convex part is inclined to one side while maintaining a constant width.
  • an inclination that forms an acute angle with the ground is generated from the side of the grid-like convex part.
  • the lattice-shaped convex portion with reference to Figure 2 when defining the maximum width of the lattice-shaped convex portion in the horizontal direction and the ground based on the convex cross-sectional shape, the line width It is preferable to form imprinting so that 113 may be 5-100 nm, and the height 114 formed in the direction perpendicular
  • the line width and height of the lattice-shaped convex portion being too small outside the above range is very difficult to implement the pattern itself, and the pattern aggregation may occur when the line width and height are too large outside the above range.
  • the pitch (115) value defined as the distance to the leftmost vertical line, to be 20 to 200 nm. It is difficult to secure a light transmission path after the metal lattice having a pitch value of less than 20 nm, and when the pitch value exceeds 200 nm, it may be difficult to expect excellent polarization characteristics (extinction ratio) for visible light.
  • the pitch value may be defined as the distance from the rightmost vertical line drawn in an arbitrary lattice convex portion to the rightmost vertical line drawn in a neighboring lattice convex portion.
  • the resin layer is an acrylic resin, methacrylic resin, polyvinyl resin, polyester resin, styrene resin, alkyd resin, amino resin, polyurethane resin and silicone resin It is preferably formed of at least one curable resin selected from the group containing.
  • curable resins include unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, acrylic acid, methacrylic acid, and hydride.
  • the metal lattice pattern may be formed from any one metal selected from the group consisting of aluminum, copper, chromium, platinum, gold, silver, nickel and alloys thereof, and has excellent reflectance in the visible light region. It may be more preferable to select silver or aluminum from the side, and it may be more preferable to select aluminum if considering the production cost.
  • the method of laminating the metal particles on the curable resin may be formed using a method such as sputtering, thermal deposition, electron beam deposition, or a dry etching method of simultaneously etching a polymer and a metal to form a metal layer, but is not limited thereto. .
  • the present invention may further include a substrate layer on the bottom surface of the resin layer, wherein the substrate is preferably applied to a transparent substrate exhibiting isotropy so that the polarization effect does not disappear by the orientation.
  • the substrate layer serves to support the resin layer and the metal pattern layer, and the thickness may be 5 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 50 ⁇ m to be advantageous in mechanical strength and flexibility.
  • the substrate layer include polyethylene terephthalate film, polycarbonate film, polypropylene film, polyethylene film, polystyrene film, polyepoxy film, cyclic olefin polymer (COP) film, cyclic olefin copolymer (COC) film It may be any one of a transparent film or a glass film selected from the group comprising a copolymer film of a polycarbonate resin and a cyclic olefin polymer and a copolymer film of a polycarbonate resin and a cyclic olefin copolymer.
  • COP cyclic olefin polymer
  • COC cyclic olefin copolymer
  • the WGP of the present invention includes a lattice-shaped convex portion having a shape different from that of the prior art, so that the P polarization transmittance may be 50 to 100%, the polarization efficiency may be 99.0000 to 99.9999%, and the luminance is 100. To 200%. Accordingly, the WGP of the present invention can be usefully applied to the liquid crystal display device by the excellent optical properties.
  • Examples 1 to 4 WGPs of Examples 1 to 4 including lattice-shaped convex portions and metal lattice meeting the conditions described in Table 1 below were prepared.
  • the resin layer was formed of methyl methacrylate, aluminum (Al) was used for the metal pattern layer, and the base layer was a COC film (KOLON) having a thickness of 80 ⁇ m.
  • Comparative Example 1 A commercially available PVA-type absorption polarizing film was prepared in Comparative Example 1.
  • Comparative Examples 2 to 3 but to satisfy the conditions shown in Table 1 was prepared in the above Example Comparative Examples 2 to 3 containing from 1 to 4 and a WGP unlike the projections and depressions do not exist in the conventional grid-shaped convex portions. At this time, the resin layer, metal pattern layer, and base material layer used for the WGP of Comparative Examples 2 to 3 were the same as those used in Examples 1 to 4 above.
  • Example 1 Lattice Convex Metal grid Line width (nm) Height (nm) Pitch (nm)
  • Example 1 30 150 100 5 50 70
  • Example 2 30 150 100 15 50 70
  • Example 4 50 150 100 15 50 70 Comparative Example 1 PVA-type absorption polarizing film Comparative Example 2 30 150 100 0 50 70 Comparative Example 3 50 150 100 0 50 70
  • P polarization transmittance (Tp) and S polarization transmittance (Ts) of the polarizing films of Examples 1 to 4 and Comparative Examples 1 to 3 were measured by using a RETS-100 device (OTSUKA ELECTRONICS Co., Ltd.), Using the value measured therefrom, the polarization efficiency (PE) was calculated by the following Equation 1, and the results are reflected in Table 1 below.
  • Luminance measurement was performed by measuring the highest luminance (Maximum Luminance, White) at any of five points using BM-7A (Japan TOPCON Co., Ltd.) and obtaining the average value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은 격자형 볼록부에 의한 요철패턴을 포함하는 수지층; 및 상기 요철 패턴 상에 형성된 금속 격자 패턴층을 포함하되, 상기 격자형 볼록부는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 부정형의 형상인 것임을 특징으로 하는 와이어 그리드 편광판에 관한 것이며, 나아가 상기 와이어 그리드 편광판을 포함하는 액정 표시 장치에 관한 것이다.

