WO2016194023A1 - 原位置試験による液状化判定方法と装置 - Google Patents

原位置試験による液状化判定方法と装置 Download PDF

Info

Publication number
WO2016194023A1
WO2016194023A1 PCT/JP2015/002829 JP2015002829W WO2016194023A1 WO 2016194023 A1 WO2016194023 A1 WO 2016194023A1 JP 2015002829 W JP2015002829 W JP 2015002829W WO 2016194023 A1 WO2016194023 A1 WO 2016194023A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefaction
sampler
test
sample
standard penetration
Prior art date
Application number
PCT/JP2015/002829
Other languages
English (en)
French (fr)
Inventor
哲鎬 金
Original Assignee
哲鎬 金
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲鎬 金 filed Critical 哲鎬 金
Priority to JP2015548073A priority Critical patent/JP5953560B1/ja
Priority to PCT/JP2015/002829 priority patent/WO2016194023A1/ja
Publication of WO2016194023A1 publication Critical patent/WO2016194023A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/04Sampling of soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit

Definitions

  • the present invention relates to a method for judging liquefaction by an in-situ test and an apparatus for judging the liquefaction.
  • Patent Document 1 The outline of the invention described in Patent Document 1 is as follows as shown in FIG.
  • a plurality of casings a are penetrated into the target ground, and the samples are collected after giving different vibration accelerations by the shaker b for each sample in the casing a.
  • Device Specifically, after a plurality of casings a are inserted into the ground and a ground sample d is stored in a sleeve c, vibration acceleration corresponding to different seismic intensity for each sample is applied to the casing a by the vibrator b.
  • the invention described in the cited document 1 is more practical by calculation based on many assumptions because the liquefied actual substance collected at the site can be judged visually or by hand.
  • the experiment was repeated thereafter, and it was found that the following problems existed.
  • the liquefaction phenomenon is said to occur in relatively loose sand ground with an N value of 15 or less, but in the invention of Cited Document 1, the N value and Fe value (fine particle content), etc., which are indicators of liquefaction
  • the problem is that no association has been made. This requires a time consuming process of penetrating the casing over the entire depth.
  • the in-situ liquefaction determination method of the present invention that solves the above problems uses a standard penetration test and a machine body equipped with a device that can penetrate a sampler into the ground, and first uses a standard penetration test device.
  • the N-value is obtained by the standard penetration test, and the formation with high possibility of liquefaction is predicted by the N-value.
  • the sampler penetrates close to the position of the standard penetration test, and the possibility of liquefaction is high.
  • the sample is obtained by applying a vibration acceleration in a state in which the sample of the formation is taken in the sampler, and then pulling up the sampler and vibrating it.
  • the free fall of the weight in the standard penetration test is characterized by a liquefaction determination method by an in-situ test in which the weight is mechanically wound up. Further, the above method is characterized by a liquefaction determination method based on an in-situ test in which samplers are inserted into a plurality of locations and different vibration accelerations are given to the samplers.
  • the device of the present invention is a device equipped with a standard penetration test device and a device capable of penetrating a sampler into the ground. First, a standard penetration test is performed, and there is a possibility of liquefaction with the N value obtained by the standard penetration test.
  • ⁇ 1> Predicting the formation with high possibility of liquefaction from the N value and soil quality in the standard penetration test conducted in advance, giving the sampler penetrating near the test position vibration acceleration to actually liquefy the sample This is a method of collecting the sample.
  • ⁇ 2> Perform the prediction of the formation with high possibility of liquefaction by the standard penetration test and the liquefaction test that gives vibration to the sample of the formation at almost the same position using one machine. Therefore, the accuracy of determination of liquefaction can be significantly improved.
  • Explanatory drawing of the Example of the apparatus used for the method of this invention Explanatory drawing of the process of a standard penetration test. Explanatory drawing of a sampler penetration process. Explanatory drawing of the collection process of a sample. Explanatory drawing of the process of forced liquefaction. Explanatory drawing of the example of the extract
  • the liquefaction determination method of the present invention is characterized in that it is performed using a standard penetration test and a single machine equipped with a device that can penetrate the casing into the ground.
  • a device as shown in FIG. 1 can be adopted as a device having such a function. That is, the apparatus main body 1 provided with the drive crawler belt is provided with a bracket protruding on the front surface thereof. One end of the arm 2 is attached to this bracket. If the arm 2 is attached to the bracket via a vertical rotation shaft, the arm 2 is rotatable, but the rotation is not an essential configuration. When the arm 2 is fixed, it is a member having at least two units and having a V shape in plan view.
