WO2016195338A2 - 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템 - Google Patents

액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템 Download PDF

Info

Publication number
WO2016195338A2
WO2016195338A2 PCT/KR2016/005666 KR2016005666W WO2016195338A2 WO 2016195338 A2 WO2016195338 A2 WO 2016195338A2 KR 2016005666 W KR2016005666 W KR 2016005666W WO 2016195338 A2 WO2016195338 A2 WO 2016195338A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal nanoparticles
drug
formula
nanoparticles
Prior art date
Application number
PCT/KR2016/005666
Other languages
English (en)
French (fr)
Other versions
WO2016195338A3 (ko
Inventor
김병문
이동렬
박지수
배일학
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160057564A external-priority patent/KR101756961B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2016195338A2 publication Critical patent/WO2016195338A2/ko
Publication of WO2016195338A3 publication Critical patent/WO2016195338A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds

Definitions

  • the present invention relates to a liquid crystal nanoparticle, a method for preparing the same, and a drug delivery system containing liquid crystal nanoparticles containing lipophilic drugs.
  • the lipophilic drugs currently used as pharmaceuticals show low bioavailability due to their low solubility when administered in vivo. Many of the drug candidates under development are difficult to formulate because of their lipophilic properties. Therefore, many different formulation methods for solubilizing lipophilic drugs have been studied, but the effects have been insufficient or limited in application to date. Accordingly, studies on drug delivery systems for solubilizing lipophilic drugs have been actively conducted, and examples of liposomes, peglated peptides, and lipid nanoparticles in solid state have been reported.
  • liposomes are artificial lipid membrane vesicles made of lipid-like components in vivo, and the drug is encapsulated in liposomes to increase the bioabsorption rate of the drug.
  • peglated peptides are administered by attaching polyethylene glycol to the N-terminal amine group of a protein or peptide drug, thereby increasing the drug's in vivo duration so that the drug's efficacy can be expressed uniformly.
  • the lipid nanoparticles in the solid state are made of components similar to the lipids in the living body to enhance biocompatibility, and the drug is encapsulated in the solid state lipid nanoparticles to increase the controlled release of the drug and the stability of the drug.
  • the liposome has a problem that the stability of the vesicle itself is not maintained for a long time, the pegylated (peglated) peptide has a limited position to which the polyethylene glycol can be attached.
  • the lipid nanoparticles in the solid state have potential toxicity due to the organic solvent used in the preparation, there is an immunological problem, there is a problem that the release of the drug encapsulated in the lipid particles in the solid state is slow.
  • Liquid crystal nanoparticles are nanoparticles in a state where a crystal and a liquid are mixed, and include a hydrophilic and hydrophobic portion formed by a water component and an oil component by mixing an organic compound, water, and a surfactant.
  • a hydrophilic portion of the liquid crystal nanoparticles an oil component forming a lamellar interfacial film is dispersed in the hydrophilic portion. Due to this property, a drug that is hardly soluble in water is dispersed in the hydrophilic portion and delivered to the living body.
  • the liquid crystal structure can protect the active ingredient of the lipophilic drug under various environmental conditions in vivo such as temperature, pH, and is widely used as a formulation for solubilizing the lipophilic drug.
  • liquid crystal nanoparticles according to the prior art described above have a problem in that the drug is released over time because the interfacial film of the lamellar structure is not maintained firmly, and the stability to the physical properties and shape of the particles due to thermodynamic instability This is not high.
  • the amount of drug release, drug release, such as the persistence of the drug release is not great, many studies to improve this, but the results have not yet been satisfactory.
  • Patent Document 1 Korean Patent Document 1
  • Non-Patent Document 1 Mol. Pharmaceutics 2014, 11, 1435-1449 discloses white petrolatum.
  • Non-Patent Document 2 (ACS Nano, 2014, 8, 6986-6997) discloses nanoparticles based on phytantriol and glyceryl monorate. Physical stability, such as the size and shape of, has not been demonstrated.
  • liquid crystal nanoparticles that can maintain the size and shape of the particles for a longer time than the liquid crystal nanoparticles in which the lipophilic drug is encapsulated, and improve the pharmacokinetic properties such as drug release amount and plasma concentration. Do.
  • the present inventors have been working to develop liquid crystal nanoparticles having improved physicochemical and pharmaceutical performance, and have developed liquid crystal nanoparticles having improved pharmacokinetic properties of the lipophilic drug according to the present invention, thereby improving the lipophilic drug.
  • the present invention has been shown to improve pharmacokinetic properties such as drug release, plasma concentration, and the like.
  • liquid crystal nanoparticles comprising at least one compound selected from the group consisting of compounds represented by the following formulas (1) to (3).
  • n is an integer from 0 to 25;
  • p is an integer from 10 to 24;
  • q and r are each independently an integer of 10 to 24.
  • Another object of the present invention is to provide a method for producing the liquid crystal nanoparticles.
  • Still another object of the present invention is to provide a drug delivery system including the liquid crystal nanoparticles containing the lipophilic drug.
  • the present invention provides liquid crystal nanoparticles comprising at least one compound selected from the group consisting of compounds represented by the following formulas (1) to (3).
  • n is an integer from 0 to 25
  • p is an integer from 10 to 24,
  • q and r are each independently an integer of 10 to 24.
  • the present invention comprises the steps of mixing at least one compound selected from the group consisting of compounds represented by the following formula (1) to (3) (step 1);
  • step 3 A step of mixing the liquid compound with water heated to 70-100 ° C., followed by stirring (step 3); And
  • n is an integer from 0 to 25
  • p is an integer from 10 to 24,
  • q and r are each independently an integer of 10 to 24.
  • the present invention provides a drug delivery system including the liquid crystal nanoparticles containing the lipophilic drug.
  • the liquid crystal nanoparticles according to the present invention not only have excellent long-term storage, physical properties, and stability for morphology, but also have improved pharmacokinetic properties such as sustained release of the drug and high plasma concentration during lipophilic drug delivery, It can selectively deliver lipophilic drugs, and thus can be used as an effective drug delivery system. In addition, it can be easily manufactured using low energy and cost, thereby lowering the production cost of liquid crystal nanoparticles and improving productivity.
  • FIG. 1 is a graph of conductivity ( ⁇ S) according to temperature of liquid crystal nanoparticles prepared in Example 1.
  • Figure 3 is an HPLC analysis graph of the liquid crystal nanoparticles prepared in Example 1.
  • FIG. 4 is a graph of HPLC analysis of liquid crystal nanoparticles containing lipophilic drug prepared in Example 4.
  • FIG. 5A is an X-ray diffraction analysis graph of the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Examples 2 to 4 by SAXD
  • FIG. It is an X-ray diffraction analysis graph of the liquid crystal nanoparticles prepared and the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Examples 2 to 4 were measured by WAXD.
  • FIG. 6 illustrates a lamella structure of the liquid crystal nanoparticles according to the present invention.
  • Example 7 is a differential scanning calorimetry graph of liquid crystal nanoparticles prepared in Example 1 and liquid crystal nanoparticles containing lipophilic drugs prepared in Examples 2 to 4;
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • Example 9 is a graph of operating laser scattering analysis when the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug prepared in Examples 2 to 4 at 4 ° C.
  • Example 10 is a graph of operating laser scattering analysis when the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug prepared in Examples 2 to 4 at 37 ° C.
  • FIG. 11 is a graph of the amount of lipophilic drug released from a host-guest complex (HGC) containing liquid crystal nanoparticles containing a lipophilic drug prepared in Example 4 and a lipophilic drug prepared in Comparative Example 1.
  • HGC host-guest complex
  • FIG. 12 shows plasma drugs over time when HGC (host-guest complex) containing liquid-lipide nanoparticles containing lipophilic drugs prepared in Example 4 and lipophilic drugs prepared in Comparative Example 1 were respectively administered to rats. Graph of concentration.
  • HGC host-guest complex
  • FIG. 13 shows concentrations of lipophilic drugs in tissues when intravenously administered HGC containing liquid crystal nanoparticles containing lipophilic drugs prepared in Example 4 and lipophilic drugs prepared in Comparative Example 1 to mice. For the graph.
  • Figure 14 shows the concentration and tissue of lipophilic drug in plasma when orally administered HGC containing liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 and the lipophilic drug prepared in Comparative Example 1 to the rat It is a graph of the concentration ratio of lipophilic drugs in the stomach.
  • the present invention provides liquid crystal nanoparticles comprising at least one compound selected from the group consisting of compounds represented by the following formulas (1) to (3).
  • n is an integer from 0 to 25;
  • p is an integer from 10 to 24;
  • q and r are each independently an integer of 10 to 24.
  • liquid crystal nanoparticles according to the present invention will be described in detail.
  • liquid crystal nanoparticles according to the present invention are stacked in a tetragonal side and formed into a lamella structure.
  • the average particle size of the liquid crystal nanoparticles according to the present invention is proportional to the concentration of the lipophilic drug and is not particularly limited as long as the size can encapsulate the lipophilic drug, but it is preferable that the average particle size is 150 nm or less, It is more preferable that it is 20 nm-150 nm. If the average particle size of the liquid crystal nanoparticles according to the present invention is less than 20 nm, there is a problem that the inter-phase ratio of the liquid crystal nanoparticles according to the present invention is lowered, thereby lowering the concentration of the lipophilic drug that can be encapsulated.
  • the inter-phase ratio increases and the concentration of the lipophilic drug that can be encapsulated increases, but the phase separation occurs due to the increase in the size of the liquid crystal nanoparticles in which the lipophilic drug is encapsulated. There is this.
  • liquid crystal nanoparticles according to the present invention are formed in a lamella structure laminated side by side in a tetragonal structure, the distance between the layer and the layer laminated in the lamella structure (lamella) to form a lamella structure (lamella) structure
  • limit especially if it is possible distance
  • the distance between the layers of the lamellar structure and the layer is less than 5.0 nm cannot be prepared in consideration of the length of the surfactant used in the present invention, if the distance is more than 15.0 nm, the liquid crystal layer is excessively wetted, resulting in poor stability of the liquid crystal structure. There is a problem.
  • the lamella structure of the liquid crystal nanoparticles according to the present invention may be formed by stacking hydrocarbon chain portions in a tetragonal structure in the components constituting the liquid crystal nanoparticles.
  • the spacing between the hydrocarbon chains forming the tetragonal structure is not particularly limited as long as it can form the tetragonal structure, but 0.1-1.0 nm interval is preferable, and 0.2-0.5 nm is more preferable. If the spacing between the hydrocarbon chains is less than 0.1 nm cannot be produced because the electron cloud of the hydrocarbon chains overlap and physical repulsion occurs, and if it exceeds 1.0 nm, van der Waals forces between the chains are weak to maintain the tetragonal structure and dissociate the liquid crystal structure. There is a problem.
  • the component of the liquid crystal nanoparticles according to the present invention may include at least one compound selected from the group consisting of compounds represented by the following formulas (1) to (3).
  • n is an integer from 0 to 25;
  • p is an integer from 10 to 24;
  • q and r are each independently an integer of 10 to 24.
  • the component of the liquid crystal nanoparticles according to the present invention there is no particular limitation as long as it is at least one compound selected from the group consisting of compounds represented by Formulas 1 to 3, but each of the compounds represented by Formulas 1 to 3 An example is as follows.
  • Examples of the compound represented by Formula 1 include cetearese, cetostearyl alcohol, polyoxyethylene cetostearyl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and the like. It is more preferable that it is polyoxyethylene cetostearyl ether.
  • the compound represented by the formula (2) is glycerol monostearate, glycerol distearate, sucrose monostearate, sucrose distearate, sucrose tristearate, sucrose tetrastearate, cetearyl glucoside, cetyl glucoside, stearyl Glucoside, behenyl glucoside, myristyl glucoside, etc. are mentioned, It is more preferable that it is glycerol monostearate.
  • the compound represented by Formula 3 may include cetyl palmitate, tetradecyl tetradecanoate and behenyl behenate, and more preferably cetyl palmitate and tetradecyl tetradecanoate.