Description

와이어 그리드 편광판 및 이를 포함한 액정표시장치
본 발명은 와이어 그리드 편광판에 관한 것으로, 보다 구체적으로는 높은 편광효율 및 휘도 향상 효과를 달성할 수 있는 나노 와이어 그리드 편광판에 관한 것이다.
편광판은 전자기파 중 특정 편광만을 투과시키거나 반사시키는 역할을 하며, 일반적으로 액정표시장치(LCD)에서는 한 장 또는 두 장의 편광판이 사용되어 액정셀 내의 액정이 광학적인 상호작용을 일으켜 이미지를 구현하게 된다.
현재 주로 사용되고 있는 편광판에는 흡수형 편광 필름을 이용한 편광판과 와이어 그리드 편광판이 있는데, 흡수형 편광 필름의 경우 주로 폴리비닐알코올(PVA) 필름에 요오드나 이색성염료를 흡착시키고 이를 일정방향으로 연신하여 제조한다. 그러나 이러한 경우 그 자체가 투과축의 방향에 대한 기계적 강도가 약하고, 열이나 수분에 의해 수축하여 편광기능이 현저히 저하되며, 특정 방향으로 진동하는 빛만을 통과시켜 선평관을 만들기 때문에 편광판의 효율이 이론적으로 50%를 넘을 수 없으므로 LCD의 효율과 휘도를 저하시키는 가장 큰 요인이 되고 있다.
반면, 와이어 그리드 편광판(이하, WGP)은 금속 와이어가 평행하게 배열된 어레이를 말하며, 금속 격자(Metal Grid)와 평행한 편광 성분(S 편광)은 반사하고 수직한 편광 성분(P 편광)은 투과시키되 반사된 광을 재이용함으로써, WGP를 이용하면 높은 휘도특성을 갖는 LCD를 제조할 수 있게 된다. 단, WGP에서는 금속 격자의 배열주기 즉, 와이어 간격이 입사되는 전자기파의 파장과 근사하거나 클 경우에는 흡광 현상이 나타나며, 금속 격자의 배열 주기가 충분히 작아야만 흡광에 의한 빛의 손실을 최소화할 수 있다. 즉, 와이어 그리드 편광판은 금속 와이어의 주기(패턴의 피치)가 입사광의 파장에 비하여 1/2 정도로 상당히 짧아야 편광 소멸비가 높아지며, 일예로 LCD에 사용되는 백라이트에서 발생되는 400 내지 700nm의 파장인 가시광선에 대해서는 나노 패턴의 피치는 200nm 내지 320nm 이하일 때 편광특성을 기대할 수 있다.
한편, WGP에 BLU(Back Light Unit)의 광원에서 나와 산란된 빛을 조사하였을 경우, 이론상으로는 P 편광은 100% 투과되고, S 편광은 100% 흡수 또는 반사가 되어야 하나, 실제로는 그렇지 못한 경우가 발생한다. 그러나 P편광 투과율의 경우 디스플레이의 휘도를 결정하는 중요한 요소인 만큼 WGP에서는 P편광 투과율을 높이는 기술이 매우 중요하다.
또한, 디스플레이의 명암대조비(C.R, contrast ratio)를 결정하는 편광효율은 편광필름 두장의 Parallel 투과도인 TP와 Cross 투과도인 TC의 차를 이들의 합으로 나눈 비로부터 계산되는데, 그 비가 1에 가까울수록 우수한 것으로 평가되므로, 우수한 편광효율을 얻기 위해서는 TP는 높이고, TC 는 낮추는 것이 바람직하다. 하지만, TC의 경우 금속의 적층량이 많아 질수록 낮아질 수 있으나 그렇게 되면 TP가 반대로 떨어지게 되면서, TP와 편광효율은 서로 트레이드-오프(Trade-off)관계를 갖게 된다. 이에 따라, WGP에서는 TP과 편과효율을 동시에 향상시킬 수 있는 다양한 연구가 시도되고 있는 상황이다.
WGP와 관련된 종래기술의 일예로는, 대한민국 특허출원 제2010-0102358호에서 기판상에 적어도 1 이상의 제 1 격자 패턴을 구비한 제 1 격자층과 상기 제 1 격자 패턴의 상부에 금속재질로 형성되는 제 2 격자 패턴을 적어도 1 이상 구비하는 제 2 격자층, 그리고 상기 제 2 격자층상에 적층되어 외부에서 유입되는 빛을 흡수하는 광흡수층을 포함함으로써 C.R의 저하없이 휘도 향상을 구현할 수 있는 WGP를 개시하고 있고, 대한민국 등록특허 제10-1336097호에서 패턴의 형상이 영역별로 서로 다르며, 패턴의 주기(P), 높이(H), 폭(W) 및 듀티 사이클(DC; duty cycle) 중 적어도 하나가 영역별로 서로 다른 와이어 그리드 편광판을 포함함으로써 편광성능 및 광효율을 향상시킬 수 있는 액정디스플레이 장치를 개시하고 있는 바이다.
다만, P편광 투과율 저하없이, 금속의 적층량을 효과적으로 향상시켜 P편광 투과율과 편광효율이 모두 우수한 WGP를 제공한 종래 기술은 전무한 실정이다.
이에 본 발명은 동일 범위의 선폭 및 피치을 갖는 종래의 WGP의 패턴에 비해 상대적으로 금속이 더 많이 적층될 수 있는 패턴의 구조를 적용함으로써, 트레이드-오프(Trade-off) 관계의 P 편광 투과율과 편광효율을 동시에 향상시킬 수 있는 편광판 및 이를 포함한 액정표시장치를 제공하고자 한다.
상기 해결 과제를 달성하기 위한 본 발명에 따른 바람직한 제 1 구현예는 격자형 볼록부(110)에 의한 요철패턴을 포함하는 수지층; 및 상기 요철 패턴 상에 형성된 금속 격자(120) 패턴층을 포함하되, 상기 격자형 볼록부는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 것임을 특징으로 하는 와이어 그리드 편광판이다.
상기 제 1 구현예에서 상기 격자형 볼록부는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것이고, 상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(111)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(112)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm 인 것일 수 있다.
이때, 상기 와이어 그리드 편광판에서 금속 격자 패턴은 격자형 볼록부와 맞닿아 형성된 것이고, 격자형 볼록부의 최대 함몰지점에서부터 금속이 채워져 최대 돌출부에서 수평방향으로 이루는 적층폭(121)이 10nm 내지 100nm가 되도록 형성될 수 있다. 또한, 금속이 격자형 볼록부의 최상단부로부터 수직방향으로 10nm 내지 200nm의 두께(122)를 갖도록 격자형 볼록부와 맞닿아 형성될 수 있다.