  • a leader 3 hereinafter referred to as “penetration leader” used as a guide for the standard penetration testing apparatus A is vertically attached to one of the tips.
  • a leader 4 (hereinafter referred to as “excitation leader”) used as a guide for the excitation device B is vertically attached to the other tip.
  • the vibration leader 3 is vertically attached to the tip of the arm.
  • the interval between the penetration leader 3 and the vibration leader 4 is set within a range not affected by each other.
  • one of the chains A3 is wound up vertically by the rotation of the sprocket A2, and the engagement hook is pushed up to the uppermost portion through the engagement pin of the weight A1. Since the engagement hook is reversed at the position of the upper sprocket A2, the engagement with the engagement pin is released, and the weight A1 falls freely.
  • the weight of the weight A1 is 63.5 kg ⁇ 0.5 kg, and the height of the rising and falling of the weight A1 is 76 cm ⁇ 1 cm. In this way, it is efficient to employ the automatic winding device A that automates the recording of the winding, opening, dropping, and hitting number of the weight A1.
  • N value is measured by this standard penetration test, if it is 10 or less in a certain layer and 15 or more in a certain layer, 15 or more layers can be predicted as layers with high possibility of liquefaction.
  • the above-described N value measurement method and prediction of a layer with a high possibility of liquefaction are known, but in the present invention, a layer with a high possibility of liquefaction is first predicted in this way. The result is used for the next test. Samples can be collected at this stage, but when the sampler of the standard penetration testing device A is struck, the clay layer is consolidated and subsidized, and when subjected to vibration, the whole liquefies, and both can be used as accurate samples. Have difficulty. Therefore, in the present invention, the N value obtained by the standard penetration test is used for the next liquefaction test.
  • the sample In the process of inserting the sampler 5 up to the liquefiable layer, the sample is not collected, so there is no need to consider the deformation and alteration of the sample, depending on the weight of the standard penetration test apparatus A, vibration of the vibro, or by press-fitting. It can be carried out.
  • FIG. 4 A sample is taken in the sampler 5 in a layer having a high possibility of liquefaction. Therefore, as described above, boring is performed without the sampler 5 up to a predetermined depth, and when the predetermined depth is reached, the boring rod is pulled up, the sampler 5 is attached to the tip thereof, and the target formation is penetrated. In this step, since liquefaction of the sample by unspecified vibration is not preferable, no vibro is used, and penetration is performed by impact by free fall or press-fitting according to the weight of the standard penetration test apparatus A. Alternatively, a closed piston sampler is used.
  • This device has a structure in which a cone is set at the tip, the core tube penetrates into the ground, and when the target depth is reached, it is operated from the ground to open the closed tip cone.
  • a sample at the target depth can be collected quickly.
  • the sample is stored in a cylinder called a liner and collected on the ground. In this way, the sampler 5 can take a sample of a layer having a high possibility of liquefaction. However, the sampler 5 is not raised at this stage.
  • ⁇ 8> Forced liquefaction (Fig. 5)
  • a predetermined vibration acceleration is applied to the rod exposed on the ground.
  • the standard penetration test device A attached to the rod is removed, and the vibration device B is attached.
  • the acceleration given by the vibration device B is an acceleration corresponding to the seismic intensity assumed depending on the application. For example, in the “Calculation method of seismic intensity” on the official website of the Japan Meteorological Agency, “110-200 gal” is set for “seismic intensity 5”. Due to this acceleration, the sample in the sampler 5 may be liquefied, or the acceleration may not lead to liquefaction.
  • the forced liquefaction is performed in one place, and therefore the seismic intensity to be given is one kind, and this is a method of collecting a sample in that state.
  • the sampler 5 is penetrated in several places, one sampler 5 is given an acceleration equivalent to “High seismic intensity 5” (110 to 200 gal), and the other sampler 5 is given “Low seismic intensity 6” (200 to 350 gal). )
  • a method of giving a considerable acceleration can also be adopted.
  • the N value was 15, but it was not liquefied at a seismic intensity of 5 or higher, and it could be judged that it was liquefied at a seismic intensity of 6 or lower.
  • FIG. 7 if the leaders 3 for guiding the vibration device B are installed on both sides of the leader 3 for guiding the standard penetration testing device, different accelerations are given to the sample in parallel. The test can be performed quickly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