  • liquid crystal nanoparticles as a component of the liquid crystal nanoparticles according to the present invention, as a mixture of one or more compounds selected from the group consisting of the compounds represented by the above formulas (1) to (3), the above compounds, cetostearyl alcohol, glycerol monostearate and Mixtures of cetyl palmitate; Polyoxyethylene cetostearyl ether; And tetradecyl tetradecanoate and the like.
  • the polyoxyethylene cetostearyl ether is contained in an amount of 0.1-6.0 parts by weight based on 1 part by weight of the mixture of ceteareth, cetostearyl alcohol, glycerol monostearate and cetyl palmitate, and 0.5-2.5 weight. More preferably included, and most preferably, 0.5-1.5 parts by weight.
  • the tetradecyl tetradecanoate is preferably contained in 0.1 to 8.0 parts by weight based on 1 part by weight of the mixture of the ceteareth, cetostearyl alcohol, glycerol monostearate and cetyl palmitate, 0.5 to 4.0 parts by weight Even more preferably included, it is preferably included in 0.5-2.5 parts by weight.
  • Emulgade SE-PF As a component of the liquid crystal nanoparticles according to the present invention, specific examples of the mixture of ceteares, cetostearyl alcohol, glycerol monostearate and cetyl palmitate include Emulgade SE-PF, and the Emulgade SE. In the case of using -PF as an alternative, it is preferable to apply the same or similar composition ratio for each component of Emulgade SE-PF.
  • the constituents of the liquid crystal nanoparticles according to the present invention are out of the range by weight, the constituents are separated without mixing with each other, or problems such as macroemulsion, gelling, and precipitation occur. do.
  • liquid crystal nanoparticles according to the present invention is a result of small angle X-ray diffraction (SAXD) and wide angle X-ray diffraction (WAXD) as a result,
  • SAXD small angle X-ray diffraction
  • WAXD wide angle X-ray diffraction
  • the layer between the layers of the lamellar structure and the layer is approximately 9.7 nm, and the distance between the hydrocarbon chains is 0.419 nm and 0.379 nm, indicating that the tetragonal structure is a structure of liquid crystal nanoparticles laminated side by side (experimental) See Example 3 and FIG. 5).
  • liquid crystal nanoparticles according to the present invention can be seen that the stability is improved even if stored for 2 months at 37 °C or less, and the lipophilic drug is enclosed in the liquid crystal nanoparticles according to the present invention, It can be seen that the shape of the liquid crystal nanoparticles was kept constant regardless of the concentration of the oily drug. Particularly, even when stored at 37 ° C. or less for 2 months, the drug size is stable because the particle size and the content of the lipophilic drug are shown. It can be usefully used as a system (see Experimental Example 4-7 below, Fig. 7-10).
  • the present invention comprises the steps of mixing at least one compound selected from the group consisting of compounds represented by the following formula (1) to (3) (step 1);
  • step 3 A step of mixing the liquid compound with water heated to 70-100 ° C., followed by stirring (step 3); And
  • step 1 is a step of mixing at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 1 to 3, the main of the liquid crystal nanoparticles It is a step of uniformly mixing the compound to be a component.
  • the order in which one or more compounds selected from the group consisting of the compounds represented by the above Chemical Formulas 1 to 3 are mixed is not limited and may be mixed at the same time.
  • step 2 is a phase inversion from the solid state to the liquid state by melting the mixture of step 1 by heating to 70-120 °C. .
  • step 2 is a step of heating the mixture of step 1 to a temperature of 70-120 °C which is the phase inversion temperature of the mixture of step 1.
  • 70-120 °C is the phase inversion temperature of the mixture of step 1.
  • the gap between the lipophilic and hydrophilic moieties forming the mixture is farther away and the phase transitions from a solid state to a liquid state.
  • heating the heating temperature of the step 2 to less than 70 °C the phase transition does not occur, if the heating is more than 120 °C, the phase transition is already completed in the liquid state, it is necessary to apply heat to more than 120 °C There is no.
  • step 3 is a step of mixing and stirring water heated to 70-100 ° C. to a liquid compound.
  • step 3 uses water as a solvent for dispersing the liquid.
  • the solvent is not particularly limited as long as it is a water-soluble solvent capable of dispersing a liquid, but water is preferably used.
  • the water is preferably mixed at 65-80% by weight based on the total weight of the liquid and water. When the water is less than 65% by weight, the liquid may not be uniformly dispersed. When the water is more than 80% by weight, the weight of the water is increased relative to the weight of the liquid, and thus the liquid crystal structure of the liquid crystal nanoparticles cannot be obtained.
  • step 4 is a step of preparing the liquid crystal nanoparticles by cooling the stirred mixture to 5-30 ° C.
  • the step 4 is to cool the stirred mixture to 5-30 °C, lyophilic / hydrophilic portion of the liquid mixture dispersed in water as the temperature is lowered together lamellar (lamella) structure and liquid crystal structure Liquid crystal nanoparticles comprising a can be prepared.
  • step 1 of the aforementioned liquid crystal nanoparticle manufacturing method the lipophilic drug is further mixed and the step 2- of the liquid crystal nanoparticle manufacturing method described above. 4 can be performed identically.
  • the present invention provides a drug delivery system including the liquid crystal nanoparticles containing the lipophilic drug.
  • the lipophilic drug encapsulated in the liquid crystal nanoparticles according to the present invention is not particularly limited as long as it shows a lipophilic drug, biphenyl diamide derivative represented by the following formula (4), a pharmaceutically acceptable salt thereof or its Optical isomers are preferred.
  • R 1 is -H; C 1-4 straight or branched alkyl; C 1-4 straight or branched alkoxy; C 6-12 aryl unsubstituted or substituted with halogen, C 1-4 straight or branched alkyl, C 1-4 alkoxy; Or amino substituted with C 1-4 alkoxycarbonyl;
  • R 2 is -H; C 1-4 straight or branched alkyl; C 1-4 straight or branched alkoxy; Or amino substituted with one or more C 1-4 straight or branched alkyl or C 1-4 alkoxycarbonyl;
  • R 1 and R 2 together with the carbon atom to which they are bonded 5 to 7 membered hetero, including at least one hetero atom selected from the group consisting of nitrogen (N) atoms, oxygen (O) atoms and sulfur (S) atoms Can form cycloalkyl;
  • X is an oxygen (O) atom, a sulfur (S) atom or methylene (CH 2 ) (see Patent 101507914).
  • examples of the biphenyl diamide derivative represented by Chemical Formula 4 include the following compounds.
  • the lipophilic drug is preferably encapsulated in the liquid crystal nanoparticles at 0.01-3.00 wt%, more preferably 0.1-1.5 wt%.
  • the lipophilic drug is encapsulated in less than 0.01% by weight, the drug delivery amount is insignificant and the drug does not appear, and when the lipophilic drug is encapsulated in excess of 3.00% by weight, the size of the liquid crystal nanoparticles is large.
  • the shape of the liquid crystal nanoparticles is kept constant regardless of the concentration of the lipophilic drug. It shows stability to particle size and content of lipophilic drug even when stored at 37 ° C. or less for 2 months (see Experimental Example 4-7 below, FIG. 7-10), and HGC (host-guest complex containing lipophilic drug) It can be seen that the pharmacokinetic properties are improved by increasing the drug release amount and duration (see Experimental Example 7 FIG. 11), and plasma concentrations of 300 nmol / L or more can be reached within 0.5 hours after administration (Experimental Example 8, 12, Table 3).
  • liquid crystal nanoparticles according to the present invention have improved pharmacokinetic properties that efficiently deliver drugs into plasma within the same time period as compared to conventional drug delivery systems, and thus can be usefully used as drug delivery systems.
  • the lipophilic drug administered through HCG is present in high concentrations simultaneously in plasma, kidney and lung,
  • the lipophilic drug encapsulated and administered in the liquid crystal nanoparticles is present in the liver at the highest concentration, and in other tissues, it can be seen that the lipophilic drug is selectively delivered to the liver (Experimental Example 9 and FIG. 13, 14).
  • the liquid crystal nanoparticles according to the present invention not only have excellent long-term storage, physical properties, and stability for morphology, and have excellent pharmacokinetic properties such as sustained release of the drug during lipophilic drug delivery and high plasma concentration. Since only the liver can selectively deliver lipophilic drugs, it can be used as an effective drug delivery system. In addition, it can be easily manufactured using low energy and cost, thereby lowering the production cost of liquid crystal nanoparticles and improving productivity.
  • the present invention provides a method for manufacturing a drug delivery system including the liquid crystal nanoparticles containing a lipophilic drug.
  • the lipophilic drug may be further mixed, and steps 2-4 of the above-described method for producing liquid crystal nanoparticles may be performed in the same manner.
  • the method for producing a drug delivery system according to the present invention can be easily prepared by further mixing the lipophilic drug in step 1 of the above-described method for preparing liquid crystal nanoparticles.
  • Glycerol monostearate, ceteares-20, ceteares-12, cetearyl alcohol and a mixture of cetyl palmitate 1.93 g, Emulgade SE-PF, BASF, Germany
  • polyethylene glycol-12 cetostearyl ether 1.93 g
  • tetradecyl tetradecanoate 3.85 g
  • the mixture of mate (0.03 g) and water (14.000 g) were each heated to about 85 ° C.
  • methylene) bis (pyrrolidine-2,1-diyl)) bis (2-oxo-1-phenylethane-2,1-diyl) dicarbamate (0.09 g) was used.
  • Liquid crystal nanoparticles were prepared in the same manner as in Example 2.
  • Glycerol monostearate, ceteares-20, ceteares-12, cetearyl alcohol and a mixture of cetyl palmitate 1.63 g, Emulgade SE-PF, BASF, Germany
  • polyethylene glycol-12 cetostearyl ether 1.63 g
  • tetradecyl tetradecanoate 2.925 g
  • dimethyl (1S, 1'S) -2,2 '-((2S, 2'S) -2,2'-(biphenyl-4,4'-diyl Bis (azanediyl)) bis (oxomethylene) bis (pyrrolidine-2,1-diyl)) bis (2-oxo-1-phenylethane-2,1-diyl) dicarbamate (0.15 g Except for using), it was carried out in the same manner as in Example 1 to prepare a liquid crystal nanoparticles.
  • HGC host-guest complex
  • HP- ⁇ -CD hydropropyl- ⁇ -cyclodextrin, 20.0 g
  • HP- ⁇ -CD hydropropyl- ⁇ -cyclodextrin, 20.0 g
  • Example 1 the conductivity of the liquid crystal nanoparticles prepared in Example 1 (Cond 6+, U-Tech Instruments, Singapore) was measured according to temperature ( ⁇ S) was measured and the results are shown graphically in FIG. 1.
  • FIG. 1 is a graph of conductivity ( ⁇ S) according to temperature of liquid crystal nanoparticles prepared in Example 1.
  • the conductivity ( ⁇ S) of Example 1 is about 140 ⁇ S at 80 ° C, and decreases to 20 ⁇ S or less at 95 ° C, whereby the conductivity ( ⁇ S) is changed by Example 1 in phase inversion. I could see that. Therefore, it was found that phase-inversion temperature was present within the 80-100 ° C. range in which the conductivity ( ⁇ S) was changed, resulting in phase inversion of the liquid crystal nanoparticles.
  • the lipophilic drug In order to determine whether the lipophilic drug is encapsulated in the liquid crystal nanoparticles, the lipophilic drug, the liquid crystal nanoparticles prepared in Example 1 and the lipophilic prepared in Example 4 using HPLC (high performance liquid chromatography) method The liquid crystal nanoparticles containing the oily drug were measured and compared.
  • HPLC high performance liquid chromatography
  • each column of 250 x 4.6 mm filled with a lipophilic drug dissolved in tetrahydrofuran, the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug prepared in Example 4 is filled with liquid crystal nanoparticles 0.1% trifluoroacetic acid, water and acetonitrile were used as mobile phases at 0.1% trifluoroacetic acid and water at 100% concentration, and the acetonitrile was 0, 10, 20, 22, and 25 minutes.
  • the concentration was adjusted to 0%, 100%, 100%, 0% and 0% at every minute time interval, and the result of HPLC measurement of the lipophilic drug in FIG. 2, the liquid crystal prepared in Example 1 in FIG. 3.
  • the HPLC measurement results for the nanoparticles and the HPLC measurement results for the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 are shown in FIG. 4.
  • Figure 3 is an HPLC analysis graph of the liquid crystal nanoparticles prepared in Example 1.
  • FIG. 4 is a graph of HPLC analysis of liquid crystal nanoparticles containing lipophilic drug prepared in Example 4.
  • the lipophilic drug is excellently encapsulated in the liquid crystal nanoparticles according to the present invention.
  • SAXD Small angle x-ray diffraction
  • SAXpace Anatompa, Austria
  • NICEM Center for Agricultural Science and Technology
  • FIG. 5A is an X-ray diffraction analysis graph of the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Examples 2 to 4 by SAXD
  • FIG. It is an X-ray diffraction analysis graph of the liquid crystal nanoparticles prepared and the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Examples 2 to 4 were measured by WAXD.
  • liquid crystal nanoparticles and the lipophilic drug encapsulated liquid crystal nanoparticles according to the present invention have a lamellar structure having a distance of 9.7 nm regardless of the concentration of the lipophilic drug (see FIG. 6).
  • the embodiment of the present invention has a lamella structure in which the tetragonal structure is stacked laterally (see FIG. 6).