상기 제 1 구현예에서 격자형 볼록부는 측면부가 굴곡진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로 하여 지면과 수평 방향을 기준으로 볼록부의 폭이 증가하다가 감소하는 구간, 볼록부의 폭이 증가하다가 일정해지는 구간, 볼록부의 폭이 감소하다가 증가하는 구간, 볼록부의 폭이 감소하다 일정해지는 구간, 볼록부의 폭이 일정하다 증가하는 구간, 볼록부의 폭이 일정하다 감소하는 구간 및 일정한 폭을 유지하되 볼록부의 기울어진 방향이 바뀌는 구간 중 적어도 어느 하나의 굴곡진 구간을 포함하는 형상일 수 있고, 이때, 상기 굴곡진 구간은 뾰족하게 꺾이는 형태이거나 곡선으로 연결된 형태일 수 있다.
또한, 상기 제 1 구현예에서 격자형 볼록부는 측면부가 지면과 예각을 이루도록 경사진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 상단부에서 하단부로 볼록부의 폭이 일정한 비율로 감소하는 형상 또는 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상인 것일 수도 있다.
한편, 상기 제 1 구현예에서 격자형 볼록부는 볼록부 횡단면 형상을 기준으로 지면과 수평 방향으로의 격자형 볼록부가 갖는 최대 폭을 선폭(113)으로 정의할 때, 선폭이 5 내지 100nm일 수 있으며, 지면과 수직한 방향으로 이루는 높이(114)가 10 내지 500nm일 수 있다.
또한, 상기 제 1 구현예에서 격자형 볼록부는 볼록부의 외곽과 맞닿으며 지면과 수직한 가상의 수직선을 그었을 때, 임의의 볼록부에서 그어진 최좌측부 수직선에서 그 다음 볼록부에서 그어진 최좌측부 수직선 까지의 거리로 정의되는 피치(Pitch, 115) 값은 20 내지 200nm인 것이 바람직할 수 있다.
상기 제 1 구현예의 와이어 그리드 편광판은 P 편광 투과율이 50 내지 100%이고, 편광효율이 99.0000 내지 99.9999% 일 수 있으며, 휘도가 100 내지 200%일 수 있다.
나아가, 이와 같은 상기 제 1 구현예의 와이어 그리드 편광판의 광학적 특성으로 인해, 본 발명은 상기 제 1 구현예의 와이어 그리드 편광판을 포함하는 액정표시장치를 본 발명의 바람직한 제 2 구현예로 한다.
본 발명에 따르면 동일한 범위의 피치와 선폭을 갖는 종래의 WGP 패턴에 비해, 상대적으로 격자 패턴 상에 적층되는 금속의 적층량을 효과적으로 증가시킬 수 있기 때문에 P 편광 투과율의 저하없이 편광효율을 향상시킬 수 있다.
도 1은 본 발명의 격자형 볼록부(110)의 다양한 형상과 함께 임의의 격자형 볼록부에서의 최대 돌출부(111)와 최대 함몰부(112) 관계를 나타낸 단면도이다.
도 2는 본 발명의 격자형 볼록부의 선폭(113) 및 높이(114)와 함께 격자형 볼록부에 맞닿아 형성된 금속 격자의 두께(121, 122)를 각각 표시한 단면도이다.
도 3은 측면부가 굴곡진 구간을 포함하는 본 발명의 격자형 볼록부 형상의 다양한 일예를 나타낸 단면도이다.
도 4는 측면부가 지면으로부터 예각을 이루도록 경사진 구간을 포함하는 본 발명의 격자형 볼록부 형상의 다양한 일예를 나타낸 단면도이다.
도 5는 본 발명의 격자형 볼록부 간의 피치(Pitch, 115)를 표시한 단면도이다.
<부호의 설명>
100: WGP의 단위격자 110: 격자형 볼록부
111: 격자형 볼록부의 최대 돌출부
112: 격자형 볼록부의 최대 함몰부
113: 격자형 볼록부의 선폭 114: 격자형 볼록부의 높이
115: 격자형 볼록부간 피치(Pitch)
120: 금속격자
121: 격자형 볼록부의 최대 돌출부로부터의 금속격자 두께
122: 격자형 볼록부의 최상단으로부터의 금속격자 두께
본 발명은 격자형 볼록부(110)에 의한 요철패턴을 포함하는 수지층; 및 상기 요철 패턴 상에 형성된 금속 격자(120) 패턴층을 포함하되, 상기 격자형 볼록부는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 것임을 특징으로 하는 와이어 그리드 편광판(이하, WGP) 및 이를 포함하는 액정표시장치를 제공한다.
본 발명의 WGP는 도면을 통해 확인할 수 있는 바와 같이, 격자형 볼록부(110)가 종래와 같이 단조로운 측면부를 가지며 수직으로 곧게 뻗어있는 형상이 아니라 비스듬하게 기울어져 있거나 측면부에 굴곡이 형성되어 있음에 따라 종래와는 차별화된 패턴을 나타내는 것이다. 특히, 본 발명은 이와 같은 격자형 볼록부의 독특한 형상에 의해 격자형 볼록부는 좌측면 및 우측면 중 적어도 하나의 측면에 골을 형성하게 되고, 형성된 골에 금속이 채워질 수 있으므로 상대적으로 동일한 범위의 선폭, 높이, 피치를 나타내는 종래의 WGP에 비해 금속 적층량을 효율적으로 증대시킬 수 있으며, 결과적으로 P 편광 투과율의 저하없이 편광효율을 향상시킬 수 있는 것이다.
이하, 도면과 함께 본 발명을 보다 구체적으로 설명한다.
본 발명에서 상기 격자형 볼록부(110)는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것일 수 있다. 이때, 본 발명에서 설명하고 있는 측면 돌출부와 측면 함몰부는 각각 격자형 볼록부의 측면으로부터 산을 형성하고 있는 부분을 측면 돌출부로 판단하고, 골을 형성하고 있는 부분을 측면 함몰부로 판단하는 것이 바람직하다. 만약, 돌출부와 함몰부가 각각 하나만 존재하는 형태일 경우라면 함몰부가 격자형 볼록부의 내측방향으로 더 가까이 위치하고 있는 것이 바람직하지만, 2 이상의 돌출부 또는 함몰부를 포함한다면 임의의 돌출부는 임의의 함몰부보다 격자형 볼록부의 내측방향에 더 가까이 위치하고 있을 수도 있다. 즉, 돌출부와 함몰부는 반드시 상대적인 위치에 따라 결정되는 것은 아니며, 형상에 의해 판단하는 것이 바람직하다.
다만, 본 발명에서 상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(111)에서 지면에 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(112)에서 지면에 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm인 것이 바람직하다.