[課題]液状化の可能性の高い地盤を高い信頼性のもとに経済的に判定することができる方法と装置を提供する。 [解決手段]標準貫入試験と、地盤にサンプラーを貫入できる装置を備えた機械本体を使用する。まず標準貫入試験を行い、そこで得たN値で液状化の可能性の高い地層を予測する。その試験位置に接近してサンプラーを貫入し、液状化の高い地層の試料をサンプラーに取り込んだ状態で振動加速度を与えた後、サンプラーを引き上げて試料を得る。

Description

原位置試験による液状化判定方法と装置
 本発明は原位置試験によって液状化を判定方法と、判定する装置に関するものである。
 本願の発明者は特許第5526290号「液状化判定のための試料採取装置および方法」(特許文献1)の発明者である。
 特許文献1記載の発明の概要は図10に示すように以下の通りである。
 複数の震度条件における液状化を判定するために、対象地盤に複数本のケーシングaを貫入し、ケーシングa内の試料ごとに加振機bによって異なった振動加速度を与えた後にその試料を採取する装置である。
 具体的には、複数本のケーシングaを地中に貫入してスリーブc内に地盤の試料dを収納した後に、加振機bによって試料ごとに異なった震度に相当する振動加速度をケーシングa内の試料dに与える。
 こうして試料dごとに液状化の条件を与えた後、取り出した試料dを肉眼や手の触覚で判定するものである。
 このように仮定にもとづく計算によるのではなく、現地で採取した実物によって、液状化した層の深度、範囲を判定することができるので各種の土質試験が不要であり、仮定にもとづく計算も不要であって、短時間に実物で液状化の判定をすることができるという効果を期待することができる
特許第5526290号公報。
 上記のように引用文献1記載の発明は、現地で採取した液状化した実物を目視または、手で触って判断できるから多くの仮定で成り立つ計算によるより実際的である。
 しかしその後に実験を繰り返して、次のような問題点が存在することが分かった。
 すなわち、液状化現象はN値15以下の比較的ゆるい砂地盤で発生するとされているが、引用文献1の発明では液状化の指標となるN値やFe値(細粒分含有率)などと関連付けが行われていない、という問題である。
 そのために、全深度にわたってケーシングを貫入する、という時間のかかる工程が必要であった。
  上記のような課題を解決する本発明の原位置試験による液状化判定方法は、標準貫入試験と、地盤にサンプラーを貫入できる装置を備えた機械本体を使用し、まず標準貫入試験装置を使用して標準貫入試験によってN値を知得し、そのN値によって液状化の可能性が高い地層を予測し、その標準貫入試験の位置に接近してサンプラーを貫入し、液状化の可能性が高い地層の試料をサンプラーに取り込んだ状態で振動加速度を与えた後、サンプラーを引き上げて加振した試料を得ることを特徴とするものである。
 さらに上記の方法において、標準貫入試験の錘の自由落下は、機械的に錘を巻き上げて行う、原位置試験による液状化判定方法を特徴とするものである。
 さらに上記の方法において、複数個所にサンプラーの貫入を行い、サンプラーごとに異なった振動加速度を与えて行う、原位置試験による液状化判定方法を特徴とするものである。
  さらに本発明の装置は、標準貫入試験装置と、地盤にサンプラーを貫入できる装置を備えた装置であって、まず標準貫入試験を行い、標準貫入試験によって得たN値で液状化の可能性が高い地層を予測し、その試験位置に接近してサンプラーを貫入し、液状化の可能性が高い地層の試料をサンプラーに取り込んだ状態で振動加速度を与えた後、加振したサンプラー内の試料を引き上げて行うことを特徴とするものである。
 本発明の原位置試験による液状化判定方法と装置は以上説明したようになるから次のような効果を得ることができる。
<1>先行して行う標準貫入試験でN値や土質から液状化の可能性の高い地層を予測し、その試験位置の近くに貫入したサンプラーに振動加速度を与えて試料を実際に液状化させ、その試料を採取する方法である。
<2>このような、標準貫入試験による液状化の可能性の高い地層の予測と、その地層の試料に振動を与える液状化試験を、1台の機械を使用してほぼ同位置で行うことができるから、液状化の判定の精度を格段と向上させることができる。
本発明の方法に使用する装置の実施例の説明図。 標準貫入試験の工程の説明図。 サンプラー貫入工程の説明図。 試料の採取工程の説明図。 強制液状化の工程の説明図。 採取した試料の例の説明図。 装置の他の実施例の説明図。 自動化した貫入試験装置の実施例の説明図。 自動化した管理装置から打ち出したN値のグラフ 引用文献1記載の発明の説明図。