  • Example of the present invention by differential scanning calorimetry using DSC-q1000 (TA instrument, USA) equipped with a thermal analysis data system in the Center for Agricultural Science to measure the physical properties of liquid crystal nanoparticles according to the concentration of lipophilic drugs was measured and the result is shown in FIG.
  • Example 7 is a differential scanning calorimetry graph of liquid crystal nanoparticles prepared in Example 1 and liquid crystal nanoparticles containing lipophilic drugs prepared in Examples 2 to 4;
  • the main peak of the liquid crystal nanoparticles prepared in Example 1 was found to be 33-36 ° C., and the small peak was 25-32 ° C., which means that the lipophilic drug prepared in Examples 2 to 4 was There was no significant difference from the encapsulated liquid crystal nanoparticles.
  • the physical properties of the liquid crystal nanoparticles do not change significantly regardless of the concentration of the lipophilic drug, it can be seen that the stability of the physical properties of the liquid crystal nanoparticles according to the present invention is improved.
  • Example 1 of the present invention In order to measure the shape of the liquid crystal nanoparticles according to the concentration of the lipophilic drug, the liquid crystal nanoparticles prepared in Example 1 of the present invention using a transmission electron microscope (TEM) and the parenteral prepared in Examples 2 to 4 were used. The liquid crystal nanoparticles containing the oily drug were measured and the results are shown in FIG. 8.
  • TEM transmission electron microscope
  • liquid crystal nanoparticles prepared in each Example 1 and the lipophilic drug prepared in Examples 2 to 4 were diluted with encapsulated liquid crystal nanoparticles (0.10 ml) water (25 ° C., 1.0 ml), and diluted.
  • the liquid crystal nanoparticle solution was dropped on a carbon film (CF300-Cu), dried for one day under reduced pressure, and subjected to a voltage of 200 kV on an electron microscope (EM-2010, Geol) to obtain an image of the liquid crystal nanoparticles.
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • FIG. 8 is a transmission electron microscope image of the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 4.
  • the shape of the liquid crystal nanoparticles is kept constant, thereby improving stability of the shape.
  • Example 1 of the present invention The liquid crystal nanoparticles prepared in Example 1 of the present invention and the parents prepared in Examples 2 to 4 using an operative laser scattering (DLS) method to measure the size of the liquid crystal nanoparticles over temperature and time.
  • the size of the liquid crystal nanoparticles containing the oily drug was measured, and the results are shown in FIGS. 9 and 10.
  • liquid crystal nanoparticles prepared in each Example 1 and the liquid crystal nanoparticles (0.2 ml) containing the lipophilic drug prepared in Examples 2 to 4 were diluted with purified water (25 ° C., 10 ml), and The diluted liquid crystal nanoparticle solution (3 ml) was added to ⁇ 21 cylinder cells of DLS-8000HL (Otsuka Electronics, Japan), and then detected at 90 ° C. with a helium-neon laser 10 mW at a temperature of 4 ° C. and 37 ° C. , 30 times. The results of three repeated measurements for each Example are shown in FIG. 9 at 4 ° C. and FIG. 10 at 37 ° C.
  • FIG. 9 The results of three repeated measurements for each Example are shown in FIG. 9 at 4 ° C. and FIG. 10 at 37 ° C.
  • Example 9 is a graph of operating laser scattering analysis when the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug prepared in Examples 2 to 4 at 4 ° C.
  • Example 10 is a graph of operating laser scattering analysis when the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drug prepared in Examples 2 to 4 at 37 ° C.
  • the size of the liquid crystal nanoparticles prepared in Example 1 and the lipophilic drugs prepared in Examples 2 to 3 did not change significantly at a temperature of 4 ° C.
  • the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 were larger in size than the liquid crystal nanoparticles prepared in Example 1 and the liquid crystal nanoparticles containing the lipophilic drug prepared in Examples 2 to 3, but increased.
  • the particle size was less than 150 nm even after 2 months.
  • the size of the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Examples 3 to 4 increased, but the liquid-crystal nanoparticles encapsulated in the lipophilic drug prepared in Example 3 were about 150. There was no significant increase from nm.
  • the liquid crystal nanoparticles of the present invention are stored in a constant size when the temperature condition of 37 °C or less improves the stability to the size. Therefore, the liquid crystal nanoparticles of the present invention can be stored for a long time to improve the pharmacokinetic properties, it can be usefully used in drug delivery systems or pharmaceutical preparations.
  • the amount of lipophilic drug contained in the liquid crystal nanoparticles is measured, and the amount of lipophilic drug released to the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 of the present invention is measured using the following method. The results are shown in FIG. 11.
  • HGC 1.5 ml
  • carbopol gel 0.5 wt%, 4 ml prepared in Comparative Example 1
  • a phosphate buffer solution pH 6.5, 50 mM, 38.5 ml
  • Liquid crystal nanoparticles 0.2 ml
  • carbopol gel 0.5 wt%, 4 ml
  • a phosphate buffer solution 39.8 mL
  • a liquid crystal nanoparticle solution was made.
  • the HGC solution (11 ml) and the liquid crystal nanoparticle solution (11 ml) were put in a dialysis bag (fraction molecular weight 10 kDa, Thermo Fisher Scientific), respectively, and continuously added to maintain the volume of the phosphate buffer solution (90 ml). .
  • FIG. 11 shows the lipophilic drug release amount from the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 and the lipophilic drug release amount from the host-guest complex (HGC) including the lipophilic drug prepared in Comparative Example 1. It is a graph.
  • HGC host-guest complex
  • the HGC solution was released 3.87% for 3 hours, 3.51% for 69 hours, the liquid crystal nanoparticle solution was released for 19.5% for 12 hours, 32.0% for 60 hours, and the drug was released at a slope of 0.995. Drug release and duration increased.
  • liquid crystal nanoparticles according to the present invention have improved drug release amount and duration, thereby improving pharmacokinetic properties, and thus can be usefully used in drug delivery systems or pharmaceutical preparations.
  • rat HGC prepared in Comparative Example 1 or the lipophilic drug prepared in Example 4 is encapsulated Nanoparticles were administered.
  • the method of administration is administered intravenously and orally, respectively, with a nominal concentration of 1.0 mg / mL.
  • Intravenous injection was administered by tail vein bolus injection of 5 mL of solution per kilogram of body weight immediately prior to drug administration.
  • Oral administration was administered 10 mL of solution per kg of body weight through a gavage tube (gavage tube).
  • Plasma collection harvest time; 0.083 (when intravenous only), 0.25, 0.5, 1, 2, 4, 8, 24h
  • Test subject room temperature, fed overnight
  • Intravenously injected SD rats were sampled at intervals of 0.083, 0.25, 0.5, 1, 2, 4, 8 and 24 hours, and orally administered SD rats were 0.25, 0.5, 1, 2, 4, 8 and 24 hours.
  • Blood is collected at intervals, and 0.2-0.3 mL of the collected blood is placed in a polypropylene tube containing EDTA (ethylenediaminetetraacetic acid) -K 2 as an anticoagulant.
  • the collected blood was stored in an ice bath containing ice, and centrifuged at 6000 rpm for 8 minutes within 1 hour immediately after storage to obtain plasma, and the concentration of drug in plasma was measured using LC-MS / MS. The results are shown graphically in FIG. 12.
  • FIG. 12 shows plasma-based plasma over time when HGC (host-guest complex) containing lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Example 4 and lipophilic drugs prepared in Comparative Example 1 were respectively administered to rats. Graph of drug concentration.
  • the half-life (T 1 / 2z ), the time taken to the maximum concentration (T max ), the maximum concentration (C max ), the graph area (AUC), the graph dispersion volume (V z / F), and the plasma clearance from the graph of FIG. 12. (CL z / F), mean duration of stay (MRT (0-t) ) and bioavailability (F) are calculated and shown in Table 3 below.
  • the half-life (T 1 / 2z ), the time taken to the maximum concentration (T max ), and the maximum concentration (C max ) were determined by the values of the X and Y axes of the graph.
  • the graph area (AUC) was calculated by multiplying the values of the X and Y axes of the graph to determine the cumulative amount of drug concentration in the plasma.
  • the maximum plasma concentration reached faster than HGC (host-guest complex) containing the lipophilic drug.
  • plasma concentrations of 300 nmol / L or more were reached within 0.5 hours, indicating that a large amount of drug was present in the plasma.
  • the maximum concentration when the oral administration of the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 was about 2 times higher than when administered orally, and the time taken up to the maximum concentration when orally administering the liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 also included the lipophilic drug prepared in Comparative Example 1 HGC (host-guest complex) was orally administered about 1 hour faster than the time taken to reach the maximum concentration.
  • the bioavailability of the lipophilic drug-encapsulated liquid crystal nanoparticles prepared in Example 4 was increased about 5 times compared to when HGC (host-guest complex) containing the lipophilic drug prepared in Comparative Example 1 was administered.
  • HGC host-guest complex
  • the drug release amount was increased, so that the lipophilic drug prepared in Example 4 was It can be seen that the drug is well delivered by the encapsulated nanoparticles.
  • liquid crystal nanoparticles according to the present invention have improved pharmacokinetic properties that efficiently deliver drugs into plasma within the same time period as compared to conventional drug delivery systems, and thus can be usefully used as drug delivery systems.
  • SD Male rats divided into two groups liquid crystal nano-filled lipophilic drug prepared in Example 4 according to the present invention Inject intravenously each HGC containing particles and the lipophilic drug prepared in Comparative Example 1, with a nominal concentration of 1.0 mg / mL and tail vein for 5 mL of solution per kilogram of body weight immediately prior to drug administration. Administration was by bolus injection.
  • CSF cerebrospinal fluid
  • blood blood (blood, 0.150-0.200 mL)
  • lungs liver, kidneys, spleen, skin and muscle
  • EDTA-K2 an anticoagulant
  • Stored in an ice bath The sample was centrifuged for 8 minutes at 6000 rpm within 30 minutes immediately after storage, and the obtained plasma was stored in a freezer until LC-MS / MS analysis.
  • the tissue was homogenized with 5 volumes of phosphate buffered saline.
  • LC-MS / MS analysis was performed using Shimadzu LC-20AD. The concentration of lipophilic drug in each tissue was measured and shown in FIG. 13.
  • FIG. 13 shows concentrations of lipophilic drugs in tissues when intravenously administered HGC containing liquid crystal nanoparticles containing lipophilic drugs prepared in Example 4 and lipophilic drugs prepared in Comparative Example 1 to mice. For the graph.
  • Figure 14 shows the concentration and tissue of lipophilic drug in plasma when orally administered HGC containing liquid crystal nanoparticles containing the lipophilic drug prepared in Example 4 and the lipophilic drug prepared in Comparative Example 1 to the rat It is a graph of the concentration ratio of lipophilic drugs in the stomach.
  • the lipophilic drug encapsulated in the lipophilic drug prepared in Example 4 is less than 1/4 lipophilic drug in plasma compared to HGC containing the lipophilic drug prepared in Comparative Example 1 It was found to be present at very low concentrations of. This is because the liquid crystal nanoparticles according to the present invention retain long-term in the tissue.
  • the concentration of the lipophilic drug is higher in the liver than in other tissues, whereas in the case of HGC of Comparative Example 1, It was found that lipophilic drugs were present at higher concentrations in the kidneys, plasma and lungs than in the liver.
  • HGC containing the lipophilic drug prepared in Comparative Example 1 was administered.
  • the concentration ratio of the lipophilic drug in the liver to the concentration of the lipophilic drug in the plasma was confirmed to be 10 times higher. In this case, it can be confirmed that the kidneys and lungs are higher than the HGC of Comparative Example 1, but this is when the HGC of Comparative Example 1 is administered, compared to the case of administration of the liquid crystal nanoparticles of Example 4 according to the present invention. This is due to the high concentration of oily drugs.
  • the liquid crystal nanoparticles according to the present invention can selectively deliver a lipophilic drug only to the liver, and the concentration of the lipophilic drug in the cerebrospinal fluid is very low. It can be seen that it cannot penetrate.
  • the liquid crystal nanoparticles according to the present invention not only have excellent long-term storage, physical properties, and stability for morphology, and have excellent pharmacokinetic properties such as sustained release of the drug during lipophilic drug delivery and high plasma concentration. Since only the liver can selectively deliver lipophilic drugs, it can be used as an effective drug delivery system. In addition, it can be easily manufactured using low energy and cost, thereby lowering the production cost of liquid crystal nanoparticles and improving productivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 친유성 약물의 약동학 특성을 향상시키는 액정 나노 입자, 이의 제조방법 및 이를 함유하는 약물 전달 시스템에 관한 것으로, 본 발명에 따른 액정 나노 입자는 장기 보관성, 물성 및 형태에 대한 안정성이 우수하고, 친유성 약물 전달 시 약물의 지속적인 방출, 높은 혈장 농도 등의 약동학적 특성을 우수하게 향상되었을 뿐만 아니라, 간에만 선택적으로 친유성 약물을 전달할 수 있으므로, 효과적인 약물 전달 시스템으로 사용될 수 있다. 또한, 적은 에너지 및 비용을 사용해 손쉽게 제조가 가능하여 액정 나노 입자의 생산 단가를 낮추고 생산성을 향상시킬 수 있다.