본 발명에서 상기 격자형 볼록부의 형상은 반드시 좌우 대칭될 필요는 없으며, 좌우 방향의의 돌출부 및 함몰부의 형태가 불규칙하거나 한 방향으로만 돌출부 및 함볼부를 갖더라도 무방하다. 다만, 최대 돌출부와 최대 함몰부 사이의 수평방향으로의 거리 편차 즉, P1과 P2사이의 거리가 1nm 미만일 경우 함몰부에 의한 금속 적층량 향상 효과가 미미하고, 그 거리가 30nm를 초과하도록 깊게 함몰부를 형성하는 것은 미세패턴에서 구현하기가 매우 까다로우며 형성할지라도 최대 함볼부의 깊이까지 금속을 완벽히 채워넣기가 어려울 수 있다.
이와 같이 격자형 볼록부에 함몰부가 형성될 경우, 금속이 함몰부에 채워지게 됨으로 동일한 선폭과 피치를 갖는 일반 패턴에 비해 금속의 적층량이 용이하게 증대될 수 있다. WGP에서는 금속 패턴층에 의해 빛의 편광과 반사가 결정되므로 금속의 적층량이 증가하게 되면 반사율이 향상되어 편광효율이 향상될 수 있는데, 일반적으로 반사율을 향상시키기 위하여 금속의 적층량을 과도하게 증가시킬 경우 오히려 빛의 투과 구간이 지나치게 좁아져 버리면 휘도가 저하될 수 있다. 그러나, 본 발명에서는 빛의 투과 구간을 좁히지 않고 측면에 형성된 골에 금속을 채우는 방식이므로 동일한 범위의 피치과 선폭 조건에서 휘도 저하 없이 편광효율을 향상시킬 수 있는 것이다.
한편, 본 발명에서 금속 격자 패턴의 금속 격자(120)는 도 2에서 나타낸 바와 같이, WGP의 단위격자(100)에서 격자형 볼록부에 금속층이 맞닿아 형성된 것이며, 이때, 상기 금속 격자는 금속이 격자형 볼록부의 최대 함몰부에서부터 채워져 최대 돌출부로부터 수평방향으로의 적층폭, 즉 격자형 볼록부의 최대 돌출부로부터의 금속 격자의 두께(121)가 10nm 내지 100nm가 되도록 형성된 편광효율을 보다 효과적으로 향상시킬 수 있는 측면에서 것이 바람직하다.
또한, 상기 금속 격자는 격자형 볼록부의 최상단부로부터 수직방향으로 10nm 내지 200m의 두께(122)를 갖도록 금속이 격자형 볼록부와 맞닿아 형성된 것이 바람직하며, 상기 두께 범위를 만족하는 것이 금속의 적층량 증가에 따른 편광효율 향상 효과가 크게 나타날 수 있다. 또한, 격자형 볼록부를 중심으로 금속이 수직방향과 수평방향으로 균형있게 적층됨으로써, 금속격자에 의해 격자형 볼록부가 무너지거나 빛 투과 통로가 차단되는 것을 방지할 수 있게 된다.
본 발명의 바람직한 양태에 따르면, 상기 격자형 볼록부는 도 3에서 예시한 것과 같이 측면부가 굴곡진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 증가하다가 감소하는 구간, 볼록부의 폭이 증가하다가 일정해지는 구간, 볼록부의 폭이 감소하다가 증가하는 구간, 볼록부의 폭이 감소하다 일정해지는 구간, 볼록부의 폭이 일정하다 증가하는 구간, 볼록부의 폭이 일정하다 감소하는 구간 및 일정한 폭을 유지하되 볼록부의 기울어진 방향이 바뀌는 구간 중 적어도 어느 하나의 굴곡진 구간을 포함하는 형상일 수 있다. 이때, 본 발명에서 굴곡진 구간은 뾰족하게 꺾이는 형태와 곡선으로 연결된 형태 모두를 의미하는 것일 수 있다.
또한, 본 발명의 격자형 볼록부는 측면부가 지면과 예각을 이루도록 경사진 구간을 포함하는 형상으로서, 도 4에 나타난 바와 같이 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 상단부에서 하단부로 일정한 비율로 감소하는 형상 또는 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상인 것일 수 있다. 이때, 격자형 볼록부의 상단부에서 하단부로 폭이 일정한 비율로 감소하는 형상에서는 양 측면의 경사진 구간이 모두 지면과 예각을 이루게 되는 것이고, 격자형 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상에서는 격자형 볼록부가 치우쳐진 방향의 측면에서 지면과 예각을 이루는 경사가 발생되는 것이다.
아울러, 본 발명의 바람직한 구현예에 따르면, 상기 격자형 볼록부는 도 2를 참조로 하여 볼록부 횡단면 형상을 기준으로 지면과 수평 방향으로의 격자형 볼록부가 갖는 최대 폭을 선폭으로 정의할 때, 선폭(113)이 5 내지 100nm이고, 지면과 수직한 방향으로 이루는 높이(114)가 10 내지 500nm가 되도록 형성하는 것이 원하는 형상에 가깝게 임프린팅할 수 있는 측면에서 바람직하다. 격자형 볼록부의 선폭과 높이가 상기 범위를 벗어나 지나치게 작은 것은 패턴 구현 자체가 매우 까다롭고, 선폭과 높이가 상기 범위를 벗어나 지나치게 클 경우 패턴 뭉침 현상이 발생될 수 있다.
또한, 상기 격자형 볼록부는 도 5를 참조로 하여 볼록부의 외곽과 맞닿으며 지면과 수직한 가상의 수직선을 그었을 때, 임의의 격자형 볼록부에서 그어진 최좌측부 수직선에서 이웃한 격자형 볼록부에서 그어진 최좌측부 수직선까지의 거리로 정의되는 피치(Pitch, 115) 값이 20 내지 200nm인 것이 바람직할 수 있다. 피치 값이 20nm미만 금속 격자가 형성된 후 빛 투과 통로를 확보하기가 어렵고, 피치 값이 200nm를 초과하면 가시광선에 대해 우수한 편광특성(소광비, extinction ratio)을 기대하기 어려워 질 수 있다. 이때, 상기 피치 값은 임의의 격자형 볼록부에서 그어진 최우측부 수직선에서 이웃한 격자형 볼록부에서 그어진 최우측부 수직선까지의 거리로 정의될 수도 있다.
한편, 본 발명의 바람직한 양태에 따르면, 상기 수지층은 아크릴계 수지, 메타아크릴계 수지, 폴리비닐계 수지, 폴리에스테르계 수지, 스티렌계 수지, 알키드계 수지, 아미노계 수지, 폴리우레탄계 수지 및 실리콘계 수지를 포함하는 그룹으로부터 선택된 1종 이상의 경화성 수지로 형성되는 것이 바람직하다.