 以下図面を参照にしながら本発明の原位置試験による液状化判定方法と装置の好適な実施の形態を詳細に説明する。
<1>構成の概要。
 本発明の液状化判定方法は、標準貫入試験と、地盤にケーシングを貫入できる装置を備えた1台の機械を使用して行うことを特徴とするものである。
<2>装置の説明。
 このような機能を備えた装置として例えば図1に示すような装置を採用することができる。
 すなわち駆動履帯を備えた装置本体1は、その前面にブラケットを突出して設ける。
 このブラケットにアーム2の一端を取り付ける。
 ブラケットに鉛直の回転軸を介して取り付ければアーム2は回転自在であるが、回転は不可欠な構成ではない。
 アーム2が固定の場合は、少なくとも2基を備え、平面視がV字状の部材である。
 そのうちの1基の先端には標準貫入試験装置Aのガイドに用いるリーダー3(以下「貫入用リーダー」)を鉛直に取り付ける。
 他の1基の先端には加振装置Bのガイドに用いるリーダー4(以下「加振用リーダー」)を鉛直に取り付ける。
 図7に示すように、アームは3基を設けた場合には、その先端にも加振用リーダー3を鉛直に取り付ける。
 貫入用リーダー3と、加振用リーダー4の間隔は、相互の影響を受けない範囲に設置する。
 このような装置を使用することで、機械本体1の位置を移動したり旋回することなく、二種類、あるいは複数種類の作業を行うことができる。
 ただし機械本体1の位置を変えないことは不可欠の要件ではなく、状況によって移動や旋回を行っても、本願発明の効果を期待することができる。
 なお図1は説明のために、標準貫入試験Aと加振装置Bとを同一の図面に記載してあるが、後述するように同時に行うものではない。
 また図1の標準貫入試験装置Aに付属させる自動巻き上げ装置6については後述する。
<3>標準貫入試験。(図2)
 まず標準貫入試験装置Aを使用して、標準貫入試験を行う。
 その試験では、まずボーリングによって試験対象の深度まで削孔した後、試験用のサンプラーをロッドの先端に接続する。
 次にサンプラーを規定された76cm±1cmの落下高から63.5kg±0.5kg重錘を自由落下させる。
 この重錘の打撃でサンプラーが30cm貫入するのに要した打撃回数をN値として記録する。
 この場合に標準貫入試験装置Aには打撃回数と深度との関係の自動図化を行う管理装置を設ける。
 すると、標準貫入試験の直後に現場で図9に示すようなN値のグラフを打ち出すことができるので、例えばN値が15以下の範囲が深度4m~8mに存在することを、現場において直ちに把握することができる。
<4>自由落下の自動化。(図8)
 上記のように標準貫入試験装置Aの重錘は相当の重量があるので、肉体での作業は作業員の負担が大きい。
 そこで標準貫入試験装置Aの錘A1の自由落下は、機械的に錘A1を巻き上げて行う自動巻き上げ装置6を取り付けることもできる。
 例えば図8に示すように上下2か所のスプロケットA2の間に鉛直方向にチェーンA3を掛け渡し、そのチェーンの一部に係合フックを外向きに突出させる。
 一方、標準貫入試験装置Aの円筒状のケースA4内で上下に摺動可能な重錘A1にはフックに係合する係合ピンを突出させておく。
 するとスプロケットA2の回転でチェーンA3の一方が鉛直に巻き上げられ、係合フックが重錘A1の係合ピンを介して最上部まで押し上げる。
 係合フックは上部のスプロケットA2の位置で反転するので、係合ピンとの係合が解除され、重錘A1は自由落下を行う。
 この重錘A1の重量は63.5kg±0.5kgであり、重錘A1の上昇および落下の高さは76cm±1cmである。
 このように、重錘A1の巻き上げ、開放、落下、打撃数の記録などを自動化した、自動巻き上げ装置Aを採用すると効率的である。
<5>液状化層の可能性。
 この標準貫入試験によってN値を測定した場合に、ある層では10以下、ある層では15以上となったとすると、15以上の層が液状化の可能性の高い層として予測できる。
 もちろん、上記したN値の測定方法や、それに基づく液状化の可能性の高い層の予測は公知であるが、本願発明では、このようにまず液状化の可能性の高い層を予測しておき、その結果を次の試験のために利用することが特徴である。
 なおこの段階でも試料を採取できるが、標準貫入試験装置Aのサンプラーを叩き込むと粘土層は圧密沈下されて変化し、振動を与えると全体が液状化してしまい、ともに正確な試料として利用することが困難である。