Description

액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템
본 발명은 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템에 관한 것이다.
현재 의약품으로 사용되고 있는 친유성 약물은 생체에 투여되었을 때 낮은 용해도로 인해 낮은 생물학적 이용 가능성(bioavailability)을 보인다. 개발 중인 약물 후보군 중 상당수가 친유성으로 제제화에 어려움을 겪고 있다. 따라서 친유성 약물의 가용화를 위한 많은 다양한 제제 방법들이 연구되어 왔지만, 현재까지 그 효과가 미비하거나 응용이 제한적이었다. 이에, 친유성 약물을 가용화하기 위한 약물 전달 시스템에 대한 연구가 활발히 진행되고 있으며, 현재까지 리포좀, 페길레이티드(peglated) 펩티드, 고체 상태의 지질 나노 입자 등의 사례가 보고되었다.
상기 친유성 약물 전달 시스템에서 구체적으로, 리포좀은 생체 내 지질과 유사한 성분으로 제조된 인공 지질막 소포(vesicle)로, 리포좀 내에 약물을 봉입하여 투여함으로써 약물의 생체 흡수율을 높인다. 또한, 페길레이티드(peglated) 펩티드는 단백질 또는 펩티드 약물의 N-말단 아민 그룹에 폴리에틸렌글리콜을 붙여서 투여함으로써, 약물의 생체 내 지속 시간을 증가시켜 약물의 약효가 균일하게 나타날 수 있도록 한다. 나아가, 고체 상태의 지질 나노 입자는 생체 내 지질과 유사한 성분으로 제조되어 생체 적합성을 높였으며, 약물을 고체 상태의 지질 나노 입자 내에 봉입함으로 약물의 제어 방출, 약물의 안정성을 증가시킨다.
그러나, 상기 리포좀은 소포 자체의 안정성이 장기간 유지되지 못하고, 상기 페길레이티드(peglated) 펩티드는 상기 폴리에틸렌글리콜이 붙을 수 있는 위치가 제한적이라는 문제점이 있다. 또한, 상기 고체 상태의 지질 나노 입자는 제조 시 사용되는 유기 용매에 의한 잠재적인 독성을 띄고 있어 면역학적 문제가 있으며, 고체 상태의 지질 입자 내에 봉입된 약물의 방출이 느리다는 문제가 있다.
상술한 바와 같은 리포좀, 페길레이티드(peglated) 펩티드, 고체 상태의 지질 입자 등의 약물 전달 시스템의 문제점을 보완하기 위하여, 액정 나노 입자에 대한 연구가 활발히 진행되고 있다.
구체적으로, 액정 나노 입자란 결정(crystal) 및 액체(liquid)가 혼재되어 있는 상태의 나노 입자로, 유기화합물, 물, 계면활성제 들이 혼합되어 물 성분, 오일 성분에 의해 형성된 친수성 및 소수성 부분을 포함한다. 상기 액정 나노 입자의 친수성 부분에는 라멜라 구조의 계면막을 형성한 오일 성분이 친수성 부분에서 분산되어 있고, 이러한 특성에 의해 물에 잘 녹지 않는 약물을 상기 친수성 부분에 분산시켜 생체 내로 전달한다. 또한, 상기 액정 구조는 온도, pH등의 생체 내 다양한 환경 조건에서 친유성 약물의 활성 성분을 보호할 수 있어, 친유성 약물의 가용화를 위한 제형으로 광범위하게 활용되고 있다.
그러나, 상술한 종래 기술에 따른 액정 나노 입자는, 라멜라 구조의 계면막이 견고하게 유지되지 못해 시간이 경과함에 따라 약물이 방출되는 문제가 있을 뿐만 아니라, 열역학적으로 불안정하여 입자의 물성 및 형태에 대한 안정성이 높지 않다. 또한, 약물의 방출량, 약물 방출의 지속력 등의 약제학적 성과도 크지 않아, 이를 개선하기 위한 많은 연구가 계속되고 있으나 아직까지 만족할만한 성과를 보이고 있지 않다.
구체적으로, 최근 액정 구조를 이용한 입자에 대한 연구 결과는 다음과 같이 예시할 수 있다. 구체적으로, 특허문헌 1(KR 1020130076685)은 모노올레인, 방출조절제 및 계면활성제를 포함하는 액정 나노 입자를 개시하고 있고, 비특허문헌 1(Mol.Pharmaceutics 2014,11, 1435-1449 )은 백색 바셀린, 경질 미네랄 오일, 이소프로필 미리스테이트, 소르비탄 모노라우레이트, 세틸알콜, 사이클로메타콘, 시트르산, 칼슘시트레이트, 세토마크로골, 정제수, 프로필렌 글리콜, 페녹시에탄올, 클로베타솔 및 프로피오네이트를 포함하는 나노 입자를 개시하고 있으며, 비특허문헌 2(ACS Nano, 2014, 8, 6986-6997)는 피탄트리올 및 글리세릴 모노레이트를 기반으로 하는 나노 입자를 개시하고 있으나, 상기 선행기술문헌에서는 입자의 크기, 형태 등의 물리적 안정성에 대해 입증하지 못하였다.
따라서, 종래 친유성 약물이 봉입된 액정 나노 입자보다 입자의 크기, 형태 등을 장기간 일정하게 유지시킬 수 있고, 약물 방출량, 혈장 농도 등의 약동학적 특성을 향상시킬 수 있는 액정 나노 입자의 개발이 필요하다.
이에, 본 발명자들은 물리화학적, 약제학적 성과가 향상된 액정 나노 입자를 개발하기 위해 노력하던 중, 본 발명에 따른 친유성 약물의 약동학적 특성을 향상시킨 액정 나노 입자를 개발하여, 친유성 약물을 고함량으로 봉입함에도 불구하고 작은 입자 크기를 형성하여 장기간 일정하게 유지시킬 수 있으며, 약물 방출량, 혈장 농도 등의 약동학적 특성을 향상시킬 수 있음을 보이고 본 발명을 완성하였다.
본 발명의 목적은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 액정 나노 입자를 제공하는 것이다.
[화학식 1]
Figure PCTKR2016005666-appb-I000001
상기 화학식 1에서,
m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이다;
[화학식 2]
Figure PCTKR2016005666-appb-I000002
상기 화학식 2에서,
p는 10 내지 24의 정수이다;
[화학식 3]
Figure PCTKR2016005666-appb-I000003
상기 화학식 3에서,
q, r은 각각 독립적으로 10 내지 24의 정수이다.
본 발명의 다른 목적은 상기 액정 나노 입자의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 친유성 약물이 봉입된 상기 액정 나노 입자를 포함하는 약물 전달 시스템을 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 액정 나노 입자를 제공한다.
[화학식 1]
Figure PCTKR2016005666-appb-I000004
상기 화학식 1에서,
m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이고,
[화학식 2]
Figure PCTKR2016005666-appb-I000005
상기 화학식 2에서,
p는 10 내지 24의 정수이며,
[화학식 3]
Figure PCTKR2016005666-appb-I000006
상기 화학식 3에서,
q, r은 각각 독립적으로 10 내지 24의 정수이다.
또한, 본 발명은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 혼합하는 단계(단계 1);
상기 단계 1에서 혼합된 혼합물을 70-120℃로 가열하여 용융시킴으로써 고체 상태에서 액체 상태로 상 전이(phase inversion)시키는 단계(단계 2);
상기 액체 상태의 화합물에, 70-100℃로 가열한 물을 혼합한 후 교반하는 단계(단계 3); 및
상기 교반된 혼합물을 5-30℃로 냉각시키는 단계(단계 4);를 포함하는 상기 액정 나노 입자의 제조 방법을 제공한다.
*[화학식 1]
Figure PCTKR2016005666-appb-I000007
상기 화학식 1에서,
m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이고,
[화학식 2]
Figure PCTKR2016005666-appb-I000008
상기 화학식 2에서,
p는 10 내지 24의 정수이며,
[화학식 3]
Figure PCTKR2016005666-appb-I000009
상기 화학식 3에서,
q, r은 각각 독립적으로 10 내지 24의 정수이다.
나아가, 본 발명은 친유성 약물이 봉입된 상기 액정 나노 입자를 포함하는 약물 전달 시스템을 제공한다.
본 발명에 따른 액정 나노 입자는 장기 보관성, 물성 및 형태에 대한 안정성이 우수하고, 친유성 약물 전달 시 약물의 지속적인 방출, 높은 혈장 농도 등의 약동학적 특성을 우수하게 향상되었을 뿐만 아니라, 간에만 선택적으로 친유성 약물을 전달할 수 있으므로, 효과적인 약물 전달 시스템으로 사용될 수 있다. 또한, 적은 에너지 및 비용을 사용해 손쉽게 제조가 가능하여 액정 나노 입자의 생산 단가를 낮추고 생산성을 향상시킬 수 있다.
도 1은 실시예 1에서 제조된 액정 나노 입자의 온도에 따른 전도도(μS)의 그래프이다.
도 2는 친유성 약물의 HPLC 분석 그래프이다.
도 3은 실시예 1에서 제조된 액정 나노 입자의 HPLC 분석 그래프이다.
도 4는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 HPLC 분석 그래프이다.
도 5a는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 SAXD로 측정한 X-선 회절 분석 그래프이고, 도 5b는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 WAXD로 측정한 X-선 회절 분석 그래프이다.
도 6은 본 발명에 따른 액정 나노 입자의 라멜라(lamella) 구조를 나타낸 것이다.
도 7은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 시차주사열량 분석 그래프이다.
도 8은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 투과전자현미경 이미지이다.
도 9는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 4℃일 때 동작레이저산란 분석 그래프이다.
도 10은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 37℃일 때 동작레이저산란 분석 그래프이다.
도 11은 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)로부터 친유성 약물 방출량에 대한 그래프이다.
도 12는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)를 각각 쥐에 투여 시 시간에 따른 혈장 내 약물 농도에 대한 그래프이다.
도 13은 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 쥐에 정맥 투여하였을 시의 각 조직에서의 친유성 약물의 농도에 대한 그래프이다.
도 14는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 쥐에 경구 투여하였을 시의 혈장에서의 친유성 약물의 농도와 조직내에서의 친유성 약물의 농도 비에 대한 그래프이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 액정 나노 입자를 제공한다.
[화학식 1]
Figure PCTKR2016005666-appb-I000010
상기 화학식 1에서,
m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이고;
[화학식 2]
Figure PCTKR2016005666-appb-I000011
상기 화학식 2에서,
p는 10 내지 24의 정수이고;
[화학식 3]
Figure PCTKR2016005666-appb-I000012
상기 화학식 3에서,
q, r은 각각 독립적으로 10 내지 24의 정수이다.
이하, 본 발명에 따른 상기 액정 나노 입자에 대하여 상세히 설명한다.
먼저, 본 발명에 따른 액정 나노 입자는 사방 정계 측면으로 적층되어 라멜라(lamella) 구조로 형성된다.
구체적으로, 본 발명에 따른 액정 나노 입자의 평균 입자 크기는 친유성 약물의 농도에 비례하며, 친유성 약물을 봉입시킬 수 있는 크기라면 특별히 제한되지 않으나, 평균 입자 크기가 150 nm 이하인 것이 바람직하고, 20 nm - 150 nm 인 것이 보다 바람직하다. 본 발명에 따른 액정 나노 입자의 평균 입자 크기가 20 nm 미만이면 본 발명에 따른 액정 나노입자의 내상(inter-phase)비율이 낮아져 봉입할 수 있는 친유성 약물의 농도가 낮아지는 문제점이 발생하고, 150 nm를 초과하면 내상(inter-phase)비율이 늘어나 봉입할 수 있는 친유성 약물의 농도는 증가하나, 친유성 약물이 봉입된 액정 나노 입자 자체의 크기가 커져 상(phase) 분리가 발생하는 문제점이 있다.
또한, 본 발명에 따른 액정 나노 입자는 사방 정계 구조로 측면으로 적층된 라멜라(lamella) 구조로 형성되며, 상기 라멜라(lamella) 구조에서 적층된 층과 층 사이의 거리는 라멜라(lamella) 구조를 형성할 수 있는 거리라면 특별히 제한되지 않으나, 5.0 - 15.0 nm인 것이 바람직하고, 7.0 - 12.0 nm인 것이 보다 바람직하고, 8.0 - 11.0 nm인 것이 가장 바람직하다. 라멜라(lamella) 구조의 층과 층 사이의 거리가 5.0 nm 미만인 것은 본 발명에 사용된 계면활성제의 길이를 고려할 때 제조될 수 없고, 15.0 nm 초과이면 액정층이 지나치게 습윤되어 액정 구조의 안정성이 떨어지는 문제점이 있다.
나아가, 본 발명에 따른 액정 나노 입자의 라멜라(lamella) 구조는 액정 나노 입자를 구성하고 있는 성분에서 탄화수소 사슬 부분이 사방 정계 구조로 적층되어 형성될 수 있다. 이때, 상기 사방 정계 구조를 형성하는 탄화수소 사슬 간의 간격은 사방 정계 구조를 형성할 수 있으면 특별히 제한되지 않으나, 0.1 - 1.0 nm 간격이 바람직하고, 0.2 - 0.5 nm 보다 바람직하다. 상기 탄화수소 사슬 간의 간격이 0.1 nm 미만인 것은 탄화수소 사슬의 전자 구름이 겹쳐져 물리적 반발력이 발생하므로 제조될 수 없고, 1.0 nm 초과이면 사슬 간의 반데르발스 힘이 약하여 사방 정계 구조를 유지하지 못하고 액정 구조가 해리되는 문제가 있다.
또한, 본 발명에 따른 액정 나노 입자의 성분으로는 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2016005666-appb-I000013
상기 화학식 1에서,
m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이고;
[화학식 2]
Figure PCTKR2016005666-appb-I000014
상기 화학식 2에서,
p는 10 내지 24의 정수이고;
[화학식 3]
Figure PCTKR2016005666-appb-I000015
상기 화학식 3에서,
q, r은 각각 독립적으로 10 내지 24의 정수이다.
구체적으로, 본 발명에 따른 액정 나노 입자의 성분으로서, 상기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물이라면 특별한 제한은 없으나, 화학식 1 내지 3으로 표시되는 화합물의 각각의 예시로는 다음과 같다.