이때, 보다 구체적인 경화성 수지의 종류로는 불포화폴리에스테르, 메틸메타크릴레이트, 에틸메타크릴레이트, 이소부틸메타크릴레이트, 노말부틸메타크릴레이트, 노말부틸메틸메타크릴레이트, 아크릴산, 메타크릴산, 히드록시에틸메타크릴레이트, 히드록시프로필메타크릴레이트, 히드록시에틸아크릴레이트, 아크릴아미드, 메티롤아크릴아미드, 글리시딜메타크릴레이트, 에틸아크릴레이트, 이소부틸아크릴레이트, 노말부틸아크릴레이트, 2-에틸헥실아크릴레이트의 단독중합체, 이들의 공중합체 또는 삼원 공중합체 등이 있을 수 있다.
또한, 본 발명에서 상기 금속 격자 패턴은 알루미늄, 구리, 크롬, 백금, 금, 은, 니켈 및 이들의 합금을 포함하는 그룹으로부터 선택된 어느 하나의 금속으로부터 형성될 수 있으며, 가시광 영역에 다한 반사율이 우수한 측면에서 은 또는 알루미늄을 선택하는 것이 더 바람직할 수 있고, 제조단가까지 고려한다면 알루미늄을 선택하는 것이 보다 바람직할 수 있다. 경화성 수지 상부에 금속입자를 적층시키는 방법은 스퍼터링, 열증착, 전자선 증착, 또는 고분자와 금속을 동시에 식각하여 금속층을 형성하는 건식 에칭방법 등의 방법을 이용하여 형성할 수 있으며, 이에 제한되지는 않는다.
본 발명은 수지층 하면에 기재층을 더 포함할 수 있으며, 이때 기재는 배향에 의해 편광효과가 사라지지 않도록 등방성을 나타내는 투명한 기재를 적용하는 것이 바람직하다. 기재층은 수지층 및 금속 패턴층을 지지하는 역할을 하며 두께는 기계적 강도 및 유연성에 있어서 유리하도록 5㎛ 내지 100㎛일 수 있으며, 보다 바람직하게는 10㎛ 내지 50㎛일 수 있다.
기재층의 바람직한 일예로는 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 필름, 폴리프로필렌 필름, 폴리에틸렌 필름, 폴리스티렌 필름, 폴리에폭시 필름, 고리형 올레핀계 중합체(COP) 필름, 고리형 올레핀계 공중합체(COC) 필름, 폴리카보네이트계 수지와 고리형 올레핀계 중합체의 공중합체 필름 및 폴리카보네이트계 수지와 고리형 올레핀계 공중합체의 공중합체 필름을 포함하는 그룹으로부터 선택된 어느 하나의 투명 필름 또는 유리 필름이 될 수 있다.
상술한 바와 같이, 본 발명의 WGP는 종래와는 차별화된 형상을 갖는 격자형 볼록부를 포함함에 따라, P 편광 투과율이 50 내지 100%이고, 편광효율이 99.0000 내지 99.9999% 일 수 있으며, 휘도가 100 내지 200%일 수 있다. 이로써, 본 발명의 WGP는 이와 같은 우수한 광학적 물성에 의해 본 발명의 WGP는 액정표시장치에 유용하게 적용될 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1 내지 4 : 하기 표 1에 기재된 조건을 만족하는 격자형 볼록부 및 금속격자를 포함한 실시예 1 내지 4의 WGP를 제조하였다. 이때, 수지층은 메틸메타그릴레이트로 형성하였고, 금속 패턴층에는 알루미늄(Al)를 사용하였으며, 기재층은 두께 80㎛의 COC 필름(코오롱)를 사용하였다.
비교예 1 : 상용화된 PVA형 흡수편광 필름을 비교예 1로 준비하였다.
비교예 2 내지 3 : 하기 표 1에 기재된 조건을 만족하되, 상기 실시예 1 내지 4와 달리 돌출부와 함몰부가 존재하지 않는 통상의 격자형 볼록부를 포함한 비교예 2 내지 3의 WGP를 제조하였다. 이때, 비교예 2 내지 3의 WGP에 사용한 수지층, 금속 패턴층, 기재층은 상기 실시예 1 내지 4에서 사용한 것과 동일한 것을 사용하였다.
표 1
격자형 볼록부 금속 격자
선폭(nm) 높이(nm) 피치(nm) |P1-P2|1)(nm) 격자형 볼록부의 최대 돌출부로부터 수평방향의 두께2) (nm) 격자형 볼록부의 최상단부로부터 수직방향으로의 두께 (nm)
실시예 1 30 150 100 5 50 70
실시예 2 30 150 100 15 50 70
실시예 3 50 150 100 5 50 70
실시예 4 50 150 100 15 50 70
비교예 1 PVA형 흡수편광 필름
비교예 2 30 150 100 0 50 70
비교예 3 50 150 100 0 50 70
1) 격자형 볼록부의 최대 돌출부 및 최대 함몰부에서 각각 지면과 수직한 방향으로 내린 지점사이의 거리, 도 1에 표기된 부호 참고.
2) 비교예 2 및 3의 경우 격자형 볼록부의 측면으로부터 수형방향으로 적층된 두께를 적용함.
측정예
RETS-100 장비(OTSUKA ELECTRONICS사)를 이용하여 다음과 같은 방법으로 상기 실시예 1 내지 4 및 비교예 1 내지 3의 편광필름의 P 편광 투과도(Tp) 및 S 편광 투과도(Ts)를 측정하였으며, 이로부터 측정된 값을 이용하여 하기 식 1로 편광효율(PE)을 계산하여 그 결과를 하기 표 1에 반영하였다.
식 1)
Figure PCTKR2016006806-appb-I000001
또한, 5.5인치 액정디스플레이 패널의 하면 편광필름을 제거한 후, 상기 제조된 실시예 및 비교예의 편광필름을 부착하여 휘도를 분석하였다. 휘도 측정은 BM-7A(일본 TOPCON사)를 사용하여 임의의 5지점에서 가장 높은 휘도(Maximum Luminance, White)를 측정하여 그 평균값을 구하여 평가하였다.
표 2
P 편광 투과도(%) S 편광 투과도(%) 편광효율(%) 휘도(Maximum Luminance)
실시예 1 84.32 0.005 99.994 145
실시예 2 84.21 0.001 99.999 137
실시예 3 80.23 0.006 99.993 132
실시예 4 80.28 0.001 99.999 130
비교예 1 79.87 0.007 99.991 100
비교예 2 75.24 0.030 99.960 117
비교예 3 72.21 0.042 99.942 112
표 2의 결과에 따르면, 최대 돌출부와 최대 함몰부 사이의 거리가 존재하는 실시예 1 내지 4의 P 편광 투과도가 비교예 1 내지 3에 비해 현저하게 향상되는 것을 확인할 수 있었으며, 이에 따라 휘도가 매우 우수하게 나타났다. 이와 동시에 S편광 투과도 또한 낮아져 편광효율이 모두 99.99%이상으로 측정되었으며, 볼록부의 형상에서 최대 돌출부와 최대 함몰부가 존재하지 않는 비교예 2 및 3은 P 편광 투과도와 편광효율이 모두 본 발명의 실시예에 미치지 못하는 것으로 나타났다.