 そこで本願発明では標準貫入試験により得られたN値を次の液状化試験に利用するものである。
<6>液状化層までのサンプラーの貫入。(図3)
 次に地表から、N値を測定した位置の近くにサンプラー5を地盤中に向けて貫入する。
 サンプラー5とは、地中の試料を採取して地上に引き上げるための筒体である。
 ここで、N値測定孔の「近く」とは、N値が変化していない程度の近い位置をいう。
 その場合に、前記の工程で液状化の可能性の高い層が特定されているので、それよりも上の層では試料を採取する必要がなく、直接、液状化の可能性の高い層まで到達できるから作業が効率的である。
 液状化可能層までのサンプラー5の挿入の過程では試料は採取しないので試料の変形、変質を考慮する必要がなく、前記した標準貫入試験装置Aの重量により、あるいはバイブロの振動により、または圧入によって行うことができる。
<7>液状化層の試料採取。(図4)
 液状化の可能性の高い層では、サンプラー5内に試料を採取する。
 そのために、前記したように所定深度まではサンプラー5なしでボーリングを行い、所定深度へ到達したらボーリングロッドを引き上げてその先端にサンプラー5を取り付けて、目的の地層に貫入する。
 この工程には、不特定の振動による試料の液状化は好ましくないから、バイブロは使用せず、標準貫入試験装置Aの重量により自由落下による打撃、あるいは圧入によって貫入を行う。
 あるいはクローズドピストンサンプラーを使用する。
 この装置は、先端にコーンをセットしてコアチューブを地中に貫入し、目的の深度に到達したら地上から操作して閉じている先端のコーンを開放する構造を備えている。
 このように目的の深度までは、先端を閉じた状態で掘削するから、掘削作業が効率的であり、目的の深度の試料を迅速に採取することができる。
 試料はライナーと称する筒に収めて地上に回収する。
 こうしてサンプラー5で、液状化の可能性の高い層の試料を取り込むことができる。
 ただしこの段階ではサンプラー5を引き上げない。
<8>強制液状化。(図5)
 液状化の可能性が高い地層をサンプラー5に取り込んだら、地上に露出しているロッドに所定の振動加速度を与える。
 そのために、ロッドに取り付けた標準貫入試験装置Aなどを取り外して、加振装置Bを取り付ける。
 加振装置Bで与える加速度は、その用途によって想定した震度に応じた加速度である。
 例えば気象庁の公式サイトの「震度の算出方法」では「震度5強」なら「110~200gal」としてある。
 この加速度によって、サンプラー5内の試料では液状化が発生するかもしれないし、あるいはその加速度では液状化に至らないかもしれない。
<9>試料の採取。(図6)
 加振した後にサンプラー5を地上に引き上げて得た試料を目視する。
 すると、N値が15以下でも液状化が発生している場合、あるいは変化がない場合など、その層の実物を見て液状化の状態を把握することができる。
 こうして、本願発明では1台の装置を利用してまずN値の測定を行い、次の段階で可能性が高い層に震度相当の加速度を与えて実物による液状化の可能性を立証するものであるから、経済的に、かつ信頼性の高い原位置試験による液状化判定方法を提供することができる。
<10>複数個所での液状化。
 上記の実施例では強制液状化は1か所であり、したがって与える震度も1種類であり、その状態の試料を採取する方法であった。
 しかし上記のサンプラー5の貫入を複数個所で行い、ひとつのサンプラー5には「震度5強」(110~200gal)相当の加速度を与え、他のサンプラー5には「震度6弱」(200~350gal)相当の加速度を与える、という方法を採用することもできる。
 すると、両方のサンプルを地上に取り出して目視した場合に、N値は15だったが、震度5強では液状化せず、震度6弱では液状化していた、と言った判断を行うことができる。
 その場合には図7に示すように、加振装置Bをガイドするリーダー3を、標準貫入試験装置をガイドするリーダー3の両側に設置しておくと、平行して試料に異なった加速度を与える試験を迅速に行うことができる。
<11>振動を与えない比較例として。
 複数個所にサンプラー5を貫入して、一つのサンプラー5には加振装置Bにより振動加速度を与え、他のサンプラー5には振動を与えないで、試料を採取すると、両者の相違を比較することもできる。
 1:本体
 2:アーム
 3:標準貫入試験装置をガイドするリーダー
 4:加振装置をガイドするリーダー
 5:サンプラー
 A:標準貫入試験装置
 B:加振装置