상기 화학식 1로 표시되는 화합물은 세테아레스, 세토스테아릴알콜, 폴리옥시에틸렌 세토스테아릴에테르, 폴리옥시에틸렌 스테아릴에테르 및 폴리옥시에틸렌 세틸에테르 등을 들 수 있으며, 세테아레스, 세토스테아릴알콜 및 폴리옥시에틸렌 세토스테아릴에테르인 것이 보다 바람직하다.
또한,상기 화학식 2로 표시되는 화합물은 글리세롤 모노스테아레이트, 글리세롤 디스테아레이트, 수크로오스 모노스테아레이트, 수크로오스 디스테아레이트, 수크로오스 트리스테아레이트, 수크로오스 테트라스테아레이트, 세테아릴 글루코사이드, 세틸 글루코사이드, 스테아릴 글루코사이드, 베헤닐 글루코사이드, 미리스틸 글루코사이드 등을 들 수 있으며, 글리세롤 모노스테아레이트인 것이 보다 바람직하다.
나아가, 상기 화학식 3으로 표시되는 화합물은 세틸팔미테이트, 테트라데실 테트라데카노에이트 및 베헤닐 베헤네이트 등을 들 수 있으며, 세틸팔미테이트, 테트라데실 테트라데카노에이트인 것이 보다 바람직하다.
또한, 본 발명에 따른 액정 나노 입자의 성분으로서, 상기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물의 혼합물로는 상기 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아레이트 및 세틸팔미테이트의 혼합물; 폴리옥시에틸렌 세토스테아릴에테르; 및 테트라데실 테트라데카노에이트 등이 바람직하다.
이때, 상기 폴리옥시에틸렌 세토스테아릴에테르가 상기 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아레이트 및 세틸팔미테이트의 혼합물 1 중량부를 기준으로 0.1-6.0 중량부로 포함되는 것이 바람직하고, 0.5-2.5 중량부로 포함되는 것이 보다 바람직하며, 0.5-1.5 중량부로 포함되는 것이 가장 바람직하다.
또한, 상기 테트라데실 테트라데카노에이트는 상기 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아레이트 및 세틸팔미테이트의 혼합물 1 중량부를 기준으로 0.1-8.0 중량부로 포함되는 것이 바람직하고, 0.5-4.0 중량부로 포함되는 것이 보다 더 바람직하며, 0.5-2.5 중량부로 포함되는 것이 바람직하다.
나아가, 본 발명에 따른 액정 나노 입자의 성분으로서, 상기 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아레이트 및 세틸팔미테이트의 혼합물의 구체적인 예시로는 Emulgade SE-PF 등을 들 수 있으며, 상기 Emulgade SE-PF를 대체하여 사용하는 경우에는 Emulgade SE-PF의 구성 성분별 조성비를 동일 또는 유사하게 적용하는 것이 바람직하다.
본 발명에 따른 액정 나노 입자의 구성 성분이 상기 중량부 범위를 벗어나는 경우에는 구성 성분들끼리 서로 섞이지 않고 분리되어 있거나, 매크로에멀젼(macroemulsion), 겔링(gelling), 침전(precipitation) 등의 문제가 발생한다.
상술한 바와 같은 본 발명에 따른 액정 나노 입자는 70-120℃ 구간 내에 상 전이 온도(phase-inversion temperature)에서 상 전이(phase inversion)가 일어남을 알 수 있다(실험예 1 및 도 1 참조).
또한, 본 발명에 따른 액정 나노 입자는 SAXD(small angle X-ray diffraction;저각 X-선 회절 분석) 및 WAXD(wide angle X-ray diffraction;광각 X-선 회절 분석)한 결과, 액정 나노 입자의 라멜라(lamella) 구조의 층과 층 사이가 대략 9.7 nm이고, 탄화수소 사슬 사이의 거리가 0.419 nm 및 0.379 nm를 나타냄으로써, 사방 정계 구조가 측면으로 적층된 액정 나노 입자의 구조임을 알 수 있다(실험예 3 및 도 5 참조).
나아가, 본 발명에 따른 액정 나노 입자는 37℃ 이하에서 2개월 동안 보관하여도 일정한 크기로 유지되어 안정성이 향상됨을 알 수 있고, 본 발명에 따른 액정 나노 입자에 친유성 약물을 봉입시킨 경우, 친유성 약물의 농도에 상관없이 액정 나노 입자의 모양이 일정하게 유지된 것을 알 수 있으며, 특히, 37℃ 이하에서 2개월 동안 보관하여도 입자 크기 및 친유성 약물의 함유량에 대한 안정성을 나타내므로 약물 전달 시스템으로 유용하게 사용할 수 있다(하기 실험예 4-7, 도 7-10 참조).
또한, 본 발명은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 혼합하는 단계(단계 1);
상기 단계 1에서 혼합된 혼합물을 70-120℃로 가열하여 용융시킴으로써 고체 상태에서 액체 상태로 상 전이(phase inversion)시키는 단계(단계 2);
상기 액체 상태의 화합물에, 70-100℃로 가열한 물을 혼합한 후 교반하는 단계(단계 3); 및
상기 교반된 혼합물을 5-30℃로 냉각시키는 단계(단계 4);를 포함하는 상기 액정 나노 입자의 제조 방법을 제공한다.
이하, 본 발명에 따른 상기 제조방법에 대하여 상세히 설명한다.
먼저, 본 발명에 따른 상기 액정 나노 입자의 제조 방법에 있어서, 단계 1은 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 혼합하는 단계로, 상기 액정 나노 입자의 주요 성분이 되는 화합물을 균일하게 섞는 단계이다. 상기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물이 혼합되는 순서는 제한하지 않으며 동시에 혼합할 수도 있다.
다음으로, 본 발명에 따른 상기 액정 나노 입자의 제조 방법에 있어서, 단계 2는 상기 단계 1의 혼합물을 70-120℃로 가열하여 용융시킴으로써 고체 상태에서 액체 상태로 상 전이(phase inversion)시키는 단계이다.
구체적으로, 상기 단계 2는 상기 단계 1의 혼합물을 상기 단계 1의 혼합물의 상 전이 온도(phase inversion temperature)인 70-120℃의 온도로 가열하는 단계이다. 상기 온도로 가열하면, 상기 혼합물을 형성하는 친유성과 친수성 부분 간의 간격이 멀어져 고체 상태에서 액체 상태로 상(phase)이 변이한다. 상기 단계 2의 가열 온도를 70℃ 미만으로 가열하는 경우 상기 혼합물은 상 전이가 일어나지 않고, 120℃를 초과하여 가열하는 경우에는, 이미 액체 상태로 상 전이가 완료되어 120℃ 이상으로 열을 가할 필요가 없다.
본 발명에 따른 상기 액정 나노 입자의 제조 방법에 있어서, 단계 3은 액체 상태의 화합물에, 70-100℃로 가열한 물을 혼합하고 교반하는 단계이다.
구체적으로, 상기 단계 3은 물을 상기 액체을 분산시키기 위한 용매로 사용한다. 상기 용매는 액체을 분산시킬 수 있는 수용성 용매이면 특별히 제한되지 않으나, 물을 사용하는 것이 바람직하다. 상기 물은 상기 액체 및 물을 포함하는 전체 중량 대비 65-80 중량%로 혼합하는게 바람직하다. 상기 물이 65 중량% 미만이면 상기 액체가 균일하게 분산되지 못하고, 상기 물이 80 중량%를 초과하면 상기 액체의 중량에 비해 상기 물의 중량이 많아져 액정 나노 입자의 액정 구조를 얻을 수 없다.
본 발명에 따른 상기 액정 나노 입자의 제조 방법에 있어서, 단계 4는 상기 교반된 혼합물을 5-30℃로 냉각하여 액정 나노 입자를 제조하는 단계이다.
구체적으로, 상기 단계 4는 상기 교반된 혼합물을 5-30℃로 냉각함으로써, 물 내에 분산된 상기 액체 상태의 혼합물이 온도가 낮아짐에 따라 친유성/친수성 부분끼리 뭉쳐 라멜라(lamella) 구조 및 액정 구조를 포함하는 액정 나노 입자를 제조할 수 있다.
나아가, 본 발명에 따른 액정 나노 입자에 친유성 약물이 봉입시키는 제조방법은 상술한 액정 나노 입자 제조 방법의 단계 1에서, 친유성 약물을 더 혼합하고, 상술한 액정 나노 입자 제조 방법의 단계 2-4를 동일하게 수행할 수 있다.
나아가, 본 발명은 친유성 약물이 봉입된 상기 액정 나노 입자를 포함하는 약물 전달 시스템을 제공한다.
구체적으로, 본 발명에 따른 액정 나노 입자에 봉입되는 친유성 약물은, 친유성을 나타내는 약물이라면 특별한 제한이 없으나, 하기 화학식 4로 표시되는 바이페닐다이아마이드 유도체, 이의 약학적으로 허용 가능한 염 또는 이의 광학 이성질체가 바람직하다.
[화학식 4]
Figure PCTKR2016005666-appb-I000016
상기 화학식 4에서,
R1은 -H; C1-4의 직쇄 또는 측쇄 알킬; C1-4의 직쇄 또는 측쇄 알콕시; 비치환 또는 할로겐, C1-4의 직쇄 또는 측쇄 알킬, C1-4의 알콕시로 치환된 C6-12의 아릴; 또는 C1-4의 알콕시카보닐로 치환된 아미노이고;
R2는 -H; C1-4의 직쇄 또는 측쇄 알킬; C1-4의 직쇄 또는 측쇄 알콕시; 또는 1 이상의 C1-4의 직쇄 또는 측쇄 알킬 또는 C1-4의 알콕시카보닐로 치환된 아미노이고;
상기 R1 및 R2는 이들이 결합되어 있는 탄소 원자와 함께 질소(N) 원자, 산소(O) 원자 및 황(S) 원자로 이루어진 군으로부터 선택되는 1종 이상의 헤테로 원자를 포함하는 5 내지 7원자 헤테로사이클로알킬을 형성할 수 있고;
상기 X는 산소(O) 원자, 황(S) 원자 또는 메틸렌(CH2)이다(등록특허 101507914 참조).
보다 바람직하게는, 상기 화학식 4로 표시되는 바이페닐다이아마이드 유도체의 예로 하기의 화합물들을 들 수 있다.
(1) 다이메틸 (2R,2'R)-1,1'-((2S, 2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(3-메틸-1-옥소부탄-2,1-다이일)다이카바메이트;
(2) (S,2S,2'S)-N,N'-(바이페닐-4,4'-다이일)비스(1-((S)-2-(다이메틸아미노)-2-페닐아세틸)피롤리딘-2-카복스아마이드);
(3) (S,2S,2'S)-N,N'-(바이페닐-4,4'-다이일)비스(1-((S)-2-(다이에틸아미노)-2-페닐아세틸)피롤리딘-2-카복스아마이드);
(4) 다이메틸 (1S,1'S)-2,2'-((2S, 2S')-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트
(5) (R,2S,2'S)-N,N'-(바이페닐-4,4'-다이일)비스(1-((R)-테트라하이드로퓨란-2-카보닐)피롤리딘-2-카복스아마이드;
(6) 다이메틸 (2S, 2'S)-1,1'-((2S,2R')-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(1-옥소프로판-2,1-다이일)다이카바메이트;
(7) 다이메틸 (2S,2S')-1,1'-((2S,2R')-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(3,3-다이메틸-1-옥소부탄-2,1-다이일)다이카바메이트;
(8) 다이메틸 (2S,2'S)-1,1'-((2S, 2'R)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(3-메틸-1-옥소부탄-2,1-다이일)다이카바메이트; 및
(9) 다이메틸 (1S,1S')-2,2'-((4R,4'R)-4,4'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(티아졸리딘-4,3-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)바이카바메이트.
상기 친유성 약물은 상기 액정 나노 입자에 0.01 - 3.00 중량%으로 봉입되는 것이 바람직하고, 0.1 - 1.5 중량%로 봉입되는 것이 보다 바람직하다. 상기 친유성 약물이 0.01 중량% 미만으로 봉입되는 경우, 약물 전달량이 미비해 약효가 나타나지 않고, 친유성 약물이 3.00 중량%로 초과하여 봉입되는 경우, 상기 액정 나노 입자의 크기가 커지는 문제점이 있다.
상술한 바와 같은 본 발명에 따른 친유성 약물이 봉입된 상기 액정 나노 입자를 포함하는 약물 전달 시스템은 친유성 약물의 농도에 상관없이 액정 나노 입자의 모양이 일정하게 유지된 것을 알 수 있으며, 특히, 37℃ 이하에서 2개월 동안 보관하여도 입자 크기 및 친유성 약물의 함유량에 대한 안정성을 나타내며(하기 실험예 4-7, 도 7-10 참조), 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)보다 약물 방출량 및 지속 시간이 증가하여 약동학적 특성이 향상됨을 알 수 있고(실험예 7 도 11 참조), 투여 후 0.5시간 이내에 300 nmol/L 이상의 혈장 농도에 도달할 수 있다(실험예 8, 도 12, 표 3 참조).
따라서, 본 발명에 따른 액정 나노 입자는 종래 약물 전달 시스템과 비교하여 동일 시간 내에 혈장 내로 약물을 효율적으로 전달시키는 약동학적 특성이 향상됨을 알 수 있어, 약물 전달 시스템으로 유용하게 사용할 수 있다.
또한, 본 발명에 따른 친유성 약물이 봉입된 액정 나노 입자의 생체 조직 내 약물 분포를 확인한 결과, HCG를 통하여 투여된 친유성 약물은 혈장, 신장, 폐에서 동시에 높은 농도로 존재하는 반면, 본 발명에 따른 액정 나노 입자에 봉입되어 투여된 친유성 약물은 간에서 가장 높은 농도로 존재하고, 타 조직에는 낮은 농도로 존재함으로써, 친유성 약물이 간에 선택적으로 전달됨을 알 수 있다(실험예 9 및 도 13, 14 참조).
따라서, 본 발명에 따른 액정 나노 입자는 장기 보관성, 물성 및 형태에 대한 안정성이 우수하고, 친유성 약물 전달 시 약물의 지속적인 방출, 높은 혈장 농도 등의 약동학적 특성을 우수하게 향상되었을 뿐만 아니라, 간에만 선택적으로 친유성 약물을 전달할 수 있으므로, 효과적인 약물 전달 시스템으로 사용될 수 있다. 또한, 적은 에너지 및 비용을 사용해 손쉽게 제조가 가능하여 액정 나노 입자의 생산 단가를 낮추고 생산성을 향상시킬 수 있다.
나아가, 본 발명은 친유성 약물이 봉입된 상기 액정 나노 입자를 포함하는 약물 전달 시스템의 제조방법을 제공한다.
구체적으로, 상기 제조방법은 상술한 액정 나노 입자 제조 방법의 단계 1에서, 친유성 약물을 더 혼합하고, 상술한 액정 나노 입자 제조 방법의 단계 2-4를 동일하게 수행할 수 있다.
본 발명에 따른 약물 전달 시스템의 제조 방법은 상술한 액정 나노 입자 제조 방법의 단계 1에서, 친유성 약물을 더 혼합함으로써 용이하게 제조할 수 있다.
이하, 본 발명을 실시예, 비교예 및 실험예에 의해 상세히 설명한다.
단, 하기 실시예, 비교예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예, 비교예 및 실험예에 한정되는 것은 아니다.
< 실시예 1> 액정 나노 입자의 제조
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(1.500 g, Emulgade SE-PF, 바스프 사, 독일), 폴리에틸렌글리콜-12 세토스테아릴 에테르(1.500 g) 및 테트라데실 테트라데카노에이트(3.000 g)의 혼합물과 물(14.000 g)을 각각 약 85℃로 가열한 후 혼합하고, 반투명해질 때까지 저어준 후 얼음을 넣은 물수조에서 25℃로 냉각하여 액정 나노 입자를 제조하였다.
<실시예 2> 친유성 약물이 봉입된 액정 나노 입자의 제조 1