Claims (12)

  1. 격자형 볼록부(110)에 의한 요철패턴을 포함하는 수지층; 및
    상기 요철 패턴 상에 형성된 금속 격자(120) 패턴층을 포함하되,
    상기 격자형 볼록부는 볼록부의 좌측면 및 우측면 중 적어도 한 방향의 측면부가 굴곡지거나 지면과 예각을 이루도록 경사진 구간을 한 구간이상 포함하는 부정형의 형상인 것임을 특징으로 하는 와이어 그리드 편광판.
  2. 제 1 항에 있어서, 상기 격자형 볼록부는 경사지거나 굴곡진 구간을 한 구간 이상 포함하는 측면부에 의해서 측면 돌출부와 측면 함몰부를 각각 최소 1 이상 포함하는 것이고,
    상기 측면 돌출부 및 측면 함몰부는 동일한 방향을 기준으로 최대 돌출부(111)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P1);과 최대 함몰부(112)에서 지면을 향해 수직으로 내린 가상의 선이 지면과 만나는 지점(P2) 사이의 거리가 1 내지 30nm인 것임을 특징으로 하는 와이어 그리드 편광판.
  3. 제 2 항에 있어서, 상기 금속 격자 패턴은 격자형 볼록부와 맞닿아 형성된 것이고, 격자형 볼록부의 최대 함몰부에서부터 금속이 채워져 최대 돌출부에서 수평방향으로 이루는 적층폭(121)이 10nm 내지 100nm가 되도록 형성된 것임을 특징으로 하는 와이어 그리드 편광판.
  4. 제 2 항에 있어서, 상기 금속 격자 패턴은 금속이 격자형 볼록부의 최상단부로부터 수직방향으로 10nm 내지 200nm의 두께(122)를 갖도록 격자형 볼록부와 맞닿아 형성된 것임을 특징으로 하는 와이어 그리드 편광판.
  5. 제 1 항에 있어서, 상기 격자형 볼록부는 측면부가 굴곡진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 증가하다가 감소하는 구간, 볼록부의 폭이 증가하다가 일정해지는 구간, 볼록부의 폭이 감소하다가 증가하는 구간, 볼록부의 폭이 감소하다 일정해지는 구간, 볼록부의 폭이 일정하다 증가하는 구간, 볼록부의 폭이 일정하다 감소하는 구간 및 일정한 폭을 유지하되 볼록부의 기울어진 방향이 바뀌는 구간 중 적어도 어느 하나의 굴곡진 구간을 포함하는 형상이고,
    상기 굴곡진 구간은 뾰족하게 꺾이는 형태이거나 곡선으로 연결된 형태인 것임을 특징으로 하는 와이어 그리드 편광판.
  6. 제 1 항에 있어서, 상기 격자형 볼록부는 측면부가 지면과 예각을 이루도록 경사진 구간을 포함하는 형상으로서, 볼록부 횡단면 형상을 기준으로하여 지면과 수평 방향을 기준으로 볼록부의 폭이 상단부에서 하단부로 일정한 비율로 감소하는 형상 또는 볼록부가 일정한 폭을 유지하며 한 측면으로 기울어진 형상인 것임을 특징으로 하는 와이어 그리드 편광판.
  7. 제 1 항에 있어서, 상기 격자형 볼록부는 볼록부 횡단면 형상을 기준으로 지면과 수평 방향으로의 격자형 볼록부가 갖는 최대 폭을 선폭(113)으로 정의할 때, 선폭이 5 내지 100nm인 것임을 특징으로 하는 와이어 그리드 편광판.
  8. 제 1 항에 있어서, 상기 격자형 볼록부는 지면과 수직한 방향으로 이루는 높이(114)가 10 내지 500nm인 것임을 특징으로 하는 와이어 그리드 편광판.
  9. 제 1 항에 있어서, 상기 격자형 볼록부는 볼록부의 외곽과 맞닿으며 지면과 수직한 가상의 수직선을 그었을 때, 임의의 격자형 볼록부에서 그어진 최좌측부 수직선에서 그 다음 볼록부에서 그어진 최좌측부 수직선까지의 거리로 정의되는 피치(Pitch, 115) 값이 20 내지 200nm인 것임을 특징으로 하는 와이어 그리드 편광판.
  10. 제 1 항에 있어서, 상기 와이어 그리드 편광판은 P 편광 투과율이 50 내지 100%이고, 편광효율이 99.0000 내지 99.9999%인 것을 특징으로 하는 와이어 그리드 편광판.
  11. 제 1 항에 있어서, 상기 와이어 그리드 편광판은 휘도가 100 내지 200%인 것을 특징으로 하는 와이어 그리드 편광판.
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 있어서, 상기 와이어 그리드 편광판을 포함하는 액정표시장치.
PCT/KR2016/006806 2015-06-05 2016-06-24 와이어 그리드 편광판 및 이를 포함한 액정표시장치 WO2016195463A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16803816.4A EP3373050A4 (en) 2015-06-05 2016-06-24 WIRE GATE POLARIZER AND LIQUID CRYSTAL DISPLAY DEVICE THEREWITH
JP2017563157A JP2018517940A (ja) 2015-06-05 2016-06-24 ワイヤグリッド偏光板及びこれを含む液晶表示装置
CN201680032886.5A CN108351452A (zh) 2015-06-05 2016-06-24 线栅偏振片和包括其的液晶显示装置
US15/579,258 US20180136515A1 (en) 2015-06-05 2016-06-24 Wire grid polarizer and liquid crystal display device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0080186 2015-06-05
KR1020150080186A KR20160143443A (ko) 2015-06-05 2015-06-05 와이어 그리드 편광판 및 이를 포함한 액정표시장치