Claims (4)

  1.  標準貫入試験と、地盤にサンプラーを貫入できる装置を備えた機械本体を使用し、
     まず標準貫入試験装置を使用して標準貫入試験によってN値を知得し、
     そのN値によって液状化の可能性が高い地層を予測し、
     その標準貫入試験の位置に接近してサンプラーを地盤中に貫入し、
     液状化の可能性が高い地層の試料をサンプラーに取り込んだ状態で振動加速度を与えた後、
     サンプラーを引き上げて加振した試料を得ることを特徴とする。
     原位置試験による液状化判定方法。
  2.  請求項1記載の原位置試験による液状化判定方法において、
     標準貫入試験の錘の自由落下は、機械的に重錘を巻き上げて行うことを特徴とする、
     原位置試験による液状化判定方法。
  3.  請求項1記載の原位置試験による液状化判定方法において、
     複数個所にサンプラーの貫入を行い、
     試料を取り込んだサンプラーごとに異なった振動加速度を与えて行うことを特徴とする、
     原位置試験による液状化判定方法。
  4.  標準貫入試験装置と、地盤にサンプラーを貫入できる装置を備えた装置であって、
     まず標準貫入試験を行い、標準貫入試験によって得たN値で液状化の可能性が高い地層を予測し、
     その試験位置に接近してサンプラーを地盤中に貫入し、
     液状化の可能性が高い地層の試料をサンプラーに取り込んだ状態で振動加速度を与えた後、
     加振したサンプラー内の試料を引き上げて行うことを特徴とする、
     原位置試験による液状化判定装置。
PCT/JP2015/002829 2015-06-04 2015-06-04 原位置試験による液状化判定方法と装置 WO2016194023A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015548073A JP5953560B1 (ja) 2015-06-04 2015-06-04 原位置試験による液状化判定方法と装置
PCT/JP2015/002829 WO2016194023A1 (ja) 2015-06-04 2015-06-04 原位置試験による液状化判定方法と装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002829 WO2016194023A1 (ja) 2015-06-04 2015-06-04 原位置試験による液状化判定方法と装置