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(1.493 g, Emulgade SE-PF, 바스프 사, 독일), 폴리에틸렌글리콜-12 세토스테아릴 에테르(1.493 g), 테트라데실 테트라데카노에이트(2.985 g) 및 친유성 약물로서 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트(0.03 g)의 혼합물과 물(14.000 g)을 각각 약 85℃로 가열하였다. 상기 세테아레스, 글리세롤 모노스테아레이트, 세틸팔미트산 및 세테아릴알콜의 혼합물, 폴리에틸렌글리콜-12 세토스테아릴 에테르, 테트라데실 테트라데카노에이트 및 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트의 혼합물에 상기 물을 첨가하고, 반투명해질 때까지 저어준 후 얼음을 넣은 물수조에서 25℃로 냉각하여 액정 나노 입자를 제조하였다.
상기 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트는 C형 간염 바이러스 비 구조 단백질(HCV NS5A ; hepatitis C virus nonstructure protein 5A)을 저해하는 친유성 약물이다(등록특허 10-1507914 참조).
<실시예 3> 친유성 약물이 봉입된 액정 나노 입자의 제조 2
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(1.478 g), 폴리에틸렌글리콜-12 세토스테아릴 에테르(1.478 g), 테트라데실 테트라데카노에이트(2.955 g) 및 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트(0.09 g)을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 수행하여 액정 나노 입자를 제조하였다.
<실시예 4> 친유성 약물이 봉입된 액정 나노 입자의 제조 3
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(1.463 g, Emulgade SE-PF, 바스프 사, 독일), 폴리에틸렌글리콜-12 세토스테아릴 에테르(1.463 g), 테트라데실 테트라데카노에이트(2.925 g) 및 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트(0.15 g)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 액정 나노 입자를 제조하였다.
<실시예 5> 친유성 약물이 봉입된 액정 나노 입자의 제조 4
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(1.425 g, Emulgade SE-PF, 바스프 사, 독일), 폴리에틸렌글리콜-12 세토스테아릴 에테르(1.425 g), 테트라데실 테트라데카노에이트(2.850 g) 및 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트(0.30 g)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 액정 나노 입자를 제조하였다.
액정 나노 입자 실시예1 실시예2 실시예3 실시예4 실시예5
물(g) 14.000 14.000 14.000 14.000 14.000
글리세롤 모노스테아레이트, 세테아레스-20, 세테아레스-12, 세테아릴알콜 및 세틸 팔미테이트의 혼합물(g) 1.500 1.493 1.478 1.463 1.425
폴리에틸렌글리콜-12 세토스테아릴 에테르(g) 1.500 1.493 1.478 1.463 1.425
테트라데실 테트라데카노에이트(g) 3.000 2.985 2.955 2.925 2.850
친유성 약물(g) 0 0.0300 0.0900 0.1500 0.3000
(친유성 약물;다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트)
<비교예 1> 친유성 약물을 포함하는 HGC(호스트-게스트 복합체)의 제조
본 발명에 따른 친유성 약물이 봉입된 실시예와 비교하기 위해 HGC(호스트-게스트 복합체)를 제조하였다. 상기 HGC(호스트-게스트 복합체)는 기본 골격을 형성하는 분자(Host)와 그에 의해서 싸여지는 화학종(guest)간에 생기는 하나의 착물로서 다음과 같은 방법으로 제조하였다.
구체적으로, HP-β-CD(하이드로프로필-β-싸이클로데스트린, 20.0g)에 정제된 물(100 ml)을 천천히 적가하여 HP-β-CD 용액 만들었다. 상기 HP-β-CD 용액에, 다이메틸 (1S,1'S)-2,2'-((2S,2'S)-2,2'-(바이페닐-4,4'-다이일비스(아잔다이일))비스(옥소메틸렌)비스(피롤리딘-2,1-다이일))비스(2-옥소-1-페닐에탄-2,1-다이일)다이카바메이트(5.00 mg)을 DMSO(디메틸설폭사이드, 0.25 ml)에 녹이고 폴리에틸렌글리콜-15 하이드록시스테아레이트(0.5 ml)을 첨가한 용액을 넣어 HGC를 얻었다.
<실험예 1> 액정 나노 입자의 상 전이(phase inversion) 평가
본 발명에 따른 액정 나노 입자의 상 전이(phase inversion)를 알아보기 위하여, 실시예 1에서 제조된 액정 나노 입자에 대하여 전도율계(Cond 6+, 유텍 인스트루먼트, 싱가폴)를 사용하여 온도에 따른 전도도(μS)를 측정하여, 이에 대한 결과를 도 1에 그래프로 나타내었다.
도 1은 실시예 1에서 제조된 액정 나노 입자의 온도에 따른 전도도(μS)의 그래프이다.
도 1의 결과를 보면, 실시예 1의 전도도(μS)는 80℃에서 약 140μS이고, 95℃에서는 20μS 이하로 감소해, 실시예 1이 상 전이(phase inversion)함으로써 전도도(μS)가 변화한 것을 알 수 있었다. 따라서, 전도도(μS)가 변화하는 80-100℃ 구간 내에 상 전이 온도(phase-inversion temperature)가 존재해 액정 나노 입자의 상 전이(phase inversion)가 일어났음을 알 수 있었다.
<실험예 2> 친유성 약물의 액정 나노 입자 봉입 여부
친유성 약물의 액정 나노 입자 봉입 여부를 측정하기 위해, HPLC(고속액체크로마토그래피;high performance liquid chromatography) 방법을 이용해 친유성 약물, 실시예 1에서 제조된 액정 나노 입자 및 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 측정하여 비교하였다.
구체적으로, 각각의 내경 250 x 4.6 mm의 컬럼에 테트라하이드로퓨란에 녹인 친유성 약물, 실시예 1에서 제조된 액정 나노 입자 및 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 충진하고, 0.1% 트리플루오로아세트산·물 및 아세토니트릴을 이동상으로써, 0.1% 트리플루오로아세트산·물은 100%로 농도로 사용하고, 상기 아세토니트릴은 0분, 10분, 20분, 22분 및 25분 시간 간격마다 0%, 100%, 100%, 0% 및 0%로 농도를 조절하여 사용하였으며, 이에 대한 도 2에 친유성 약물에 대한 HPLC 측정 결과, 도 3에 실시예 1에서 제조된 액정 나노 입자에 대한 HPLC 측정 결과 및 도 4에 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자에 대한 HPLC 측정 결과를 나타내었다.
도 2는 친유성 약물의 HPLC 분석 그래프이다.
도 3은 실시예 1에서 제조된 액정 나노 입자의 HPLC 분석 그래프이다.
도 4는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 HPLC 분석 그래프이다.
도 2-4에서, 친유성 약물만의 HPLC 분석 그래프인 도 2와 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 HPLC 분석 그래프인 도 4를 비교하면, 유사한 한 개의 피크값이 나타나므로 본 발명에 따른 액정 나노 입자에 친유성 약물이 봉입되었음을 확인할 수 있고, 실시예 1에서 제조된 액정 나노 입자의 HPLC 분석 그래프인 도 3과 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 HPLC 분석 그래프인 도 4를 비교하면, 도 3에는 상기 친유성 약물이 나타내는 유사한 피크값은 나타나지 않고, 액정 나노 입자가 자체가 나타내는 피크가 유사한 위치에서 나타나고 있음을 알 수 있다.
따라서, 본 발명에 따른 액정 나노 입자에 친유성 약물이 우수하게 봉입되어 있음을 확인할 수 있다.
<실험예 3> 액정 나노 입자의 라멜라(lamella) 구조 분석
본 발명에 따른 액정 나노 입자의 라멜라(lamella) 구조를 확인하기 위해 농업과학공동기기센터(NICEM, 한국)의 SAXpace(안톰파, 오스트리아)를 사용하여 SAXD(small angle x-ray diffraction; 저각 X선 회절)와 WAXD(wide angle x-ray diffraction; 광각 X선 회절)으로 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 측정하여, 산란 벡터에 따른 산란 강도를 측정하고, 그 결과를 도 5에 나타냈다. 도 5의 (a)는 SAXD로 측정한 결과이고, (b)는 WAXD로 측정한 결과이다.
도 5a는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 SAXD로 측정한 X-선 회절 분석 그래프이고, 도 5b는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 WAXD로 측정한 X-선 회절 분석 그래프이다.
도 5의 (a)의 그래프에 나타난 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자는 유사한 산란 패턴 및 순차적으로 유사한 두 개의 피크를 보였고, 이는 액정 나노 입자가 라멜라(lamella) 구조를 포함하고 있음을 알 수 있게 한다. 이러한 상관 관계는 두 개의 피크값인 0.65(1/nm) 및 1.3(1/nm)와 관련이 있다. 각각의 피크값 0.65 nm를 Q1, 1.3 nm를 Q2로 정의하면, 2Q1=Q2이고, 브래그의 식 d=2π/q으로 계산하여 액정 나노 입자 라멜라(lamella) 구조의 층과 층 사이의 거리가 대략 9.7 nm임을 알 수 있다.(q=(4πsinθ)/λ, θ는 산란각도, λ는 파장)
따라서 본 발명에 따른 액정 나노 입자 및 친유성 약물이 봉입된 액정 나노 입자는 친유성 약물의 농도에 상관없이 9.7 nm 거리를 갖는 라멜라(lamella) 구조임을 알 수 있다(도 6 참조) .
또한, 도 5의 (b)의 그래프에 나타난 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자는 두 개의 유사한 피크값을 갖는 산란 패턴을 보였고, 이는 액정 나노 입자가 사방 정계임을 알 수 있게 한다. 이러한 상관 관계는 두 개의 피크값인 15.0(1/nm) 및 16.6(1/nm)와 관련이 있는데, 브래그의 식 d=2π/q으로 계산되어 액정 나노 입자의 사방 정계 구조에서 탄화수소 사슬 사이의 거리를 0.419 nm 및 0.379 nm로 구할 수 있었다.
따라서, 본 발명의 실시예는 사방 정계 구조가 측면으로 적층되는 라멜라(lamella) 구조를 갖고 있음을 알 수 있다(도 6 참조).
<실험예 4> 친유성 약물의 농도에 따른 액정 나노 입자의 물성 분석
친유성 약물의 농도에 따른 액정 나노 입자의 물성을 측정하기 위해 농업과학 공동기기센터에 열 분석 데이터 시스템으로 구비된 DSC-q1000(TA 인스트루먼트, 미국)을 이용해 시차주사열량법으로 본 발명의 실시예를 측정하고, 그 결과를 도 7에 나타내었다.
도 7은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 시차주사열량 분석 그래프이다.
도 7의 결과를 보면, 실시예 1에서 제조된 액정 나노 입자의 주요 피크는 33-36℃에서, 작은 피크는 25-32℃로 나타났고, 이는 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자와 크게 차이를 보이지 않았다.
따라서, 친유성 약물의 농도에 상관없이 액정 나노 입자의 물성이 크게 변화하지 않아, 본 발명에 따른 액정 나노 입자의 물성에 대한 안정성이 향상되었음을 알 수 있다.
<실험예 5> 친유성 약물의 농도에 따른 액정 나노 입자 모양 분석
친유성 약물의 농도에 따른 액정 나노 입자의 모양을 측정하기 위해 투과전자현미경(TEM ; transmission electron microscope)을 이용해 본 발명의 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 측정하고, 그 결과를 도 8에 나타내었다.
구체적으로, 각각의 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자(0.10 ml) 물(25℃, 1.0 ml)로 희석하고, 희석된 액정 나노 입자 용액을 카본 필름(CF300-Cu) 위에 떨어뜨린 후, 감압 하에 하루 동안 건조하고, 전자현미경(EM-2010, 지올)에 200kV의 전압을 걸어 액정 나노 입자의 이미지를 얻었다.
도 8은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 투과전자현미경 이미지이다.
도 8의 결과를 보면, 친유성 약물의 농도가 증가함에 따라 액정 나노 입자의 크기가 커지는 것을 알 수 있었으나, 이에 대한 차이가 크지 않은 것을 확인할 수 있었고, 액정 나노 입자의 모양은 실시예 1에서 제조된 액정 나노 입자와 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 모양이 크게 다르지 않았다.
따라서, 액정 나노 입자의 모양이 일정하게 유지되어 형태에 대한 안정성이 향상되었음을 알 수 있다.
<실험예 6> 온도 및 시간 경과에 따른 액정 나노 입자의 크기 분석
온도 및 시간 경과에 따른 액정 나노 입자의 크기를 측정하기 위해 동작 레이저 산란(DLS;Dynamic Light Scattering) 방법을 이용해 본 발명의 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 크기를 측정하고, 그 결과를 도 9 및 10에 나타내었다.
구체적으로, 각각의 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자(0.2 ml)를 정제된 물(25℃, 10 ml)로 희석하고, 희석된 액정 나노 입자 용액(3 ml)를 DLS-8000HL(오츠카 일렉트로닉스, 일본)의 ψ21 실린더 세포에 첨가한 후, 4℃, 37℃의 온도 조건에서 헬륨-네온 레이저 10 mW로 검출각도 90℃, 30번 조사하였다. 각각의 실시예마다 3번 반복하여 측정한 결과를 도 9는 4℃일 때, 도 10은 37℃일 때로 나누어 나타내었다.
도 9는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 4℃일 때 동작레이저산란 분석 그래프이다.