Publications (1)

Publication Number Publication Date
WO2016195463A1 true WO2016195463A1 (ko) 2016-12-08

Family

ID=57441294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006806 WO2016195463A1 (ko) 2015-06-05 2016-06-24 와이어 그리드 편광판 및 이를 포함한 액정표시장치

Country Status (6)

Country Link
US (1) US20180136515A1 (ko)
EP (1) EP3373050A4 (ko)
JP (1) JP2018517940A (ko)
KR (1) KR20160143443A (ko)
CN (1) CN108351452A (ko)
WO (1) WO2016195463A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998383A (zh) * 2018-07-26 2020-04-10 迪睿合株式会社 偏振片和光学设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020071257A1 (ja) * 2018-10-01 2021-09-24 Agc株式会社 ワイヤグリッド型偏光子、偏光板、映像表示装置
KR102130960B1 (ko) * 2019-05-07 2020-07-08 (주) 솔 가상의 그리드 선을 이용한 미세 입자 계수용 이미지 센서 패키지, 미세 입자 계수 시스템 및 방법
PH12020050192A1 (en) * 2019-07-17 2021-05-17 Moxtek Inc Reflective wire grid polarizer with transparent cap
PH12020050239A1 (en) * 2019-08-27 2021-05-17 Moxtek Inc Optical device with embedded organic moieties
CN113270443A (zh) * 2020-02-17 2021-08-17 群创光电股份有限公司 电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642003B1 (ko) * 2005-06-02 2006-11-02 엘지전자 주식회사 와이어 그리드 편광판, 그의 제조 방법 및 그를 갖는백라이트 유닛
KR20090058391A (ko) * 2007-12-04 2009-06-09 미래나노텍(주) 취급성이 향상된 와이어 그리드 편광판 및 그 제조 방법
JP4387141B2 (ja) * 2003-08-06 2009-12-16 株式会社リコー 偏光性回折格子
JP5235208B2 (ja) * 2010-07-29 2013-07-10 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板
KR20140067067A (ko) * 2011-10-14 2014-06-03 아사히 가세이 이-매터리얼즈 가부시키가이샤 와이어 그리드 편광판 및 투영형 영상 표시 기기