Publications (1)

Publication Number Publication Date
WO2016194023A1 true WO2016194023A1 (ja) 2016-12-08

Family

ID=56418682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002829 WO2016194023A1 (ja) 2015-06-04 2015-06-04 原位置試験による液状化判定方法と装置

Country Status (2)

Country Link
JP (1) JP5953560B1 (ja)
WO (1) WO2016194023A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170163A (ja) * 1998-12-08 2000-06-20 Taisei Corp 杭打機
JP2013224516A (ja) * 2012-04-19 2013-10-31 Something:Kk 地盤調査装置
JP5526290B1 (ja) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 液状化判定のための試料採取装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002055090A (ja) * 2000-08-09 2002-02-20 Ohbayashi Corp 液状化判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170163A (ja) * 1998-12-08 2000-06-20 Taisei Corp 杭打機
JP2013224516A (ja) * 2012-04-19 2013-10-31 Something:Kk 地盤調査装置
JP5526290B1 (ja) * 2013-04-02 2014-06-18 報国エンジニアリング株式会社 液状化判定のための試料採取装置および方法

Also Published As

Publication number Publication date
JP5953560B1 (ja) 2016-07-20
JPWO2016194023A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
CN104793264B (zh) 应用于钻机的地质状况实时反映与超前探测系统及方法
JP4607977B2 (ja) 土質採取装置
US20070131453A1 (en) Automatic SPT monitor
JP6307177B2 (ja) 水体の床の地盤試料を取得及び分析する水中掘削装置
RU2422588C2 (ru) Способ ударного зондирования грунтов и устройство для его осуществления
JP5021104B1 (ja) 地盤調査装置
JP5604671B2 (ja) 土砂採取装置、土砂採取システム及び土砂採取方法
US20160018307A1 (en) Sample Extraction Apparatus And Method For Liquefaction Assessment
KR100490661B1 (ko) 자동 표준 관입 시험장치
CN103380259A (zh) 用于钻机的现场采样及分析系统和包括其的钻机
AU2022100122A4 (en) A method and system for acquiring geological data from a bore hole
US2833120A (en) Testborer
Wazoh et al. Standard Penetration Test in engineering geological site investigations–A review
JP5953560B1 (ja) 原位置試験による液状化判定方法と装置
KR101027930B1 (ko) 연약지반 전용 스플릿배럴 샘플러를 이용한 표준관입시험 방법
DE102010028412A1 (de) Geothermische Mess-Sonde und Verfahren zur Durchführung von geothermischen Responsetests
JP6029528B2 (ja) 地盤の評価方法
JP5905282B2 (ja) 施工管理装置、杭打込機及び杭打込方法
AU2018241169B2 (en) A portable and disposable apparatus and method for rapid measurement of water level and blast hole depth
JP2006322175A (ja) 土質試料用サンプラー
CN207487867U (zh) 钻杆输送取心张力测量装置
Cao et al. Chinese Dynamic Penetration Tests (CDPT) at liquefaction sites following 2008 Wenchuan earthquake
JP6481945B2 (ja) 地盤強度計測方法
Carlton et al. In situ dynamic drop testing of the MD bolt at Mt Charlotte Gold Mine
RU2700139C1 (ru) Способ геологического исследования хвостохранилищ и устройство для его реализации

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548073

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894059

Country of ref document: EP

Kind code of ref document: A1