도 10은 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 37℃일 때 동작레이저산란 분석 그래프이다.
도 9 및 10의 결과를 보면, 4℃의 온도 조건에서 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 3에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 크기가 크게 변화하지 않았다. 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자는 실시예 1에서 제조된 액정 나노 입자 및 실시예 2 내지 3에서 제조된 친유성 약물이 봉입된 액정 나노 입자보다 크기가 증가하였으나, 증가한 입자의 크기가 2개월이 경과한 후에도 150 nm 미만이었다. 37℃의 온도 조건에서는 실시예 3 내지 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 크기가 증가한 것을 알 수 있었으나, 실시예 3에서 제조된 친유성 약물이 봉입된 액정 나노 입자는 약 150 nm로부터 큰 폭으로 더 증가하지 않았다.
따라서, 본 발명의 액정 나노 입자는 37℃ 이하의 온도 조건일 때 일정한 크기로 보존되어 크기에 대한 안정성이 향상되었다. 이에 본 발명의 액정 나노 입자는 장기 보관이 가능해 약동학적 특성이 향상됨을 알 수 있어, 약물 전달 시스템 또는 약학적 제제에 유용하게 사용할 수 있다.
<실험예 7> 친유성 약물의 방출량 측정
액정 나노 입자에 포함된 친유성 약물이 방출되는 양을 측정하기 위한 것으로, 하기 방법을 사용해 본 발명의 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자에 대한 친유성 약물의 방출량을 측정하였고, 그 결과를 도 11에 나타내었다.
구체적으로, 비교예 1에서 제조된 HGC(1.5 ml)와 카르보폴 겔(0.5 중량%, 4 ml)을 혼합한 후, 인산완충용액(pH 6.5, 50 mM, 38.5 ml)에 분산하여 HGC 용액을 만들고, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자(0.2 ml)와 카르보폴 겔(0.5 중량%, 4 ml)을 혼합한 액정 나노 입자를 인산완충용액(39.8 mL)에 분산하여 액정 나노 입자 용액을 만들었다. 상기 HGC 용액(11 ml)과 액정 나노 입자 용액(11 ml)을 각각 투석 가방(분획분자량 10 kDa, 써모피셔사이언티픽)에 넣고, 인산완충용액(90 ml)의 부피가 유지되도록 지속적으로 넣어주었다.
도 11은 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자로부터 친유성 약물 방출량 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)로부터 친유성 약물 방출량에 대한 그래프이다.
도 11의 결과를 보면, HGC 용액은 3시간 동안 3.87%, 69시간 동안 3.51% 방출되었고, 액정 나노 입자 용액은 12시간 동안 19.5%, 60시간 동안 32.0% 방출되어 0.995의 기울기로 약물이 방출되어 약물 방출량 및 지속 시간이 증가하였다.
따라서, 본 발명에 따른 액정 나노 입자는 약물 방출량 및 지속 시간이 증가하여 약동학적 특성이 향상됨을 알 수 있어, 약물 전달 시스템 또는 약학적 제제에 유용하게 사용할 수 있다.
<실험예 8> 혈장 내 친유성 약물의 농도 측정
친유성 약물이 봉입된 액정 나노 입자에 의해 전달된 혈장 내 친유성 약물의 농도를 측정하기 위해, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 정맥 주사 및 경구 투여하여, 시간에 따라 변화하는 혈장 내 약물 농도를 측정하고, 그 결과를 도 12 및 표 3에 나타내었다.
구체적으로, 하기 표 2에 나타낸 바와 같이, SD(spraque-dawley, Sipper-BK lab animal Ltd, 중국) 쥐에 상기 비교예 1에서 제조된 HGC 또는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 투여하였다. 투여 방법은 각각 정맥 주사와 경구로 투여하되, 투여하는 약물의 공칭 농도(nominal concentration)는 1.0 mg/mL이다. 정맥 주사는 약물을 투여하기 직전의 몸무게 1kg 당 용액 5 mL씩 꼬리 정맥용 볼루스 주사로 투여하였다. 경구 투여는 위관 튜브(gavage tube)를 통해 몸무게 1kg 당 10 mL의 용액을 투여하였다.
그룹 화합물 투여기준량(mg/kg) 투여부피(mL/kg) 농도(mg/ml) 투여방법 약물 운반체
1 비교예1 5.00 5.00 1.00 정맥주사 HGC
2 비교예1 10.00 10.00 1.00 경구투어 HGC
3 실시예4 5.00 5.00 1.00 정맥주사 액정 나노 입자
4 실시예4 10.00 10.00 1.00 경구투어 액정 나노 입자
혈장채취: 채취시간; 0.083(정맥주사일때만), 0.25, 0.5, 1, 2, 4, 8, 24h
시험 대상: 상온, 밤새 먹이를 주었음
정맥 주사한 SD 쥐는 0.083, 0.25, 0.5, 1, 2, 4, 8 및 24시간의 간격을 두고 혈액을 채취하고, 경구 투여한 SD 쥐는 0.25, 0.5, 1, 2, 4, 8 및 24시간의 간격을 두고 혈액을 채취해, 혈액응고방지제로서 EDTA(에틸렌디아민테트라아세틱에시드)-K2을 포함한 폴리프로필렌 튜브에 채취한 혈액 0.2-0.3 mL을 넣는다. 채취한 혈액은 얼음을 넣은 물수조에 저장하고, 저장 직후 1시간 이내로 6000rpm, 8분간 원심분리하여 혈장을 얻어, LC-MS/MS를 이용해 혈장 내 약물의 농도를 측정하였다. 이에 대한 결과를 도 12에 그래프로 나타내었다.
도 12는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)를 각각 쥐에 투여 시, 시간에 따른 혈장 내 약물 농도에 대한 그래프이다.
또한, 도 12의 그래프로부터 반감기(T1/2z), 최대농도까지 걸린 시간(Tmax), 최대농도(Cmax), 그래프 면적(AUC), 그래프 분산 부피(Vz/F), 혈장클리어런스(CLz/F), 평균체류기간(MRT(0-t)) 및 생물학적 이용 가능성(F)을 계산하여 하기 표 3에 나타내었다. 상기 반감기(T1/2z), 최대농도까지 걸린 시간(Tmax), 최대농도(Cmax)는 그래프의 X축 및 Y축의 수치로 판단하였다. 그래프 면적(AUC)은 혈장 내 약물의 농도 누적량을 알아보기 위해 그래프의 X축 및 Y축의 수치를 곱하여 산출하였다. 그래프 분산 부피(Vz/F)는 평균 혈장 농도를 알아보기 위해, 그래프 분산 부피(Vz/F) = 투여량/lambda z * AUC(0-∞)(lambda z=종말 제거속도 상수)으로 계산하였고, 혈장클리어런스(CLz/F)는 투입된 약물이 혈장 내에서 얼마나 제거되었는지를 알아보기 위해 혈장클리어런스(CLz/F) = 투여량/AUC(0-∞)으로 계산하였다. 평균체류기간(MRT(0-t))은 혈장 내 약물이 존재하는 평균 시간을 알아보기 위해 평균체류기간(MRT(0-t)) = AUMC/AUC(AUMC는 시간 경과에 따른 농도 그래프의 적분값)으로 계산하였다. 생물학적 이용 가능성(F)은 생리학적 효과로 상기 혈장 내 약물 농도에 비례하며, 생물학적 이용 가능성(F) = lambda z * AUC(0-∞)/100 으로 계산하였다.
비교예1 비교예1 실시예 4 실시예 4
정맥주사 경구투여 정맥주사 경구투여
반감기 (h) 1.50±0.565 2.23±0.312 1.50±0.847 2.06±0.616
최대농도까지걸린시간 (h) - 2.40±0.894 - 1.30±1.52
최대농도(nmol/L) 20,600±4,890 149±40.7 3,340±1,420 306±119
AUC(0-t) (h·nmol/L) 11,200±2,640 686±259 3,03±0459 999±220
AUC(0-∞) (h·nmol/L) 11,200±2,650 762±270 3,100±495 1,070±202
그래프 분산부피 (L/kg) 1.43±0.876 3.63±0.678 4.74±2.92 2.72±0.377
혈장클리어런스 (L/h/kg) 0.617±157 61.1±21.6 2.16±0.301 38.5±15.0
평균저장기간 (h) 0.761±0.0864 18.8±5.67 1.22±0.349 12.7±2.48
생물학적이용가능성 (%) - 3.08±1.16 - 16.5±3.62
도 12의 결과를 보면, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노입자를 경구 투여한 경우, 상기 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)보다 빠르게 최대 혈장 농도에 도달하는 것을 확인할 수 있었고, 특히, 0.5 시간 이내에 300 nmol/L이상의 혈장 농도에 도달하여 혈장 내 약물이 다량 존재하는 것을 알 수 있었다.
또한, 표 3의 결과를 보면, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 경구 투여했을 때 최대 농도가, 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)을 경구 투여했을 때보다 약 2배 높았고, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 경구 투여했을 때 최대 농도까지 걸린 시간도 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)을 경구 투여했을 때 최대 농도까지 걸린 시간보다 1시간 가량 빨랐다. 나아가, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자의 생물학적 이용 가능성은 비교예 1에서 제조된 친유성 약물을 포함하는 HGC(호스트-게스트 컴플렉스)을 투여했을 때보다 약 5배 증가하여, 상기 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자에 의해 혈장 농도가 높게 유지되고 있을 뿐만 아니라, 약물 방출량도 증가한 것을 알 수 있어, 상기 실시예 4에서 제조된 친유성 약물이 봉입된 약정 나노 입자에 의해 약물이 우수하게 전달되고 있음을 알 수 있다.
따라서, 본 발명에 따른 액정 나노 입자는 종래 약물 전달 시스템과 비교하여 동일 시간 내에 혈장 내로 약물을 효율적으로 전달시키는 약동학적 특성이 향상됨을 알 수 있어, 약물 전달 시스템으로 유용하게 사용할 수 있다.
< 실험예 9> 친유성 약물의 조직 내 분포 측정
친유성 약물이 봉입된 액정 나노 입자에 의해 전달된 혈장 내 친유성 약물의 조직 내 분포를 측정하기 위해, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 정맥 주사하여, 시간에 따라 변화하는 혈장 내 약물 농도를 측정하고, 그 결과를 도 13 및 14에 나타내었다.
구체적으로, SD(Sprague Dawley, 190 내지 216 g의 체중, Sippr-BK Lab Animal Ltd.) 수컷 쥐 6마리를 두 그룹으로 나눠 본 발명에 따른 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 각각 정맥주사하되, 공칭 농도(nominal concentration)는 1.0 mg/mL이며, 약물을 투여하기 직전의 몸무게 1kg 당 용액 5 mL씩 꼬리 정맥용 볼루스 주사로 투여하였다. 뇌척수액(cerebrospinal fluid, CSF), 혈액(blood, 0.150-0.200 mL), 폐, 간, 신장, 비장, 피부 및 근육의 샘플을 항응고제로서 EDTA-K2를 함유하는 폴리프로필렌 튜브에 넣고, 원심분리 수행 전까지 얼음수조에서 보관하였다. 상기 샘플을 저장 직후 30분 이내에 6000rpm, 8분간 원심분리하고, 얻은 혈장을 냉동고에 LC-MS/MS 분석 전까지 보관하였다. 상기 조직은 5 배 부피의 인산 완충 식염수로 균질화시켰다. LC-MS/MS 분석은 Shimadzu LC-20AD를 사용하여 수행하였다. 각 조직내에서의 친유성 약물의 농도를 측정하여 도 13에 나타내었다.
또한, 본 발명에 따른 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 쥐에 각각 경구 투여 한 후, (조직에서의 친유성 약물의 농도)/(혈장에서의 친유성 약물의 농도) 비를 측정하여 도 14에 나타내었다.
도 13은 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 쥐에 정맥 투여하였을 시의 각 조직에서의 친유성 약물의 농도에 대한 그래프이다.
도 14는 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자 및 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 쥐에 경구 투여하였을 시의 혈장에서의 친유성 약물의 농도와 조직내에서의 친유성 약물의 농도 비율에 대한 그래프이다.
도 13에 나타난 바와 같이, 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자가 비교예 1에서 제조된 친유성 약물을 포함하는 HGC와 비교하여 혈장 내에서 친유성 약물이 1/4 이하의 매우 낮은 농도로 존재하는 것을 확인하였다. 이는 본 발명에 따른 액정 나노 입자가 조직내에서 장기 체류하기 때문이다. 또한, 본 발명에 따른 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자가 투여된 후, 타 조직에서 보다 간에서 친유성 약물의 농도가 가장 높은 반면, 비교예 1의 HGC의 경우, 간 보다는 신장, 혈장 및 폐에서 높은 농도로 친유성 약물이 존재함을 알 수 있었다.
또한, 도 14에 나타난 바와 같이, 본 발명에 따른 실시예 4에서 제조된 친유성 약물이 봉입된 액정 나노 입자를 투여하였을 때, 비교예 1에서 제조된 친유성 약물을 포함하는 HGC를 투여하였을 때보다 혈장 내 친유성 약물의 농도에 대한 간 내 친유성 약물의 농도 비가 10배 이상 높은 것을 확인하였다. 이때, 신장 및 폐에서도 비교예 1의 HGC에 비하여 높은 것을 확인할 수 있으나, 이는 비교예 1의 HGC가 경우 투여하였을 때, 본 발명에 따른 실시예 4의 액정 나노 입자를 투여하였을 때보다 혈장 내 친유성 약물의 농도가 높기 때문이다.
상술한 바와 같이, 본 발명에 따른 액정 나노 입자는 간에만 선택적으로 친유성 약물을 전달할 수 있으며, 뇌척수액에서 친유성 약물의 농도가 매우 낮은 것으로 보아, 본 발명에 따른 액정 나노 입자는 뇌 혈관 장벽을 침투하지 못함을 알 수 있다.
따라서, 본 발명에 따른 액정 나노 입자는 장기 보관성, 물성 및 형태에 대한 안정성이 우수하고, 친유성 약물 전달 시 약물의 지속적인 방출, 높은 혈장 농도 등의 약동학적 특성을 우수하게 향상되었을 뿐만 아니라, 간에만 선택적으로 친유성 약물을 전달할 수 있으므로, 효과적인 약물 전달 시스템으로 사용될 수 있다. 또한, 적은 에너지 및 비용을 사용해 손쉽게 제조가 가능하여 액정 나노 입자의 생산 단가를 낮추고 생산성을 향상시킬 수 있다.