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293331A (en) * 1962-11-13 1966-12-20 Little Inc A Method of forming replicas of contoured substrates
FR2791781B1 (fr) * 1999-03-30 2002-05-31 Instruments Sa Filtre polarisant et son procede de fabrication
GB0106050D0 (en) * 2001-03-12 2001-05-02 Suisse Electronique Microtech Polarisers and mass-production method and apparatus for polarisers
KR100656999B1 (ko) * 2005-01-19 2006-12-13 엘지전자 주식회사 선 격자 편광필름 및 선 격자 편광필름의 격자제조용 몰드제작방법
JP2006330221A (ja) * 2005-05-25 2006-12-07 Alps Electric Co Ltd 偏光子
EP1887390A4 (en) * 2005-05-27 2010-09-15 Zeon Corp GRID POLARIZATION FILM, METHOD FOR PRODUCING THE SAME, OPTICAL LAMINATE, MANUFACTURING METHOD THEREOF, AND LIQUID CRYSTAL DISPLAY
US7894019B2 (en) * 2005-10-17 2011-02-22 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the same
JP4275692B2 (ja) * 2005-10-17 2009-06-10 旭化成株式会社 ワイヤグリッド偏光板及びそれを用いた液晶表示装置
KR20070054938A (ko) * 2005-11-24 2007-05-30 엘지전자 주식회사 선 격자 편광자 제조 방법
JPWO2008105261A1 (ja) * 2007-02-27 2010-06-03 日本ゼオン株式会社 グリッド偏光子
EP2264492B1 (en) * 2008-04-08 2014-07-02 Asahi Glass Company, Limited Manufacturing method for a wire grid polarizer
US20120075699A1 (en) * 2008-10-29 2012-03-29 Mark Alan Davis Segmented film deposition
US20100103517A1 (en) * 2008-10-29 2010-04-29 Mark Alan Davis Segmented film deposition
WO2011043439A1 (ja) * 2009-10-08 2011-04-14 旭硝子株式会社 ワイヤグリッド型偏光子およびその製造方法
JP5476142B2 (ja) * 2010-01-27 2014-04-23 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板
US8611007B2 (en) * 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
JP2012108468A (ja) * 2010-10-25 2012-06-07 Asahi Kasei E-Materials Corp ワイヤグリッド偏光板
WO2014025318A1 (en) * 2012-08-10 2014-02-13 Temasek Polytechnic Optical grating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387141B2 (ja) * 2003-08-06 2009-12-16 株式会社リコー 偏光性回折格子
KR100642003B1 (ko) * 2005-06-02 2006-11-02 엘지전자 주식회사 와이어 그리드 편광판, 그의 제조 방법 및 그를 갖는백라이트 유닛
KR20090058391A (ko) * 2007-12-04 2009-06-09 미래나노텍(주) 취급성이 향상된 와이어 그리드 편광판 및 그 제조 방법
JP5235208B2 (ja) * 2010-07-29 2013-07-10 旭化成イーマテリアルズ株式会社 ワイヤグリッド偏光板
KR20140067067A (ko) * 2011-10-14 2014-06-03 아사히 가세이 이-매터리얼즈 가부시키가이샤 와이어 그리드 편광판 및 투영형 영상 표시 기기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373050A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998383A (zh) * 2018-07-26 2020-04-10 迪睿合株式会社 偏振片和光学设备

Also Published As

Publication number Publication date
KR20160143443A (ko) 2016-12-14
CN108351452A (zh) 2018-07-31
JP2018517940A (ja) 2018-07-05
US20180136515A1 (en) 2018-05-17
EP3373050A4 (en) 2019-02-27
EP3373050A1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2016195463A1 (ko) 와이어 그리드 편광판 및 이를 포함한 액정표시장치
TWI494615B (zh) 稍具表面粗度之稜形片
KR101751996B1 (ko) 디스플레이 장치
KR101178722B1 (ko) 액정표시장치 백라이트 유닛용 도광판 및 이를 이용한 액정표시장치 백라이트 유닛
WO2017115967A1 (ko) 와이어 그리드 편광판 및 이를 포함한 광학부품
JP2016161943A (ja) 偏光板及びこれを含む液晶表示装置
JP4727574B2 (ja) バックライト装置
KR101052799B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
TW201624075A (zh) 液晶顯示模組和包括液晶顯示模組的液晶顯示器
JP2010210882A (ja) 光学シート及びそれを用いたディスプレイ装置
KR101813753B1 (ko) 액정표시장치
KR100936715B1 (ko) 광학필름 및 이를 포함하는 디스플레이 장치
JP2013011667A (ja) 光学シート、面光源装置、及び画像表示装置
TW202037944A (zh) 偏光板及包括其的光學顯示裝置
KR20110068208A (ko) 압출인각 방식에 의한 도광판 제조방법
KR100962165B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
JP2008304501A (ja) 拡散板
CN110007504A (zh) 偏光板用保护片、偏光板、及液晶显示装置
WO2017026734A1 (ko) 와이어 그리드 편광판 및 이를 포함한 광학부품
KR101123289B1 (ko) 고휘도 특성을 갖는 도광판
WO2017026735A1 (ko) 와이어 그리드 편광판 및 이를 포함한 광학부품
JP2009265498A (ja) 耐擦傷性レンズシート
KR100936713B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
KR20150025401A (ko) 광학시트 및 이를 포함하는 광학표시장치
WO2017026677A1 (ko) 양면형 와이어 그리드 편광판 및 이를 포함한 광학부품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579258

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017563157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803816

Country of ref document: EP