Claims (13)

  1. 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 액정 나노 입자:
    [화학식 1]
    Figure PCTKR2016005666-appb-I000017
    (상기 화학식 1에서,
    m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이다);
    [화학식 2]
    Figure PCTKR2016005666-appb-I000018
    (상기 화학식 2에서,
    p는 10 내지 24의 정수이다); 및
    [화학식 3]
    Figure PCTKR2016005666-appb-I000019
    (상기 화학식 3에서,
    q, r은 각각 독립적으로 10 내지 24의 정수이다).
  2. 제1항에 있어서,
    상기 액정 나노 입자는 사방 정계 측면으로 적층되어 라멜라(lamella) 구조로 형성된 것을 특징으로 하는 액정 나노 입자.
  3. 제2항에 있어서,
    상기 라멜라(lamella) 구조는 적층된 층과 층 사이의 거리가 5.0 - 15.0 nm인 것을 특징으로 하는 액정 나노 입자.
  4. 제1항에 있어서,
    상기 액정 나노 입자는 평균 입자 크기가 20 nm - 150 nm 인 것을 특징으로 하는 액정 나노 입자.
  5. 제1항에 있어서,
    상기 액정 나노 입자는 탄화수소 사슬(hydrocarbon chain) 부분이 0.1 - 1.0 nm 간격의 사방 정계 구조로 형성되는 것을 특징으로 하는 액정 나노 입자.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 세테아레스, 세토스테아릴알콜, 폴리옥시에틸렌 세토스테아릴에테르, 폴리옥시에틸렌 스테아릴에테르 및 폴리옥시에틸렌 세틸에테르로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 액정 나노 입자.
  7. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은, 글리세롤 모노스테아레이트, 글리세롤 디스테아레이트, 수크로오스 모노스테아레이트, 수크로오스 디스테아레이트, 수크로오스 트리스테아레이트, 수크로오스 테트라스테아레이트, 세테아릴 글루코사이드, 세틸 글루코사이드, 스테아릴 글루코사이드, 베헤닐 글루코사이드 및 미리스틸 글루코사이드로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 액정 나노 입자.
  8. 제1항에 있어서,
    상기 화학식 3으로 표시되는 화합물은 세틸팔미테이트, 테트라데실 테트라데카노에이트 및 베헤닐 베헤네이트로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 액정 나노 입자.
  9. 제1항에 있어서,
    상기 액정 나노 입자는 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아레이트 및 세틸팔미테이트의 혼합물; 폴리옥시에틸렌 세토스테아릴에테르; 및 테트라데실 테트라데카노에이트로 이루어진 군으로부터 선택되는 1종 이상인 화합물을 포함하는 것을 특징으로 하는 액정 나노 입자.
  10. 제9항에 있어서,
    상기 액정 나노 입자는 세테아레스, 세토스테아릴알콜, 글리세롤 모노스테아 레이트 및 세틸팔미테이트의 혼합물 1 중량부를 기준으로,
    상기 폴리옥시에틸렌 세토스테아릴에테르를 0.1-6.0 중량부; 및
    상기 테트라데실 테트라데카노에이트를 0.1-8.0 중량부;로 포함하는 것을 특징으로 하는 액정 나노 입자.
  11. 하기 화학식 1 내지 3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 혼합하는 단계(단계 1);
    상기 단계 1에서 혼합된 혼합물을 70-120℃로 가열하여 용융시킴으로써 고체 상태에서 액체 상태로 상 전이(phase inversion)시키는 단계(단계 2);
    상기 단계 2에서 상 전이된 액체 상태의 화합물에, 70-100℃로 가열한 물을 혼합한 후 교반하는 단계(단계 3); 및
    상기 단계 3에서 교반된 혼합물을 5-30℃로 냉각시키는 단계(단계 4);를 포함하는 제1항의 액정 나노 입자의 제조 방법:
    [화학식 1]
    Figure PCTKR2016005666-appb-I000020
    (상기 화학식 1에서,
    m은 10 내지 24의 정수이고, n은 0 내지 25의 정수이다);
    [화학식 2]
    Figure PCTKR2016005666-appb-I000021
    (상기 화학식 2에서,
    p는 10 내지 24의 정수이다);
    [화학식 3]
    Figure PCTKR2016005666-appb-I000022
    (상기 화학식 3에서,
    q, r은 각각 독립적으로 10 내지 24의 정수이다).
  12. 친유성 약물이 봉입된 제1항의 액정 나노 입자를 포함하는 약물 전달 시스템.
  13. 제12항에 있어서,
    상기 친유성 약물은 상기 액정 나노 입자에 0.01 - 3.00 중량%으로 봉입되는 것을 특징으로 하는 약물 전달 시스템.
PCT/KR2016/005666 2015-05-29 2016-05-27 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템 WO2016195338A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0076032 2015-05-29
KR20150076032 2015-05-29
KR1020160057564A KR101756961B1 (ko) 2015-05-29 2016-05-11 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템
KR10-2016-0057564 2016-05-11

Publications (2)

Publication Number Publication Date
WO2016195338A2 true WO2016195338A2 (ko) 2016-12-08
WO2016195338A3 WO2016195338A3 (ko) 2017-01-26

Family

ID=57441574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005666 WO2016195338A2 (ko) 2015-05-29 2016-05-27 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템

Country Status (1)

Country Link
WO (1) WO2016195338A2 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047487A1 (en) * 1997-04-17 1998-10-29 Dumex-Alpharma A/S A novel bioadhesive drug delivery system based on liquid crystals
KR101509579B1 (ko) * 2013-06-04 2015-04-14 한국콜마주식회사 온도 감응성 고분자를 이용한 피부지질유사 막의 라멜라형 비수계 액정상 캡슐기재 조성물 및 그를 이용한 화장료 조성물
EP2823811A1 (en) * 2013-07-09 2015-01-14 OTC GmbH Targeted active release system comprising solid lipid nano-particles

Also Published As

Publication number Publication date
WO2016195338A3 (ko) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2021256861A1 (ko) 신규한 산 분비 억제제 및 이의 용도
WO2013015545A1 (en) Composition for edible film and pharmaceutical preparation for edible film containing drugs
WO2016068457A1 (ko) 탁산을 포함하는 경구 투여용 약학 조성물
WO2020222461A1 (ko) 면역항암 보조제
WO2016195338A2 (ko) 액정 나노 입자, 이의 제조방법 및 친유성 약물이 봉입된 액정 나노입자를 함유하는 약물 전달 시스템
WO2018004263A1 (ko) 광학 활성 피라노크로메닐페놀 유도체 및 그를 포함하는 약학적 조성물
WO2021194298A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2024025396A1 (ko) 신규 오리스타틴 전구약물
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2016111602A2 (ko) 신규 유기 화합물 및 이를 포함하는 근적외선 형광 조영제, 그리고 조영제의 나노입자화 방법
WO2019172605A1 (ko) 선택적으로 기능화된 타이로신을 가지는 생체 물질의 제조방법, 선택적으로 기능화된 타이로신을 가지는 생체 물질 및 이를 유효성분으로 함유하는 약학적 조성물
WO2018008986A1 (ko) 수난용성 약물을 포함하는 고분자 미셀 제제의 시험관 내 방출시험 및 평가 방법
WO2015137777A1 (ko) 신규한 양이온성 폴리포스파젠 화합물, 폴리포스파젠-약물 컨쥬게이트 화합물 및 그 제조 방법
WO2022164204A1 (en) Liquid formulation of protein and methods of preparing the same
WO2021145586A1 (ko) 국소 지방 감소용 기체 발포형 마이셀
WO2023080765A1 (ko) 신규 옥사다이아졸 유도체 및 이의 용도
WO2020242268A1 (ko) 비오틴 모이어티와 결합된 생리활성 물질 및 이를 포함하는 경구 투여용 조성물
WO2022025660A1 (ko) 안정한 약제학적 제제
WO2021215624A1 (ko) 신규의 2-아릴티아졸 유도체 또는 이의 염, 이의 제조방법, 및 이를 함유하는 약학 조성물
WO2021206428A1 (ko) 로즈마린산 유도체, 로즈마린산-유래 입자 및 이를 포함하는 염증성 질환 치료용 조성물
WO2020080912A1 (ko) 치료 효능을 개선한 핵산 변형체 및 이를 포함하는 항암용 약학 조성물
WO2021215801A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 또는 이의 결합체를 포함하는 고지혈증 예방 또는 치료용 약학적 조성물 및 예방 또는 치료 방법
WO2022164019A1 (ko) 환원반응성 일산화질소 공여 화합물 및 전달체 시스템
WO2013137694A1 (ko) 직쇄 알킬체인을 가진 지방산을 포함하는 무수무복계면물질
WO2024085697A1 (en) Stable antibody composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803693

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803693

Country of ref document: EP

Kind code of ref document: A2